You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ge_aipp_op.cc 41 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "graph/preprocess/insert_op/ge_aipp_op.h"
  17. #include <memory>
  18. #include <set>
  19. #include <string>
  20. #include <utility>
  21. #include <vector>
  22. #include "base_insert_op.h"
  23. #include "common/dynamic_aipp.h"
  24. #include "common/ge/ge_util.h"
  25. #include "common/util.h"
  26. #include "common/util/error_manager/error_manager.h"
  27. #include "external/graph/operator_factory.h"
  28. #include "framework/common/debug/ge_log.h"
  29. #include "framework/common/ge_inner_error_codes.h"
  30. #include "framework/common/op/ge_op_utils.h"
  31. #include "framework/common/types.h"
  32. #include "framework/omg/omg_inner_types.h"
  33. #include "graph/debug/ge_attr_define.h"
  34. #include "graph/optimize/common/params.h"
  35. #include "graph/utils/graph_utils.h"
  36. #include "graph/utils/node_utils.h"
  37. #include "graph/utils/op_desc_utils.h"
  38. #include "graph/utils/tensor_utils.h"
  39. #include "graph/utils/type_utils.h"
  40. #include "proto/insert_op.pb.h"
  41. #include "graph/common/local_context.h"
  42. #define SAVE_AIPP_ATTR(KEY, SAVE_TYPE) \
  43. do { \
  44. (void)aipp_attrs.SetAttr(#KEY, GeAttrValue::CreateFrom<SAVE_TYPE>(aipp_params_->KEY())); \
  45. } while (0)
  46. #define SAVE_AIPP_ATTR_LIST(KEY, SAVE_TYPE) \
  47. do { \
  48. if (aipp_params_->KEY##_size() > 0) { \
  49. (void)aipp_attrs.SetAttr(#KEY, GeAttrValue::CreateFrom<SAVE_TYPE>(aipp_params_->KEY(0))); \
  50. } \
  51. } while (0)
  52. namespace {
  53. const int32_t DEFAULT_MATRIX_R0C0_YUV2RGB = 298;
  54. const int32_t DEFAULT_MATRIX_R0C1_YUV2RGB = 0;
  55. const int32_t DEFAULT_MATRIX_R0C2_YUV2RGB = 409;
  56. const int32_t DEFAULT_MATRIX_R1C0_YUV2RGB = 298;
  57. const int32_t DEFAULT_MATRIX_R1C1_YUV2RGB = -100;
  58. const int32_t DEFAULT_MATRIX_R1C2_YUV2RGB = -208;
  59. const int32_t DEFAULT_MATRIX_R2C0_YUV2RGB = 298;
  60. const int32_t DEFAULT_MATRIX_R2C1_YUV2RGB = 516;
  61. const int32_t DEFAULT_MATRIX_R2C2_YUV2RGB = 0;
  62. const int32_t DEFAULT_MATRIX_R0C0_RGB2YUV = 66;
  63. const int32_t DEFAULT_MATRIX_R0C1_RGB2YUV = 129;
  64. const int32_t DEFAULT_MATRIX_R0C2_RGB2YUV = 25;
  65. const int32_t DEFAULT_MATRIX_R1C0_RGB2YUV = -38;
  66. const int32_t DEFAULT_MATRIX_R1C1_RGB2YUV = -74;
  67. const int32_t DEFAULT_MATRIX_R1C2_RGB2YUV = 112;
  68. const int32_t DEFAULT_MATRIX_R2C0_RGB2YUV = 112;
  69. const int32_t DEFAULT_MATRIX_R2C1_RGB2YUV = -94;
  70. const int32_t DEFAULT_MATRIX_R2C2_RGB2YUV = -18;
  71. const int32_t DEFAULT_OUTPUT_BIAS_0 = 16;
  72. const int32_t DEFAULT_OUTPUT_BIAS_1 = 128;
  73. const int32_t DEFAULT_OUTPUT_BIAS_2 = 128;
  74. const int32_t DEFAULT_INPUT_BIAS_0 = 16;
  75. const int32_t DEFAULT_INPUT_BIAS_1 = 128;
  76. const int32_t DEFAULT_INPUT_BIAS_2 = 128;
  77. const float DEFAULT_VAR_RECI_CHN = 1.0;
  78. } // namespace
  79. namespace ge {
  80. namespace {
  81. const char *const kMbatchSwitchnName = "mbatch-switch-name";
  82. const char *const kAippConfigPath = "aipp_config_path";
  83. const char *const kCurrentAippIndex = "current_aipp_index";
  84. const char *const kDynamicAippData = "ascend_dynamic_aipp_data";
  85. const uint64_t kMinTransferShape = 3;
  86. const int kAippImageInputIndex = 0;
  87. const int kAippParamsInputIndex = 1;
  88. const int kAippDataOutputIndex = 0;
  89. const int64_t kDynamicDim = -1;
  90. // the `format` must one NCHW or NHWC
  91. Status GetDataDimN(const ge::NodePtr &data_node, ge::Format format, int64_t &batch) {
  92. auto output_desc = NodeUtils::GetOutputDesc(*data_node, 0);
  93. auto shape = output_desc.GetShape().GetDims();
  94. if (shape.size() == kMinTransferShape) {
  95. batch = 1;
  96. return SUCCESS;
  97. }
  98. if (shape.size() == DIM_DEFAULT_SIZE) {
  99. switch (format) {
  100. case FORMAT_NCHW:
  101. batch = shape[NCHW_DIM_N];
  102. return SUCCESS;
  103. case FORMAT_NHWC:
  104. batch = shape[NHWC_DIM_N];
  105. return SUCCESS;
  106. default:
  107. GELOGE(PARAM_INVALID, "Not support data format: %s", TypeUtils::FormatToSerialString(format).c_str());
  108. return PARAM_INVALID;
  109. }
  110. }
  111. string errormsg = "its shape size must be in range[3,4] which dynamic aipp is linked, "
  112. "maybe this input is not suitable for dynamic aipp";
  113. ErrorManager::GetInstance().ATCReportErrMessage("E10001", {"parameter", "value", "reason"},
  114. {data_node->GetName() + " shape size",
  115. to_string(shape.size()), errormsg});
  116. GELOGE(PARAM_INVALID, "The shape size of this node [%s] which linked dynamic aipp must be in range[3, 4], but is %zu",
  117. data_node->GetName().c_str(), shape.size());
  118. return PARAM_INVALID;
  119. }
