You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

tune_api.h 3.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. /**
  2. * @file tune_api.h
  3. *
  4. * Copyright (c) Huawei Technologies Co., Ltd. 2020-2020. All rights reserved.\n
  5. *
  6. * This program is distributed in the hope that it will be useful,
  7. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n
  9. * 描述:mstune调优接口头文件
  10. */
  11. /** @defgroup mstune mstune调优接口 */
  12. #ifndef TUNE_API_H
  13. #define TUNE_API_H
  14. #include <vector>
  15. #include <map>
  16. #include <string>
  17. #include "graph/graph.h"
  18. #include "ge/ge_api.h"
  19. /**
  20. * @ingroup mstune
  21. *
  22. * mstune status
  23. */
  24. enum MsTuneStatus {
  25. MSTUNE_SUCCESS, /** tune success */
  26. MSTUNE_FAILED, /** tune failed */
  27. };
  28. // Option key: for train options sets
  29. const std::string MSTUNE_SELF_KEY = "mstune";
  30. const std::string MSTUNE_GEINIT_KEY = "initialize";
  31. const std::string MSTUNE_GESESS_KEY = "session";
  32. #ifdef __cplusplus
  33. extern "C" {
  34. #endif
  35. struct RunnerInitConfig {
  36. // onilne online
  37. std::string profPath;
  38. std::string parserPath;
  39. // ncs only
  40. std::vector<uint32_t> devList;
  41. };
  42. struct RunnerOpInfo {
  43. std::string opName;
  44. uint64_t opCostTime;
  45. uint64_t aicoreCostTime;
  46. // gradient_split only
  47. std::string modelName;
  48. std::string opType;
  49. std::vector<uint64_t> start;
  50. std::vector<uint64_t> end;
  51. };
  52. struct RunnerModelInfo {
  53. uint64_t totalCostTime;
  54. };
  55. struct RunnerRunResult {
  56. std::vector<RunnerModelInfo> modelInfo;
  57. std::vector<RunnerOpInfo> opInfo;
  58. };
  59. struct RunnerResult {
  60. uint64_t totalCostTime;
  61. std::map<std::string, uint64_t> opCostTime;
  62. std::map<std::string, uint64_t> aicoreCostTime;
  63. };
  64. struct RunnerDataBuf {
  65. void *ptr = nullptr;
  66. size_t size = 0;
  67. };
  68. struct AOEBufferData {
  69. std::shared_ptr<uint8_t> data = nullptr;
  70. uint64_t length;
  71. };
  72. struct RunnerConfig {
  73. bool isProf;
  74. uint32_t loop;
  75. // offline only
  76. std::vector<RunnerDataBuf> input;
  77. std::vector<RunnerDataBuf> output;
  78. std::string modelPath;
  79. RunnerDataBuf modelData;
  80. // online only
  81. uint32_t devId;
  82. std::vector<std::vector<ge::Tensor>> inputs;
  83. std::vector<ge::Graph> dependGraph; // run graph (for training)
  84. };
  85. #ifdef __cplusplus
  86. }
  87. #endif
  88. /**
  89. * @ingroup mstune
  90. * @par 描述: 命令行调优
  91. *
  92. * @attention 无
  93. * @param option [IN] 调优参数
  94. * @param msg [OUT] 调优异常下返回信息
  95. * @retval #MSTUNE_SUCCESS 执行成功
  96. * @retval #MSTUNE_FAILED 执行失败
  97. * @par 依赖:
  98. * @li tune_api.cpp:该接口所属的开发包。
  99. * @li tune_api.h:该接口声明所在的头文件。
  100. * @see 无
  101. * @since
  102. */
  103. MsTuneStatus MsTuning(const std::map<std::string, std::string> &option, std::string &msg);
  104. /**
  105. * @ingroup mstune
  106. * @par 描述: 梯度调优
  107. *
  108. * @attention 无
  109. * @param tuningGraph [IN] 调优图
  110. * @param dependGraph [IN] 调优依赖图
  111. * @param session [IN] ge连接会话
  112. * @param option [IN] 参数集. 包含调优参数及ge参数
  113. * @retval #MSTUNE_SUCCESS 执行成功
  114. * @retval #MSTUNE_FAILED 执行失败
  115. * @par 依赖:
  116. * @li tune_api.cpp:该接口所属的开发包。
  117. * @li tune_api.h:该接口声明所在的头文件。
  118. * @see 无
  119. * @since
  120. */
  121. extern "C" MsTuneStatus MsTrainTuning(ge::Graph &tuningGraph, std::vector<ge::Graph> &dependGraph,
  122. ge::Session *session, const std::map<std::string, std::map<std::string, std::string>> &option);
  123. #endif

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示