You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_execute.cc 32 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "graph/execute/graph_execute.h"
  17. #include <memory>
  18. #include <string>
  19. #include "graph/load/model_manager/model_manager.h"
  20. #include "graph/load/model_manager/davinci_model.h"
  21. #include "common/profiling/profiling_manager.h"
  22. namespace ge {
  23. using Uint32Pair = pair<uint32_t, uint32_t>;
  24. const uint32_t kInvalidModelId = UINT32_MAX;
  25. GraphExecutor::GraphExecutor()
  26. : init_flag_(false),
  27. train_graph_flag_(false),
  28. sync_run_mutex_(nullptr),
  29. condition_(nullptr),
  30. graph_run_listener_(nullptr),
  31. graph_context_(nullptr),
  32. last_graph_id_(UINT32_MAX),
  33. malloc_flag_(false) {}
  34. GraphExecutor::~GraphExecutor() {
  35. outputs_desc_.clear();
  36. if (malloc_flag_) {
  37. for (auto &buffer_addr : buffer_addr_) {
  38. rtError_t rt_ret;
  39. rt_ret = rtFreeHost(buffer_addr);
  40. if (rt_ret != RT_ERROR_NONE) {
  41. REPORT_CALL_ERROR("E19999", "Call rtFreeHost failed, ret:0x%X", rt_ret);
  42. GELOGE(RT_FAILED, "[Call][RtFreeHost] subgraph free buffer failed, ret: 0x%X", rt_ret);
  43. }
  44. }
  45. }
  46. malloc_flag_ = false;
  47. buffer_addr_.clear();
  48. }
  49. Status GraphExecutor::SetCondition(std::mutex *mutex, std::condition_variable *cond,
  50. std::shared_ptr<GraphModelListener> listener) {
  51. if (mutex == nullptr) {
  52. REPORT_INNER_ERROR("E19999", "Check param mutex nullptr");
  53. GELOGE(GE_GRAPH_PARAM_NULLPTR, "[Check][Param] input param mutex is nullptr.");
  54. return GE_GRAPH_PARAM_NULLPTR;
  55. }
  56. if (cond == nullptr) {
  57. REPORT_INNER_ERROR("E19999", "Check param cond nullptr");
  58. GELOGE(GE_GRAPH_PARAM_NULLPTR, "[Check][Param] input param cond is nullptr.");
  59. return GE_GRAPH_PARAM_NULLPTR;
  60. }
  61. if (listener == nullptr) {
  62. REPORT_INNER_ERROR("E19999", "Check param listener nullptr");
  63. GELOGE(GE_GRAPH_PARAM_NULLPTR, "[Check][Param] input param listener is nullptr.");
  64. return GE_GRAPH_PARAM_NULLPTR;
  65. }
  66. sync_run_mutex_ = mutex;
  67. condition_ = cond;
  68. graph_run_listener_ = listener;
  69. init_flag_ = true;
  70. return SUCCESS;
  71. }
  72. Status GraphExecutor::SetGraphContext(GraphContextPtr graph_context_ptr) {
  73. if (graph_context_ptr == nullptr) {
  74. REPORT_INNER_ERROR("E19999", "Check param graph_context_ptr nullptr");
  75. GELOGE(GE_GRAPH_PARAM_NULLPTR, "[Check][Param] input param graph_context_ptr is nullptr");
  76. return GE_GRAPH_PARAM_NULLPTR;
  77. }
  78. graph_context_ = graph_context_ptr;
  79. return SUCCESS;
  80. }
  81. Status GraphExecutor::SetDynamicSize(uint32_t model_id, const std::vector<uint64_t> &batch_num, int32_t dynamic_type) {
  82. auto model_manager = ge::ModelManager::GetInstance();
  83. GE_CHECK_NOTNULL(model_manager);
  84. Status ret = model_manager->SetDynamicSize(model_id, batch_num, dynamic_type);
  85. if (ret != SUCCESS) {
  86. GELOGE(ret, "[Set][DynamicSize] failed, model_id:%u", model_id);
  87. return ret;
  88. }
  89. return SUCCESS;
  90. }
  91. void GraphExecutor::SetTrainFlag(bool is_train_graph) { train_graph_flag_ = is_train_graph; }
  92. Status GraphExecutor::FreeInOutBuffer() {
  93. if (malloc_flag_) {
  94. for (auto iter = buffer_addr_.begin(); iter != buffer_addr_.end(); ++iter) {
  95. rtError_t rt_ret;
  96. rt_ret = rtFreeHost(*iter);
  97. if (rt_ret != RT_ERROR_NONE) {
  98. REPORT_CALL_ERROR("E19999", "Call rtFreeHost failed, ret:0x%X", rt_ret);
  99. GELOGE(RT_FAILED, "[Call][RtFreeHost] subgraph free buffer failed, ret: 0x%X", rt_ret);
  100. (void)buffer_addr_.erase(buffer_addr_.begin(), iter);
  101. return GE_GRAPH_FREE_FAILED;
  102. }
  103. }
  104. buffer_addr_.clear();
  105. malloc_flag_ = false;
  106. return SUCCESS;
  107. } else {
  108. GELOGD("[GraphManager] not malloc buffer.");
  109. return SUCCESS;
  110. }
  111. }
  112. Status GraphExecutor::MallocInOutBuffer(const std::vector<uint64_t> &buffer_size, std::vector<void *> &data_addr) {
  113. if (malloc_flag_) {
  114. auto all_size_same = true;
