You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model.h 31 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_
  17. #define GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_
  18. #include <map>
  19. #include <memory>
  20. #include <set>
  21. #include <string>
  22. #include <thread>
  23. #include <vector>
  24. #include "common/ge_types.h"
  25. #include "common/helper/model_helper.h"
  26. #include "common/helper/om_file_helper.h"
  27. #include "common/opskernel/ge_task_info.h"
  28. #include "common/properties_manager.h"
  29. #include "common/types.h"
  30. #include "framework/common/util.h"
  31. #include "graph/debug/ge_attr_define.h"
  32. #include "graph/load/new_model_manager/aipp_utils.h"
  33. #include "graph/load/new_model_manager/data_dumper.h"
  34. #include "graph/load/new_model_manager/data_inputer.h"
  35. #include "graph/load/new_model_manager/model_utils.h"
  36. #include "graph/load/new_model_manager/zero_copy_offset.h"
  37. #include "graph/load/new_model_manager/zero_copy_task.h"
  38. #include "graph/model.h"
  39. #include "graph/node.h"
  40. #include "graph/op_desc.h"
  41. #include "graph/operator.h"
  42. #include "graph/utils/attr_utils.h"
  43. #include "graph/utils/tensor_utils.h"
  44. #include "mmpa/mmpa_api.h"
  45. #include "proto/task.pb.h"
  46. #include "task_info/task_info.h"
  47. #include "graph/common/local_context.h"
  48. namespace ge {
  49. // op debug need 2048 bits buffer
  50. const size_t kOpDebugMemorySize = 2048UL;
  51. const size_t kDebugP2pSize = 8UL;
  52. typedef enum tagModelProcStage {
  53. MODEL_LOAD_START = 1,
  54. MODEL_LOAD_END,
  55. MODEL_PRE_PROC_START,
  56. MODEL_PRE_PROC_END,
  57. MODEL_INFER_START,
  58. MODEL_INFER_END,
  59. MODEL_AFTER_PROC_START,
  60. MODEL_AFTER_PROC_END,
  61. MODEL_PROC_INVALID,
  62. } ModelProcStage;
  63. struct timeInfo {
  64. uint32_t modelId;
  65. int64_t processBeginTime;
  66. int64_t processEndTime;
  67. int64_t inferenceBeginTime;
  68. int64_t inferenceEndTime;
  69. int64_t dumpBeginTime;
  70. int64_t dumpEndTime;
  71. };
  72. enum ExecuteMode {
  73. INITIALIZATION,
  74. SYNCHRONIZATION,
  75. ASYNCHRONIZATION,
  76. };
  77. // comments
  78. class DavinciModel {
  79. public:
  80. ///
  81. /// @ingroup ge
  82. /// @brief DavinciModel constructor
  83. /// @author
  84. ///
  85. DavinciModel(int32_t priority, const std::shared_ptr<ModelListener> &listener);
  86. ///
  87. /// @ingroup ge
  88. /// @brief DavinciModel desctructor, free Parse and Init resources
  89. /// @author
  90. ///
  91. ~DavinciModel();
  92. ///
  93. /// @ingroup ge
  94. /// @brief apply model to model_def_
  95. ///
  96. Status Assign(const GeModelPtr &ge_model);
  97. ///
  98. /// @ingroup ge
  99. /// @brief DavinciModel initialization, including Stream, ccHandle, Event, DataInputer, etc
  100. /// @return execute result
  101. /// @author
  102. ///
  103. Status Init(void *dev_ptr = nullptr, size_t memsize = 0, void *weight_ptr = nullptr, size_t weightsize = 0);
  104. ///
  105. /// @ingroup ge
  106. /// @brief ACL case, Load task list with queue.
  107. /// @param [in] input_que_ids: input queue ids from user, nums equal Data Op.
  108. /// @param [in] output_que_ids: input queue ids from user, nums equal NetOutput Op.
  109. /// @return: 0 for success / others for fail
  110. ///
  111. Status SetQueIds(const std::vector<uint32_t> &input_queue_ids, const std::vector<uint32_t> &output_queue_ids);
  112. ///
  113. /// @ingroup ge
  114. /// @brief Get DataInputer
  115. /// @return model ID
  116. ///
  117. uint32_t Id() const { return model_id_; }
  118. ///
  119. /// @ingroup ge
  120. /// @brief Get DataInputer
  121. /// @return model ID
  122. ///
  123. void SetId(uint32_t model_id) { model_id_ = model_id; }
  124. ///
  125. /// @ingroup ge
  126. /// @brief Get SubModelId
  127. /// @return sub model ID
  128. ///
  129. uint32_t SubModelId() const { return sub_model_id_; }
  130. ///
  131. /// @ingroup ge
  132. /// @brief Set SubModelId
  133. /// @return sub model ID
  134. ///
  135. void SetSubModelId(uint32_t sub_model_id) { sub_model_id_ = sub_model_id; }
  136. static void *Run(DavinciModel *model_pointer);
  137. ///
  138. /// @ingroup ge
  139. /// @brief NnExecute
  140. /// @param [in] stream execute stream
  141. /// @param [in] async_mode is asynchronize mode.
