You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

subgraph_executor.cc 31 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/subgraph_executor.h"
  17. #include "graph/ge_context.h"
  18. #include "hybrid/executor/worker/task_compile_engine.h"
  19. #include "hybrid/executor/worker/execution_engine.h"
  20. #include "hybrid/node_executor/node_executor.h"
  21. namespace ge {
  22. namespace hybrid {
  23. namespace {
  24. constexpr int kDefaultThreadNum = 4;
  25. constexpr int kDefaultQueueSize = 16;
  26. constexpr int kDataInputIndex = 0;
  27. }
  28. SubgraphExecutor::SubgraphExecutor(const GraphItem *graph_item, GraphExecutionContext *context, bool force_infer_shape)
  29. : graph_item_(graph_item),
  30. context_(context),
  31. force_infer_shape_(force_infer_shape),
  32. pre_run_pool_(kDefaultThreadNum),
  33. ready_queue_(kDefaultQueueSize) {
  34. }
  35. SubgraphExecutor::~SubgraphExecutor() {
  36. GELOGD("[%s] SubgraphExecutor destroyed.", graph_item_->GetName().c_str());
  37. }
  38. Status SubgraphExecutor::Init(const std::vector<TensorValue> &inputs,
  39. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  40. subgraph_context_.reset(new(std::nothrow)SubgraphContext(graph_item_, context_));
  41. GE_CHECK_NOTNULL(subgraph_context_);
  42. GE_CHK_STATUS_RET(subgraph_context_->Init(),
  43. "[Init][SubgraphContext][%s] Failed to init subgraph context.", graph_item_->GetName().c_str());
  44. shape_inference_engine_.reset(new(std::nothrow) ShapeInferenceEngine(context_, subgraph_context_.get()));
  45. GE_CHECK_NOTNULL(shape_inference_engine_);
  46. if (graph_item_->IsDynamic()) {
  47. GE_CHK_STATUS_RET(InitInputsForUnknownShape(inputs, input_desc),
  48. "[%s] Failed to set inputs.",
  49. graph_item_->GetName().c_str());
  50. } else {
  51. GE_CHK_STATUS_RET(InitInputsForKnownShape(inputs),
  52. "[Invoke][InitInputsForKnownShape][%s] Failed to init subgraph executor for known shape subgraph.",
  53. graph_item_->GetName().c_str());
  54. }
  55. return SUCCESS;
  56. }
  57. Status SubgraphExecutor::InitInputsForUnknownShape(const std::vector<TensorValue> &inputs,
  58. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  59. // Number of inputs of parent node should be greater or equal than that of subgraph
  60. auto input_nodes = graph_item_->GetInputNodes();
  61. if (inputs.size() < input_nodes.size()) {
  62. GELOGE(INTERNAL_ERROR,
  63. "[Check][Size][%s] Number of inputs [%zu] is not sufficient for subgraph which needs [%zu] inputs.",
  64. graph_item_->GetName().c_str(), inputs.size(), input_nodes.size());
  65. REPORT_INNER_ERROR("E19999",
  66. "[%s] Number of inputs [%zu] is not sufficient for subgraph which needs [%zu] inputs.",
  67. graph_item_->GetName().c_str(), inputs.size(), input_nodes.size());
  68. return INTERNAL_ERROR;
  69. }
  70. for (size_t i = 0; i < input_nodes.size(); ++i) {
  71. auto &input_node = input_nodes[i];
  72. if (input_node == nullptr) {
  73. GELOGD("[%s] Input[%zu] is not needed by subgraph, skip it.", graph_item_->GetName().c_str(), i);
  74. continue;
  75. }
  76. auto &input_tensor = inputs[i];
  77. GELOGD("[%s] Set input tensor[%zu] to inputs with index = %d, tensor = %s",
  78. graph_item_->GetName().c_str(),
  79. i,
  80. input_node->input_start,
  81. input_tensor.DebugString().c_str());
  82. GE_CHK_STATUS_RET(subgraph_context_->SetInput(*input_node, kDataInputIndex, input_tensor),
  83. "[Invoke][SetInput] failed for grap_item[%s] input tensor[%zu]",
  84. graph_item_->GetName().c_str(), i);
