You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model_unittest.cc 36 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #include <gmock/gmock.h>
  18. #define private public
  19. #define protected public
  20. #include "graph/utils/graph_utils.h"
  21. #include "common/profiling/profiling_manager.h"
  22. #include "graph/load/model_manager/davinci_model.h"
  23. using namespace std;
  24. namespace ge {
  25. extern OpDescPtr CreateOpDesc(string name, string type);
  26. class DModelListener : public ModelListener {
  27. public:
  28. DModelListener(){};
  29. uint32_t OnComputeDone(uint32_t model_id, uint32_t data_index, uint32_t result, vector<OutputTensorInfo> &outputs) {
  30. return 0;
  31. }
  32. };
  33. shared_ptr<ModelListener> g_local_call_back(new DModelListener());
  34. class UtestDavinciModel : public testing::Test {
  35. protected:
  36. void SetUp() {}
  37. void TearDown() {}
  38. };
  39. int32_t MsprofReport(uint32_t moduleId, uint32_t type, void *data, uint32_t len) {
  40. return 0;
  41. }
  42. TEST_F(UtestDavinciModel, init_success) {
  43. DavinciModel model(0, nullptr);
  44. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  45. ProfilingManager::Instance().is_load_profiling_ = true;
  46. GeModelPtr ge_model = make_shared<GeModel>();
  47. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  48. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  49. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  50. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  51. ge_model->SetModelTaskDef(model_task_def);
  52. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  53. TensorUtils::SetSize(tensor, 512);
  54. {
  55. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  56. op_desc->AddInputDesc(tensor);
  57. op_desc->AddOutputDesc(tensor);
  58. op_desc->SetInputOffset({1024});
  59. op_desc->SetOutputOffset({1024});
  60. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  61. }
  62. {
  63. OpDescPtr op_desc = CreateOpDesc("square", "Square");
  64. op_desc->AddInputDesc(tensor);
  65. op_desc->AddOutputDesc(tensor);
  66. op_desc->SetInputOffset({1024});
  67. op_desc->SetOutputOffset({1024});
  68. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  69. domi::TaskDef *task_def = model_task_def->add_task();
  70. task_def->set_stream_id(0);
  71. task_def->set_type(RT_MODEL_TASK_KERNEL);
  72. domi::KernelDef *kernel_def = task_def->mutable_kernel();
  73. kernel_def->set_stub_func("stub_func");
  74. kernel_def->set_args_size(64);
  75. string args(64, '1');
  76. kernel_def->set_args(args.data(), 64);
  77. domi::KernelContext *context = kernel_def->mutable_context();
  78. context->set_op_index(op_desc->GetId());
  79. context->set_kernel_type(2); // ccKernelType::TE
  80. uint16_t args_offset[9] = {0};
  81. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  82. }
  83. {
  84. OpDescPtr op_desc = CreateOpDesc("memcpy", MEMCPYASYNC);
  85. op_desc->AddInputDesc(tensor);
  86. op_desc->AddOutputDesc(tensor);
  87. op_desc->SetInputOffset({1024});
  88. op_desc->SetOutputOffset({5120});
  89. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  90. domi::TaskDef *task_def = model_task_def->add_task();
  91. task_def->set_stream_id(0);
  92. task_def->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  93. domi::MemcpyAsyncDef *memcpy_async = task_def->mutable_memcpy_async();
  94. memcpy_async->set_src(1024);
  95. memcpy_async->set_dst(5120);
  96. memcpy_async->set_dst_max(512);
  97. memcpy_async->set_count(1);
  98. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  99. memcpy_async->set_op_index(op_desc->GetId());
  100. }
  101. {
  102. OpDescPtr op_desc = CreateOpDesc("output", NETOUTPUT);
  103. op_desc->AddInputDesc(tensor);
  104. op_desc->SetInputOffset({5120});
  105. op_desc->SetSrcName( { "memcpy" } );
  106. op_desc->SetSrcIndex( { 0 } );
  107. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  108. }
  109. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  110. EXPECT_EQ(model.Init(), SUCCESS);
  111. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  112. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  113. EXPECT_EQ(model.task_list_.size(), 2);
  114. OutputData output_data;
  115. vector<OutputTensorInfo> outputs;
  116. EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
  117. EXPECT_EQ(output_data.blobs.size(), 1);
  118. EXPECT_EQ(outputs.size(), 1);
  119. ProfilingManager::Instance().is_load_profiling_ = false;
  120. }
  121. TEST_F(UtestDavinciModel, init_data_op) {
  122. DavinciModel model(0, nullptr);
  123. model.ge_model_ = make_shared<GeModel>();