  142. /// @param [in] input_data model input data
  143. /// @param [out] output_data model output data
  144. ///
  145. Status NnExecute(rtStream_t stream, bool async_mode, const InputData &input_data, OutputData &output_data);
  146. ///
  147. /// @ingroup ge
  148. /// @brief lock mutex run flag
  149. /// @author
  150. ///
  151. void LockRunFlg() { mux_run_flg_.lock(); }
  152. ///
  153. /// @ingroup ge
  154. /// @brief unlock mutex run flag
  155. /// @author
  156. ///
  157. void UnlockRunFlg() { mux_run_flg_.unlock(); }
  158. ///
  159. /// @ingroup ge
  160. /// @brief get DataInputer
  161. /// @return DataInputer pointer
  162. ///
  163. DataInputer *const GetDataInputer() const { return data_inputer_; }
  164. // get Stream number
  165. uint32_t StreamNum() const { return runtime_param_.stream_num; }
  166. // get Event number
  167. uint32_t EventNum() const { return runtime_param_.event_num; }
  168. // get Lable number
  169. uint32_t LabelNum() const { return runtime_param_.label_num; }
  170. // get batch number
  171. uint32_t BatchNum() const { return runtime_param_.batch_num; }
  172. // get session id
  173. uint64_t SessionId() const { return runtime_param_.session_id; }
  174. // get model priority
  175. int32_t Priority() const { return priority_; }
  176. // get total mem size
  177. size_t TotalMemSize() const { return runtime_param_.mem_size; }
  178. const std::map<uint32_t, MemInfo> &P2PMemInfos() const {return runtime_param_.memory_infos;}
  179. // model name
  180. string Name() const { return name_; }
  181. // om_name
  182. string OmName() const { return om_name_; }
  183. // version
  184. uint32_t Version() const { return version_; }
  185. // get total weights mem size
  186. size_t TotalWeightsMemSize() const { return runtime_param_.weight_size; }
  187. size_t TotalVarMemSize() const { return runtime_param_.var_size; }
  188. // get base memory address
  189. uint8_t *MemBase() { return mem_base_; }
  190. // get weight base memory address
  191. uint8_t *WeightsMemBase() { return weights_mem_base_; }
  192. uint8_t *VarMemBase() { return var_mem_base_; }
  193. // get Event list
  194. const vector<rtEvent_t> &GetEventList() const { return event_list_; }
  195. const vector<rtStream_t> &GetStreamList() const { return stream_list_; }
  196. const vector<rtLabel_t> &GetLabelList() const { return label_list_; }
  197. Status DestroyThread();
  198. // Get Data Op.
  199. const vector<OpDescPtr> &GetDataList() const { return data_op_list_; }
  200. // get Op
  201. const map<uint32_t, OpDescPtr> &GetOpList() const { return op_list_; }
  202. OpDescPtr GetOpByIndex(uint32_t index) const {
  203. if (op_list_.find(index) == op_list_.end()) {
  204. return nullptr;
  205. }
  206. return op_list_.at(index);
  207. }
  208. OpDescPtr GetVariableOp(const string &name) {
  209. for (auto op_desc : variable_op_list_) {
  210. if (op_desc != nullptr && op_desc->GetName() == name) {
  211. return op_desc;
  212. }
  213. }
  214. return nullptr;
  215. }
  216. // get task info for profiling
  217. const std::vector<TaskDescInfo> &GetTaskDescInfo() const { return task_desc_info_; }
  218. // get updated task info list
  219. std::vector<TaskInfoPtr> GetTaskList() { return task_list_; }
  220. ///
  221. /// @ingroup ge
  222. /// @brief get model input and output format
  223. /// @return ccTensorFormat_t current model input and output format
  224. ///
  225. Format GetFormat();
  226. rtModel_t GetRtModelHandle() const { return rt_model_handle_; }
  227. rtStream_t GetRtModelStream() const { return rt_model_stream_; }
  228. uint64_t GetRtBaseAddr() const { return runtime_param_.logic_mem_base; }
  229. uint64_t GetRtWeightAddr() const { return runtime_param_.logic_weight_base; }
  230. uint64_t GetRtVarAddr() const { return runtime_param_.logic_var_base; }
  231. uint32_t GetFlowctrlIndex(uint32_t op_index);
  232. void PushHcclStream(rtStream_t value);
  233. bool IsBroadCastOpData(const NodePtr &var_node);
  234. ///
  235. /// @ingroup ge
  236. /// @brief For TVM Op, avoid Addr Reuse.