  85. if (force_infer_shape_ || input_node->is_dynamic) {
  86. GELOGD("[%s] Start to update input[%zu] for subgraph data node.", graph_item_->GetName().c_str(), i);
  87. GE_CHECK_LE(i + 1, input_desc.size());
  88. const auto &tensor_desc = input_desc[i];
  89. GE_CHECK_NOTNULL(tensor_desc);
  90. auto op_desc = input_node->GetOpDesc();
  91. GE_CHECK_NOTNULL(op_desc);
  92. auto output_desc = op_desc->MutableOutputDesc(kDataInputIndex);
  93. GE_CHECK_NOTNULL(output_desc);
  94. output_desc->SetShape(tensor_desc->GetShape());
  95. output_desc->SetOriginShape(tensor_desc->GetOriginShape());
  96. output_desc->SetDataType(tensor_desc->GetDataType());
  97. }
  98. }
  99. GELOGD("[%s] Done setting inputs.", graph_item_->GetName().c_str());
  100. return SUCCESS;
  101. }
  102. Status SubgraphExecutor::InitInputsForKnownShape(const std::vector<TensorValue> &inputs) {
  103. auto &input_index_mapping = graph_item_->GetInputIndexMapping();
  104. for (size_t i = 0; i < input_index_mapping.size(); ++i) {
  105. auto &parent_input_index = input_index_mapping[i];
  106. if (static_cast<size_t>(parent_input_index) >= inputs.size()) {
  107. GELOGE(INTERNAL_ERROR, "[Check][Size][%s] Number of inputs [%zu] is not sufficient for subgraph"
  108. "which needs at lease [%d] inputs", graph_item_->GetName().c_str(), inputs.size(),
  109. parent_input_index + 1);
  110. REPORT_INNER_ERROR("E19999", "[%s] Number of inputs [%zu] is not sufficient for subgraph"
  111. "which needs at lease [%d] inputs",
  112. graph_item_->GetName().c_str(), inputs.size(), parent_input_index + 1);
  113. return INTERNAL_ERROR;
  114. }
  115. auto &input_tensor = inputs[parent_input_index];
  116. subgraph_context_->SetInput(static_cast<int>(i), input_tensor);
  117. GELOGD("[%s] Set input tensor[%zu] with inputs with index = %d, tensor = %s",
  118. graph_item_->GetName().c_str(),
  119. i,
  120. parent_input_index,
  121. input_tensor.DebugString().c_str());
  122. }
  123. return SUCCESS;
  124. }
  125. Status SubgraphExecutor::ExecuteAsync(const std::vector<TensorValue> &inputs,
  126. const std::vector<ConstGeTensorDescPtr> &input_desc,
  127. const std::vector<TensorValue> &outputs) {
  128. GELOGD("[%s] is dynamic = %s", graph_item_->GetName().c_str(), graph_item_->IsDynamic() ? "true" : "false");
  129. GE_CHK_STATUS_RET(Init(inputs, input_desc), "[Invoke][Init]failed for [%s].", graph_item_->GetName().c_str());
  130. if (!outputs.empty()) {
  131. GE_CHK_STATUS_RET(EnableOutputZeroCopy(outputs),
  132. "[Invoke][EnableOutputZeroCopy] Failed by user provided outputs.");
  133. }
  134. if (!graph_item_->IsDynamic()) {
  135. return ExecuteAsyncForKnownShape(inputs);
  136. }
  137. HYBRID_CHK_STATUS_RET(ScheduleTasks(), "[%s] Failed to execute tasks.", graph_item_->GetName().c_str());
  138. GELOGD("[%s] Done executing subgraph successfully.", graph_item_->GetName().c_str());
  139. return SUCCESS;
  140. }
  141. Status SubgraphExecutor::ExecuteAsync(const std::vector<TensorValue> &inputs,
  142. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  143. return ExecuteAsync(inputs, input_desc, {});
  144. }
  145. Status SubgraphExecutor::ExecuteAsyncForKnownShape(const std::vector<TensorValue> &inputs) {
  146. GELOGD("[%s] subgraph is not dynamic.", graph_item_->GetName().c_str());
  147. if (graph_item_->GetAllNodes().size() != 1) {
  148. REPORT_INNER_ERROR("E19999", "[%s] Invalid known shape subgraph. node size = %zu",
  149. graph_item_->GetName().c_str(), graph_item_->GetAllNodes().size());