  120. // the batch_count must be more than 0
  121. int64_t CalcMaxSize(int64_t batch_count) {
  122. batch_count--;
  123. if (batch_count > 0) {
  124. if (INT64_MAX / batch_count < static_cast<int64_t>(sizeof(kAippDynamicBatchPara))) {
  125. return -1;
  126. }
  127. }
  128. int64_t size = batch_count * sizeof(kAippDynamicBatchPara);
  129. if (INT64_MAX - static_cast<int64_t>(sizeof(kAippDynamicPara)) < size) {
  130. return -1;
  131. }
  132. return size + sizeof(kAippDynamicPara);
  133. }
  134. Format GetAndCheckFormat() {
  135. switch (GetLocalOmgContext().format) {
  136. case domi::DOMI_TENSOR_NCHW:
  137. return FORMAT_NCHW;
  138. case domi::DOMI_TENSOR_NHWC:
  139. return FORMAT_NHWC;
  140. default:
  141. GELOGE(PARAM_INVALID, "Unexpected format found %d", static_cast<int>(GetLocalOmgContext().format));
  142. return FORMAT_ND;
  143. }
  144. }
  145. } // namespace
  146. Status AippOp::Init(domi::AippOpParams *aipp_params) {
  147. aipp_params_ = new (std::nothrow) domi::AippOpParams();
  148. if (aipp_params_ == nullptr) {
  149. return FAILED;
  150. }
  151. aipp_params_->CopyFrom(*aipp_params);
  152. return SUCCESS;
  153. }
  154. AippOp::~AippOp() {
  155. if (aipp_params_ != nullptr) {
  156. delete aipp_params_;
  157. aipp_params_ = nullptr;
  158. }
  159. }
  160. Status AippOp::InsertAippToGraph(ComputeGraphPtr &graph, std::string &aippConfigPath, const uint32_t index) {
  161. GE_CHECK_NOTNULL(graph);
  162. NodePtr target_input = nullptr;
  163. std::vector<std::pair<OutDataAnchorPtr, InDataAnchorPtr>> target_edges;
  164. if (this->ConvertRelatedInputNameToRank() != SUCCESS) {
  165. GELOGE(FAILED, "AippOp: convert related input name to rank failed.");
  166. return FAILED;
  167. }
  168. GE_CHK_STATUS_RET(this->GetTargetPosition(graph, target_input, target_edges), "Get data nodes position failed");
  169. std::map<OutDataAnchorPtr, NodePtr> out_anchors_to_aipp;
  170. for (auto &out_in_anchors : target_edges) {
  171. auto iter = out_anchors_to_aipp.find(out_in_anchors.first);
  172. if (iter == out_anchors_to_aipp.end()) {
  173. auto aipp = CreateAipp(out_in_anchors.first, aippConfigPath, index);
  174. GE_CHECK_NOTNULL(aipp);
  175. out_anchors_to_aipp[out_in_anchors.first] = aipp;
  176. auto ret = GraphUtils::InsertNodeBetweenDataAnchors(out_in_anchors.first, out_in_anchors.second, aipp);
  177. if (ret != GRAPH_SUCCESS) {
  178. GELOGE(INTERNAL_ERROR, "Failed to link edges for aipp node %s", aipp->GetName().c_str());
  179. return INTERNAL_ERROR;
  180. }
  181. // add aipp data if needed
  182. if (GetAippMode() == domi::AippOpParams::dynamic) {
  183. ret = CreateAippData(aipp);
  184. if (ret != SUCCESS) {
  185. GELOGE(INTERNAL_ERROR, "Failed to create aipp data for aipp %s data %s", aipp->GetName().c_str(),
  186. out_in_anchors.first->GetOwnerNode()->GetName().c_str());
  187. return INTERNAL_ERROR;
  188. }
  189. }
  190. GELOGI("Create aipp %s and insert it to the graph", aipp->GetName().c_str());
  191. } else {
  192. out_in_anchors.second->UnlinkAll();
  193. auto &aipp = iter->second;
  194. auto ret = out_in_anchors.second->LinkFrom(aipp->GetOutDataAnchor(0));
  195. if (ret != GRAPH_SUCCESS) {
  196. GELOGE(INTERNAL_ERROR, "Failed to link aipp %s to the peer node %s", aipp->GetName().c_str(),
  197. out_in_anchors.second->GetOwnerNode()->GetName().c_str());
  198. return INTERNAL_ERROR;
  199. }
  200. }
  201. }
  202. return SUCCESS;
  203. }
  204. NodePtr AippOp::CreateAipp(const OutDataAnchorPtr &out_anchor,
  205. const std::string &aippConfigPath, const uint32_t &index) {
  206. const auto &node = out_anchor->GetOwnerNode();
  207. std::string current_name = node->GetName() + "_" + std::to_string(out_anchor->GetIdx()) + "_huawei_aipp";
  208. auto aipp_opdesc_ptr = MakeShared<OpDesc>(current_name, AIPP);
  209. if (aipp_opdesc_ptr == nullptr) {
  210. GELOGE(OUT_OF_MEMORY, "Failed to alloc aipp desc, name %s", current_name.c_str());
  211. return nullptr;
  212. }
  213. // Update attributes
  214. if (AddAippAttrbutes(aipp_opdesc_ptr, aippConfigPath, index) != SUCCESS) {
  215. return nullptr;
  216. }
  217. // Update input desc, the output desc will be flushed when InferShape
  218. auto node_desc = out_anchor->GetOwnerNode()->GetOpDesc();
  219. if (node_desc == nullptr) {
  220. return nullptr;
  221. }
  222. auto opdesc_src_data = node_desc->GetOutputDesc(out_anchor->GetIdx());
  223. if (opdesc_src_data.GetDataType() != DT_FLOAT) {
  224. GELOGW("The datatype of data node %s is not FP32", node_desc->GetName().c_str());
  225. opdesc_src_data.SetDataType(DT_FLOAT);
  226. }
  227. // We must get the TensorDesc from the output anchor on the Data node,
  228. // and update the TensorDesc to the input anchor on the Aipp node.