  237. /// @return void*
  238. ///
  239. const char *GetRegisterStub(const string &tvm_binfile_key, const string &session_graph_model_id = "");
  240. ///
  241. /// @ingroup ge
  242. /// @brief get model input and output desc info
  243. /// @param [out] input_shape model input size
  244. /// @param [out] output_shape model output size
  245. /// @return execute result
  246. ///
  247. Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<InputOutputDescInfo> &output_desc);
  248. Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<InputOutputDescInfo> &output_desc,
  249. std::vector<uint32_t> &inputFormats, std::vector<uint32_t> &output_formats);
  250. ///
  251. /// @ingroup ge
  252. /// @brief Get dynamic batch_info
  253. /// @param [out] batch_info
  254. /// @param [out] dynamic_type
  255. /// @return execute result
  256. ///
  257. Status GetDynamicBatchInfo(std::vector<std::vector<int64_t>> &batch_info, int32_t &dynamic_type) const;
  258. ///
  259. /// @ingroup ge
  260. /// @brief Get combined dynamic dims info
  261. /// @param [out] batch_info
  262. /// @return None
  263. ///
  264. void GetCombinedDynamicDims(std::vector<std::vector<int64_t>> &batch_info) const;
  265. void GetUserDesignateShapeOrder(std::vector<std::string> &user_input_shape_order) const;
  266. void GetCurShape(std::vector<int64_t> &batch_info, int32_t &dynamic_type);
  267. void GetModelAttr(std::vector<std::string> &dynamic_output_shape_info);
  268. ///
  269. /// @ingroup ge
  270. /// @brief Get AIPP input info
  271. /// @param [in] index
  272. /// @param [out] aipp_info
  273. /// @return execute result
  274. ///
  275. Status GetAIPPInfo(uint32_t index, AippConfigInfo &aipp_info);
  276. Status GetAippType(uint32_t index, InputAippType &type, size_t &aipp_index);
  277. ///
  278. /// @ingroup ge
  279. /// @brief Get model_id.
  280. /// @return model_id
  281. ///
  282. uint32_t GetModelId() const { return model_id_; }
  283. ///
  284. /// @ingroup ge
  285. /// @brief get unique identification for op when load two or more models
  286. /// @param [in] op_desc : current op.
  287. /// @param [in] string identification: unique identification for current op.
  288. /// @return None
  289. ///
  290. void GetUniqueId(const OpDescPtr &op_desc, std::string &unique_identification);
  291. ///
  292. /// @ingroup ge
  293. /// @brief get model input and output desc for zero copy
  294. /// @param [out] input_shape model input size
  295. /// @param [out] output_shape model output size
  296. /// @return execute result
  297. ///
  298. Status GetInputOutputDescInfoForZeroCopy(vector<InputOutputDescInfo> &input_desc,
  299. vector<InputOutputDescInfo> &output_desc,
  300. std::vector<uint32_t> &inputFormats, std::vector<uint32_t> &output_formats);
  301. Status ReturnResult(uint32_t data_id, const bool rslt_flg, const bool seq_end_flg, OutputData *output_data);
  302. Status ReturnNoOutput(uint32_t data_id);
  303. Status ModelRunStart();
  304. ///
  305. /// @ingroup ge
  306. /// @brief stop run model
  307. /// @return Status
  308. ///
  309. Status ModelRunStop();
  310. ///
  311. /// @ingroup ge
  312. /// @brief model run flag
  313. /// @return Status
  314. ///
  315. bool RunFlag() const { return run_flg_; }
  316. Status GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, std::vector<uint32_t> &formats);
  317. ///
  318. /// @ingroup ge
  319. /// @brief Set Session Id
  320. /// @return void
  321. ///
  322. void SetSessionId(uint64_t session_id) { session_id_ = session_id; }
  323. ///
  324. /// @ingroup ge
  325. /// @brief Get Session Id
  326. /// @return sessionID
  327. ///
  328. uint64_t GetSessionId() const { return session_id_; }
  329. ///
  330. /// @ingroup ge
  331. /// @brief SetDeviceId
  332. /// @return void
  333. ///
  334. void SetDeviceId(uint32_t device_id) { device_id_ = device_id; }
  335. ///
  336. /// @ingroup ge
  337. /// @brief Get device Id
  338. /// @return device id
  339. ///
  340. uint32_t GetDeviceId() const { return device_id_; }
  341. bool NeedDestroyAicpuKernel() const { return need_destroy_aicpu_kernel_; }
  342. Status UpdateSessionId(uint64_t session_id);
  343. const RuntimeParam &GetRuntimeParam() { return runtime_param_; }
  344. int32_t GetDataInputTid() const { return dataInputTid; }
  345. void SetDataInputTid(int32_t data_input_tid) { dataInputTid = data_input_tid; }
  346. void DisableZeroCopy(const void *addr);
  347. bool GetOpDugReg() const { return is_op_debug_reg_; }
  348. ///
  349. /// @ingroup ge
  350. /// @brief Save outside address of Data or NetOutput used info for ZeroCopy.