  150. GELOGE(INTERNAL_ERROR, "[Check][Size][%s] Invalid known shape subgraph. node size = %zu",
  151. graph_item_->GetName().c_str(), graph_item_->GetAllNodes().size());
  152. return INTERNAL_ERROR;
  153. }
  154. auto node_item = graph_item_->GetAllNodes()[0];
  155. GE_CHECK_NOTNULL(node_item);
  156. auto node_state = subgraph_context_->GetOrCreateNodeState(node_item);
  157. GE_CHECK_NOTNULL(node_state);
  158. node_state->SetKernelTask(node_item->kernel_task);
  159. std::function<void()> callback;
  160. GE_CHK_STATUS_RET_NOLOG(InitCallback(node_state.get(), callback));
  161. HYBRID_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, node_state->GetTaskContext(), *context_, callback),
  162. "[%s] Failed to execute node [%s] for known subgraph.",
  163. graph_item_->GetName().c_str(),
  164. node_state->GetName().c_str());
  165. GELOGD("[%s] Done execute non-dynamic subgraph successfully.", graph_item_->GetName().c_str());
  166. return SUCCESS;
  167. }
  168. Status SubgraphExecutor::ExecuteAsync(TaskContext &task_context) {
  169. std::vector<TensorValue> inputs;
  170. std::vector<ConstGeTensorDescPtr> input_desc;
  171. for (int i = 0; i < task_context.NumInputs(); ++i) {
  172. auto tensor = task_context.GetInput(i);
  173. GE_CHECK_NOTNULL(tensor);
  174. inputs.emplace_back(*tensor);
  175. input_desc.emplace_back(task_context.GetInputDesc(i));
  176. }
  177. GE_CHK_STATUS_RET(ExecuteAsync(inputs, input_desc), "[Invoke][ExecuteAsync] failed for [%s].",
  178. graph_item_->GetName().c_str());
  179. GE_CHK_STATUS_RET(SetOutputsToParentNode(task_context),
  180. "[Invoke][SetOutputsToParentNode][%s] Failed to set output shapes to parent node.",
  181. graph_item_->GetName().c_str());
  182. return SUCCESS;
  183. }
  184. BlockingQueue<const NodeItem *> &SubgraphExecutor::GetPrepareQueue(int group) {
  185. std::lock_guard<std::mutex> lk(mu_);
  186. return prepare_queues_[group];
  187. }
  188. Status SubgraphExecutor::NodeEnqueue(NodeState *node_state) {
  189. if (!ready_queue_.Push(node_state)) {
  190. if (context_->is_eos_) {
  191. GELOGD("Got end of sequence");
  192. return SUCCESS;
  193. }
  194. GELOGE(INTERNAL_ERROR, "[Check][State][%s] Error occurs while launching tasks. quit from preparing nodes.",
  195. graph_item_->GetName().c_str());
  196. REPORT_INNER_ERROR("E19999", "[%s] Error occurs while launching tasks. quit from preparing nodes.",
  197. graph_item_->GetName().c_str());
  198. return INTERNAL_ERROR;
  199. }
  200. GELOGD("[%s] Push node [%s] to queue.", graph_item_->GetName().c_str(), node_state->GetName().c_str());
  201. return SUCCESS;
  202. }
  203. Status SubgraphExecutor::PrepareNode(const NodeItem &node_item, int group) {
  204. GELOGD("[%s] Start to prepare node [%s].", graph_item_->GetName().c_str(), node_item.NodeName().c_str());
  205. // for while op
  206. if (force_infer_shape_ && !node_item.is_dynamic) {
  207. GELOGD("[%s] Force infer shape is set, updating node to dynamic.", node_item.NodeName().c_str());
  208. auto &mutable_node_item = const_cast<NodeItem &>(node_item);
  209. mutable_node_item.SetToDynamic();
  210. }
  211. auto node_state = subgraph_context_->GetOrCreateNodeState(&node_item);
  212. GE_CHECK_NOTNULL(node_state);
  213. auto p_node_state = node_state.get();
  214. if (node_item.node_type == NETOUTPUT) {
  215. GE_CHK_STATUS_RET_NOLOG(NodeEnqueue(p_node_state));
  216. return AfterPrepared(p_node_state);
  217. }
  218. // only do shape inference and compilation for nodes with dynamic shapes.