  124. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  125. model.runtime_param_.mem_size = 5120000;
  126. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  127. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  128. TensorUtils::SetSize(tensor, 512);
  129. OpDescPtr op_input = CreateOpDesc("data", DATA);
  130. op_input->AddInputDesc(tensor);
  131. op_input->AddOutputDesc(tensor);
  132. op_input->SetInputOffset({1024});
  133. op_input->SetOutputOffset({1024});
  134. NodePtr node_input = graph->AddNode(op_input);
  135. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  136. op_output->AddInputDesc(tensor);
  137. op_output->SetInputOffset({1024});
  138. op_output->SetSrcName( { "data" } );
  139. op_output->SetSrcIndex( { 0 } );
  140. NodePtr node_output = graph->AddNode(op_output);
  141. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  142. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  143. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  144. EXPECT_EQ(model.op_list_.size(), 2);
  145. }
  146. TEST_F(UtestDavinciModel, init_data_op_subgraph) {
  147. DavinciModel model(0, nullptr);
  148. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  149. model.runtime_param_.mem_size = 5120000;
  150. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  151. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  152. TensorUtils::SetSize(tensor, 512);
  153. OpDescPtr op_input = CreateOpDesc("data", DATA);
  154. op_input->AddInputDesc(tensor);
  155. op_input->AddOutputDesc(tensor);
  156. op_input->SetInputOffset({1024});
  157. op_input->SetOutputOffset({1024});
  158. NodePtr node = graph->AddNode(op_input);
  159. uint32_t data_op_index = 0;
  160. map<uint32_t, OpDescPtr> data_by_index;
  161. set<const void *> input_outside_addrs;
  162. EXPECT_EQ(model.InitDataOp(nullptr, node, data_op_index, data_by_index, input_outside_addrs), SUCCESS);
  163. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  164. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  165. EXPECT_EQ(data_op_index, 0);
  166. EXPECT_TRUE(data_by_index.empty());
  167. }
  168. TEST_F(UtestDavinciModel, init_netoutput_op_subgraph) {
  169. DavinciModel model(0, nullptr);
  170. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  171. model.runtime_param_.mem_size = 5120000;
  172. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  173. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  174. TensorUtils::SetSize(tensor, 512);
  175. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  176. op_output->AddInputDesc(tensor);
  177. op_output->SetInputOffset({1024});
  178. op_output->SetSrcName( { "data" } );
  179. op_output->SetSrcIndex( { 0 } );
  180. NodePtr node = graph->AddNode(op_output);
  181. std::vector<OpDescPtr> output_op_list;
  182. set<const void *> output_outside_addrs;
  183. EXPECT_EQ(model.InitNetOutput(nullptr, node, output_op_list, output_outside_addrs), SUCCESS);
  184. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  185. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  186. EXPECT_TRUE(output_op_list.empty());
  187. }
  188. TEST_F(UtestDavinciModel, init_unknown) {
  189. DavinciModel model(0, nullptr);
  190. model.SetKnownNode(true);
  191. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  192. GeModelPtr ge_model = make_shared<GeModel>();
  193. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  194. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  195. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  196. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  197. ge_model->SetModelTaskDef(model_task_def);
  198. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  199. TensorUtils::SetSize(tensor, 512);
  200. OpDescPtr op_input = CreateOpDesc("data", DATA);
  201. op_input->AddInputDesc(tensor);
  202. op_input->AddOutputDesc(tensor);
  203. op_input->SetInputOffset({1024});
  204. op_input->SetOutputOffset({1024});
  205. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  206. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  207. op_kernel->AddInputDesc(tensor);
  208. op_kernel->AddOutputDesc(tensor);
  209. op_kernel->SetInputOffset({1024});
  210. op_kernel->SetOutputOffset({1024});
  211. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  212. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  213. op_memcpy->AddInputDesc(tensor);
  214. op_memcpy->AddOutputDesc(tensor);
  215. op_memcpy->SetInputOffset({1024});
  216. op_memcpy->SetOutputOffset({5120});
  217. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  218. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  219. op_output->AddInputDesc(tensor);
