You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

broadcast_gradient_args_kernel.cc 3.2 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "host_kernels/broadcast_gradient_args_kernel.h"
  17. #include <vector>
  18. #include "common/op/ge_op_utils.h"
  19. #include "common/types.h"
  20. #include "common/util.h"
  21. #include "framework/common/debug/ge_log.h"
  22. #include "framework/common/ge_inner_error_codes.h"
  23. #include "graph/common/bcast.h"
  24. #include "graph/passes/pass_utils.h"
  25. #include "inc/kernel_factory.h"
  26. namespace ge {
  27. namespace {
  28. const size_t kBCastGradArgsInputsSize = 2;
  29. const size_t kBCastGradArgsOutputsSize = 2;
  30. } // namespace
  31. Status BroadcastGradientArgsKernel::Compute(const OpDescPtr op_desc_ptr, const std::vector<ConstGeTensorPtr> &input,
  32. std::vector<GeTensorPtr> &v_output) {
  33. GELOGD("BroadcastGradientArgs kernel in");
  34. if (op_desc_ptr == nullptr) {
  35. GELOGE(PARAM_INVALID, "Parameter's invalid, Input opDescPtr is nullptr.");
  36. return PARAM_INVALID;
  37. }
  38. // check input size
  39. bool size_check_fail =
  40. (op_desc_ptr->GetAllInputsDesc().size() != kBCastGradArgsInputsSize || input.size() != kBCastGradArgsInputsSize ||
  41. op_desc_ptr->GetAllOutputsDesc().size() != kBCastGradArgsOutputsSize);
  42. if (size_check_fail) {
  43. GELOGW(
  44. "input/output size error. InDesc size:%zu,"
  45. "OutDesc size:%zu, in size:%zu ",
  46. op_desc_ptr->GetAllInputsDesc().size(), op_desc_ptr->GetAllOutputsDesc().size(), input.size());
  47. return NOT_CHANGED;
  48. }
  49. vector<int64_t> x1_dims;
  50. vector<int64_t> x2_dims;
  51. DataType x1_data_type = op_desc_ptr->GetInputDesc(0).GetDataType();
  52. DataType x2_data_type = op_desc_ptr->GetInputDesc(1).GetDataType();
  53. bool result = (OpUtils::GetShapeDataFromConstTensor(input[0], x1_data_type, x1_dims) == SUCCESS) &&
  54. (OpUtils::GetShapeDataFromConstTensor(input[1], x2_data_type, x2_dims) == SUCCESS);
  55. if (!result) {
  56. GELOGE(PARAM_INVALID, "Get shape data from const tensor fail.");
  57. return PARAM_INVALID;
  58. }
  59. BCast bcast;
  60. Status ret = bcast.GenerateBcastInfo(x1_dims, x2_dims);
  61. if (ret != SUCCESS) {
  62. GELOGE(ret, "Generate bcast info fail.");
  63. return ret;
  64. }
  65. vector<vector<int64_t>> grad_reduce_idx;
  66. grad_reduce_idx.push_back(bcast.GetGradXReduceIdx());
  67. grad_reduce_idx.push_back(bcast.GetGradYReduceIdx());
  68. for (size_t i = 0; i < grad_reduce_idx.size(); i++) {
  69. ret = PassUtils::ConstructTensorDescWithData(op_desc_ptr->GetOutputDesc(i), grad_reduce_idx[i], v_output);
  70. if (ret != SUCCESS) {
  71. GELOGE(ret, "BroadcastGradientArgs kernel construct tensor desc fail");
  72. return ret;
  73. }
  74. }
  75. return SUCCESS;
  76. }
  77. REGISTER_KERNEL(BROADCASTGRADIENTARGS, BroadcastGradientArgsKernel);
  78. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示