  219. if (node_item.is_dynamic) {
  220. auto prepare_future = pre_run_pool_.commit([this, p_node_state]() -> Status {
  221. GetContext().SetSessionId(context_->session_id);
  222. GetContext().SetContextId(context_->context_id);
  223. GE_CHK_STATUS_RET_NOLOG(InferShape(shape_inference_engine_.get(), *p_node_state));
  224. GE_CHK_STATUS_RET_NOLOG(PrepareForExecution(context_, *p_node_state));
  225. return AfterPrepared(p_node_state);
  226. });
  227. p_node_state->SetPrepareFuture(std::move(prepare_future));
  228. return NodeEnqueue(p_node_state);
  229. } else {
  230. GELOGD("[%s] Skipping shape inference and compilation for node with static shape.",
  231. node_item.NodeName().c_str());
  232. if (node_item.kernel_task == nullptr) {
  233. GELOGW("[%s] Node of static shape got no task.", node_item.NodeName().c_str());
  234. GE_CHK_STATUS_RET(TaskCompileEngine::Compile(*p_node_state, context_),
  235. "[Invoke][Compile] failed for [%s].", p_node_state->GetName().c_str());
  236. } else {
  237. node_state->SetKernelTask(node_item.kernel_task);
  238. }
  239. const auto &task = node_state->GetKernelTask();
  240. if (task == nullptr) {
  241. GELOGE(INTERNAL_ERROR, "[Get][KernelTask] failed for[%s], NodeTask is null.", node_state->GetName().c_str());
  242. REPORT_CALL_ERROR("E19999", "GetKernelTask failed for %s, nodetask is null.", node_state->GetName().c_str());
  243. return INTERNAL_ERROR;
  244. }
  245. GE_CHK_STATUS_RET_NOLOG(NodeEnqueue(p_node_state));
  246. return AfterPrepared(p_node_state);
  247. }
  248. }
  249. Status SubgraphExecutor::PrepareNodes(int group) {
  250. const size_t node_size = graph_item_->GetNodeSize(group);
  251. GELOGD("[%s] Start to prepare nodes. group = %d, size = %zu", graph_item_->GetName().c_str(), group, node_size);
  252. if (!graph_item_->HasCtrlFlowOp()) {
  253. for (const auto &node_item : graph_item_->GetAllNodes(group)) {
  254. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] Start");
  255. GE_CHK_STATUS_RET(PrepareNode(*node_item, group), "[%s] failed to prepare task.", node_item->NodeName().c_str());
  256. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] End");
  257. }
  258. GELOGD("[%s] Done preparing nodes successfully.", graph_item_->GetName().c_str());
  259. return SUCCESS;
  260. }
  261. // Initialize the ready queue
  262. size_t node_count = 0;
  263. bool node_complete = false;
  264. for (const auto &node_item : graph_item_->GetRootNodes(group)) {
  265. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] Start");
  266. GE_CHK_STATUS_RET(PrepareNode(*node_item, group), "[%s] failed to prepare task.", node_item->NodeName().c_str());
  267. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] End");
  268. node_complete = node_item->NodeType() == NETOUTPUT;
  269. node_count++;
  270. }
  271. GELOGD("[%s] Done preparing root nodes.", graph_item_->GetName().c_str());
  272. BlockingQueue<const NodeItem *> &prepare_queue = GetPrepareQueue(group);
  273. while (((group != -1) && (node_count < node_size)) || ((group == -1) && !node_complete)) {
  274. const NodeItem *node_item = nullptr;
  275. if (!prepare_queue.Pop(node_item)) {
  276. if (context_->is_eos_) {
  277. GELOGD("[%s] Got end of sequence.", graph_item_->GetName().c_str());
  278. break;
  279. }
  280. if (context_->GetStatus() != SUCCESS) {
  281. GELOGD("[%s] Graph execution Got failed.", graph_item_->GetName().c_str());
  282. return SUCCESS;
  283. }
  284. GELOGE(INTERNAL_ERROR, "[%s] failed to pop node.", graph_item_->GetName().c_str());
  285. return INTERNAL_ERROR;
  286. }
  287. if (node_item == nullptr) {
  288. GELOGD("[%s] Got EOF from queue.", graph_item_->GetName().c_str());
  289. break;
  290. }
  291. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] Start");
  292. GE_CHK_STATUS_RET(PrepareNode(*node_item, group), "[%s] failed to prepare task.", node_item->NodeName().c_str());
  293. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] End");
  294. node_complete = node_item->NodeType() == NETOUTPUT;
  295. node_count++;
  296. }
  297. GELOGD("[%s] Done preparing nodes successfully.", graph_item_->GetName().c_str());
  298. return SUCCESS;
  299. }