  351. /// @param [in] const OpDescPtr &op_desc: current op desc
  352. /// @param [in] const std::vector<void *> &outside_addrs: address of task
  353. /// @param [in] const void *args_offset: arguments address save the address.
  354. /// @return None.
  355. ///
  356. void SetZeroCopyAddr(const OpDescPtr &op_desc, const std::vector<void *> &outside_addrs, const void *info, void *args,
  357. size_t size, size_t offset);
  358. void SetDynamicSize(const std::vector<uint64_t> &batch_num, int32_t dynamic_type);
  359. bool GetL1FusionEnableOption() { return is_l1_fusion_enable_; }
  360. void SetProfileTime(ModelProcStage stage, int64_t endTime = 0);
  361. int64_t GetLoadBeginTime() { return load_begin_time_; }
  362. int64_t GetLoadEndTime() { return load_end_time_; }
  363. Status SinkModelProfile();
  364. Status SinkTimeProfile(const InputData &current_data);
  365. Status ReportProfilingData();
  366. void SaveDumpOpInfo(const RuntimeParam &model_param, const OpDescPtr &op, uint32_t task_id, uint32_t stream_id) {
  367. data_dumper_.SaveDumpOpInfo(model_param, op, task_id, stream_id);
  368. }
  369. void SaveDumpTask(uint32_t task_id, uint32_t stream_id, const std::shared_ptr<OpDesc> &op_desc, uintptr_t args) {
  370. data_dumper_.SaveDumpTask(task_id, stream_id, op_desc, args);
  371. }
  372. void SetEndGraphId(uint32_t task_id, uint32_t stream_id);
  373. DavinciModel &operator=(const DavinciModel &model) = delete;
  374. DavinciModel(const DavinciModel &model) = delete;
  375. const map<int64_t, std::vector<rtStream_t>> &GetHcclFolowStream() {
  376. return main_follow_stream_mapping_;
  377. }
  378. void SaveHcclFollowStream(int64_t main_stream_id, rtStream_t stream);
  379. void InitRuntimeParams();
  380. Status InitVariableMem();
  381. void UpdateMemBase(uint8_t *mem_base) {
  382. runtime_param_.mem_base = mem_base;
  383. mem_base_ = mem_base;
  384. }
  385. void SetTotalArgsSize(uint32_t args_size) { total_args_size_ += args_size; }
  386. uint32_t GetTotalArgsSize() { return total_args_size_; }
  387. void *GetCurrentArgsAddr(uint32_t offset) {
  388. void *cur_args = static_cast<char *>(args_) + offset;
  389. return cur_args;
  390. }
  391. void SetTotalIOAddrs(vector<void *> &io_addrs) {
  392. total_io_addrs_.insert(total_io_addrs_.end(), io_addrs.begin(), io_addrs.end());
  393. }
  394. void SetTotalFixedAddrsSize(string tensor_name, int64_t fix_addr_size);
  395. int64_t GetFixedAddrsSize(string tensor_name);
  396. void *GetCurrentFixedAddr(int64_t offset) const {
  397. void *cur_addr = static_cast<char *>(fixed_addrs_) + offset;
  398. return cur_addr;
  399. }
  400. uint32_t GetFixedAddrOutputIndex(string tensor_name) {
  401. if (tensor_name_to_peer_output_index_.find(tensor_name) != tensor_name_to_peer_output_index_.end()) {
  402. return tensor_name_to_peer_output_index_[tensor_name];
  403. }
  404. return UINT32_MAX;
  405. }
  406. void SetKnownNode(bool known_node) { known_node_ = known_node; }
  407. bool IsKnownNode() { return known_node_; }
  408. Status MallocKnownArgs();
  409. Status UpdateKnownNodeArgs(const vector<void *> &inputs, const vector<void *> &outputs);
  410. Status CreateKnownZeroCopyMap(const vector<void *> &inputs, const vector<void *> &outputs);
  411. Status UpdateKnownZeroCopyAddr();
  412. void SetKnownNodeAddrNotChanged(bool base_addr_not_changed) { base_addr_not_changed_ = base_addr_not_changed; }
  413. Status GetOrigInputInfo(uint32_t index, OriginInputInfo &orig_input_info);
  414. Status GetAllAippInputOutputDims(uint32_t index, std::vector<InputOutputDims> &input_dims,
  415. std::vector<InputOutputDims> &output_dims);
  416. void SetModelDescVersion(bool is_new_model_desc) { is_new_model_desc_ = is_new_model_desc; }
  417. // om file name
  418. void SetOmName(string om_name) { om_name_ = om_name; }
  419. void SetDumpProperties(const DumpProperties &dump_properties) { data_dumper_.SetDumpProperties(dump_properties); }
  420. const DumpProperties &GetDumpProperties() const { return data_dumper_.GetDumpProperties(); }
  421. bool GetOpDescInfo(uint32_t stream_id, uint32_t task_id, OpDescInfo &op_desc_info) const {
  422. return data_dumper_.GetOpDescInfo(stream_id, task_id, op_desc_info);
  423. }
  424. Status InitInputOutputForDynamic(const ComputeGraphPtr &compute_graph);
  425. private:
  426. // memory address of weights
  427. uint8_t *weights_mem_base_;
  428. uint8_t *var_mem_base_;
  429. // memory address of model
  430. uint8_t *mem_base_;
  431. uint8_t *p2p_mem_base_;
  432. bool is_inner_mem_base_;
  433. bool is_inner_weight_base_;
  434. bool is_inner_p2p_mem_base_;
  435. // input data manager
  436. DataInputer *data_inputer_;
  437. int64_t load_begin_time_;
  438. int64_t load_end_time_;
  439. struct timeInfo time_info_;
  440. int32_t dataInputTid;
  441. ///
  442. /// @ingroup ge
  443. /// @brief Copy Check input size and model op size.
