You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

execution_engine.cc 21 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/worker/execution_engine.h"
  17. #include "graph/runtime_inference_context.h"
  18. #include "graph/utils/tensor_utils.h"
  19. #include "graph/utils/tensor_adapter.h"
  20. #include "graph/debug/ge_attr_define.h"
  21. #include "graph/load/model_manager/model_manager.h"
  22. #include "hybrid/node_executor/node_executor.h"
  23. #include "hybrid/executor//worker//shape_inference_engine.h"
  24. #include "common/dump/dump_op.h"
  25. #include "common/profiling/profiling_manager.h"
  26. namespace ge {
  27. namespace hybrid {
  28. namespace {
  29. constexpr int64_t kMaxPadding = 63;
  30. Status LogInputs(const NodeItem &node_item, const TaskContext &task_context) {
  31. for (auto i = 0; i < task_context.NumInputs(); ++i) {
  32. const auto &input_tensor = task_context.GetInput(i);
  33. GE_CHECK_NOTNULL(input_tensor);
  34. const auto &tensor_desc = task_context.GetInputDesc(i);
  35. GE_CHECK_NOTNULL(tensor_desc);
  36. GELOGD("[%s] Print task args. input[%d] = %s, shape = [%s]",
  37. node_item.NodeName().c_str(),
  38. i,
  39. input_tensor->DebugString().c_str(),
  40. tensor_desc->GetShape().ToString().c_str());
  41. }
  42. return SUCCESS;
  43. }
  44. Status LogOutputs(const NodeItem &node_item, const TaskContext &task_context) {
  45. for (auto i = 0; i < task_context.NumOutputs(); ++i) {
  46. const auto &output_tensor = task_context.GetOutput(i);
  47. GE_CHECK_NOTNULL(output_tensor);
  48. const auto &tensor_desc = node_item.MutableOutputDesc(i);
  49. GE_CHECK_NOTNULL(tensor_desc);
  50. GELOGD("[%s] Print task args. output[%d] = %s, shape = [%s]",
  51. node_item.NodeName().c_str(),
  52. i,
  53. output_tensor->DebugString().c_str(),
  54. tensor_desc->MutableShape().ToString().c_str());
  55. }
  56. return SUCCESS;
  57. }
  58. } // namespace
  59. class NodeDoneCallback {
  60. public:
  61. NodeDoneCallback(GraphExecutionContext *graph_context, std::shared_ptr<TaskContext> task_context);
  62. ~NodeDoneCallback() = default;
  63. Status OnNodeDone();
  64. private:
  65. Status PrepareConstInputs(const NodeItem &node_item);
  66. Status DumpDynamicNode();
  67. Status ProfilingReport();
  68. Status SaveDumpOpInfo();
  69. Status GetTaskDescInfo(const NodePtr node, const HybridModel *model,
  70. std::vector<TaskDescInfo> &task_desc_info);
  71. GraphExecutionContext *graph_context_;
  72. std::shared_ptr<TaskContext> context_;
  73. DumpOp dump_op_;
  74. };
  75. NodeDoneCallback::NodeDoneCallback(GraphExecutionContext *graph_context,
  76. std::shared_ptr<TaskContext> task_context)
  77. : graph_context_(graph_context), context_(std::move(task_context)) {
  78. }
  79. Status NodeDoneCallback::PrepareConstInputs(const NodeItem &node_item) {
  80. for (auto output_idx : node_item.to_const_output_id_list) {
  81. RECORD_CALLBACK_EVENT(graph_context_, node_item.NodeName().c_str(),
  82. "[PrepareConstInputs] [index = %d] Start",
  83. output_idx);
  84. auto output_tensor = context_->GetOutput(output_idx);
  85. GE_CHECK_NOTNULL(output_tensor);
  86. Tensor tensor;
  87. auto ge_tensor_desc = node_item.MutableOutputDesc(output_idx);
  88. GE_CHECK_NOTNULL(ge_tensor_desc);
  89. tensor.SetTensorDesc(TensorAdapter::GeTensorDesc2TensorDesc(*ge_tensor_desc));
  90. int64_t tensor_size;
  91. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorSizeInBytes(*ge_tensor_desc, tensor_size),
  92. "Failed to invoke GetTensorSizeInBytes");
  93. if (output_tensor->GetSize() < static_cast<size_t>(tensor_size)) {
  94. GELOGE(INTERNAL_ERROR,
  95. "[Check][Size][%s] Tensor size is not enough. output index = %d, required size = %ld, tensor = %s.",
  96. node_item.NodeName().c_str(), output_idx, tensor_size,
  97. output_tensor->DebugString().c_str());
  98. REPORT_INNER_ERROR("E19999",
  99. "[%s] Tensor size is not enough. output index = %d, required size = %ld, tensor = %s.",
  100. node_item.NodeName().c_str(), output_idx, tensor_size,
  101. output_tensor->DebugString().c_str());
  102. return INTERNAL_ERROR;
  103. }
  104. vector<uint8_t> host_buffer(static_cast<unsigned long>(tensor_size));
  105. GELOGD("[%s] To cache output[%d] to host, size = %zu",
  106. node_item.NodeName().c_str(),
  107. output_idx,
  108. output_tensor->GetSize());
  109. if (tensor_size > 0) {
  110. GE_CHK_RT_RET(rtMemcpy(host_buffer.data(),