  300. Status SubgraphExecutor::NodeScheduled(NodeState *node_state) {
  301. GELOGD("Graph[%s] After [%s] scheduled, data size: %zu, ctrl size: %zu, switch index: %d, merge index: %d",
  302. graph_item_->GetName().c_str(), node_state->GetName().c_str(),
  303. node_state->GetNodeItem()->data_send_.size(), node_state->GetNodeItem()->ctrl_send_.size(),
  304. node_state->GetSwitchIndex(), node_state->GetMergeIndex());
  305. auto future = pre_run_pool_.commit([this, node_state]() -> Status {
  306. RECORD_CALLBACK_EVENT(context_, node_state->GetName().c_str(), "[NodeScheduled] Start");
  307. std::function<void(const NodeItem *)> callback = [&](const NodeItem *node_item) {
  308. const auto &node_name = node_item->node_name;
  309. int group = (node_state->GetGroup() != -1) ? node_item->group : -1;
  310. GELOGI("After [%s] scheduled, [%s] is ready for prepare.", node_state->GetName().c_str(), node_name.c_str());
  311. BlockingQueue<const NodeItem *> &prepare_queue = GetPrepareQueue(group);
  312. if (!prepare_queue.Push(node_item)) {
  313. if (!context_->is_eos_) {
  314. GELOGE(INTERNAL_ERROR, "[Check][State][%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  315. REPORT_INNER_ERROR("E19999", "[%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  316. }
  317. }
  318. };
  319. GE_CHK_STATUS_RET_NOLOG(node_state->NodeScheduled(callback));
  320. RECORD_CALLBACK_EVENT(context_, node_state->GetName().c_str(), "[NodeScheduled] End");
  321. return SUCCESS;
  322. });
  323. node_state->SetScheduleFuture(std::move(future));
  324. if (schedule_queue_.Push(node_state)) {
  325. return SUCCESS;
  326. }
  327. if (context_->is_eos_) {
  328. GELOGD("[%s] Got end of sequence", graph_item_->GetName().c_str());
  329. return SUCCESS;
  330. }
  331. GELOGE(INTERNAL_ERROR, "[Check][State][%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  332. REPORT_INNER_ERROR("E19999", "[%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  333. return INTERNAL_ERROR;
  334. }
  335. Status SubgraphExecutor::AfterPrepared(NodeState *node_state) {
  336. if (!graph_item_->HasCtrlFlowOp()) {
  337. return SUCCESS;
  338. }
  339. if (node_state->IsShapeDependence()) {
  340. return SUCCESS;
  341. }
  342. // Not control flow node, propagate state.
  343. return NodeScheduled(node_state);
  344. }
  345. void SubgraphExecutor::AfterExecuted(NodeState *node_state) {
  346. if (!node_state->IsShapeDependence()) {
  347. return;
  348. }
  349. // For control flow node, propagate state.
  350. auto error = NodeScheduled(node_state);
  351. if (error != SUCCESS) {
  352. auto task_context = node_state->GetTaskContext();
  353. task_context->OnError(error);
  354. }
  355. }
  356. void SubgraphExecutor::OnNodeDone(NodeState *node_state) {
  357. auto task_context = node_state->GetTaskContext();
  358. NodeDoneCallback cb(context_, task_context);
  359. auto error = cb.OnNodeDone();
  360. if (error != SUCCESS) {
  361. task_context->OnError(error);
  362. }
  363. if (node_state->IsShapeDependence() && graph_item_->HasCtrlFlowOp()) {
  364. AfterExecuted(node_state);
  365. }
  366. }
  367. Status SubgraphExecutor::InitCallback(NodeState *node_state, std::function<void()> &callback) {
  368. auto task_context = node_state->GetTaskContext();
  369. GE_CHECK_NOTNULL(task_context);
  370. if (task_context->NeedCallback()) {
  371. callback = std::bind(&SubgraphExecutor::OnNodeDone, this, node_state);
  372. } else if (node_state->IsShapeDependence() && graph_item_->HasCtrlFlowOp()) {
  373. callback = std::bind(&SubgraphExecutor::AfterExecuted, this, node_state);
  374. }
  375. return SUCCESS;
  376. }
  377. Status SubgraphExecutor::ScheduleNodes() {
  378. GELOGD("[%s] Start to schedule nodes.", graph_item_->GetName().c_str());
  379. while (true) {
  380. NodeState *node_state = nullptr;
  381. if (!schedule_queue_.Pop(node_state)) {
  382. if (context_->is_eos_) {
  383. GELOGD("[%s] Got end of sequence.", graph_item_->GetName().c_str());
  384. break;
  385. }
  386. if (context_->GetStatus() != SUCCESS) {
  387. GELOGD("[%s] Graph execution Got failed.", graph_item_->GetName().c_str());
  388. return SUCCESS;
  389. }
  390. GELOGE(INTERNAL_ERROR, "[%s] failed to pop node.", graph_item_->GetName().c_str());