  444. /// @param [in] const int64_t &input_size: input size.
  445. /// @param [in] const int64_t &op_size: model op size.
  446. /// @param [in] is_dynamic: dynamic batch input flag.
  447. /// @return true if success
  448. ///
  449. bool CheckInputAndModelSize(const int64_t &input_size, const int64_t &op_size, bool is_dynamic);
  450. ///
  451. /// @ingroup ge
  452. /// @brief Set copy only for No task feed NetOutput address.
  453. /// @return None.
  454. ///
  455. void SetCopyOnlyOutput();
  456. ///
  457. /// @ingroup ge
  458. /// @brief Copy Input/Output to model for direct use.
  459. /// @param [in] const InputData &input_data: user input data info.
  460. /// @param [in/out] OutputData &output_data: user output data info.
  461. /// @param [in] bool is_dynamic: whether is dynamic input, true: is dynamic input; false: not is dynamic input
  462. /// @return SUCCESS handle successfully / others handle failed
  463. ///
  464. Status CopyModelData(const InputData &input_data, OutputData &output_data, bool is_dynamic);
  465. ///
  466. /// @ingroup ge
  467. /// @brief Copy Data addr to model for direct use.
  468. /// @param [in] data_info: model memory addr/size map { data_index, { tensor_size, tensor_addr } }.
  469. /// @param [in] is_input: input data or output data
  470. /// @param [in] blobs: user input/output data list.
  471. /// @param [in] is_dynamic: whether is dynamic input, true: is dynamic input; false: not is dynamic input
  472. /// @param [in] batch_label: batch label for multi-batch scenes
  473. /// @return SUCCESS handle successfully / others handle failed
  474. ///
  475. Status UpdateIoTaskArgs(const std::map<uint32_t, ZeroCopyOffset> &data_info, bool is_input,
  476. const vector<DataBuffer> &blobs, bool is_dynamic, const string &batch_label);
  477. Status CopyInputData(const InputData &input_data, bool device_data = false);
  478. Status CopyOutputData(uint32_t data_id, OutputData &output_data, rtMemcpyKind_t kind);
  479. Status SyncVarData();
  480. Status InitWeightMem(void *dev_ptr, void *weight_ptr, size_t weight_size);
  481. Status InitFeatureMapAndP2PMem(void *dev_ptr, size_t mem_size);
  482. void CreateInputDimsInfo(const OpDescPtr &op_desc, Format format, InputOutputDescInfo &input);
  483. void SetInputDimsInfo(const vector<int64_t> &model_input_dims, Format &format, InputOutputDescInfo &input);
  484. Status GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, std::vector<uint32_t> &formats);
  485. Status InitTaskInfo(domi::ModelTaskDef &modelTaskInfo);
  486. void UnbindHcomStream();
  487. Status DistributeTask();
  488. uint8_t *MallocFeatureMapMem(size_t data_size);
  489. uint8_t *MallocWeightsMem(size_t weights_size);
  490. uint8_t* MallocP2PMem(size_t p2p_data_size);
  491. void FreeFeatureMapMem();
  492. void FreeWeightsMem();
  493. void FreeP2PMem();
  494. void ReleaseTask();
  495. void UnbindTaskSinkStream();
  496. bool IsAicpuKernelConnectSpecifiedLayer();
  497. ///
  498. /// @ingroup ge
  499. /// @brief Reduce memory usage after task sink.
  500. /// @return: void
  501. ///
  502. void Shrink();
  503. ///
  504. /// @ingroup ge
  505. /// @brief Travel all nodes and do some init.