  115. if (buffer_size.size() == buffer_size_.size()) {
  116. for (size_t i = 0; i < buffer_size.size(); i++) {
  117. if (buffer_size[i] != buffer_size_[i]) {
  118. all_size_same = false;
  119. break;
  120. }
  121. }
  122. } else {
  123. all_size_same = false;
  124. }
  125. if (all_size_same) {
  126. data_addr = buffer_addr_;
  127. return SUCCESS;
  128. }
  129. buffer_size_.clear();
  130. auto rt_ret = FreeInOutBuffer();
  131. if (rt_ret != SUCCESS) {
  132. GELOGE(RT_FAILED, "[Free][Buffer] failed, ret: 0x%X", rt_ret);
  133. return RT_FAILED;
  134. }
  135. }
  136. rtError_t rt_ret;
  137. for (size_t i = 0; i < buffer_size.size(); ++i) {
  138. void *tmp_buf = nullptr;
  139. rt_ret = rtMallocHost(&tmp_buf, buffer_size[i]);
  140. if (rt_ret != RT_ERROR_NONE) {
  141. REPORT_CALL_ERROR("E19999", "Call rtMallocHost failed, size:%lu, ret:0x%X", buffer_size[i], rt_ret);
  142. GELOGE(RT_FAILED, "[Malloc][Buffer] failed, size:%lu, ret:0x%X", buffer_size[i], rt_ret);
  143. return GE_GRAPH_MALLOC_FAILED;
  144. }
  145. malloc_flag_ = true;
  146. data_addr.push_back(tmp_buf);
  147. buffer_addr_.push_back(tmp_buf);
  148. }
  149. buffer_size_ = buffer_size;
  150. return SUCCESS;
  151. }
  152. Status GraphExecutor::PrepareInputData(const std::vector<GeTensor> &input_tensor, InputData &graph_input_data,
  153. OutputData &graph_output_data, std::vector<InputOutputDescInfo> &output_desc) {
  154. // Preprocessing input data
  155. graph_input_data.index = 0;
  156. graph_input_data.timeout = 0;
  157. graph_input_data.timestamp = 0;
  158. std::size_t inputSize = input_tensor.size();
  159. std::size_t output_size = output_desc.size();
  160. std::vector<uint64_t> bufferSizeVec;
  161. std::vector<void *> addrVec;
  162. for (std::size_t i = 0; i < inputSize; ++i) {
  163. const GeTensor *InTensor = &input_tensor[i];
  164. GE_CHECK_NOTNULL(InTensor);
  165. bufferSizeVec.push_back(InTensor->GetData().size());
  166. }
  167. for (const auto &desc : output_desc) {
  168. bufferSizeVec.push_back(desc.size);
  169. }
  170. Status ret = MallocInOutBuffer(bufferSizeVec, addrVec);
  171. if (ret != SUCCESS) {
  172. GELOGE(GE_GRAPH_MALLOC_FAILED, "[Malloc][Mem] failed");
  173. return GE_GRAPH_MALLOC_FAILED;
  174. }
  175. for (std::size_t i = 0; i < input_tensor.size() && i < addrVec.size(); ++i) {
  176. const GeTensor *in_tensor = &input_tensor[i];
  177. GE_CHECK_NOTNULL(in_tensor);
  178. if ((addrVec[i] != nullptr) && (in_tensor->GetData().data() != nullptr)) {
  179. rtError_t rt_ret = rtMemcpy(addrVec[i], bufferSizeVec[i], in_tensor->GetData().data(),
  180. in_tensor->GetData().size(), RT_MEMCPY_HOST_TO_HOST);
  181. if (rt_ret != RT_ERROR_NONE) {
  182. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, dst_size:%lu, src_size:%zu, ret:0x%X",
  183. bufferSizeVec[i], in_tensor->GetData().size(), rt_ret);
  184. GELOGE(RT_FAILED, "[Call][RtMemcpy] failed, dst_size:%lu, src_size:%zu, ret:0x%X",
  185. bufferSizeVec[i], in_tensor->GetData().size(), rt_ret);
  186. return RT_FAILED;
  187. }
  188. }
  189. DataBuffer in_data_buf;
  190. in_data_buf.data = reinterpret_cast<uint8_t *>(addrVec[i]);
  191. in_data_buf.length = in_tensor->GetData().size();
  192. in_data_buf.isDataSupportMemShare = false;
  193. graph_input_data.blobs.push_back(in_data_buf);
  194. }
  195. graph_output_data.index = 0;
  196. for (std::size_t j = 0; j < output_size; j++) {
  197. auto desc = output_desc[j];
  198. uint64_t buffer_size = desc.size;
  199. DataBuffer out_data_buf;
  200. out_data_buf.data = reinterpret_cast<uint8_t *>(addrVec[inputSize + j]);
  201. out_data_buf.length = buffer_size;
  202. out_data_buf.isDataSupportMemShare = false;
  203. graph_output_data.blobs.push_back(out_data_buf);
  204. }
  205. return SUCCESS;
  206. }
  207. Status GraphExecutor::SyncExecuteModel(uint32_t model_id, const std::vector<GeTensor> &input_tensor,
  208. std::vector<GeTensor> &output_tensor) {
  209. auto model_manager = ge::ModelManager::GetInstance();
  210. GE_CHECK_NOTNULL(model_manager);
  211. if (model_manager->IsDynamicShape(model_id)) {