  220. op_output->SetInputOffset({5120});
  221. op_output->SetSrcName( { "memcpy" } );
  222. op_output->SetSrcIndex( { 0 } );
  223. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  224. domi::TaskDef *task_def1 = model_task_def->add_task();
  225. task_def1->set_stream_id(0);
  226. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  227. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  228. kernel_def->set_stub_func("stub_func");
  229. kernel_def->set_args_size(64);
  230. string args(64, '1');
  231. kernel_def->set_args(args.data(), 64);
  232. domi::KernelContext *context = kernel_def->mutable_context();
  233. context->set_op_index(1);
  234. context->set_kernel_type(2); // ccKernelType::TE
  235. uint16_t args_offset[9] = {0};
  236. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  237. domi::TaskDef *task_def2 = model_task_def->add_task();
  238. task_def2->set_stream_id(0);
  239. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  240. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  241. memcpy_async->set_src(1024);
  242. memcpy_async->set_dst(5120);
  243. memcpy_async->set_dst_max(512);
  244. memcpy_async->set_count(1);
  245. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  246. memcpy_async->set_op_index(2);
  247. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  248. ProfilingManager::Instance().is_load_profiling_ = true;
  249. EXPECT_EQ(model.Init(), SUCCESS);
  250. ProfilingManager::Instance().is_load_profiling_ = false;
  251. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  252. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  253. EXPECT_EQ(model.task_list_.size(), 2);
  254. EXPECT_EQ(model.task_list_[0]->UpdateArgs(), SUCCESS);
  255. EXPECT_EQ(model.task_list_[1]->UpdateArgs(), SUCCESS);
  256. vector<string> out_shape_info;
  257. model.GetModelAttr(out_shape_info);
  258. vector<InputOutputDescInfo> input_descs;
  259. vector<InputOutputDescInfo> output_descs;
  260. EXPECT_EQ(model.GetInputOutputDescInfo(input_descs, output_descs), SUCCESS);
  261. int32_t virtual_addr = 0;
  262. const vector<void *> inputs = { &virtual_addr };
  263. const vector<void *> outputs = { &virtual_addr };
  264. EXPECT_EQ(model.UpdateKnownNodeArgs(inputs, outputs), SUCCESS);
  265. }
  266. TEST_F(UtestDavinciModel, Init_variable_op) {
  267. DavinciModel model(0, g_local_call_back);
  268. model.ge_model_ = make_shared<GeModel>();
  269. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  270. model.runtime_param_.mem_size = 5120000;
  271. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  272. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  273. TensorUtils::SetSize(tensor, 512);
  274. OpDescPtr var1 = CreateOpDesc("var1", VARIABLE);
  275. var1->AddInputDesc(tensor);
  276. var1->AddOutputDesc(tensor);
  277. var1->SetInputOffset({1024});
  278. var1->SetOutputOffset({1024});
  279. AttrUtils::SetBool(var1, VAR_ATTR_VAR_IS_BROADCAST, true);
  280. graph->AddNode(var1);
  281. OpDescPtr var2 = CreateOpDesc(NODE_NAME_GLOBAL_STEP, VARIABLE);
  282. var2->AddInputDesc(tensor);
  283. var2->AddOutputDesc(tensor);
  284. var2->SetInputOffset({1024});
  285. var2->SetOutputOffset({1024});
  286. graph->AddNode(var2);
  287. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  288. EXPECT_EQ(model.ReturnNoOutput(1), SUCCESS);
  289. EXPECT_EQ(model.SyncVarData(), SUCCESS);
  290. OutputData output_data;
  291. EXPECT_FALSE(model.has_output_node_);
  292. EXPECT_EQ(model.CopyOutputData(1, output_data, RT_MEMCPY_DEVICE_TO_HOST), SUCCESS);
  293. EXPECT_EQ(model.ReturnResult(1, false, true, &output_data), INTERNAL_ERROR);
  294. }
  295. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ1) {
  296. DavinciModel model(0, nullptr);
  297. model.ge_model_ = make_shared<GeModel>();
  298. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  299. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  300. OpDescPtr op_output = CreateOpDesc("output_ascend_mbatch_batch_1", NETOUTPUT);
  301. op_output->AddInputDesc(tensor);
  302. op_output->SetInputOffset({1024});
  303. NodePtr node_output = graph->AddNode(op_output);
  304. EXPECT_EQ(model.InitRealSizeAndShapeInfo(graph, node_output), SUCCESS);
  305. }
  306. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ2) {
  307. DavinciModel model(0, nullptr);
  308. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  309. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  310. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  311. data1->AddInputDesc(shape_desc);
  312. data1->AddOutputDesc(shape_desc);