  506. /// @param [in] compute_graph: ComputeGraph to load.
  507. /// @return Status
  508. ///
  509. Status InitNodes(const ComputeGraphPtr &compute_graph);
  510. ///
  511. /// @ingroup ge
  512. /// @brief Data Op Initialize.
  513. /// @param [in] NodePtr: Data Op.
  514. /// @param [in/out] data_op_index: NetOutput addr size info.
  515. /// @return Status
  516. ///
  517. Status InitDataOp(const NodePtr &node, uint32_t &data_op_index, map<uint32_t, OpDescPtr> &data_by_index);
  518. ///
  519. /// @ingroup ge
  520. /// @brief Sort Data op list by index.
  521. /// @param [in] data_by_index: map of Data Op.
  522. /// @return
  523. ///
  524. void AdjustDataOpList(const map<uint32_t, OpDescPtr> &data_by_index);
  525. ///
  526. /// @ingroup ge
  527. /// @brief NetOutput Op Initialize.
  528. /// @param [in] NodePtr: NetOutput Op.
  529. /// @return Status
  530. ///
  531. Status InitNetOutput(const NodePtr &node);
  532. ///
  533. /// @ingroup ge
  534. /// @brief Constant Op Init.
  535. /// @return Status
  536. ///
  537. Status InitConstant(const OpDescPtr &op_desc);
  538. Status InitVariable(const OpDescPtr &op_desc);
  539. /// @ingroup ge
  540. /// @brief LabelSet Op Initialize.
  541. /// @param [in] op_desc: LabelSet Op descriptor.
  542. /// @return Status
  543. Status InitLabelSet(const OpDescPtr &op_desc);
  544. Status InitStreamSwitch(const OpDescPtr &op_desc);
  545. Status InitStreamActive(const OpDescPtr &op_desc);
  546. Status InitStreamSwitchN(const OpDescPtr &op_desc);
  547. ///
  548. /// @ingroup ge
  549. /// @brief Case Op Init.
  550. /// @return Status
  551. ///
  552. Status InitCase(const OpDescPtr &op_desc);
  553. Status SetDynamicBatchInfo(const OpDescPtr &op_desc, uint32_t batch_num);
  554. ///
  555. /// @ingroup ge
  556. /// @brief TVM Op Init.
  557. /// @return Status
  558. ///
  559. Status InitTbeHandle(const OpDescPtr &op_desc);
  560. void StoreTbeHandle(const std::string &handle_key);
  561. void CleanTbeHandle();
  562. ///
  563. /// @ingroup ge
  564. /// @brief Make active stream list and bind to model.
  565. /// @return: 0 for success / others for fail
  566. ///
  567. Status BindModelStream();
  568. ///
  569. /// @ingroup ge
  570. /// @brief Init model stream for NN model.
  571. /// @return Status
  572. ///
  573. Status InitModelStream(rtStream_t stream);
  574. ///
  575. /// @ingroup ge
  576. /// @brief ACL, Load task list with queue entrance.
  577. /// @return: 0 for success / others for fail
  578. ///
  579. Status LoadWithQueue();
  580. ///
  581. /// @ingroup ge
  582. /// @brief ACL, Bind Data Op addr to input queue.
  583. /// @return: 0 for success / others for fail
  584. ///
  585. Status BindInputQueue();
  586. Status CpuTaskModelZeroCopy(std::vector<uintptr_t> &mbuf_list, std::map<const void *, ZeroCopyOffset> &outside_addrs);
  587. ///
  588. /// @ingroup ge
  589. /// @brief ACL, Bind NetOutput Op addr to output queue.
  590. /// @return: 0 for success / others for fail
  591. ///
  592. Status BindOutputQueue();
  593. Status CpuModelPrepareOutput(uintptr_t addr, uint32_t size);
  594. ///
  595. /// @ingroup ge
  596. /// @brief definiteness queue schedule, bind input queue to task.
  597. /// @param [in] queue_id: input queue id from user.
  598. /// @param [in] addr: Data Op output tensor address.
  599. /// @param [in] size: Data Op output tensor size.
  600. /// @return: 0 for success / others for fail
  601. ///
  602. Status CpuModelDequeue(uint32_t queue_id);
  603. ///
  604. /// @ingroup ge
  605. /// @brief definiteness queue schedule, bind output queue to task.
  606. /// @param [in] queue_id: output queue id from user.
  607. /// @param [in] addr: NetOutput Op input tensor address.
  608. /// @param [in] size: NetOutput Op input tensor size.
  609. /// @return: 0 for success / others for fail
  610. ///
  611. Status CpuModelEnqueue(uint32_t queue_id, uintptr_t addr, uint32_t size);
  612. ///
  613. /// @ingroup ge
  614. /// @brief definiteness queue schedule, active original model stream.