  212. GELOGI("[ExecuteGraph] GetInputOutputDescInfo via dynamic shape model executor, modelId=%u", model_id);
  213. return model_manager->SyncExecuteModel(model_id, input_tensor, output_tensor);
  214. }
  215. // Prepare input and output
  216. std::vector<InputOutputDescInfo> inputs_desc;
  217. std::vector<InputOutputDescInfo> output_desc;
  218. GELOGI("[ExecuteGraph] GetInputOutputDescInfo via new ome begin.");
  219. Status ret = GetInputOutputDescInfo(model_id, inputs_desc, output_desc);
  220. if (ret != SUCCESS) {
  221. GELOGE(GE_GRAPH_GET_IN_OUT_FAILED, "[Get][InputOutputDescInfo] failed, modelId=%u.", model_id);
  222. return GE_GRAPH_GET_IN_OUT_FAILED;
  223. }
  224. outputs_desc_.assign(output_desc.begin(), output_desc.end());
  225. InputData input_data;
  226. OutputData output_data;
  227. input_data.model_id = model_id;
  228. ret = PrepareInputData(input_tensor, input_data, output_data, output_desc);
  229. if (ret != SUCCESS) {
  230. GELOGE(GE_GRAPH_PREPARE_FAILED, "[Prepare][InputData] failed, modelId=%u.", model_id);
  231. return GE_GRAPH_PREPARE_FAILED;
  232. }
  233. if (graph_run_listener_->ResetResult() != SUCCESS) {
  234. REPORT_CALL_ERROR("E19999", "Call graph_run_listener_.ResetResult fail, model_id:%u", model_id);
  235. GELOGE(GE_GRAPH_EXECUTE_FAILED, "[Reset][Result] failed, model_id:%u", model_id);
  236. return GE_GRAPH_EXECUTE_FAILED;
  237. }
  238. // Run mode async
  239. GELOGI("[ExecuteGraph] DataInput via new ome begin.");
  240. ret = DataInput(input_data, output_data);
  241. if (ret != SUCCESS) {
  242. GELOGE(GE_GRAPH_DATA_INPUT_FAILED, "[Call][DataInput] push data failed, modelId=%u.", model_id);
  243. return GE_GRAPH_DATA_INPUT_FAILED;
  244. }
  245. GELOGI("[GraphExecutor] input data push to wrapper finish, waiting for result...");
  246. // Pending until async execute graph complete
  247. {
  248. std::unique_lock<std::mutex> ulock(*sync_run_mutex_);
  249. if (!graph_run_listener_->IsFinished()) {
  250. (*condition_).wait(ulock);
  251. }
  252. // Run graph return
  253. uint32_t result_code = graph_run_listener_->GetResultCode();
  254. if (result_code != SUCCESS && result_code != END_OF_SEQUENCE) {
  255. REPORT_CALL_ERROR("E19999", "Graph_run_listener_ run fail, result:%u, model_id:%u", result_code, model_id);
  256. GELOGE(GE_GRAPH_EXECUTE_FAILED, "[Execute][Model] failed, ret=%u, modelId=%u.", result_code, model_id);
  257. return GE_GRAPH_EXECUTE_FAILED;
  258. }
  259. }
  260. for (size_t i = 0; i < output_data.blobs.size(); ++i) {
  261. DataBuffer outputDataTmp = output_data.blobs[i];
  262. CHECK_FALSE_EXEC(outputDataTmp.length != 0,
  263. REPORT_INNER_ERROR("E19999", "Param output_data.length is 0 in model:%u, check invalid",
  264. model_id);
  265. GELOGE(GE_GRAPH_EXECUTE_FAILED, "[Check][Param] Failed to allocate memory, "
  266. "length is 0, model id:%u", model_id);
  267. return GE_GRAPH_EXECUTE_FAILED);
  268. std::unique_ptr<uint8_t> outBufTmp(new (std::nothrow) uint8_t[outputDataTmp.length]);
  269. if (outBufTmp == nullptr) {
  270. REPORT_CALL_ERROR("E19999", "New output buffer fail, length:%lu, model:%u", outputDataTmp.length, model_id);
  271. GELOGE(FAILED, "[Allocate][Memory] failed, length:%lu, model:%u", outputDataTmp.length, model_id);
  272. return FAILED;
  273. }
  274. GE_PRINT_DYNAMIC_MEMORY(new, "the output memory of data on training.", sizeof(uint8_t) * outputDataTmp.length)
  275. rtError_t ret_value = rtMemcpy(outBufTmp.get(), outputDataTmp.length, outputDataTmp.data, outputDataTmp.length,
  276. RT_MEMCPY_HOST_TO_HOST);
  277. CHECK_FALSE_EXEC(ret_value == RT_ERROR_NONE,
  278. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, dst_size:%lu, src_size:%zu, ret:0x%X",
  279. outputDataTmp.length, outputDataTmp.length, ret_value);
  280. GELOGE(GE_GRAPH_EXECUTE_FAILED, "[Call][RtMemcpy] failed, dst_size:%lu, src_size:%zu, ret:0x%X",
  281. outputDataTmp.length, outputDataTmp.length, ret_value);
  282. return GE_GRAPH_EXECUTE_FAILED);
  283. GeTensor outTensor;
  284. std::vector<int64_t> shapeDims;
  285. for (const auto &dim : output_desc[i].shape_info.dims) {
  286. shapeDims.push_back(dim);
  287. }
  288. GeShape outShape(shapeDims);
