You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dnnengines.cc 6.0 kB

5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "plugin/engine/dnnengines.h"
  17. #include <map>
  18. #include <string>
  19. #include <vector>
  20. namespace ge {
  21. AICoreDNNEngine::AICoreDNNEngine(const std::string &engine_name) {
  22. engine_attribute_.engine_name = engine_name;
  23. engine_attribute_.compute_cost = COST_0;
  24. engine_attribute_.runtime_type = DEVICE;
  25. engine_attribute_.engine_input_format = FORMAT_RESERVED;
  26. engine_attribute_.engine_output_format = FORMAT_RESERVED;
  27. }
  28. AICoreDNNEngine::AICoreDNNEngine(const DNNEngineAttribute &attrs) { engine_attribute_ = attrs; }
  29. Status AICoreDNNEngine::Initialize(const std::map<std::string, std::string> &options) { return SUCCESS; }
  30. Status AICoreDNNEngine::Finalize() { return SUCCESS; }
  31. void AICoreDNNEngine::GetAttributes(DNNEngineAttribute &attrs) const { attrs = engine_attribute_; }
  32. VectorCoreDNNEngine::VectorCoreDNNEngine(const std::string &engine_name) {
  33. engine_attribute_.engine_name = engine_name;
  34. engine_attribute_.compute_cost = COST_1;
  35. engine_attribute_.runtime_type = DEVICE;
  36. engine_attribute_.engine_input_format = FORMAT_RESERVED;
  37. engine_attribute_.engine_output_format = FORMAT_RESERVED;
  38. }
  39. VectorCoreDNNEngine::VectorCoreDNNEngine(const DNNEngineAttribute &attrs) { engine_attribute_ = attrs; }
  40. Status VectorCoreDNNEngine::Initialize(const std::map<std::string, std::string> &options) { return SUCCESS; }
  41. Status VectorCoreDNNEngine::Finalize() { return SUCCESS; }
  42. void VectorCoreDNNEngine::GetAttributes(DNNEngineAttribute &attrs) const { attrs = engine_attribute_; }
  43. AICpuDNNEngine::AICpuDNNEngine(const std::string &engine_name) {
  44. engine_attribute_.engine_name = engine_name;
  45. engine_attribute_.compute_cost = COST_3;
  46. engine_attribute_.runtime_type = DEVICE;
  47. engine_attribute_.engine_input_format = FORMAT_RESERVED;
  48. engine_attribute_.engine_output_format = FORMAT_RESERVED;
  49. }
  50. AICpuDNNEngine::AICpuDNNEngine(const DNNEngineAttribute &attrs) { engine_attribute_ = attrs; }
  51. Status AICpuDNNEngine::Initialize(const std::map<std::string, std::string> &options) { return SUCCESS; }
  52. Status AICpuDNNEngine::Finalize() { return SUCCESS; }
  53. void AICpuDNNEngine::GetAttributes(DNNEngineAttribute &attrs) const { attrs = engine_attribute_; }
  54. AICpuTFDNNEngine::AICpuTFDNNEngine(const std::string &engine_name) {
  55. engine_attribute_.engine_name = engine_name;
  56. engine_attribute_.compute_cost = COST_2;
  57. engine_attribute_.runtime_type = DEVICE;
  58. engine_attribute_.engine_input_format = FORMAT_RESERVED;
  59. engine_attribute_.engine_output_format = FORMAT_RESERVED;
  60. }
  61. AICpuTFDNNEngine::AICpuTFDNNEngine(const DNNEngineAttribute &attrs) { engine_attribute_ = attrs; }
  62. Status AICpuTFDNNEngine::Initialize(const std::map<std::string, std::string> &options) { return SUCCESS; }
  63. Status AICpuTFDNNEngine::Finalize() { return SUCCESS; }
  64. void AICpuTFDNNEngine::GetAttributes(DNNEngineAttribute &attrs) const { attrs = engine_attribute_; }
  65. GeLocalDNNEngine::GeLocalDNNEngine(const std::string &engine_name) {
  66. engine_attribute_.engine_name = engine_name;
  67. engine_attribute_.engine_input_format = FORMAT_RESERVED;
  68. engine_attribute_.engine_output_format = FORMAT_RESERVED;
  69. }
  70. GeLocalDNNEngine::GeLocalDNNEngine(const DNNEngineAttribute &attrs) { engine_attribute_ = attrs; }
  71. Status GeLocalDNNEngine::Initialize(const std::map<std::string, std::string> &options) { return SUCCESS; }
  72. Status GeLocalDNNEngine::Finalize() { return SUCCESS; }
  73. void GeLocalDNNEngine::GetAttributes(DNNEngineAttribute &attrs) const { attrs = engine_attribute_; }
  74. HostCpuDNNEngine::HostCpuDNNEngine(const std::string &engine_name) {
  75. engine_attribute_.engine_name = engine_name;
  76. engine_attribute_.compute_cost = COST_10;
  77. engine_attribute_.runtime_type = HOST;
  78. engine_attribute_.engine_input_format = FORMAT_RESERVED;
  79. engine_attribute_.engine_output_format = FORMAT_RESERVED;
  80. }
  81. HostCpuDNNEngine::HostCpuDNNEngine(const DNNEngineAttribute &attrs) { engine_attribute_ = attrs; }
  82. Status HostCpuDNNEngine::Initialize(const std::map<std::string, std::string> &options) { return SUCCESS; }
  83. Status HostCpuDNNEngine::Finalize() { return SUCCESS; }
  84. void HostCpuDNNEngine::GetAttributes(DNNEngineAttribute &attrs) const { attrs = engine_attribute_; }
  85. RtsDNNEngine::RtsDNNEngine(const std::string &engine_name) {
  86. engine_attribute_.engine_name = engine_name;
  87. engine_attribute_.engine_input_format = FORMAT_RESERVED;
  88. engine_attribute_.engine_output_format = FORMAT_RESERVED;
  89. }
  90. RtsDNNEngine::RtsDNNEngine(const DNNEngineAttribute &attrs) { engine_attribute_ = attrs; }
  91. Status RtsDNNEngine::Initialize(const std::map<std::string, std::string> &options) { return SUCCESS; }
  92. Status RtsDNNEngine::Finalize() { return SUCCESS; }
  93. void RtsDNNEngine::GetAttributes(DNNEngineAttribute &attrs) const { attrs = engine_attribute_; }
  94. HcclDNNEngine::HcclDNNEngine(const std::string &engine_name) {
  95. engine_attribute_.engine_name = engine_name;
  96. engine_attribute_.engine_input_format = FORMAT_RESERVED;
  97. engine_attribute_.engine_output_format = FORMAT_RESERVED;
  98. }
  99. HcclDNNEngine::HcclDNNEngine(const DNNEngineAttribute &attrs) { engine_attribute_ = attrs; }
  100. Status HcclDNNEngine::Initialize(const std::map<std::string, std::string> &options) { return SUCCESS; }
  101. Status HcclDNNEngine::Finalize() { return SUCCESS; }
  102. void HcclDNNEngine::GetAttributes(DNNEngineAttribute &attrs) const { attrs = engine_attribute_; }
  103. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示