  313. NodePtr data1_node = graph->AddNode(data1);
  314. OpDescPtr case_node = CreateOpDesc("case1", CASE);
  315. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  316. case_node->AddInputDesc(tensor);
  317. case_node->AddOutputDesc(tensor);
  318. NodePtr case1_node = graph->AddNode(case_node);
  319. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  320. output->AddInputDesc(tensor);
  321. output->SetSrcName( { "case1" } );
  322. output->SetSrcIndex( { 0 } );
  323. NodePtr output_node = graph->AddNode(output);
  324. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), case1_node->GetInDataAnchor(0));
  325. GraphUtils::AddEdge(case1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  326. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1;2;4;8");
  327. (void)AttrUtils::SetBool(case_node, ATTR_INSERT_BY_MBATCH, true);
  328. model.is_getnext_sink_dynamic_ = false;
  329. model.is_online_infer_dynamic_ = true;
  330. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  331. // GetGearAndRealOutShapeInfo without ATTR_NAME_DYNAMIC_OUTPUT_DIMS
  332. EXPECT_EQ(ret, SUCCESS);
  333. vector<string> dynamic_output_dims = {"0,0,1,1,0,2,2,0,4,3,0,8"};
  334. (void)AttrUtils::SetListStr(output_node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims);
  335. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  336. EXPECT_EQ(ret, SUCCESS);
  337. }
  338. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ3) {
  339. DavinciModel model(0, nullptr);
  340. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  341. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  342. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  343. data1->AddInputDesc(shape_desc);
  344. data1->AddOutputDesc(shape_desc);
  345. NodePtr data1_node = graph->AddNode(data1);
  346. OpDescPtr shape_node = CreateOpDesc("ascend_mbatch_get_dynamic_dims_node", GETDYNAMICDIMS);
  347. GeTensorDesc in_tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  348. GeTensorDesc out_tensor(GeShape({4,3}), FORMAT_NCHW, DT_FLOAT);
  349. shape_node->AddInputDesc(in_tensor);
  350. shape_node->AddOutputDesc(out_tensor);
  351. NodePtr get_dynamic_dims_node = graph->AddNode(shape_node);
  352. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  353. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  354. output->AddInputDesc(tensor);
  355. output->SetSrcName( { "data1", "ascend_mbatch_get_dynamic_dims_node" } );
  356. output->SetSrcIndex( { 0, 1 } );
  357. NodePtr output_node = graph->AddNode(output);
  358. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  359. GraphUtils::AddEdge(get_dynamic_dims_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(1));
  360. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1,3;;4,3;,3");
  361. model.is_getnext_sink_dynamic_ = true;
  362. model.is_online_infer_dynamic_ = false;
  363. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  364. EXPECT_EQ(ret, SUCCESS);
  365. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  366. model.runtime_param_.mem_size = 4;
  367. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  368. EXPECT_EQ(ret, SUCCESS);
  369. }
  370. TEST_F(UtestDavinciModel, init_data_aipp_info) {
  371. DavinciModel model(0, nullptr);
  372. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  373. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  374. model.runtime_param_.mem_size = 5120000;
  375. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  376. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  377. TensorUtils::SetSize(tensor, 512);
  378. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  379. op_desc->AddInputDesc(tensor);
  380. op_desc->AddOutputDesc(tensor);
  381. op_desc->SetInputOffset({1024});
  382. op_desc->SetOutputOffset({1024});
  383. NodePtr node = graph->AddNode(op_desc);
  384. GeAttrValue::NAMED_ATTRS aipp_attr;
  385. aipp_attr.SetAttr("aipp_mode", GeAttrValue::CreateFrom<GeAttrValue::INT>(domi::AippOpParams::dynamic));
  386. aipp_attr.SetAttr("related_input_rank", GeAttrValue::CreateFrom<GeAttrValue::INT>(0));
  387. aipp_attr.SetAttr("max_src_image_size", GeAttrValue::CreateFrom<GeAttrValue::INT>(2048));
  388. aipp_attr.SetAttr("support_rotation", GeAttrValue::CreateFrom<GeAttrValue::INT>(1));
  389. EXPECT_TRUE(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr));
  390. AippConfigInfo aipp_info;
  391. EXPECT_EQ(model.GetAippInfo(0, aipp_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  392. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  393. EXPECT_EQ(model.GetAippInfo(0, aipp_info), SUCCESS);
  394. EXPECT_EQ(aipp_info.aipp_mode, domi::AippOpParams::dynamic);