  289. outTensor.MutableTensorDesc().SetShape(outShape);
  290. outTensor.MutableTensorDesc().SetDataType((DataType)output_desc[i].data_type);
  291. (void)outTensor.SetData(outBufTmp.get(), outputDataTmp.length);
  292. output_tensor.push_back(outTensor);
  293. }
  294. GELOGI("[GraphExecutor] execute model success, modelId=%u.", model_id);
  295. return SUCCESS;
  296. }
  297. void GraphExecutor::InitModelIdInfo(std::vector<uint32_t> &out_model_id_info,
  298. std::vector<SubGraphInfoPtr> &sub_graph_vec, uint32_t output_size) {
  299. for (uint32_t i = 0; i < output_size; i++) {
  300. for (size_t j = 0; j < sub_graph_vec.size(); j++) {
  301. if (sub_graph_vec[j]->GetOutputFlag().size() == output_size && sub_graph_vec[j]->GetOutputFlag().at(i)) {
  302. out_model_id_info.push_back(sub_graph_vec[j]->GetModelIdInfo().model_id);
  303. }
  304. }
  305. }
  306. }
  307. Status GraphExecutor::FreeExecuteMemory() {
  308. auto ret = FreeInOutBuffer();
  309. if (ret != SUCCESS) {
  310. GELOGE(ret, "[Free][InOutBuffer] Error!");
  311. return ret;
  312. }
  313. return SUCCESS;
  314. }
  315. Status GraphExecutor::ExecuteGraph(GraphId graph_id, const GeRootModelPtr &ge_root_model,
  316. const std::vector<GeTensor> &input_tensor, std::vector<GeTensor> &output_tensor) {
  317. if (graph_id != last_graph_id_) {
  318. auto ret = FreeExecuteMemory();
  319. if (ret != SUCCESS) {
  320. return ret;
  321. }
  322. }
  323. last_graph_id_ = graph_id;
  324. if (!init_flag_) {
  325. REPORT_INNER_ERROR("E19999", "No SetCondition called before, graph:%u, check invalid",
  326. graph_id);
  327. GELOGE(GE_GRAPH_EXECUTE_NOT_INIT, "[Check][Param] AI Core Engine without calling SetCondition! graph id:%u",
  328. graph_id);
  329. return GE_GRAPH_EXECUTE_NOT_INIT;
  330. }
  331. GE_CHECK_NOTNULL_EXEC(ge_root_model, return FAILED);
  332. Status ret = SyncExecuteModel(ge_root_model->GetModelId(), input_tensor, output_tensor);
  333. if (ret != SUCCESS) {
  334. GELOGE(GE_GRAPH_SYNC_MODEL_FAILED, "[SyncExecute][Model] Error! graph id:%u", graph_id);
  335. return GE_GRAPH_SYNC_MODEL_FAILED;
  336. }
  337. ret = ModelSubscribe(graph_id);
  338. if (ret != SUCCESS) {
  339. GELOGE(ret, "[Call][ModelSubscribe] failed, graph_id:%u", graph_id);
  340. return ret;
  341. }
  342. return SUCCESS;
  343. }
  344. Status GraphExecutor::ExecuteGraphAsync(GraphId graph_id, const GeRootModelPtr &ge_root_model,
  345. const std::vector<ge::Tensor> &input_tensor,
  346. const RunAsyncCallback& callback) {
  347. GELOGI("[GraphExecutor] Start to async execute graph, graph_id=%u", graph_id);
  348. if (graph_id != last_graph_id_) {
  349. auto ret = FreeExecuteMemory();
  350. if (ret != SUCCESS) {
  351. return ret;
  352. }
  353. }
  354. last_graph_id_ = graph_id;
  355. GE_CHECK_NOTNULL_EXEC(ge_root_model, return FAILED);
  356. Status ret = AsyncExecuteModel(ge_root_model, input_tensor, callback);
  357. if (ret != SUCCESS) {
  358. GELOGE(GE_GRAPH_SYNC_MODEL_FAILED, "[AsyncExecute][Model] Error! graph id:%u", graph_id);
  359. return GE_GRAPH_SYNC_MODEL_FAILED;
  360. }
  361. GELOGI("[GraphExecutor] Async execute graph success, graph_id=%u", graph_id);
  362. return SUCCESS;
  363. }
  364. Status GraphExecutor::GetExecuteData(const std::vector<GeTensor> &input_tensor, std::vector<DataBuffer> &blobs,
  365. std::vector<GeTensorDesc> &tensor_desc) {
  366. for (const auto &tensor : input_tensor) {
  367. DataBuffer in_data_buf;
  368. // check placement
  369. in_data_buf.data = const_cast<uint8_t *>(tensor.GetData().data());
  370. in_data_buf.length = tensor.GetData().size();
  371. in_data_buf.isDataSupportMemShare = false;
  372. blobs.emplace_back(in_data_buf);
  373. tensor_desc.emplace_back(tensor.GetTensorDesc());
  374. }
  375. return SUCCESS;
  376. }
  377. Status GraphExecutor::ExecuteGraphWithStream(GraphId graph_id,
  378. rtStream_t stream,
  379. const GeRootModelPtr &ge_root_model,
  380. const std::vector<GeTensor> &input_tensor,
  381. std::vector<GeTensor> &output_tensor) {
  382. GELOGI("[GraphExecutor] Start to execute graph with stream, graph id = %u, stream = %p.", graph_id, stream);