  229. // Because the InferShape function for the Aipp node needs the input tensor format,
  230. // but the InferFormat process before InferShape can not infer the format
  231. // if the tensor on the Aipp has an unknown shape
  232. if (aipp_opdesc_ptr->UpdateInputDesc(kAippImageInputIndex, opdesc_src_data) != GRAPH_SUCCESS) {
  233. GELOGE(INTERNAL_ERROR, "Failed to update the output desc from node %s to aipp %s", node_desc->GetName().c_str(),
  234. aipp_opdesc_ptr->GetName().c_str());
  235. return nullptr;
  236. }
  237. return node->GetOwnerComputeGraph()->AddNode(aipp_opdesc_ptr);
  238. }
  239. Status AippOp::AddAippAttrbutes(const OpDescPtr &op_desc, const std::string &aipp_cfg_path, const uint32_t &index) {
  240. GeAttrValue::NAMED_ATTRS aipp_attr;
  241. ConvertParamToAttr(aipp_attr);
  242. GE_CHK_BOOL_RET_STATUS(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr),
  243. INTERNAL_ERROR, "Set name attrs for aipp node failed");
  244. GE_CHK_BOOL_RET_STATUS(AttrUtils::SetStr(op_desc, kAippConfigPath, aipp_cfg_path),
  245. INTERNAL_ERROR, "Set config file path attr for aipp node failed");
  246. std::vector<std::string> empty_names;
  247. GE_CHK_BOOL_RET_STATUS(AttrUtils::SetListStr(op_desc, ATTR_NAME_DATA_DUMP_ORIGIN_OP_NAMES, empty_names),
  248. INTERNAL_ERROR, "Set ATTR_NAME_DATA_DUMP_ORIGIN_OP_NAMES attr for aipp node failed");
  249. GE_CHK_BOOL_RET_STATUS(AttrUtils::SetInt(op_desc, kCurrentAippIndex, index),
  250. INTERNAL_ERROR, "Set kCurrentAippIndex attr for aipp node failed");
  251. // add input/output desc
  252. GeTensorDesc tensor;
  253. GE_CHK_GRAPH_STATUS_RET(op_desc->AddInputDesc("images", tensor), "Failed to add input images for aipp node");
  254. if (GetAippMode() == domi::AippOpParams::dynamic) {
  255. GE_CHK_GRAPH_STATUS_RET(op_desc->AddOptionalInputDesc("params", tensor), "Failed to add params for aipp node");
  256. }
  257. GE_CHK_GRAPH_STATUS_RET(op_desc->AddOutputDesc("features", tensor), "Failed to add output features for aipp node");
  258. return SUCCESS;
  259. }
  260. domi::AippOpParams::AippMode AippOp::GetAippMode() { return aipp_params_->aipp_mode(); }
  261. NodePtr AippOp::FindDataByIndex(const ComputeGraphPtr &graph, int rank) {
  262. int64_t data_index = 0;
  263. for (auto &node : graph->GetDirectNode()) {
  264. if (node->GetType() != DATA) {
  265. continue;
  266. }
  267. // For functional multi batch, Skip Data for index.
  268. if (node->GetOpDesc()->HasAttr(ATTR_INSERT_BY_MBATCH)) {
  269. continue;
  270. }
  271. // There is no `index` attribute on the `Data` node when compile in inference scene
  272. // so we can only use the order of all `Data` nodes to infer the data index
  273. if (data_index++ != rank) {
  274. continue;
  275. }
  276. return node;
  277. }
  278. string error_msg = "Can not find the data node by aipp parameter related_input_rank " + to_string(rank);
  279. GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error_msg.c_str());
  280. return nullptr;
  281. }
  282. Status AippOp::GetAndCheckTarget(const ComputeGraphPtr &graph, int rank, NodePtr &target,
  283. std::set<uint32_t> &edge_indexes) {
  284. auto data_node = FindDataByIndex(graph, rank);
  285. if (data_node == nullptr) {
  286. GELOGE(PARAM_INVALID, "Get target input node for rank %d failed", rank);
  287. return PARAM_INVALID;
  288. }
  289. data_node_linked_aipp = data_node;
  290. auto data_opdesc = data_node->GetOpDesc();
  291. GE_CHECK_NOTNULL(data_opdesc);
  292. string set_dt_str;
  293. if (ge::AttrUtils::GetStr(data_opdesc, ATTR_ATC_USER_DEFINE_DATATYPE, set_dt_str)) {
  294. ErrorManager::GetInstance().ATCReportErrMessage("E10034", {"opname"}, {data_opdesc->GetName()});
  295. GELOGE(INTERNAL_ERROR,
  296. "This input op [%s] is linked to aipp, can not be set to fp16, "
  297. "please check your atc parameter --insert_op_conf, --input_fp16_nodes.",
  298. data_opdesc->GetName().c_str());
  299. return PARAM_INVALID;
  300. }
  301. // add dynamic or static attr memsage to data
  302. if (GetAippMode() == domi::AippOpParams::static_) {
  303. (void)AttrUtils::SetStr(data_opdesc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp");
  304. } else if (GetAippMode() == domi::AippOpParams::dynamic) {
  305. (void)AttrUtils::SetStr(data_opdesc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  306. }
  307. // In scenario AIPP+CONV2D+POOLING, keep the aipp info to Data, since AIPP disappear after subgraph optimize
  308. GeAttrValue::NAMED_ATTRS aipp_attr;
  309. ConvertParamToAttr(aipp_attr);
  310. if (!AttrUtils::SetNamedAttrs(data_opdesc, ATTR_NAME_AIPP, aipp_attr)) {
  311. GELOGE(INTERNAL_ERROR, "Set name attrs for Data node failed. id: %d", rank);
  312. return INTERNAL_ERROR;
  313. }
  314. if (aipp_params_->input_edge_idx_size() > 0) {
  315. for (auto edge_index : aipp_params_->input_edge_idx()) {
  316. edge_indexes.insert(edge_index);
  317. }
  318. }
  319. if (!edge_indexes.empty() && (*edge_indexes.rbegin() >= data_node->GetOutDataNodes().size())) {
  320. string error_msg = "The aipp parameter input_edge_idx[" + std::to_string(*edge_indexes.rbegin()) +
  321. "] should be smaller than the target input[" +
  322. std::to_string(data_node->GetOutDataNodes().size()) +"]'s outnodes.";
  323. GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error_msg.c_str());
  324. return PARAM_INVALID;
  325. }
  326. target = data_node;
  327. return GetStaticTargetNode(graph, data_node, target);
  328. }
  329. Status AippOp::GetStaticTargetNode(const ComputeGraphPtr &graph, NodePtr &data_node, NodePtr &target) {