  395. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  396. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  397. EXPECT_EQ(model.op_list_.size(), 1);
  398. }
  399. TEST_F(UtestDavinciModel, init_data_aipp_static) {
  400. DavinciModel model(0, nullptr);
  401. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  402. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  403. model.runtime_param_.mem_size = 5120000;
  404. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  405. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  406. TensorUtils::SetSize(tensor, 512);
  407. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  408. op_desc->AddInputDesc(tensor);
  409. op_desc->AddOutputDesc(tensor);
  410. op_desc->SetInputOffset({1024});
  411. op_desc->SetOutputOffset({1024});
  412. NodePtr node = graph->AddNode(op_desc);
  413. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp");
  414. InputAippType aipp_type;
  415. size_t aipp_index = 0;
  416. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  417. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  418. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  419. EXPECT_EQ(aipp_type, DATA_WITH_STATIC_AIPP);
  420. EXPECT_EQ(aipp_index, 0xFFFFFFFFu);
  421. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  422. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  423. EXPECT_EQ(model.op_list_.size(), 1);
  424. }
  425. TEST_F(UtestDavinciModel, init_data_aipp_dynamic) {
  426. DavinciModel model(0, nullptr);
  427. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  428. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  429. model.runtime_param_.mem_size = 5120000;
  430. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  431. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  432. TensorUtils::SetSize(tensor, 512);
  433. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  434. op_desc->AddInputDesc(tensor);
  435. op_desc->AddOutputDesc(tensor);
  436. op_desc->SetInputOffset({1024});
  437. op_desc->SetOutputOffset({1024});
  438. NodePtr node = graph->AddNode(op_desc); // op_index 0
  439. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  440. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  441. InputAippType aipp_type;
  442. size_t aipp_index = 0;
  443. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  444. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  445. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  446. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  447. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  448. EXPECT_EQ(model.op_list_.size(), 1);
  449. }
  450. TEST_F(UtestDavinciModel, init_data_aipp_releated) {
  451. DavinciModel model(0, nullptr);
  452. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  453. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  454. model.runtime_param_.mem_size = 5120000;
  455. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  456. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  457. TensorUtils::SetSize(tensor, 512);
  458. {
  459. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  460. op_desc->AddInputDesc(tensor);
  461. op_desc->AddOutputDesc(tensor);
  462. op_desc->SetInputOffset({1024});
  463. op_desc->SetOutputOffset({1024});
  464. NodePtr node = graph->AddNode(op_desc); // op_index 0
  465. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  466. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  467. }
  468. {
  469. OpDescPtr op_desc = CreateOpDesc("releated_aipp", DATA);
  470. op_desc->AddInputDesc(tensor);
  471. op_desc->AddOutputDesc(tensor);
  472. op_desc->SetInputOffset({1024});
  473. op_desc->SetOutputOffset({1024});
  474. NodePtr node = graph->AddNode(op_desc); // op_index 1
  475. }
  476. InputAippType aipp_type;
  477. size_t aipp_index = 0;
  478. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  479. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  480. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  481. EXPECT_EQ(aipp_type, DATA_WITH_DYNAMIC_AIPP);
  482. EXPECT_EQ(aipp_index, 1);
  483. EXPECT_EQ(model.input_addrs_list_.size(), 2);
  484. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  485. EXPECT_EQ(model.op_list_.size(), 2);
  486. }
  487. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_conf) {
  488. DavinciModel model(0, nullptr);
  489. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  490. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  491. model.runtime_param_.mem_size = 5120000;
  492. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  493. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  494. TensorUtils::SetSize(tensor, 512);