  391. return INTERNAL_ERROR;
  392. }
  393. if (node_state == nullptr) {
  394. GELOGD("[%s] Got EOF from queue.", graph_item_->GetName().c_str());
  395. break;
  396. }
  397. GE_CHK_STATUS_RET_NOLOG(node_state->WaitForScheduleDone());
  398. }
  399. GELOGD("[%s] Done schedule nodes successfully.", graph_item_->GetName().c_str());
  400. return SUCCESS;
  401. }
  402. Status SubgraphExecutor::InferShape(ShapeInferenceEngine *shape_inference_engine, NodeState &node_state) const {
  403. HYBRID_CHK_STATUS_RET(shape_inference_engine->InferShape(node_state),
  404. "[Invoke][InferShape] failed for [%s].", node_state.GetName().c_str());
  405. HYBRID_CHK_STATUS_RET(shape_inference_engine->PropagateOutputShapes(node_state),
  406. "[Invoke][PropagateOutputShapes] failed for [%s].", node_state.GetName().c_str());
  407. return SUCCESS;
  408. }
  409. Status SubgraphExecutor::PrepareForExecution(GraphExecutionContext *ctx, NodeState &node_state) {
  410. auto &node_item = *node_state.GetNodeItem();
  411. if (node_item.kernel_task == nullptr) {
  412. GE_CHK_STATUS_RET(TaskCompileEngine::Compile(node_state, ctx),
  413. "[Invoke][Compile] Failed for node[%s]", node_state.GetName().c_str());
  414. } else {
  415. node_state.SetKernelTask(node_item.kernel_task);
  416. }
  417. const auto &task = node_state.GetKernelTask();
  418. if (task == nullptr) {
  419. GELOGE(INTERNAL_ERROR, "[Invoke][GetKernelTask] failed for[%s], NodeTask is null.", node_state.GetName().c_str());
  420. REPORT_CALL_ERROR("E19999", "invoke GetKernelTask failed for %s, NodeTask is null.", node_state.GetName().c_str());
  421. return INTERNAL_ERROR;
  422. }
  423. GE_CHK_RT_RET(rtCtxSetCurrent(ctx->rt_context));
  424. RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] start");
  425. GE_CHK_STATUS_RET_NOLOG(task->UpdateTilingData(*node_state.GetTaskContext())); // update op_desc before alloc ws
  426. RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] end");
  427. return SUCCESS;
  428. }
  429. Status SubgraphExecutor::LaunchTasks() {
  430. while (true) {
  431. NodeState *node_state = nullptr;
  432. if (!ready_queue_.Pop(node_state)) {
  433. GELOGE(INTERNAL_ERROR, "[Invoke][Pop] failed for [%s].", graph_item_->GetName().c_str());
  434. REPORT_CALL_ERROR("E19999", "invoke pop failed for %s.", graph_item_->GetName().c_str());
  435. return INTERNAL_ERROR;
  436. }
  437. if (node_state == nullptr) {
  438. GELOGD("[%s] Got EOF from queue.", graph_item_->GetName().c_str());
  439. return SUCCESS;
  440. }
  441. if (node_state->GetType() == NETOUTPUT) {
  442. // Wait for all inputs become valid
  443. // after PrepareNodes returned. all output tensors and shapes are valid
  444. GE_CHK_STATUS_RET_NOLOG(node_state->GetShapeInferenceState().AwaitShapesReady(*context_));
  445. GE_CHK_STATUS_RET_NOLOG(node_state->AwaitInputTensors(*context_));
  446. GELOGD("[%s] Done executing node successfully.", node_state->GetName().c_str());
  447. continue;
  448. }
  449. GE_CHK_STATUS_RET_NOLOG(node_state->WaitForPrepareDone());
  450. GELOGD("[%s] Start to execute.", node_state->GetName().c_str());
  451. auto shared_task_context = node_state->GetTaskContext();
  452. GE_CHECK_NOTNULL(shared_task_context);
  453. shared_task_context->SetForceInferShape(force_infer_shape_);
  454. std::function<void()> callback;
  455. GE_CHK_STATUS_RET_NOLOG(InitCallback(node_state, callback));
  456. HYBRID_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, shared_task_context, *context_, callback),
  457. "[Invoke][ExecuteAsync] failed for [%s].", node_state->GetName().c_str());
  458. GELOGD("[%s] Done executing node successfully.", node_state->GetName().c_str());
  459. }
  460. }
  461. Status SubgraphExecutor::ScheduleTasks(int group) {
  462. GELOGD("[%s] Start to schedule prepare workers.", graph_item_->GetName().c_str());
  463. subgraph_context_->SetGroup(group);
  464. auto prepare_future = std::async(std::launch::async, [&]() -> Status {
  465. GetContext().SetSessionId(context_->session_id);
  466. GetContext().SetContextId(context_->context_id);
  467. auto ret = PrepareNodes(group);
  468. ready_queue_.Push(nullptr);
  469. schedule_queue_.Push(nullptr);