  330. if (GetAippMode() != domi::AippOpParams::static_) {
  331. return SUCCESS;
  332. }
  333. std::string related_node_name;
  334. if (AttrUtils::GetStr(data_node->GetOpDesc(), kMbatchSwitchnName, related_node_name)) {
  335. if (related_node_name.empty()) {
  336. GELOGE(INTERNAL_ERROR, "The data node %s has switchn node flag, but the value is empty",
  337. data_node->GetName().c_str());
  338. return INTERNAL_ERROR;
  339. }
  340. auto switchn = graph->FindNode(related_node_name);
  341. if (switchn == nullptr) {
  342. GELOGE(INTERNAL_ERROR, "The data node %s has switchn node %s, but can not find it on the graph",
  343. data_node->GetName().c_str(), related_node_name.c_str());
  344. return INTERNAL_ERROR;
  345. }
  346. target = switchn;
  347. GELOGI("Multi-batch/image size and static aipp for data %s, "
  348. "the aipp node will be insert after %s instead of origin data node",
  349. data_node->GetName().c_str(), switchn->GetName().c_str());
  350. return SUCCESS;
  351. }
  352. const auto out_anchor = data_node->GetOutDataAnchor(0);
  353. for (const auto &in_anchor : out_anchor->GetPeerInDataAnchors()) {
  354. if (in_anchor == nullptr) {
  355. continue;
  356. }
  357. const auto &case_node = in_anchor->GetOwnerNode();
  358. if (case_node->GetType() == CASE) {
  359. target = case_node;
  360. return SUCCESS;
  361. }
  362. }
  363. return SUCCESS;
  364. }
  365. Status AippOp::ConvertRelatedInputNameToRank() {
  366. GE_CHECK_NOTNULL(aipp_params_);
  367. string related_input_name = aipp_params_->related_input_name();
  368. if (related_input_name.empty()) {
  369. return SUCCESS;
  370. }
  371. std::vector<std::string> data_top_names = domi::GetContext().data_top_names;
  372. GELOGI("Convert name to rank start: data size[%zu]", data_top_names.size());
  373. uint32_t index = 0;
  374. bool convert_flag = false;
  375. for (const auto &data_top_name : data_top_names) {
  376. if (related_input_name == data_top_name) {
  377. aipp_params_->set_related_input_rank(index);
  378. convert_flag = true;
  379. GELOGI("AippOp: rank: %u, top name: %s.", index, data_top_name.c_str());
  380. break;
  381. }
  382. index++;
  383. }
  384. if (!convert_flag) {
  385. string error_msg = "Top name " + related_input_name + "convert rank failed, Please"
  386. " ensure top name in aipp config is the top name of data node.";
  387. GELOGE(PARAM_INVALID, "[Check][InputParam]%s", error_msg.c_str());
  388. REPORT_INPUT_ERROR("E19021", std::vector<std::string>({"reason"}), std::vector<std::string>({error_msg}));
  389. return PARAM_INVALID;
  390. }
  391. return SUCCESS;
  392. }
  393. Status AippOp::GetTargetPosition(ComputeGraphPtr graph, NodePtr &target_input,
  394. std::vector<std::pair<OutDataAnchorPtr, InDataAnchorPtr>> &target_edges) {
  395. GE_CHECK_NOTNULL(graph);
  396. GE_CHECK_NOTNULL(aipp_params_);
  397. std::set<uint32_t> edge_indexes;
  398. const uint32_t related_input_rank = aipp_params_->related_input_rank();
  399. auto ret = GetAndCheckTarget(graph, related_input_rank, target_input, edge_indexes);
  400. if (ret != SUCCESS) {
  401. GELOGE(ret, "Get target input node for rank %u failed", related_input_rank);
  402. return ret;
  403. }
  404. target_edges.clear();
  405. if (target_input->GetType() != CASE) {
  406. for (OutDataAnchorPtr &src_out : target_input->GetAllOutDataAnchors()) {
  407. auto dst_ins = src_out->GetPeerInDataAnchors();
  408. for (uint32_t i = 0; i < dst_ins.size(); ++i) {
  409. auto dst_in = dst_ins.at(i);
  410. if (edge_indexes.empty() || edge_indexes.count(i) > 0) {
  411. target_edges.emplace_back(src_out, dst_in);
  412. }
  413. }
  414. }
  415. } else {
  416. const auto &func_desc = target_input->GetOpDesc();
  417. for (const auto &name : func_desc->GetSubgraphInstanceNames()) {
  418. const auto &subgraph = graph->GetSubgraph(name);
  419. if (subgraph == nullptr) {
  420. GELOGE(GE_GRAPH_EMPTY_SUBGRAPH, "Subgraph not found, name: %s", name.c_str());
  421. return GE_GRAPH_EMPTY_SUBGRAPH;
  422. }
  423. auto data_node = FindDataByIndex(subgraph, related_input_rank);
  424. if (data_node == nullptr) {
  425. GELOGE(PARAM_INVALID, "Get target input node for rank %d failed", related_input_rank);
  426. return PARAM_INVALID;
  427. }
  428. for (OutDataAnchorPtr &src_out : data_node->GetAllOutDataAnchors()) {
  429. auto dst_ins = src_out->GetPeerInDataAnchors();
  430. for (uint32_t i = 0; i < dst_ins.size(); ++i) {
  431. auto dst_in = dst_ins.at(i);
  432. if (edge_indexes.empty() || edge_indexes.count(i) > 0) {
  433. target_edges.emplace_back(src_out, dst_in);
  434. }
  435. }
  436. }
  437. }
  438. }
  439. return SUCCESS;
  440. }
  441. Status AippOp::SetDefaultParams() {
  442. GE_CHECK_NOTNULL(aipp_params_);
  443. const domi::AippOpParams::AippMode aipp_mode = aipp_params_->aipp_mode();
  444. if (aipp_mode == domi::AippOpParams::static_) {
  445. if (aipp_params_->csc_switch()) {
  446. SetCscDefaultValue();
  447. }
  448. SetDtcDefaultValue();
  449. GELOGI("parse aipp params:input_format:%s, csc_switch:%d.",
  450. domi::AippOpParams::InputFormat_Name(aipp_params_->input_format()).c_str(), aipp_params_->csc_switch());
  451. GELOGI("parse aipp params:mean_chn_0:%d, mean_chn_1:%d, mean_chn_2:%d, mean_chn_3:%d.", aipp_params_->mean_chn_0(),
  452. aipp_params_->mean_chn_1(), aipp_params_->mean_chn_2(), aipp_params_->mean_chn_3());
  453. GELOGI("parse aipp params:min_chn_0:%f, min_chn_1:%f, min_chn_2:%f.", aipp_params_->min_chn_0(),
  454. aipp_params_->min_chn_1(), aipp_params_->min_chn_2());