  383. if (!init_flag_) {
  384. REPORT_INNER_ERROR("E19999", "No SetCondition called before, graph id = %u, stream = %p, check invalid.",
  385. graph_id, stream);
  386. GELOGE(GE_GRAPH_EXECUTE_NOT_INIT, "[Check][Param] AI Core Engine without calling SetCondition! graph id = %u",
  387. graph_id);
  388. return GE_GRAPH_EXECUTE_NOT_INIT;
  389. }
  390. if (graph_id != last_graph_id_) {
  391. auto ret = FreeExecuteMemory();
  392. if (ret != SUCCESS) {
  393. return ret;
  394. }
  395. }
  396. last_graph_id_ = graph_id;
  397. GE_CHECK_NOTNULL_EXEC(ge_root_model, return FAILED);
  398. auto model_id = ge_root_model->GetModelId();
  399. InputData input_data;
  400. input_data.index = 0;
  401. input_data.model_id = model_id;
  402. std::vector<GeTensorDesc> input_desc;
  403. auto ret = GetExecuteData(input_tensor, input_data.blobs, input_desc);
  404. if (ret != SUCCESS) {
  405. return ret;
  406. }
  407. OutputData output_data;
  408. output_data.index = 0;
  409. output_data.model_id = model_id;
  410. std::vector<GeTensorDesc> output_desc;
  411. ret = GetExecuteData(output_tensor, output_data.blobs, output_desc);
  412. if (ret != SUCCESS) {
  413. return ret;
  414. }
  415. auto async_mode = true;
  416. auto model_manager = ge::ModelManager::GetInstance();
  417. GE_CHECK_NOTNULL(model_manager);
  418. ret = model_manager->ExecuteModel(model_id, stream, async_mode, input_data, input_desc, output_data, output_desc);
  419. if (ret != SUCCESS) {
  420. return ret;
  421. }
  422. GELOGI("[GraphExecutor] Async execute graph with stream success graph id = %u, stream = %p.", graph_id, stream);
  423. return SUCCESS;
  424. }
  425. bool CompareByLoad(const Uint32Pair &lhs, const Uint32Pair &rhs) {
  426. return lhs.second < rhs.second;
  427. }
  428. uint32_t GraphExecutor::GetExecuteModelId(const GeRootModelPtr &ge_root_model) {
  429. std::vector<uint32_t> model_ids = ge_root_model->GetAllModelId();
  430. if (model_ids.empty()) {
  431. return kInvalidModelId;
  432. }
  433. if (model_ids.size() == 1) {
  434. return ge_root_model->GetModelId();
  435. }
  436. std::vector<Uint32Pair> model_id_to_loads;
  437. auto model_manager = ModelManager::GetInstance();
  438. GE_CHECK_NOTNULL(model_manager);
  439. for (auto model_id : model_ids) {
  440. auto davinci_model = model_manager->GetModel(model_id);
  441. auto hybrid_model = model_manager->GetHybridModel(model_id);
  442. if (hybrid_model == nullptr) {
  443. GE_CHECK_NOTNULL(davinci_model);
  444. }
  445. uint32_t input_load = hybrid_model != nullptr ? hybrid_model->GetDataInputerSize() :
  446. davinci_model->GetDataInputerSize();
  447. uint32_t running_load = hybrid_model != nullptr ? static_cast<uint32_t>(hybrid_model->GetRunningFlag()) :
  448. static_cast<uint32_t>(davinci_model->GetRunningFlag());
  449. uint32_t load = input_load + running_load;
  450. if (load == 0) {
  451. return model_id;
  452. }
  453. model_id_to_loads.emplace_back(model_id, load);
  454. }
  455. sort(model_id_to_loads.begin(), model_id_to_loads.end(), CompareByLoad);
  456. if (model_id_to_loads.empty()) {
  457. return kInvalidModelId;
  458. }
  459. return model_id_to_loads.begin()->first;
  460. }
  461. Status GraphExecutor::SetCallback(uint32_t model_id, const GeRootModelPtr &ge_root_model,
  462. const RunAsyncCallback &callback) {
  463. auto model_manager = ge::ModelManager::GetInstance();
  464. GE_CHECK_NOTNULL(model_manager);
  465. if (model_manager->IsNeedHybridLoad(*ge_root_model)) {
  466. auto model = model_manager->GetHybridModel(model_id);
  467. GE_CHECK_NOTNULL(model);
  468. if (model->SetRunAsyncListenerCallback(callback) != SUCCESS) {
  469. GELOGE(FAILED, "[Set][RunAsyncListenerCallback] failed, model_id %u", model_id);
  470. return FAILED;
  471. }
  472. } else {
  473. auto model = model_manager->GetModel(model_id);
  474. GE_CHECK_NOTNULL(model);
  475. if (model->SetRunAsyncListenerCallback(callback) != SUCCESS) {
  476. GELOGE(FAILED, "[Set][RunAsyncListenerCallback] failed, model_id %u", model_id);
  477. return FAILED;
  478. }
  479. }
  480. return SUCCESS;
  481. }