  495. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  496. op_desc->AddInputDesc(tensor);
  497. op_desc->AddOutputDesc(tensor);
  498. op_desc->SetInputOffset({1024});
  499. op_desc->SetOutputOffset({1024});
  500. NodePtr node = graph->AddNode(op_desc); // op_index 0
  501. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf");
  502. InputAippType aipp_type;
  503. size_t aipp_index = 0;
  504. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  505. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  506. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  507. EXPECT_EQ(aipp_type, DYNAMIC_AIPP_NODE);
  508. EXPECT_EQ(aipp_index, 0xFFFFFFFFU);
  509. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  510. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  511. EXPECT_EQ(model.op_list_.size(), 1);
  512. }
  513. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_invalid) {
  514. DavinciModel model(0, nullptr);
  515. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  516. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  517. model.runtime_param_.mem_size = 5120000;
  518. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  519. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  520. TensorUtils::SetSize(tensor, 512);
  521. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  522. op_desc->AddInputDesc(tensor);
  523. op_desc->AddOutputDesc(tensor);
  524. op_desc->SetInputOffset({1024});
  525. op_desc->SetOutputOffset({1024});
  526. NodePtr node = graph->AddNode(op_desc); // op_index 0
  527. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_invalid");
  528. InputAippType aipp_type;
  529. size_t aipp_index = 0;
  530. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  531. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  532. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  533. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  534. EXPECT_EQ(model.op_list_.size(), 1);
  535. }
  536. TEST_F(UtestDavinciModel, init_data_aipp_input_info_empty) {
  537. DavinciModel model(0, nullptr);
  538. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  539. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  540. model.runtime_param_.mem_size = 5120000;
  541. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  542. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  543. TensorUtils::SetSize(tensor, 512);
  544. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  545. op_desc->AddInputDesc(tensor);
  546. op_desc->AddOutputDesc(tensor);
  547. op_desc->SetInputOffset({1024});
  548. op_desc->SetOutputOffset({1024});
  549. NodePtr node = graph->AddNode(op_desc); // op_index 0
  550. vector<string> inputs = {};
  551. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  552. vector<string> outputs = {};
  553. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  554. OriginInputInfo orig_input_info;
  555. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  556. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  557. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  558. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  559. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  560. EXPECT_EQ(model.op_list_.size(), 1);
  561. }
  562. TEST_F(UtestDavinciModel, init_data_aipp_input_info_normal) {
  563. DavinciModel model(0, nullptr);
  564. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  565. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  566. model.runtime_param_.mem_size = 5120000;
  567. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  568. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  569. TensorUtils::SetSize(tensor, 512);
  570. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  571. op_desc->AddInputDesc(tensor);
  572. op_desc->AddOutputDesc(tensor);
  573. op_desc->SetInputOffset({1024});
  574. op_desc->SetOutputOffset({1024});
  575. NodePtr node = graph->AddNode(op_desc); // op_index 0
  576. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  577. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  578. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  579. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  580. OriginInputInfo orig_input_info;
  581. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  582. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  583. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  584. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  585. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  586. EXPECT_EQ(model.op_list_.size(), 1);
  587. }