  455. GE_IF_BOOL_EXEC(!aipp_params_->crop(), aipp_params_->set_load_start_pos_h(0); aipp_params_->set_load_start_pos_w(0);
  456. aipp_params_->set_crop_size_h(0); aipp_params_->set_crop_size_w(0););
  457. GE_IF_BOOL_EXEC(!aipp_params_->resize(), aipp_params_->set_resize_output_h(0);
  458. aipp_params_->set_resize_output_w(0););
  459. GE_IF_BOOL_EXEC(!aipp_params_->padding(), aipp_params_->set_left_padding_size(0);
  460. aipp_params_->set_right_padding_size(0); aipp_params_->set_top_padding_size(0);
  461. aipp_params_->set_bottom_padding_size(0););
  462. }
  463. return SUCCESS;
  464. }
  465. Status AippOp::ValidateParams() {
  466. GE_CHECK_NOTNULL(aipp_params_);
  467. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->aipp_mode() != domi::AippOpParams::undefined, PARAM_INVALID,
  468. "When insert AIPP op, aipp_mode must be configured as static or dynamic ");
  469. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->var_reci_chn_0_size() <= 1, PARAM_INVALID,
  470. "The parameter var_reci_chn_0 can not be configed repeatedly");
  471. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->var_reci_chn_1_size() <= 1, PARAM_INVALID,
  472. "The parameter var_reci_chn_1 can not be configed repeatedly");
  473. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->var_reci_chn_2_size() <= 1, PARAM_INVALID,
  474. "The parameter var_reci_chn_2 can not be configed repeatedly");
  475. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->var_reci_chn_3_size() <= 1, PARAM_INVALID,
  476. "The parameter var_reci_chn_3 can not be configed repeatedly");
  477. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->matrix_r0c0_size() <= 1, PARAM_INVALID,
  478. "The parameter matrix_r0c0 can not be configed repeatedly");
  479. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->matrix_r0c1_size() <= 1, PARAM_INVALID,
  480. "The parameter matrix_r0c1 can not be configed repeatedly");
  481. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->matrix_r0c2_size() <= 1, PARAM_INVALID,
  482. "The parameter matrix_r0c2 can not be configed repeatedly");
  483. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->matrix_r1c0_size() <= 1, PARAM_INVALID,
  484. "The parameter matrix_r1c0 can not be configed repeatedly");
  485. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->matrix_r1c1_size() <= 1, PARAM_INVALID,
  486. "The parameter matrix_r1c1 can not be configed repeatedly");
  487. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->matrix_r1c2_size() <= 1, PARAM_INVALID,
  488. "The parameter matrix_r1c2 can not be configed repeatedly");
  489. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->matrix_r2c0_size() <= 1, PARAM_INVALID,
  490. "The parameter matrix_r2c0 can not be configed repeatedly");
  491. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->matrix_r2c1_size() <= 1, PARAM_INVALID,
  492. "The parameter matrix_r2c1 can not be configed repeatedly");
  493. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->matrix_r2c2_size() <= 1, PARAM_INVALID,
  494. "The parameter matrix_r2c2 can not be configed repeatedly");
  495. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->output_bias_0_size() <= 1, PARAM_INVALID,
  496. "The parameter output_bias_0 can not be configed repeatedly");
  497. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->output_bias_1_size() <= 1, PARAM_INVALID,
  498. "The parameter output_bias_1 can not be configed repeatedly");
  499. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->output_bias_2_size() <= 1, PARAM_INVALID,
  500. "The parameter output_bias_2 can not be configed repeatedly");
  501. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->input_bias_0_size() <= 1, PARAM_INVALID,
  502. "The parameter input_bias_0 can not be configed repeatedly");
  503. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->input_bias_1_size() <= 1, PARAM_INVALID,
  504. "The parameter input_bias_1 can not be configed repeatedly");
  505. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->input_bias_2_size() <= 1, PARAM_INVALID,
  506. "The parameter input_bias_2 can not be configed repeatedly");
  507. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->input_edge_idx_size() <= 1, PARAM_INVALID,
  508. "The parameter input_edge_idx can not be configed repeatedly");
  509. const domi::AippOpParams::AippMode aipp_mode = aipp_params_->aipp_mode();
  510. if (aipp_mode == domi::AippOpParams::dynamic) {
  511. GE_CHK_LOG_AND_ERRORMSG(
  512. aipp_params_->max_src_image_size() > 0, PARAM_INVALID,
  513. "For dynamic AIPP params, max_src_image_size must be set which number should be greater than 0");
  514. } else {
  515. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->input_format() != domi::AippOpParams::UNDEFINED, PARAM_INVALID,
  516. "Input format of AIPP conf is undefined");
  517. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->src_image_size_w() >= 0, PARAM_INVALID,
  518. "Src_image_size_w must not be configed smaller than 0");
  519. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->src_image_size_h() >= 0, PARAM_INVALID,
  520. "Src_image_size_h must not be configed smaller than 0");
  521. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->load_start_pos_w() >= 0, PARAM_INVALID,
  522. "Load_start_pos_w must not be configed smaller than 0");
  523. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->load_start_pos_h() >= 0, PARAM_INVALID,
  524. "Load_start_pos_h must not be configed smaller than 0");
  525. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->crop_size_w() >= 0, PARAM_INVALID,
  526. "Crop_size_w must not be configed smaller than 0");