  615. /// @return: 0 for success / others for fail
  616. ///
  617. Status CpuActiveStream();
  618. ///
  619. /// @ingroup ge
  620. /// @brief definiteness queue schedule, wait for end graph.
  621. /// @return: 0 for success / others for fail
  622. ///
  623. Status CpuWaitEndGraph();
  624. Status BindEnqueue();
  625. Status CpuModelEnqueue(uint32_t queue_id, uintptr_t out_mbuf);
  626. ///
  627. /// @ingroup ge
  628. /// @brief definiteness queue schedule, repeat run model.
  629. /// @return: 0 for success / others for fail
  630. ///
  631. Status CpuModelRepeat();
  632. Status InitEntryTask();
  633. Status AddHeadStream();
  634. ///
  635. /// @ingroup ge
  636. /// @brief set ts device.
  637. /// @return: 0 for success / others for fail
  638. ///
  639. Status SetTSDevice();
  640. Status OpDebugRegister();
  641. void OpDebugUnRegister();
  642. void CheckHasHcomOp();
  643. Status DoTaskSink();
  644. void CreateOutput(uint32_t index, OpDescPtr &op_desc, InputOutputDescInfo &output, uint32_t &format_result);
  645. Status TransAllVarData(ComputeGraphPtr &graph, uint32_t graph_id);
  646. // get desc info of graph for profiling
  647. Status GetComputeGraphInfo(vector<ComputeGraphDescInfo> &graph_desc_info);
  648. void SetDataDumperArgs(const ComputeGraphPtr &compute_graph);
  649. Status GenOutputTensorInfo(const OpDescPtr &op_desc, uint32_t data_index, OutputData *output_data,
  650. std::vector<ge::OutputTensorInfo> &outputs);
  651. void ParseAIPPInfo(std::string in_out_info, InputOutputDims &dims_info);
  652. void SetLabelForDynamic(const NodePtr &node);
  653. void ParseDynamicOutShape(const std::vector<std::string> &str_info, std::vector<vector<int64_t>> &vec_info);
  654. bool IsGetNextSinkDynamic(const OpDescPtr &op_desc);
  655. void GetAllGearsInfo(const NodePtr &node);
  656. Status GetGetDynamicDimsNodeInfo(const NodePtr &node);
  657. Status GetGearAndRealOutSizeInfo(size_t input_count, const NodePtr &node);
  658. Status GetRealOutputSizeOfMerge(size_t input_index, const NodePtr &merge_node);
  659. Status GetGearAndRealOutShapeInfo(size_t input_count, const OpDescPtr &op_desc);
  660. bool is_weight_mem_has_inited_;
  661. bool is_feature_map_mem_has_inited_;
  662. uint32_t model_id_;
  663. uint32_t runtime_model_id_;
  664. uint32_t sub_model_id_ = 0;
  665. string name_;
  666. // used for inference data dump
  667. string om_name_;
  668. uint32_t version_;
  669. GeModelPtr ge_model_;
  670. bool need_destroy_aicpu_kernel_{false};
  671. vector<std::string> out_node_name_;
  672. map<uint32_t, OpDescPtr> op_list_;
  673. // data op_desc
  674. vector<OpDescPtr> data_op_list_;
  675. vector<OpDescPtr> output_op_list_;
  676. vector<OpDescPtr> variable_op_list_;
  677. std::map<uint32_t, ZeroCopyOffset> new_input_data_info_;
  678. std::map<uint32_t, ZeroCopyOffset> new_output_data_info_;
  679. std::map<const void *, ZeroCopyOffset> new_input_outside_addrs_;
  680. std::map<const void *, ZeroCopyOffset> new_output_outside_addrs_;
  681. std::set<const void *> real_virtual_addrs_;
  682. // output op: save cce op actual needed memory size
  683. vector<int64_t> output_memory_size_list_;
  684. std::thread thread_id_;
  685. std::shared_ptr<ModelListener> listener_;
  686. bool run_flg_;
  687. std::mutex mux_run_flg_;
  688. int32_t priority_;
  689. vector<rtStream_t> stream_list_;
  690. std::mutex all_hccl_stream_list_mutex_;
  691. vector<rtStream_t> all_hccl_stream_list_;
  692. // for reuse hccl_follow_stream
  693. std::mutex capacity_of_stream_mutex_;
  694. std::map<int64_t, std::vector<rtStream_t>> main_follow_stream_mapping_;
  695. vector<rtEvent_t> event_list_;
  696. vector<rtLabel_t> label_list_;
  697. set<uint32_t> label_id_indication_;
  698. std::mutex outside_addrs_mutex_;
  699. std::vector<ZeroCopyTask> zero_copy_tasks_; // Task used Data or NetOutput addr.
  700. std::set<const void *> copy_only_addrs_; // Address need copy to original place.