  588. TEST_F(UtestDavinciModel, init_data_aipp_input_info_invalid) {
  589. DavinciModel model(0, nullptr);
  590. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  591. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  592. model.runtime_param_.mem_size = 5120000;
  593. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  594. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  595. TensorUtils::SetSize(tensor, 512);
  596. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  597. op_desc->AddInputDesc(tensor);
  598. op_desc->AddOutputDesc(tensor);
  599. op_desc->SetInputOffset({1024});
  600. op_desc->SetOutputOffset({1024});
  601. NodePtr node = graph->AddNode(op_desc); // op_index 0
  602. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName" }; // Invalid
  603. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  604. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  605. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  606. OriginInputInfo orig_input_info;
  607. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  608. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  609. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  610. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  611. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  612. EXPECT_EQ(model.op_list_.size(), 1);
  613. }
  614. TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) {
  615. DavinciModel model(0, nullptr);
  616. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  617. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  618. model.runtime_param_.mem_size = 5120000;
  619. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  620. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  621. TensorUtils::SetSize(tensor, 512);
  622. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  623. op_desc->AddInputDesc(tensor);
  624. op_desc->AddOutputDesc(tensor);
  625. op_desc->SetInputOffset({1024});
  626. op_desc->SetOutputOffset({1024});
  627. NodePtr node = graph->AddNode(op_desc); // op_index 0
  628. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  629. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  630. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  631. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  632. vector<InputOutputDims> input_dims;
  633. vector<InputOutputDims> output_dims;
  634. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), ACL_ERROR_GE_AIPP_NOT_EXIST);
  635. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  636. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), SUCCESS);
  637. EXPECT_EQ(input_dims.size(), 1);
  638. EXPECT_EQ(output_dims.size(), 1);
  639. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  640. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  641. EXPECT_EQ(model.op_list_.size(), 1);
  642. }
  643. // test label_set_task Init
  644. TEST_F(UtestDavinciModel, label_task_success) {
  645. DavinciModel model(0, nullptr);
  646. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  647. GeModelPtr ge_model = make_shared<GeModel>();
  648. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  649. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  650. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  651. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  652. ge_model->SetModelTaskDef(model_task_def);
  653. GeTensorDesc tensor(GeShape(), FORMAT_ND, DT_INT32);
  654. TensorUtils::SetSize(tensor, 64);
  655. {
  656. OpDescPtr op_desc = CreateOpDesc("label_switch", LABELSWITCHBYINDEX);
  657. op_desc->AddInputDesc(tensor);
  658. op_desc->SetInputOffset({1024});
  659. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  660. EXPECT_TRUE(AttrUtils::SetListInt(op_desc, ATTR_NAME_LABEL_SWITCH_LIST, {0, 1}));
  661. domi::TaskDef *task_def1 = model_task_def->add_task();
  662. task_def1->set_stream_id(0);
  663. task_def1->set_type(RT_MODEL_TASK_STREAM_LABEL_SWITCH_BY_INDEX);
  664. domi::LabelSwitchByIndexDef *label_task_def = task_def1->mutable_label_switch_by_index();
  665. label_task_def->set_op_index(op_desc->GetId());
  666. label_task_def->set_label_max(2);
  667. }
  668. {
  669. OpDescPtr op_desc = CreateOpDesc("label_then", LABELSET);
  670. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  671. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 1));
  672. domi::TaskDef *task_def1 = model_task_def->add_task();
  673. task_def1->set_stream_id(0);
  674. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  675. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  676. label_task_def->set_op_index(op_desc->GetId());
  677. }
  678. {