  482. Status GraphExecutor::AsyncExecuteModel(const GeRootModelPtr &ge_root_model, const std::vector<ge::Tensor> &inputs,
  483. const RunAsyncCallback &callback) {
  484. uint32_t model_id = GetExecuteModelId(ge_root_model);
  485. if (model_id == kInvalidModelId) {
  486. GELOGE(INTERNAL_ERROR, "No valid model id.");
  487. return INTERNAL_ERROR;
  488. }
  489. try {
  490. auto model_manager = ge::ModelManager::GetInstance();
  491. GE_CHECK_NOTNULL(model_manager);
  492. GELOGI("RunAsync begin.model_id %u", model_id);
  493. if (SetCallback(model_id, ge_root_model, callback) != SUCCESS) {
  494. GELOGE(FAILED, "[Set][CallBack] for model fail, model_id %u", model_id);
  495. return FAILED;
  496. }
  497. Status ret = model_manager->DataInputTensor(model_id, inputs);
  498. if (ret != SUCCESS) {
  499. GELOGE(ret, "[Call][DataInputTensor] RunAsync: DataInput fail, model_id %u", model_id);
  500. return ret;
  501. }
  502. GELOGI("RunAsync success.");
  503. } catch (std::bad_alloc &) {
  504. REPORT_INNER_ERROR("E19999", "Bad memory allocation exception occur failed, model_id %u", model_id);
  505. GELOGE(MEMALLOC_FAILED, "[Run][Async] failed, bad memory allocation occur, model_id %u", model_id);
  506. return MEMALLOC_FAILED;
  507. } catch (...) {
  508. REPORT_INNER_ERROR("E19999", "Some exceptions occur failed, model_id %u", model_id);
  509. GELOGE(FAILED, "[Run][Async] failed, some exceptions occur, model_id %u", model_id);
  510. return FAILED;
  511. }
  512. return SUCCESS;
  513. }
  514. Status GraphExecutor::DataInput(const InputData &input_data, OutputData &output_data) {
  515. try {
  516. auto model_manager = ge::ModelManager::GetInstance();
  517. GE_CHECK_NOTNULL(model_manager);
  518. Status ret = model_manager->DataInput(input_data, output_data);
  519. if (ret != SUCCESS) {
  520. GELOGE(ret, "[Call][DataInput] failed.");
  521. return ret;
  522. }
  523. } catch (std::bad_alloc &) {
  524. REPORT_INNER_ERROR("E19999", "Bad memory allocation exception occur failed");
  525. GELOGE(MEMALLOC_FAILED, "[Call][DataInput] failed, bad memory allocation occur !");
  526. return MEMALLOC_FAILED;
  527. } catch (...) {
  528. REPORT_INNER_ERROR("E19999", "Some exceptions occur failed");
  529. GELOGE(FAILED, "[Call][DataInput] failed, some exceptions occur !");
  530. return FAILED;
  531. }
  532. return SUCCESS;
  533. }
  534. Status GraphExecutor::GetInputOutputDescInfo(const uint32_t model_id, vector<InputOutputDescInfo> &input_desc,
  535. vector<InputOutputDescInfo> &output_desc) {
  536. try {
  537. auto model_manager = ge::ModelManager::GetInstance();
  538. GE_CHECK_NOTNULL(model_manager);
  539. Status ret = model_manager->GetInputOutputDescInfo(model_id, input_desc, output_desc);
  540. if (ret != SUCCESS) {
  541. GELOGE(ret, "[Get][InputOutputDescInfo] failed, model_id:%u.", model_id);
  542. return ret;
  543. }
  544. } catch (std::bad_alloc &) {
  545. REPORT_INNER_ERROR("E19999", "Bad memory allocation exception occur failed, model_id:%u.", model_id);
  546. GELOGE(MEMALLOC_FAILED, "[Get][InputOutputDescInfo] failed, bad memory allocation occur, model_id:%u.", model_id);
  547. return MEMALLOC_FAILED;
  548. } catch (...) {
  549. REPORT_INNER_ERROR("E19999", "Some exceptions occur failed, model_id:%u.", model_id);
  550. GELOGE(FAILED, "[Get][InputOutputDescInfo] failed, some exceptions occur, model_id:%u.", model_id);
  551. return FAILED;
  552. }
  553. return SUCCESS;
  554. }
  555. Status GraphExecutor::GetInputOutputDescInfo(const uint32_t model_id, vector<InputOutputDescInfo> &input_desc,
  556. vector<InputOutputDescInfo> &output_desc,
  557. std::vector<uint32_t> &input_formats, std::vector<uint32_t> &out_formats,
  558. bool new_model_desc) {
  559. try {
  560. auto model_manager = ge::ModelManager::GetInstance();
  561. GE_CHECK_NOTNULL(model_manager);
  562. Status ret = model_manager->GetInputOutputDescInfo(model_id, input_desc, output_desc, input_formats, out_formats,
  563. new_model_desc);
  564. if (ret != SUCCESS) {
  565. GELOGE(ret, "[Get][InputOutputDescInfo] failed, model_id:%u.", model_id);
  566. return ret;
  567. }
  568. } catch (std::bad_alloc &) {