  470. for (auto &item : prepare_queues_) {
  471. item.second.Push(nullptr);
  472. }
  473. return ret;
  474. });
  475. auto schedule_future = std::async(std::launch::async, [&]() -> Status {
  476. return ScheduleNodes();
  477. });
  478. GELOGD("[%s] Start to execute subgraph.", graph_item_->GetName().c_str());
  479. auto ret = LaunchTasks();
  480. if (ret != SUCCESS) {
  481. subgraph_context_->OnError(ret);
  482. context_->SetErrorCode(ret);
  483. ready_queue_.Stop();
  484. schedule_queue_.Stop();
  485. for (auto &item : prepare_queues_) {
  486. item.second.Stop();
  487. }
  488. prepare_future.wait();
  489. schedule_future.wait();
  490. return ret;
  491. }
  492. GE_CHK_STATUS_RET(prepare_future.get(), "[Invoke][get] [%s] Error occurred in task preparation.",
  493. graph_item_->GetName().c_str());
  494. GE_CHK_STATUS_RET(schedule_future.get(), "[Invoke][get] [%s] Error occurred in task preparation.",
  495. graph_item_->GetName().c_str());
  496. GELOGD("[%s] Done launching all tasks successfully.", graph_item_->GetName().c_str());
  497. return SUCCESS;
  498. }
  499. Status SubgraphExecutor::GetOutputs(vector<TensorValue> &outputs) {
  500. return subgraph_context_->GetOutputs(outputs);
  501. }
  502. Status SubgraphExecutor::GetOutputs(vector<TensorValue> &outputs, std::vector<ConstGeTensorDescPtr> &output_desc) {
  503. GE_CHK_STATUS_RET(GetOutputs(outputs), "[Invoke][GetOutputs] failed for [%s].", graph_item_->GetName().c_str());
  504. // copy output data from op to designated position
  505. GE_CHK_STATUS_RET(graph_item_->GetOutputDescList(output_desc),
  506. "[Invoke][GetOutputDescList][%s] Failed to get output tensor desc.",
  507. graph_item_->GetName().c_str());
  508. if (outputs.size() != output_desc.size()) {
  509. GELOGE(INTERNAL_ERROR, "[Check][Size]Number of outputs(%zu) mismatch number of output_desc(%zu).",
  510. outputs.size(), output_desc.size());
  511. REPORT_INNER_ERROR("E19999", "Number of outputs(%zu) mismatch number of output_desc(%zu).",
  512. outputs.size(), output_desc.size());
  513. return INTERNAL_ERROR;
  514. }
  515. return SUCCESS;
  516. }
  517. Status SubgraphExecutor::Synchronize() {
  518. GELOGD("[%s] Synchronize start.", graph_item_->GetName().c_str());
  519. GE_CHK_STATUS_RET_NOLOG(context_->Synchronize(context_->stream));
  520. GELOGD("[%s] Done synchronizing successfully.", graph_item_->GetName().c_str());
  521. return SUCCESS;
  522. }
  523. Status SubgraphExecutor::SetOutputsToParentNode(TaskContext &task_context) {
  524. // get output tensors and tensor desc list
  525. std::vector<TensorValue> outputs;
  526. std::vector<ConstGeTensorDescPtr> output_desc_list;
  527. GE_CHK_STATUS_RET(subgraph_context_->GetOutputs(outputs), "[Invoke][GetOutputs][%s] Failed to get output tensors.",
  528. graph_item_->GetName().c_str());
  529. GE_CHK_STATUS_RET(graph_item_->GetOutputDescList(output_desc_list),
  530. "[Invoke][GetOutputDescList][%s] Failed to get output tensor desc.",
  531. graph_item_->GetName().c_str());
  532. if (outputs.size() != output_desc_list.size()) {
  533. GELOGE(INTERNAL_ERROR, "[Check][Size][%s] num of output tensors = %zu, num of output tensor desc = %zu not equal",
  534. graph_item_->GetName().c_str(), outputs.size(), output_desc_list.size());
  535. REPORT_INNER_ERROR("E19999", "%s num of output tensors = %zu, num of output tensor desc = %zu not equal",
  536. graph_item_->GetName().c_str(), outputs.size(), output_desc_list.size());
  537. return INTERNAL_ERROR;
  538. }
  539. // mapping to parent task context
  540. for (size_t i = 0; i < outputs.size(); ++i) {
  541. int parent_output_index = graph_item_->GetParentOutputIndex(i);
  542. GE_CHECK_GE(parent_output_index, 0);
  543. // update tensor
  544. GELOGD("[%s] Updating output[%zu] to parent output[%d]",
  545. graph_item_->GetName().c_str(),
  546. i,
  547. parent_output_index);
  548. GELOGD("[%s] Updating output tensor, index = %d, tensor = %s",
  549. graph_item_->GetName().c_str(),
  550. parent_output_index,
  551. outputs[i].DebugString().c_str());
  552. GE_CHK_STATUS_RET(task_context.SetOutput(parent_output_index, outputs[i]));
  553. // updating shapes. dynamic format/dtype is not supported.