  527. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->resize_output_w() >= 0, PARAM_INVALID,
  528. "Resize_output_w must not be configed smaller than 0");
  529. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->resize_output_h() >= 0, PARAM_INVALID,
  530. "Resize_output_h must not be configed smaller than 0");
  531. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->left_padding_size() >= 0, PARAM_INVALID,
  532. "Left_padding_size must not be configed smaller than 0");
  533. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->right_padding_size() >= 0, PARAM_INVALID,
  534. "Right_padding_size must not be configed smaller than 0");
  535. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->top_padding_size() >= 0, PARAM_INVALID,
  536. "Top_padding_size must not be configed smaller than 0");
  537. GE_CHK_LOG_AND_ERRORMSG(aipp_params_->bottom_padding_size() >= 0, PARAM_INVALID,
  538. "Bottom_padding_size must not be configed smaller than 0");
  539. }
  540. return SUCCESS;
  541. }
  542. void AippOp::SetCscDefaultValue() {
  543. GE_CHECK_NOTNULL_JUST_RETURN(aipp_params_);
  544. if (aipp_params_->input_format() == domi::AippOpParams::YUV420SP_U8) {
  545. CHECK_FALSE_EXEC(aipp_params_->matrix_r0c0_size() > 0, aipp_params_->add_matrix_r0c0(DEFAULT_MATRIX_R2C0_YUV2RGB));
  546. CHECK_FALSE_EXEC(aipp_params_->matrix_r0c1_size() > 0, aipp_params_->add_matrix_r0c1(DEFAULT_MATRIX_R2C1_YUV2RGB));
  547. CHECK_FALSE_EXEC(aipp_params_->matrix_r0c2_size() > 0, aipp_params_->add_matrix_r0c2(DEFAULT_MATRIX_R2C2_YUV2RGB));
  548. CHECK_FALSE_EXEC(aipp_params_->matrix_r1c0_size() > 0, aipp_params_->add_matrix_r1c0(DEFAULT_MATRIX_R1C0_YUV2RGB));
  549. CHECK_FALSE_EXEC(aipp_params_->matrix_r1c1_size() > 0, aipp_params_->add_matrix_r1c1(DEFAULT_MATRIX_R1C1_YUV2RGB));
  550. CHECK_FALSE_EXEC(aipp_params_->matrix_r1c2_size() > 0, aipp_params_->add_matrix_r1c2(DEFAULT_MATRIX_R1C2_YUV2RGB));
  551. CHECK_FALSE_EXEC(aipp_params_->matrix_r2c0_size() > 0, aipp_params_->add_matrix_r2c0(DEFAULT_MATRIX_R0C0_YUV2RGB));
  552. CHECK_FALSE_EXEC(aipp_params_->matrix_r2c1_size() > 0, aipp_params_->add_matrix_r2c1(DEFAULT_MATRIX_R0C1_YUV2RGB));
  553. CHECK_FALSE_EXEC(aipp_params_->matrix_r2c2_size() > 0, aipp_params_->add_matrix_r2c2(DEFAULT_MATRIX_R0C2_YUV2RGB));
  554. } else {
  555. CHECK_FALSE_EXEC(aipp_params_->matrix_r0c0_size() > 0, aipp_params_->add_matrix_r0c0(DEFAULT_MATRIX_R0C0_RGB2YUV));
  556. CHECK_FALSE_EXEC(aipp_params_->matrix_r0c1_size() > 0, aipp_params_->add_matrix_r0c1(DEFAULT_MATRIX_R0C1_RGB2YUV));
  557. CHECK_FALSE_EXEC(aipp_params_->matrix_r0c2_size() > 0, aipp_params_->add_matrix_r0c2(DEFAULT_MATRIX_R0C2_RGB2YUV));
  558. CHECK_FALSE_EXEC(aipp_params_->matrix_r1c0_size() > 0, aipp_params_->add_matrix_r1c0(DEFAULT_MATRIX_R1C0_RGB2YUV));
  559. CHECK_FALSE_EXEC(aipp_params_->matrix_r1c1_size() > 0, aipp_params_->add_matrix_r1c1(DEFAULT_MATRIX_R1C1_RGB2YUV));
  560. CHECK_FALSE_EXEC(aipp_params_->matrix_r1c2_size() > 0, aipp_params_->add_matrix_r1c2(DEFAULT_MATRIX_R1C2_RGB2YUV));
  561. CHECK_FALSE_EXEC(aipp_params_->matrix_r2c0_size() > 0, aipp_params_->add_matrix_r2c0(DEFAULT_MATRIX_R2C0_RGB2YUV));
  562. CHECK_FALSE_EXEC(aipp_params_->matrix_r2c1_size() > 0, aipp_params_->add_matrix_r2c1(DEFAULT_MATRIX_R2C1_RGB2YUV));
  563. CHECK_FALSE_EXEC(aipp_params_->matrix_r2c2_size() > 0, aipp_params_->add_matrix_r2c2(DEFAULT_MATRIX_R2C2_RGB2YUV));
  564. }
  565. CHECK_FALSE_EXEC(aipp_params_->input_bias_0_size() > 0, aipp_params_->add_input_bias_0(DEFAULT_INPUT_BIAS_0));
  566. CHECK_FALSE_EXEC(aipp_params_->input_bias_1_size() > 0, aipp_params_->add_input_bias_1(DEFAULT_INPUT_BIAS_1));
  567. CHECK_FALSE_EXEC(aipp_params_->input_bias_2_size() > 0, aipp_params_->add_input_bias_2(DEFAULT_INPUT_BIAS_2));
  568. CHECK_FALSE_EXEC(aipp_params_->output_bias_0_size() > 0, aipp_params_->add_output_bias_0(DEFAULT_OUTPUT_BIAS_0));
  569. CHECK_FALSE_EXEC(aipp_params_->output_bias_1_size() > 0, aipp_params_->add_output_bias_1(DEFAULT_OUTPUT_BIAS_1));
  570. CHECK_FALSE_EXEC(aipp_params_->output_bias_2_size() > 0, aipp_params_->add_output_bias_2(DEFAULT_OUTPUT_BIAS_2));
  571. }
  572. void AippOp::SetDtcDefaultValue() {
  573. GE_CHECK_NOTNULL_JUST_RETURN(aipp_params_);
  574. CHECK_FALSE_EXEC(aipp_params_->var_reci_chn_0_size() > 0, aipp_params_->add_var_reci_chn_0(DEFAULT_VAR_RECI_CHN));
  575. GELOGD("var_reci_chn_0 is %f, size is %u.", DEFAULT_VAR_RECI_CHN, aipp_params_->var_reci_chn_0_size());
  576. CHECK_FALSE_EXEC(aipp_params_->var_reci_chn_1_size() > 0, aipp_params_->add_var_reci_chn_1(DEFAULT_VAR_RECI_CHN));
  577. GELOGD("var_reci_chn_1 is %f, size is %u.", DEFAULT_VAR_RECI_CHN, aipp_params_->var_reci_chn_1_size());
  578. CHECK_FALSE_EXEC(aipp_params_->var_reci_chn_2_size() > 0, aipp_params_->add_var_reci_chn_2(DEFAULT_VAR_RECI_CHN));
  579. GELOGD("var_reci_chn_2 is %f, size is %u.", DEFAULT_VAR_RECI_CHN, aipp_params_->var_reci_chn_2_size());
  580. CHECK_FALSE_EXEC(aipp_params_->var_reci_chn_3_size() > 0, aipp_params_->add_var_reci_chn_3(DEFAULT_VAR_RECI_CHN));
  581. GELOGD("var_reci_chn_3 is %f, size is %u.", DEFAULT_VAR_RECI_CHN, aipp_params_->var_reci_chn_3_size());
  582. }
  583. Status AippOp::GenerateOpDesc(OpDescPtr op_desc) {
  584. GE_CHECK_NOTNULL(op_desc);
  585. static std::atomic_long atomic_op_idx(0);
  586. auto op_idx = atomic_op_idx.fetch_add(1);
  587. op_desc->SetName(std::string("aipp_node").append(std::to_string(op_idx)));
  588. op_desc->SetType(AIPP);
  589. // Add two InputDesc, add the second after the first one is added successfully.
