You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ge_generator.h 3.4 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef INC_FRAMEWORK_GENERATOR_GE_GENERATOR_H_
  17. #define INC_FRAMEWORK_GENERATOR_GE_GENERATOR_H_
  18. #include <map>
  19. #include <memory>
  20. #include <string>
  21. #include <vector>
  22. #include "ge/ge_ir_build.h"
  23. #include "common/ge_inner_error_codes.h"
  24. #include "common/ge_types.h"
  25. #include "graph/ge_tensor.h"
  26. #include "graph/graph.h"
  27. #include "graph/op_desc.h"
  28. #include "graph/detail/attributes_holder.h"
  29. namespace ge {
  30. class GeGenerator {
  31. public:
  32. static GeGenerator &GetInstance() {
  33. static GeGenerator Instance;
  34. return Instance;
  35. }
  36. GeGenerator() = default;
  37. ~GeGenerator() { (void)Finalize(); }
  38. GeGenerator(const GeGenerator &) = delete;
  39. GeGenerator &operator=(const GeGenerator &) = delete;
  40. Status Initialize(const std::map<std::string, std::string> &options);
  41. Status Finalize();
  42. Status GenerateOfflineModel(const Graph &graph, const std::string &file_name_prefix,
  43. const std::vector<GeTensor> &inputs = std::vector<GeTensor>());
  44. Status GenerateOnlineModel(const Graph &graph, const vector<GeTensor> &inputs, ge::ModelBufferData &model);
  45. Status GenerateInfershapeGraph(const Graph &graph);
  46. ///
  47. /// @ingroup ge
  48. /// @brief: Build single OP in Model.
  49. /// @param [in] op_desc: the OP description.
  50. /// @param [in] inputs: input tensors.
  51. /// @param [in] outputs: output tensors.
  52. /// @param [in] model_file_name: name of model file.
  53. /// @return SUCCESS or FAILED
  54. ///
  55. Status BuildSingleOpModel(OpDescPtr &op_desc, const std::vector<GeTensor> &inputs,
  56. const std::vector<GeTensor> &outputs, const std::string &model_file_name);
  57. ///
  58. /// @ingroup ge
  59. /// @brief: Build single Op into model buff.
  60. /// @param [in] op_desc: the OP description.
  61. /// @param [in] inputs: input tensors.
  62. /// @param [in] outputs: output tensors.
  63. /// @param [in] engine_type: specific engine.
  64. /// @param [out] model_buff: model buff of single op.
  65. /// @return SUCCESS or FAILED
  66. Status BuildSingleOpModel(OpDescPtr &op_desc, const vector<GeTensor> &inputs, const vector<GeTensor> &outputs,
  67. OpEngineType engine_type, ModelBufferData &model_buff);
  68. private:
  69. Status GenerateModel(const Graph &graph, const string &file_name_prefix, const vector<GeTensor> &inputs,
  70. ge::ModelBufferData &model, bool is_offline = true);
  71. Status BuildSingleOp(OpDescPtr &op_desc, const vector<GeTensor> &inputs, const vector<GeTensor> &outputs,
  72. const string &model_file_name, OpEngineType engine_type, ModelBufferData &model_buff,
  73. bool is_offline = true);
  74. class Impl;
  75. std::shared_ptr<Impl> impl_;
  76. };
  77. } // namespace ge
  78. #endif // INC_FRAMEWORK_GENERATOR_GE_GENERATOR_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示