You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

transpose_kernel.cc 7.6 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "host_kernels/transpose_kernel.h"
  17. #include <memory>
  18. #include <vector>
  19. #include "common/debug/log.h"
  20. #include "common/formats/format_transfers/format_transfer_transpose.h"
  21. #include "common/formats/formats.h"
  22. #include "common/formats/utils/formats_trans_utils.h"
  23. #include "common/op/ge_op_utils.h"
  24. #include "common/types.h"
  25. #include "common/util.h"
  26. #include "framework/common/debug/ge_log.h"
  27. #include "framework/common/ge_inner_error_codes.h"
  28. #include "host_kernels/kernel_utils.h"
  29. #include "graph/utils/type_utils.h"
  30. #include "inc/kernel_factory.h"
  31. namespace ge {
  32. namespace {
  33. const size_t kTransposeInputX = 0;
  34. const size_t kTransposeInputPerm = 1;
  35. const size_t kTransposeInputSize = 2;
  36. const size_t kTransposeOutputY = 0;
  37. const size_t kTransposeOutputSize = 1;
  38. } // namespace
  39. Status TransposeKernel::ValidateInput(const OpDescPtr &op_desc_ptr, const std::vector<ConstGeTensorPtr> &input) {
  40. if (op_desc_ptr == nullptr) {
  41. GELOGW("Input opDescPtr is nullptr.");
  42. return PARAM_INVALID;
  43. }
  44. if (op_desc_ptr->GetInputsSize() != kTransposeInputSize || op_desc_ptr->GetOutputsSize() != kTransposeOutputSize) {
  45. GELOGW("The input_size(%zu) and output_size(%zu) of op are invalid, op name: %s.", op_desc_ptr->GetInputsSize(),
  46. op_desc_ptr->GetOutputsSize(), op_desc_ptr->GetName().c_str());
  47. return PARAM_INVALID;
  48. }
  49. if (input.size() != kTransposeInputSize) {
  50. GELOGW("The size of input tensor vector is invalid, input size is %zu, op name: %s.", input.size(),
  51. op_desc_ptr->GetName().c_str());
  52. return PARAM_INVALID;
  53. }
  54. ConstGeTensorPtr tensor_x_ptr = input[kTransposeInputX];
  55. ConstGeTensorPtr tensor_perm_ptr = input[kTransposeInputPerm];
  56. if (tensor_x_ptr == nullptr || tensor_perm_ptr == nullptr) {
  57. GELOGW("Input tensor of op is nullptr, node name: %s.", op_desc_ptr->GetName().c_str());
  58. return PARAM_INVALID;
  59. }
  60. return SUCCESS;
  61. }
  62. Status TransposeKernel::Compute(const OpDescPtr op_desc_ptr, const std::vector<ConstGeTensorPtr> &input,
  63. std::vector<GeTensorPtr> &v_output) {
  64. GELOGD("TransposeKernel in.");
  65. Status status = ValidateInput(op_desc_ptr, input);
  66. if (status != SUCCESS) {
  67. GELOGW("TransposeKernel input is invalid, failed to fold node.");
  68. return NOT_CHANGED;
  69. }
  70. ConstGeTensorPtr const_weight_ptr = input[kTransposeInputX];
  71. GeTensorDesc op_desc = op_desc_ptr->GetOutputDesc(kTransposeOutputY);
  72. GeTensorDesc op_desc_in = op_desc_ptr->GetInputDesc(kTransposeInputX);
  73. auto src_format = op_desc_in.GetFormat();
  74. auto src_shape = op_desc_in.GetShape().GetDims();
  75. auto src_data_type = op_desc_in.GetDataType();
  76. auto data_shape = op_desc.GetShape().GetDims();
  77. auto data_format = op_desc.GetFormat();
  78. auto data_type = op_desc.GetDataType();
  79. GELOGD(
  80. "current node %s, format %s, input shape %s, data type %s, weight format %s, shape %s, data type %s. "
  81. "output format %s, shape %s, data type %s",
  82. op_desc_ptr->GetName().c_str(), TypeUtils::FormatToSerialString(src_format).c_str(),
  83. formats::ShapeToString(src_shape).c_str(), TypeUtils::DataTypeToSerialString(src_data_type).c_str(),
  84. TypeUtils::FormatToSerialString(const_weight_ptr->GetTensorDesc().GetFormat()).c_str(),
  85. formats::ShapeToString(const_weight_ptr->GetTensorDesc().GetShape()).c_str(),
  86. TypeUtils::DataTypeToSerialString(const_weight_ptr->GetTensorDesc().GetDataType()).c_str(),