  590. if ((op_desc->AddInputDesc(GeTensorDesc()) != GRAPH_SUCCESS) ||
  591. (op_desc->AddInputDesc(GeTensorDesc()) != GRAPH_SUCCESS)) {
  592. GELOGE(FAILED, "failed to add input desc");
  593. return FAILED;
  594. }
  595. if (op_desc->AddOutputDesc(GeTensorDesc()) != GRAPH_SUCCESS) {
  596. GELOGE(FAILED, "add output desc failed.");
  597. return FAILED;
  598. }
  599. GeAttrValue::NAMED_ATTRS aipp_attrs;
  600. ConvertParamToAttr(aipp_attrs);
  601. GE_IF_BOOL_EXEC(!AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attrs),
  602. GELOGE(FAILED, "failed to set ATTR_NAME_AIPP");
  603. return FAILED);
  604. return SUCCESS;
  605. }
  606. void AippOp::ConvertParamToAttr(GeAttrValue::NAMED_ATTRS &aipp_attrs) {
  607. GE_CHECK_NOTNULL_JUST_RETURN(aipp_params_);
  608. SAVE_AIPP_ATTR(aipp_mode, GeAttrValue::INT);
  609. SAVE_AIPP_ATTR(related_input_rank, GeAttrValue::INT);
  610. if (aipp_params_->aipp_mode() == domi::AippOpParams::static_) {
  611. SAVE_AIPP_ATTR(input_format, GeAttrValue::INT);
  612. SAVE_AIPP_ATTR(csc_switch, GeAttrValue::BOOL);
  613. SAVE_AIPP_ATTR(crop, GeAttrValue::BOOL);
  614. SAVE_AIPP_ATTR(resize, GeAttrValue::BOOL);
  615. SAVE_AIPP_ATTR(load_start_pos_w, GeAttrValue::INT);
  616. SAVE_AIPP_ATTR(load_start_pos_h, GeAttrValue::INT);
  617. SAVE_AIPP_ATTR(crop_size_w, GeAttrValue::INT);
  618. SAVE_AIPP_ATTR(crop_size_h, GeAttrValue::INT);
  619. SAVE_AIPP_ATTR(resize, GeAttrValue::BOOL);
  620. SAVE_AIPP_ATTR(resize_output_w, GeAttrValue::INT);
  621. SAVE_AIPP_ATTR(resize_output_h, GeAttrValue::INT);
  622. SAVE_AIPP_ATTR(padding, GeAttrValue::BOOL);
  623. SAVE_AIPP_ATTR(left_padding_size, GeAttrValue::INT);
  624. SAVE_AIPP_ATTR(right_padding_size, GeAttrValue::INT);
  625. SAVE_AIPP_ATTR(top_padding_size, GeAttrValue::INT);
  626. SAVE_AIPP_ATTR(bottom_padding_size, GeAttrValue::INT);
  627. SAVE_AIPP_ATTR(src_image_size_w, GeAttrValue::INT);
  628. SAVE_AIPP_ATTR(src_image_size_h, GeAttrValue::INT);
  629. SAVE_AIPP_ATTR(cpadding_value, GeAttrValue::FLOAT);
  630. SAVE_AIPP_ATTR(rbuv_swap_switch, GeAttrValue::BOOL);
  631. SAVE_AIPP_ATTR(ax_swap_switch, GeAttrValue::BOOL);
  632. SAVE_AIPP_ATTR(single_line_mode, GeAttrValue::BOOL);
  633. SAVE_AIPP_ATTR(mean_chn_0, GeAttrValue::INT);
  634. SAVE_AIPP_ATTR(mean_chn_1, GeAttrValue::INT);
  635. SAVE_AIPP_ATTR(mean_chn_2, GeAttrValue::INT);
  636. SAVE_AIPP_ATTR(mean_chn_3, GeAttrValue::INT);
  637. SAVE_AIPP_ATTR(min_chn_0, GeAttrValue::FLOAT);
  638. SAVE_AIPP_ATTR(min_chn_1, GeAttrValue::FLOAT);
  639. SAVE_AIPP_ATTR(min_chn_2, GeAttrValue::FLOAT);
  640. SAVE_AIPP_ATTR(min_chn_3, GeAttrValue::FLOAT);
  641. SAVE_AIPP_ATTR_LIST(var_reci_chn_0, GeAttrValue::FLOAT);
  642. SAVE_AIPP_ATTR_LIST(var_reci_chn_1, GeAttrValue::FLOAT);
  643. SAVE_AIPP_ATTR_LIST(var_reci_chn_2, GeAttrValue::FLOAT);
  644. SAVE_AIPP_ATTR_LIST(var_reci_chn_3, GeAttrValue::FLOAT);
  645. SAVE_AIPP_ATTR_LIST(matrix_r0c0, GeAttrValue::INT);
  646. SAVE_AIPP_ATTR_LIST(matrix_r0c1, GeAttrValue::INT);
  647. SAVE_AIPP_ATTR_LIST(matrix_r0c2, GeAttrValue::INT);
  648. SAVE_AIPP_ATTR_LIST(matrix_r1c0, GeAttrValue::INT);
  649. SAVE_AIPP_ATTR_LIST(matrix_r1c1, GeAttrValue::INT);
  650. SAVE_AIPP_ATTR_LIST(matrix_r1c2, GeAttrValue::INT);
  651. SAVE_AIPP_ATTR_LIST(matrix_r2c0, GeAttrValue::INT);
  652. SAVE_AIPP_ATTR_LIST(matrix_r2c1, GeAttrValue::INT);
  653. SAVE_AIPP_ATTR_LIST(matrix_r2c2, GeAttrValue::INT);
  654. SAVE_AIPP_ATTR_LIST(output_bias_0, GeAttrValue::INT);
  655. SAVE_AIPP_ATTR_LIST(output_bias_1, GeAttrValue::INT);
  656. SAVE_AIPP_ATTR_LIST(output_bias_2, GeAttrValue::INT);
  657. SAVE_AIPP_ATTR_LIST(input_bias_0, GeAttrValue::INT);
  658. SAVE_AIPP_ATTR_LIST(input_bias_1, GeAttrValue::INT);
  659. SAVE_AIPP_ATTR_LIST(input_bias_2, GeAttrValue::INT);
  660. } else {
  661. SAVE_AIPP_ATTR(max_src_image_size, GeAttrValue::INT);
  662. SAVE_AIPP_ATTR(support_rotation, GeAttrValue::BOOL);
  663. }
  664. }
  665. Status AippOp::CreateAippData(const NodePtr &aipp_node) {
  666. GELOGD("Enter add aipp data node process.");
  667. // get previous node, it should be DATA
  668. auto data_node = aipp_node->GetInDataNodes().at(kAippImageInputIndex);
  669. auto data_op_desc = data_node->GetOpDesc();
  670. GE_CHECK_NOTNULL(data_op_desc);
  671. auto ori_data_format = GetAndCheckFormat();
  672. if (ori_data_format != FORMAT_NCHW && ori_data_format != FORMAT_NHWC) {
  673. string format_str = TypeUtils::FormatToSerialString(ori_data_format);
  674. GELOGE(PARAM_INVALID, "when dynamic aipp, input_format must be NCHW or NHWC, but [%s] format is %s",
  675. data_node->GetName().c_str(), format_str.c_str());
  676. string reason = "format must be NCHW or NHWC in dynamic aipp process";
  677. ErrorManager::GetInstance().ATCReportErrMessage("E19014", {"opname", "value", "reason"},
  678. {data_node->GetName(), "format " + format_str, reason});
  679. return PARAM_INVALID;
  680. }
  681. // dynamic aipp shape HWC is not fixed, need to be set -1
  682. int64_t data_shape_n = 0;
  683. // dynamic batch or HW, need acquire N from ATTR_MBATCH_ORIGIN_INPUT_DIMS