  569. REPORT_INNER_ERROR("E19999", "Bad memory allocation exception occur failed, model_id:%u.", model_id);
  570. GELOGE(MEMALLOC_FAILED, "[Get][InputOutputDescInfo] failed, bad memory allocation occur, model_id:%u.", model_id);
  571. return MEMALLOC_FAILED;
  572. } catch (...) {
  573. REPORT_INNER_ERROR("E19999", "Some exceptions occur failed, model_id:%u.", model_id);
  574. GELOGE(FAILED, "[Get][InputOutputDescInfo] failed, some exceptions occur, model_id:%u.", model_id);
  575. return FAILED;
  576. }
  577. return SUCCESS;
  578. }
  579. ///
  580. /// @ingroup ge
  581. /// @brief Get dynamic batch_info
  582. /// @param [in] model_id
  583. /// @param [out] batch_info
  584. /// @param [out] dynamic_type
  585. /// @return execute result
  586. ///
  587. Status GraphExecutor::GetDynamicBatchInfo(uint32_t model_id, std::vector<std::vector<int64_t>> &batch_info,
  588. int32_t &dynamic_type) {
  589. auto model_manager = ge::ModelManager::GetInstance();
  590. GE_CHECK_NOTNULL(model_manager);
  591. Status ret = model_manager->GetDynamicBatchInfo(model_id, batch_info, dynamic_type);
  592. if (ret != SUCCESS) {
  593. GELOGE(ret, "[Get][DynamicBatchInfo] failed, model_id:%u.", model_id);
  594. return ret;
  595. }
  596. return SUCCESS;
  597. }
  598. ///
  599. /// @ingroup ge
  600. /// @brief Get combined dynamic dims info
  601. /// @param [in] model_id
  602. /// @param [out] batch_info
  603. /// @return execute result
  604. ///
  605. Status GraphExecutor::GetCombinedDynamicDims(uint32_t model_id, std::vector<std::vector<int64_t>> &batch_info) {
  606. auto model_manager = ge::ModelManager::GetInstance();
  607. GE_CHECK_NOTNULL(model_manager);
  608. Status ret = model_manager->GetCombinedDynamicDims(model_id, batch_info);
  609. if (ret != SUCCESS) {
  610. GELOGE(ret, "[Call][GetCombinedDynamicDims] failed, model_id:%u.", model_id);
  611. return ret;
  612. }
  613. return SUCCESS;
  614. }
  615. ///
  616. /// @ingroup ge
  617. /// @brief Get user designate shape order
  618. /// @param [in] model_id
  619. /// @param [out] user_input_shape_order
  620. /// @return execute result
  621. ///
  622. ge::Status GraphExecutor::GetUserDesignateShapeOrder(uint32_t model_id,
  623. std::vector<std::string> &user_input_shape_order) {
  624. auto model_manager = ge::ModelManager::GetInstance();
  625. GE_CHECK_NOTNULL(model_manager);
  626. Status ret = model_manager->GetUserDesignateShapeOrder(model_id, user_input_shape_order);
  627. if (ret != SUCCESS) {
  628. GELOGE(ret, "[Get][UserDesignateShapeOrder] failed, model_id:%u.", model_id);
  629. return ret;
  630. }
  631. return SUCCESS;
  632. }
  633. Status GraphExecutor::GetCurShape(const uint32_t model_id, std::vector<int64_t> &batch_info, int32_t &dynamic_type) {
  634. auto model_manager = ge::ModelManager::GetInstance();
  635. GE_CHECK_NOTNULL(model_manager);
  636. Status ret = model_manager->GetCurShape(model_id, batch_info, dynamic_type);
  637. if (ret != SUCCESS) {
  638. GELOGE(ret, "[Get][CurShape] failed, model_id:%u", model_id);
  639. return ret;
  640. }
  641. return SUCCESS;
  642. }
  643. Status GraphExecutor::GetOpAttr(uint32_t model_id, const std::string &op_name, const std::string &attr_name,
  644. std::string &attr_value) {
  645. auto model_manager = ge::ModelManager::GetInstance();
  646. GE_CHECK_NOTNULL(model_manager);
  647. Status ret = model_manager->GetOpAttr(model_id, op_name, attr_name, attr_value);
  648. if (ret != SUCCESS) {
  649. GELOGE(ret, "[Get][OpAttr]Get op:%s attr:%s failed.", op_name.c_str(), attr_name.c_str());
  650. REPORT_CALL_ERROR("E19999", "Get op:%s attr:%s failed.", op_name.c_str(), attr_name.c_str());
  651. return ret;
  652. }
  653. return SUCCESS;
  654. }
  655. Status GraphExecutor::GetModelAttr(uint32_t model_id, std::vector<string> &dynamic_output_shape_info) {
  656. auto model_manager = ge::ModelManager::GetInstance();
  657. GE_CHECK_NOTNULL(model_manager);
  658. Status ret = model_manager->GetModelAttr(model_id, dynamic_output_shape_info);
  659. if (ret != SUCCESS) {
  660. GELOGE(FAILED, "[Get][ModelAttr] failed, model_id:%u", model_id);
  661. return ret;