  87. TypeUtils::FormatToSerialString(data_format).c_str(), formats::ShapeToString(data_shape).c_str(),
  88. TypeUtils::DataTypeToSerialString(data_type).c_str());
  89. ConstGeTensorPtr tensor_perm_ptr = input[kTransposeInputPerm];
  90. DataType data_dtype = tensor_perm_ptr->GetTensorDesc().GetDataType();
  91. auto input_perm_shape = tensor_perm_ptr->GetTensorDesc().GetShape();
  92. auto output_size = input_perm_shape.GetShapeSize();
  93. uint32_t data_size = GetSizeByDataType(data_dtype);
  94. if (static_cast<size_t>(output_size * data_size) != tensor_perm_ptr->GetData().size()) {
  95. GELOGW("TransposeKernel input perm shape size and data size do not match.");
  96. return NOT_CHANGED;
  97. }
  98. vector<int64_t> perm_list;
  99. auto input_perm = tensor_perm_ptr->GetData().data();
  100. if (data_dtype == DT_INT32) {
  101. int32_t *input_perm_data = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(input_perm));
  102. for (int64_t i = 0; i < output_size; i++) {
  103. perm_list.push_back(static_cast<int64_t>(input_perm_data[i]));
  104. }
  105. } else if (data_dtype == DT_INT64) {
  106. int64_t *input_perm_data = const_cast<int64_t *>(reinterpret_cast<const int64_t *>(input_perm));
  107. for (int64_t i = 0; i < output_size; i++) {
  108. perm_list.push_back(input_perm_data[i]);
  109. }
  110. } else {
  111. GELOGW("TransposeKernel input perm data type is invalid, data type is %s.",
  112. TypeUtils::DataTypeToSerialString(data_dtype).c_str());
  113. return NOT_CHANGED;
  114. }
  115. GELOGD("Transpose from %s to %s, shape %s to %s, perm_list %s, data type %s",
  116. TypeUtils::FormatToSerialString(src_format).c_str(), TypeUtils::FormatToSerialString(data_format).c_str(),
  117. formats::ShapeToString(src_shape).c_str(), formats::ShapeToString(data_shape).c_str(),
  118. formats::ShapeToString(perm_list).c_str(), TypeUtils::DataTypeToSerialString(src_data_type).c_str());
  119. if ((data_shape.empty()) || (src_data_type != data_type)) {
  120. GELOGW("Transpose is not supported. Invalid shape (src: %s, dst: %s) or inconsistent datatype (src: %s, dst: %s)",
  121. formats::ShapeToString(src_shape).c_str(), formats::ShapeToString(data_shape).c_str(),
  122. TypeUtils::DataTypeToSerialString(src_data_type).c_str(),
  123. TypeUtils::DataTypeToSerialString(data_type).c_str());
  124. return NOT_CHANGED;
  125. }
  126. if (!KernelUtils::CheckSizeForTransOp(const_weight_ptr, op_desc_ptr)) {
  127. GELOGW("CheckSize failed, input size is not equal to weight size");
  128. return NOT_CHANGED;
  129. }
  130. const uint8_t *src_data = const_weight_ptr->GetData().data();
  131. formats::TransResult trans_result;
  132. auto ret = formats::TransposeWithShapeCheck(src_data, src_shape, data_shape, src_data_type, perm_list, trans_result);
  133. if (ret != SUCCESS) {
  134. GELOGW("Failed to Transpose from %s to %s, shape %s to %s, perm_list %s, data type %s",
  135. TypeUtils::FormatToSerialString(src_format).c_str(), TypeUtils::FormatToSerialString(data_format).c_str(),
  136. formats::ShapeToString(src_shape).c_str(), formats::ShapeToString(data_shape).c_str(),
  137. formats::ShapeToString(perm_list).c_str(), TypeUtils::DataTypeToSerialString(src_data_type).c_str());
  138. return NOT_CHANGED;
  139. }
  140. GeTensorPtr output_ptr = MakeShared<GeTensor>(op_desc_ptr->GetOutputDesc(kTransposeOutputY));
  141. GE_CHECK_NOTNULL(output_ptr);
  142. if (output_ptr->SetData(trans_result.data.get(), trans_result.length) != GRAPH_SUCCESS) {
  143. GELOGW("Compute: SetData failed");
  144. }
  145. v_output.push_back(output_ptr);
  146. GELOGI("TransposeKernel success.");
  147. return SUCCESS;
  148. }
  149. REGISTER_KERNEL(TRANSPOSE, TransposeKernel);
  150. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示