  684. if (data_op_desc->HasAttr(ATTR_MBATCH_ORIGIN_INPUT_DIMS)) {
  685. vector<int64_t> origin_input_dims;
  686. (void)AttrUtils::GetListInt(data_op_desc, ATTR_MBATCH_ORIGIN_INPUT_DIMS, origin_input_dims);
  687. if (!origin_input_dims.empty()) {
  688. data_shape_n = origin_input_dims[0];
  689. }
  690. } else {
  691. data_shape_n = data_op_desc->MutableInputDesc(0)->GetShape().GetDim(0);
  692. }
  693. vector<int64_t> dynamic_aipp_linked_data_shape{data_shape_n, kDynamicDim, kDynamicDim, kDynamicDim};
  694. (void)AttrUtils::SetListInt(data_op_desc, ATTR_DYNAMIC_AIPP_INPUT_DIMS, dynamic_aipp_linked_data_shape);
  695. int64_t batch_count = -1;
  696. if (GetDataDimN(data_node, ori_data_format, batch_count) != ge::SUCCESS) {
  697. string error_msg = "Get data_node dims and transfer to nchw_dims failed!";
  698. GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error_msg.c_str());
  699. return PARAM_INVALID;
  700. }
  701. if (batch_count <= 0) {
  702. string error_msg = "Batch count[" + std::to_string(batch_count) + "] is invalid, it must positive.";
  703. GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error_msg.c_str());
  704. return PARAM_INVALID;
  705. }
  706. int64_t max_dynamic_aipp_size = CalcMaxSize(batch_count);
  707. if (max_dynamic_aipp_size < 0) {
  708. string error_msg = "The dynamic aipp size is not positive";
  709. GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error_msg.c_str());
  710. return PARAM_INVALID;
  711. }
  712. GELOGI("Add aipp input data, batch count is %ld, max_dynamic_aipp_size is %ld", batch_count, max_dynamic_aipp_size);
  713. return AddNodeToGraph(aipp_node, max_dynamic_aipp_size);
  714. }
  715. Status AippOp::AddAttrToAippData(const OpDescPtr &aipp_data_op_desc) {
  716. // Add dynamic aipp config to aipp_data
  717. GeAttrValue::NAMED_ATTRS aipp_attr;
  718. ConvertParamToAttr(aipp_attr);
  719. (void)AttrUtils::SetNamedAttrs(aipp_data_op_desc, ATTR_NAME_AIPP, aipp_attr);
  720. (void)AttrUtils::SetStr(aipp_data_op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf");
  721. // add node name attr to data linked aipp_data, it can be queried by acl.
  722. GE_CHECK_NOTNULL(data_node_linked_aipp);
  723. auto data_op_desc = data_node_linked_aipp->GetOpDesc();
  724. GE_CHECK_NOTNULL(data_op_desc);
  725. (void)AttrUtils::SetStr(data_op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, aipp_data_op_desc->GetName());
  726. (void)AttrUtils::SetStr(aipp_data_op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, data_op_desc->GetName());
  727. return SUCCESS;
  728. }
  729. Status AippOp::AddNodeToGraph(const NodePtr &aipp_node, int64_t max_dynamic_aipp_size) {
  730. std::vector<int64_t> input_shape_dim(1, max_dynamic_aipp_size);
  731. GeShape input_shape(input_shape_dim);
  732. // construct input tensor
  733. GeTensorDesc input_tensor(input_shape, FORMAT_ND, DT_UINT8);
  734. TensorUtils::SetReuseInput(input_tensor, false);
  735. TensorUtils::SetSize(input_tensor, max_dynamic_aipp_size);
  736. GE_CHECK_NOTNULL(aipp_node);
  737. const ComputeGraphPtr &graph = aipp_node->GetOwnerComputeGraph();
  738. string node_name;
  739. // First aippdata name should be definite.
  740. if (graph->FindFirstNodeMatchType(AIPPDATA) == nullptr) {
  741. GELOGI("Current graph has no aippdata node, so the name of it must be definite.");
  742. node_name = kDynamicAippData;
  743. } else {
  744. node_name = string(kDynamicAippData) + "_" + aipp_node->GetName();
  745. }
  746. GELOGI("Current add aippdata node name is %s", node_name.c_str());
  747. // new add aipp_data ops for dynamic aipp param input
  748. OpDescPtr op_desc_ptr_data = MakeShared<OpDesc>(node_name, AIPPDATA);
  749. GE_CHECK_NOTNULL(op_desc_ptr_data);
  750. if (AddAttrToAippData(op_desc_ptr_data) != SUCCESS) {
  751. return INTERNAL_ERROR;
  752. }
  753. auto stat1 = op_desc_ptr_data->AddInputDesc(input_tensor);
  754. GeShape output_shape(input_shape_dim);
  755. // construct output tensor
  756. GeTensorDesc output_tensor(output_shape, FORMAT_ND, DT_UINT8);
  757. TensorUtils::SetReuseInput(output_tensor, false);
  758. TensorUtils::SetSize(output_tensor, max_dynamic_aipp_size);
  759. auto stat2 = op_desc_ptr_data->AddOutputDesc(output_tensor);
  760. NodePtr aipp_data_node_ptr = graph->AddNode(op_desc_ptr_data);
  761. GE_CHECK_NOTNULL(aipp_data_node_ptr);
  762. // add node desc for aipp node
  763. auto stat3 = aipp_node->GetOpDesc()->UpdateInputDesc(kAippParamsInputIndex, output_tensor);
  764. if (stat1 != GRAPH_SUCCESS || stat2 != GRAPH_SUCCESS || stat3 != GRAPH_SUCCESS) {
  765. GELOGE(INTERNAL_ERROR, "node process desc failed!");
  766. return INTERNAL_ERROR;
  767. }
  768. // aipp_node should have two input data but now tbe only one input
  769. if (GraphUtils::AddEdge(aipp_data_node_ptr->GetOutDataAnchor(kAippDataOutputIndex),
  770. aipp_node->GetInDataAnchor(kAippParamsInputIndex)) != GRAPH_SUCCESS) {
  771. GELOGE(INTERNAL_ERROR, "Add Anchor anchor between aipp data node and aipp failed!");
  772. return INTERNAL_ERROR;
  773. }
  774. return SUCCESS;
  775. }
  776. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示