  701. std::vector<TaskInfoPtr> task_list_;
  702. // rt_moodel_handle
  703. rtModel_t rt_model_handle_;
  704. rtStream_t rt_model_stream_;
  705. bool is_inner_model_stream_;
  706. bool is_async_mode_; // For NN execute, Async mode use rtMemcpyAsync on rt_model_stream_.
  707. ExecuteMode last_execute_mode_;
  708. bool is_stream_list_bind_{false};
  709. bool is_pure_head_stream_{false};
  710. rtStream_t rt_head_stream_{nullptr};
  711. rtStream_t rt_entry_stream_{nullptr};
  712. rtAicpuDeployType_t deploy_type_{AICPU_DEPLOY_RESERVED};
  713. // ACL queue schedule, save queue ids for Init.
  714. std::vector<TaskInfoPtr> cpu_task_list_;
  715. std::vector<uint32_t> input_queue_ids_; // input queue ids created by caller.
  716. std::vector<uint32_t> output_queue_ids_; // output queue ids created by caller.
  717. std::vector<uintptr_t> input_mbuf_list_; // input mbuf created by dequeue task.
  718. std::vector<uintptr_t> output_mbuf_list_; // output mbuf created by dequeue task.
  719. uint64_t session_id_;
  720. uint32_t device_id_;
  721. std::mutex flowctrl_op_index_internal_map_mutex_;
  722. std::map<uint32_t, uint32_t> flowctrl_op_index_internal_map_;
  723. std::vector<rtStream_t> active_stream_list_;
  724. std::set<uint32_t> active_stream_indication_;
  725. std::set<uint32_t> hcom_streams_;
  726. RuntimeParam runtime_param_;
  727. static std::mutex tvm_bin_mutex_;
  728. std::set<std::string> tvm_bin_kernel_;
  729. std::map<std::string, uint32_t> used_tbe_handle_map_;
  730. // for profiling task and graph info
  731. std::vector<TaskDescInfo> task_desc_info_;
  732. int64_t maxDumpOpNum_;
  733. // for data dump
  734. DataDumper data_dumper_;
  735. uint64_t iterator_count_;
  736. bool is_l1_fusion_enable_;
  737. std::map<OpDescPtr, void *> saved_task_addrs_;
  738. void *l1_fusion_addr_ = nullptr;
  739. bool known_node_ = false;
  740. uint32_t total_args_size_ = 0;
  741. void *args_ = nullptr;
  742. void *args_host_ = nullptr;
  743. void *fixed_addrs_ = nullptr;
  744. int64_t total_fixed_addr_size_ = 0;
  745. std::map<const void *, void *> knonw_input_data_info_;
  746. std::map<const void *, void *> knonw_output_data_info_;
  747. vector<void *> total_io_addrs_;
  748. vector<void *> orig_total_io_addrs_;
  749. bool base_addr_not_changed_ = false;
  750. vector<vector<int64_t>> batch_info_;
  751. std::vector<std::vector<int64_t>> combined_batch_info_;
  752. vector<string> user_designate_shape_order_;
  753. int32_t dynamic_type_ = 0;
  754. bool is_dynamic_ = false;
  755. vector<uint64_t> batch_size_;
  756. // key: input tensor name, generally rts op;
  757. // value: the fixed addr of input anchor, same as the peer output anchor addr of the peer op
  758. std::map<string, int64_t> tensor_name_to_fixed_addr_size_;
  759. // key: input tensor name, generally rts op; value: the peer output anchor of the peer op
  760. std::map<string, int64_t> tensor_name_to_peer_output_index_;
  761. // if model is first execute
  762. bool is_first_execute_;
  763. // for op debug
  764. std::mutex debug_reg_mutex_;
  765. bool is_op_debug_reg_ = false;
  766. void *op_debug_addr_ = nullptr;
  767. void *p2p_debug_addr_ = nullptr;
  768. bool is_new_model_desc_{false};
  769. bool is_online_infer_dynamic_ = false;
  770. bool is_getnext_sink_dynamic_ = false;
  771. std::vector<int64_t> cur_dynamic_dims_;
  772. void *netoutput_last_input_addr_ = nullptr;
  773. int64_t netoutput_last_input_size_ = 0;
  774. size_t shape_of_cur_dynamic_dims_ = 0;
  775. // key: input_index: input is merge node; value: each gear info and each output size
  776. std::map<size_t, std::map<vector<int64_t>, int64_t>> merge_nodes_gear_and_real_out_size_info_;
  777. // key: input_index: input is merge node; value: each gear info and each output shape
  778. std::map<size_t, std::map<vector<int64_t>, vector<int64_t>>> merge_nodes_gear_and_real_out_shape_info_;
  779. std::vector<std::vector<int64_t>> all_gears_info_;
  780. };
  781. } // namespace ge
  782. #endif // GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示