You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ge_profiling_manager_unittest.cc 4.3 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <bits/stdc++.h>
  17. #include <dirent.h>
  18. #include <gtest/gtest.h>
  19. #include <fstream>
  20. #include <map>
  21. #include <string>
  22. #define protected public
  23. #define private public
  24. #include "common/profiling/profiling_manager.h"
  25. #include "graph/ge_local_context.h"
  26. #undef protected
  27. #undef private
  28. using namespace ge;
  29. using namespace std;
  30. class UtestGeProfilinganager : public testing::Test {
  31. protected:
  32. void SetUp() override {}
  33. void TearDown() override {}
  34. };
  35. int32_t ReporterCallback(uint32_t moduleId, uint32_t type, void *data, uint32_t len) {
  36. return -1;
  37. }
  38. TEST_F(UtestGeProfilinganager, init_success) {
  39. setenv("PROFILING_MODE", "true", true);
  40. Options options;
  41. options.device_id = 0;
  42. options.job_id = "0";
  43. options.profiling_mode = "1";
  44. options.profiling_options = R"({"result_path":"/data/profiling","training_trace":"on","task_trace":"on","aicpu_trace":"on","fp_point":"Data_0","bp_point":"addn","ai_core_metrics":"ResourceConflictRatio"})";
  45. struct MsprofGeOptions prof_conf = {{ 0 }};
  46. Status ret = ProfilingManager::Instance().InitFromOptions(options, prof_conf);
  47. EXPECT_EQ(ret, ge::SUCCESS);
  48. }
  49. TEST_F(UtestGeProfilinganager, ParseOptions) {
  50. setenv("PROFILING_MODE", "true", true);
  51. Options options;
  52. options.device_id = 0;
  53. options.job_id = "0";
  54. options.profiling_mode = "1";
  55. options.profiling_options = R"({"result_path":"/data/profiling","training_trace":"on","task_trace":"on","aicpu_trace":"on","fp_point":"Data_0","bp_point":"addn","ai_core_metrics":"ResourceConflictRatio"})";
  56. struct MsprofGeOptions prof_conf = {{ 0 }};
  57. Status ret = ProfilingManager::Instance().ParseOptions(options.profiling_options);
  58. EXPECT_EQ(ret, ge::SUCCESS);
  59. EXPECT_EQ(ProfilingManager::Instance().is_training_trace_, true);
  60. EXPECT_EQ(ProfilingManager::Instance().fp_point_, "Data_0");
  61. EXPECT_EQ(ProfilingManager::Instance().bp_point_, "addn");
  62. }
  63. TEST_F(UtestGeProfilinganager, plungin_init_) {
  64. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = ReporterCallback;
  65. Status ret = ProfilingManager::Instance().PluginInit();
  66. EXPECT_EQ(ret, INTERNAL_ERROR);
  67. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = nullptr;
  68. }
  69. TEST_F(UtestGeProfilinganager, report_data_) {
  70. std::string data = "ge is better than tensorflow.";
  71. std::string tag_name = "fmk";
  72. ProfilingManager::Instance().ReportData(0, data, tag_name);
  73. }
  74. TEST_F(UtestGeProfilinganager, get_fp_bp_point_) {
  75. map<std::string, string> options_map = {
  76. {OPTION_EXEC_PROFILING_OPTIONS,
  77. R"({"result_path":"/data/profiling","training_trace":"on","task_trace":"on","aicpu_trace":"on","fp_point":"Data_0","bp_point":"addn","ai_core_metrics":"ResourceConflictRatio"})"}};
  78. GEThreadLocalContext &context = GetThreadLocalContext();
  79. context.SetGraphOption(options_map);
  80. std::string fp_point;
  81. std::string bp_point;
  82. ProfilingManager::Instance().GetFpBpPoint(fp_point, bp_point);
  83. EXPECT_EQ(fp_point, "Data_0");
  84. EXPECT_EQ(bp_point, "addn");
  85. }
  86. TEST_F(UtestGeProfilinganager, get_fp_bp_point_empty) {
  87. // fp bp empty
  88. map<std::string, string> options_map = {
  89. { OPTION_EXEC_PROFILING_OPTIONS,
  90. R"({"result_path":"/data/profiling","training_trace":"on","task_trace":"on","aicpu_trace":"on","ai_core_metrics":"ResourceConflictRatio"})"}};
  91. GEThreadLocalContext &context = GetThreadLocalContext();
  92. context.SetGraphOption(options_map);
  93. std::string fp_point = "fp";
  94. std::string bp_point = "bp";
  95. ProfilingManager::Instance().bp_point_ = "";
  96. ProfilingManager::Instance().fp_point_ = "";
  97. ProfilingManager::Instance().GetFpBpPoint(fp_point, bp_point);
  98. EXPECT_EQ(fp_point, "");
  99. EXPECT_EQ(bp_point, "");
  100. }

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示