  662. }
  663. return SUCCESS;
  664. }
  665. Status GraphExecutor::GetAippInfo(uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info) {
  666. auto model_manager = ge::ModelManager::GetInstance();
  667. GE_CHECK_NOTNULL(model_manager);
  668. Status ret = model_manager->GetAippInfo(model_id, index, aipp_info);
  669. if (ret != SUCCESS) {
  670. GELOGW("GetAIPPInfo is not success.");
  671. return ret;
  672. }
  673. return SUCCESS;
  674. }
  675. Status GraphExecutor::GetAippType(uint32_t model_id, uint32_t index, InputAippType &type, size_t &aipp_index) {
  676. auto model_manager = ge::ModelManager::GetInstance();
  677. GE_CHECK_NOTNULL(model_manager);
  678. Status ret = model_manager->GetAippType(model_id, index, type, aipp_index);
  679. if (ret != SUCCESS) {
  680. GELOGW("Get aipp type is not success.");
  681. return ret;
  682. }
  683. return SUCCESS;
  684. }
  685. Status GraphExecutor::GetOrigInputInfo(uint32_t model_id, uint32_t index, OriginInputInfo &orig_input_info) {
  686. auto model_manager = ge::ModelManager::GetInstance();
  687. GE_CHECK_NOTNULL(model_manager);
  688. Status ret = model_manager->GetOrigInputInfo(model_id, index, orig_input_info);
  689. if (ret != SUCCESS) {
  690. GELOGE(ret, "[Get][OrigInputInfo] failed, model_id:%u, index:%u.", model_id, index);
  691. return ret;
  692. }
  693. return SUCCESS;
  694. }
  695. Status GraphExecutor::GetAllAippInputOutputDims(uint32_t model_id, uint32_t index,
  696. std::vector<InputOutputDims> &input_dims,
  697. std::vector<InputOutputDims> &output_dims) {
  698. auto model_manager = ge::ModelManager::GetInstance();
  699. GE_CHECK_NOTNULL(model_manager);
  700. Status ret = model_manager->GetAllAippInputOutputDims(model_id, index, input_dims, output_dims);
  701. if (ret != SUCCESS) {
  702. GELOGE(ret, "[Get][AllAippInputOutputDims] failed, model_id:%u, index:%u.", model_id, index);
  703. return ret;
  704. }
  705. return SUCCESS;
  706. }
  707. Status GraphExecutor::GetOpDescInfo(uint32_t device_id, uint32_t stream_id, uint32_t task_id,
  708. OpDescInfo &op_desc_info) {
  709. auto model_manager = ge::ModelManager::GetInstance();
  710. GE_CHECK_NOTNULL(model_manager);
  711. Status ret = model_manager->GetOpDescInfo(device_id, stream_id, task_id, op_desc_info);
  712. if (ret != SUCCESS) {
  713. GELOGE(ret, "[Get][OpDescInfo] failed, device_id:%u, stream_id:%u, task_id:%u.",
  714. device_id, stream_id, task_id);
  715. return ret;
  716. }
  717. return SUCCESS;
  718. }
  719. Status GraphExecutor::GetModelByID(uint32_t model_id, std::shared_ptr<DavinciModel> &davinci_model) {
  720. auto model_manager = ge::ModelManager::GetInstance();
  721. GE_CHECK_NOTNULL(model_manager);
  722. davinci_model = model_manager->GetModel(static_cast<uint32_t>(model_id));
  723. if (davinci_model == nullptr) {
  724. REPORT_INNER_ERROR("E19999", "GetModel from model_manager fail, model_id:%u", model_id);
  725. GELOGE(ge::FAILED, "[Get][Model] failed, Model id:%d is invaild or model is not loaded.", model_id);
  726. return ge::FAILED;
  727. }
  728. return ge::SUCCESS;
  729. }
  730. Status GraphExecutor::ModelSubscribe(uint32_t graph_id) {
  731. auto &profiling_manager = ProfilingManager::Instance();
  732. const auto &subcribe_info = profiling_manager.GetSubscribeInfo();
  733. if (subcribe_info.is_subscribe) {
  734. std::shared_ptr<DavinciModel> davinci_model = nullptr;
  735. uint32_t model_id = 0;
  736. Status ret = profiling_manager.GetModelIdFromGraph(graph_id, model_id);
  737. if (ret != SUCCESS) {
  738. GELOGE(ret, "[Call][GetModelIdFromGraph] failed, graph_id:%u", graph_id);
  739. return ret;
  740. }
  741. ret = GetModelByID(model_id, davinci_model);
  742. if (ret != SUCCESS) {
  743. GELOGE(ret, "[Call][GetModelByID] failed, model_id:%u", model_id);
  744. return ret;
  745. }
  746. ret = profiling_manager.ProfModelSubscribe(subcribe_info.prof_switch, davinci_model.get());
  747. if (ret != SUCCESS) {
  748. GELOGE(ret, "[Call][ProfModelSubscribe] failed");
  749. return ret;
  750. }
  751. }
  752. return SUCCESS;
  753. }
  754. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示