You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_mem_assigner_unittest.cc 3.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #include <memory>
  18. #include "graph/anchor.h"
  19. #include "graph/attr_value.h"
  20. #include "graph/debug/ge_attr_define.h"
  21. #include "graph/utils/graph_utils.h"
  22. #include "graph/utils/node_utils.h"
  23. #include "graph/utils/op_desc_utils.h"
  24. #include "graph/utils/tensor_utils.h"
  25. #include "omg/omg_inner_types.h"
  26. #include "../passes/graph_builder_utils.h"
  27. #define protected public
  28. #define private public
  29. #include "graph/build/memory/binary_block_mem_assigner.h"
  30. #include "graph/build/memory/graph_mem_assigner.h"
  31. #include "graph/build/memory/hybrid_mem_assigner.h"
  32. #include "graph/build/memory/max_block_mem_assigner.h"
  33. #include "graph/manager/graph_var_manager.h"
  34. #include "graph/manager/graph_mem_manager.h"
  35. #undef protected
  36. #undef private
  37. using namespace std;
  38. using namespace testing;
  39. using namespace ge;
  40. using domi::GetContext;
  41. class UtestGraphMemAssigner : public testing::Test {
  42. public:
  43. ge::ComputeGraphPtr BuildGraphWithVar(int64_t session_id) {
  44. // init
  45. MemManager::Instance().Initialize(std::vector<rtMemType_t>({RT_MEMORY_HBM}));
  46. VarManager::Instance(session_id)->Init(0, 0, 0, 0);
  47. ge::ut::GraphBuilder builder("graph");
  48. auto var_input = builder.AddNode("var", "Variable", 1, 1);
  49. auto const_input = builder.AddNode("const", "Const", 1, 1);
  50. auto assign = builder.AddNode("assgin", "Assign", 2, 1);
  51. // add link
  52. builder.AddDataEdge(var_input, 0, assign, 0);
  53. builder.AddDataEdge(const_input, 0, assign, 1);
  54. // set offset
  55. var_input->GetOpDesc()->SetOutputOffset({10000});
  56. const_input->GetOpDesc()->SetOutputOffset({1000});
  57. assign->GetOpDesc()->SetInputOffset({10100, 1000});
  58. assign->GetOpDesc()->SetOutputOffset({10100});
  59. // set inner offset
  60. int64_t inner_offset = 100;
  61. ge::AttrUtils::SetInt(assign->GetOpDesc()->MutableInputDesc(0), ATTR_NAME_INNER_OFFSET, inner_offset);
  62. ge::AttrUtils::SetInt(assign->GetOpDesc()->MutableOutputDesc(0), ATTR_NAME_INNER_OFFSET, inner_offset);
  63. // add var addr
  64. VarManager::Instance(session_id)->var_resource_->var_offset_map_.emplace(10000, RT_MEMORY_HBM);
  65. return builder.GetGraph();
  66. }
  67. protected:
  68. void SetUp() {}
  69. void TearDown() {}
  70. };
  71. TEST_F(UtestGraphMemAssigner, graph_memory_assign_fail_case) {
  72. ge::ComputeGraphPtr compute_graph = make_shared<ge::ComputeGraph>("");
  73. GraphMemoryAssigner graph_mem_assigner(compute_graph);
  74. MemoryOffset mem_offset(2, 10000);
  75. graph_mem_assigner.memory_offset_.insert({2, mem_offset});
  76. VarManager::Instance(0)->graph_mem_max_size_ = 0;
  77. map<uint64_t, size_t> mem_type_to_offset = {};
  78. Status ret = graph_mem_assigner.ReAssignMemory(false, mem_type_to_offset);
  79. EXPECT_EQ(ret, ACL_ERROR_GE_MEMORY_ALLOCATION);
  80. }

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示