  554. // It should be noted that even the subgraph is of known shape, it is also necessary to update parent output desc,
  555. // for instance, IfOp may have two known-shaped subgraphs of different output shapes
  556. const auto &output_desc = output_desc_list[i];
  557. auto parent_output_desc = task_context.MutableOutputDesc(parent_output_index);
  558. GE_CHECK_NOTNULL(parent_output_desc);
  559. GELOGD("[%s] Updating output shape[%d] from [%s] to [%s]",
  560. graph_item_->GetName().c_str(),
  561. parent_output_index,
  562. parent_output_desc->MutableShape().ToString().c_str(),
  563. output_desc->GetShape().ToString().c_str());
  564. parent_output_desc->SetShape(output_desc->GetShape());
  565. GELOGD("[%s] Updating output original shape[%d] from [%s] to [%s]",
  566. graph_item_->GetName().c_str(),
  567. parent_output_index,
  568. parent_output_desc->GetOriginShape().ToString().c_str(),
  569. output_desc->GetOriginShape().ToString().c_str());
  570. parent_output_desc->SetOriginShape(output_desc->GetOriginShape());
  571. }
  572. return SUCCESS;
  573. }
  574. Status SubgraphExecutor::EnableOutputZeroCopy(const vector<TensorValue> &outputs) {
  575. GELOGD("To enable zero copy, output number = %zu", outputs.size());
  576. const auto &output_edges = graph_item_->GetOutputEdges();
  577. // Op -> MetOutput, set the output tensor of Op that output to the NetOutput node
  578. if (outputs.size() != output_edges.size()) {
  579. GELOGE(PARAM_INVALID, "[Check][Size]Output number mismatches, expect = %zu, but given = %zu",
  580. output_edges.size(), outputs.size());
  581. REPORT_INNER_ERROR("E19999", "Output number mismatches, expect = %zu, but given = %zu",
  582. output_edges.size(), outputs.size());
  583. return PARAM_INVALID;
  584. }
  585. for (size_t i = 0; i < outputs.size(); ++i) {
  586. auto &output_tensor = outputs[i];
  587. auto &output_node = output_edges[i].first;
  588. int output_idx = output_edges[i].second;
  589. GELOGD("[%s] Set output tensor[%zu] to [%s]'s output[%d], tensor = %s",
  590. graph_item_->GetName().c_str(),
  591. i,
  592. output_node->NodeName().c_str(),
  593. output_idx,
  594. output_tensor.DebugString().c_str());
  595. GE_CHK_STATUS_RET(subgraph_context_->SetOutput(*output_node, output_idx, output_tensor),
  596. "[Invoke][SetOutput][%s] Failed to set input tensor[%zu]",
  597. graph_item_->GetName().c_str(), i);
  598. }
  599. GELOGD("Done enabling zero copy for outputs successfully.");
  600. return SUCCESS;
  601. }
  602. Status SubgraphExecutor::PartialExecuteAsync(int task_group) {
  603. return ScheduleTasks(task_group);
  604. }
  605. Status SubgraphExecutor::InitForPartialExecution(const vector<TensorValue> &inputs,
  606. const vector<ConstGeTensorDescPtr> &input_desc) {
  607. if (subgraph_context_ == nullptr) {
  608. return Init(inputs, input_desc);
  609. }
  610. subgraph_context_->Reset();
  611. if (graph_item_->IsDynamic()) {
  612. GE_CHK_STATUS_RET(InitInputsForUnknownShape(inputs, input_desc),
  613. "[%s] Failed to set inputs.",
  614. graph_item_->GetName().c_str());
  615. } else {
  616. GE_CHK_STATUS_RET(InitInputsForKnownShape(inputs),
  617. "[Invoke][InitInputsForKnownShape][%s] Failed to init subgraph executor for known shape subgraph",
  618. graph_item_->GetName().c_str());
  619. }
  620. return SUCCESS;
  621. }
  622. } // namespace hybrid
  623. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示