  679. OpDescPtr op_desc = CreateOpDesc("label_goto", LABELGOTOEX);
  680. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  681. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  682. domi::TaskDef *task_def2 = model_task_def->add_task();
  683. task_def2->set_stream_id(0);
  684. task_def2->set_type(RT_MODEL_TASK_STREAM_LABEL_GOTO);
  685. domi::LabelGotoExDef *label_task_def = task_def2->mutable_label_goto_ex();
  686. label_task_def->set_op_index(op_desc->GetId());
  687. }
  688. {
  689. OpDescPtr op_desc = CreateOpDesc("label_else", LABELSET);
  690. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  691. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 0));
  692. domi::TaskDef *task_def1 = model_task_def->add_task();
  693. task_def1->set_stream_id(0);
  694. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  695. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  696. label_task_def->set_op_index(op_desc->GetId());
  697. }
  698. {
  699. OpDescPtr op_desc = CreateOpDesc("label_leave", LABELSET);
  700. NodePtr node = graph->AddNode(op_desc); // op_index = 4
  701. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  702. domi::TaskDef *task_def1 = model_task_def->add_task();
  703. task_def1->set_stream_id(0);
  704. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  705. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  706. label_task_def->set_op_index(op_desc->GetId());
  707. }
  708. EXPECT_TRUE(AttrUtils::SetInt(ge_model, ATTR_MODEL_LABEL_NUM, 3));
  709. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  710. EXPECT_EQ(model.Init(), SUCCESS);
  711. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  712. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  713. EXPECT_EQ(model.task_list_.size(), 5);
  714. }
  715. TEST_F(UtestDavinciModel, LoadWithQueue_fail_with_diff_args) {
  716. DavinciModel model(0, nullptr);
  717. model.ge_model_ = make_shared<GeModel>();
  718. model.input_queue_ids_.emplace_back(0);
  719. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  720. EXPECT_EQ(model.input_data_info_.size(), 0);
  721. ZeroCopyOffset zero_copy_offset;
  722. model.input_data_info_[0] = zero_copy_offset;
  723. model.output_queue_ids_.emplace_back(0);
  724. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  725. EXPECT_EQ(model.output_data_info_.size(), 0);
  726. model.output_data_info_[0] = zero_copy_offset;
  727. EXPECT_EQ(model.LoadWithQueue(), INTERNAL_ERROR);
  728. EXPECT_EQ(model.active_stream_list_.size(), 0);
  729. }
  730. TEST_F(UtestDavinciModel, Sink_model_profile) {
  731. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  732. ProfileInfo profile;
  733. profile.fusion_info.op_name = "relu";
  734. DavinciModel model(0, nullptr);
  735. model.profile_list_.emplace_back(profile);
  736. std::map<std::string, std::pair<uint32_t, uint32_t>> op_info;
  737. op_info["relu"] = std::pair<uint32_t, uint32_t>(1, 1);
  738. model.profiler_report_op_info_ = op_info;
  739. model.SinkModelProfile();
  740. }
  741. TEST_F(UtestDavinciModel, Sink_time_profile) {
  742. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  743. DavinciModel model(0, nullptr);
  744. InputData current_data;
  745. model.SinkTimeProfile(current_data);
  746. }
  747. class ClassTest {
  748. public:
  749. virtual ~ClassTest() {}
  750. virtual int func0() {
  751. return 0;
  752. }
  753. virtual int func1(int a) {
  754. return a;
  755. }
  756. virtual int func2(int a, int b) {
  757. return a + b;
  758. }
  759. virtual int func3(int a, int b) const {
  760. return a - b;
  761. }
  762. };
  763. class MockTest : public ClassTest {
  764. public:
  765. MOCK_METHOD0(func0, int());
  766. MOCK_METHOD1(func1, int(int a));
  767. MOCK_METHOD2(func2, int(int a, int b));
  768. MOCK_CONST_METHOD2(func3, int(int a, int b));
  769. };
  770. TEST_F(UtestDavinciModel, simple_test_gmock) {
  771. MockTest mock_stub;
  772. ON_CALL(mock_stub, func0()).WillByDefault(testing::Return(250));
  773. EXPECT_EQ(mock_stub.func0(), 250);
  774. EXPECT_EQ(mock_stub.func0(), 250);
  775. EXPECT_EQ(mock_stub.func0(), 250);
  776. EXPECT_CALL(mock_stub, func1(testing::_)).Times(2).WillOnce(testing::Return(1024)).WillOnce(testing::Return(250));
  777. EXPECT_EQ(mock_stub.func1(1), 1024);
  778. EXPECT_EQ(mock_stub.func1(1), 250);
  779. EXPECT_CALL(mock_stub, func2(testing::_, 5)).Times(3).WillRepeatedly(testing::Return(1023));
  780. EXPECT_EQ(mock_stub.func2(1, 5), 1023);
  781. EXPECT_EQ(mock_stub.func2(2, 5), 1023);
  782. EXPECT_EQ(mock_stub.func2(3, 5), 1023);
  783. }
  784. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示