  111. tensor_size,
  112. output_tensor->GetData(),
  113. tensor_size,
  114. RT_MEMCPY_DEVICE_TO_HOST));
  115. }
  116. tensor.SetData(std::move(host_buffer));
  117. string context_id = std::to_string(graph_context_->context_id);
  118. RuntimeInferenceContext *runtime_infer_ctx = nullptr;
  119. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(context_id, &runtime_infer_ctx),
  120. "Failed to get RuntimeInferenceContext, context_id = %s", context_id.c_str());
  121. GE_CHK_STATUS_RET(runtime_infer_ctx->SetTensor(node_item.node_id, output_idx, std::move(tensor)),
  122. "[Set][Tensor] Failed, node = %s, output_index = %d", node_item.NodeName().c_str(), output_idx);
  123. GELOGD("[%s] Output[%d] cached successfully in context: %s. node_id = %d, shape = [%s]",
  124. node_item.NodeName().c_str(),
  125. output_idx,
  126. context_id.c_str(),
  127. node_item.node_id,
  128. ge_tensor_desc->GetShape().ToString().c_str());
  129. RECORD_CALLBACK_EVENT(graph_context_, node_item.NodeName().c_str(),
  130. "[PrepareConstInputs] [index = %d] End",
  131. output_idx);
  132. }
  133. return SUCCESS;
  134. }
  135. Status NodeDoneCallback::GetTaskDescInfo(const NodePtr node, const HybridModel *model,
  136. std::vector<TaskDescInfo> &task_desc_info) {
  137. GE_CHECK_NOTNULL(node);
  138. GE_CHECK_NOTNULL(model);
  139. // only report aicpu and aicore node
  140. bool is_profiling_report = context_->GetNodeItem().is_profiling_report;
  141. if (!is_profiling_report) {
  142. GELOGD("Node[%s] is not aicore or aicpu, and no need to report data.", node->GetName().c_str());
  143. return SUCCESS;
  144. }
  145. GELOGD("GetTaskDescInfo of node [%s] start.", node->GetName().c_str());
  146. auto &prof_mgr = ProfilingManager::Instance();
  147. task_desc_info = context_->GetProfilingTaskDescInfo();
  148. context_->ClearProfilingTaskDescInfo();
  149. for (auto &tmp_task_desc : task_desc_info) {
  150. // save op input and output info
  151. auto op_desc = node->GetOpDesc();
  152. GE_CHECK_NOTNULL(op_desc);
  153. prof_mgr.GetOpInputOutputInfo(op_desc, tmp_task_desc);
  154. }
  155. return SUCCESS;
  156. }
  157. Status NodeDoneCallback::ProfilingReport() {
  158. auto node = context_->GetNodeItem().node;
  159. if (node == nullptr) {
  160. GELOGE(PARAM_INVALID, "[Get][Node] value is nullptr.");
  161. REPORT_INNER_ERROR("E19999", "TaskContext GetNodeItem value is nullptr.");
  162. return PARAM_INVALID;
  163. }
  164. const auto &op_type = node->GetType();
  165. if (op_type == PARTITIONEDCALL) {
  166. return SUCCESS;
  167. }
  168. GE_CHECK_NOTNULL(graph_context_);
  169. const HybridModel *model = graph_context_->model;
  170. GE_CHECK_NOTNULL(model);
  171. GELOGD("ProfilingReport of node [%s] model [%s] start.", node->GetName().c_str(), model->GetModelName().c_str());
  172. std::vector<TaskDescInfo> task_desc_info;
  173. auto profiling_ret = GetTaskDescInfo(node, model, task_desc_info);
  174. if (profiling_ret != RT_ERROR_NONE) {
  175. GELOGE(profiling_ret, "[Get][TaskDescInfo] of node:%s failed.", node->GetName().c_str());
  176. REPORT_CALL_ERROR("E19999", "GetTaskDescInfo of node:%s failed.", node->GetName().c_str());
  177. return profiling_ret;
  178. }
  179. auto &profiling_manager = ProfilingManager::Instance();
  180. profiling_manager.ReportProfilingData(model->GetModelId(), task_desc_info);
  181. return SUCCESS;
  182. }
  183. Status NodeDoneCallback::DumpDynamicNode() {
  184. auto node = context_->GetNodeItem().node;
  185. if (node == nullptr) {
  186. GELOGE(PARAM_INVALID, "[Get][Node] value is nullptr.");
  187. REPORT_INNER_ERROR("E19999", "get node value is nullptr.");
  188. return PARAM_INVALID;
  189. }
  190. auto op_desc = node->GetOpDesc();
  191. GE_CHECK_NOTNULL(graph_context_);
  192. const HybridModel *model = graph_context_->model;
  193. GE_CHECK_NOTNULL(model);
  194. std::string dynamic_model_name = model->GetModelName();
  195. std::string dynamic_om_name = model->GetOmName();
  196. uint32_t model_id = model->GetModelId();
  197. if (!context_->GetDumpProperties().IsLayerNeedDump(dynamic_model_name, dynamic_om_name, op_desc->GetName())) {
  198. GELOGI("[%s] is not in dump list, no need dump", op_desc->GetName().c_str());
  199. return SUCCESS;
  200. }
  201. dump_op_.SetDynamicModelInfo(dynamic_model_name, dynamic_om_name, model_id);
  202. auto stream = context_->GetStream();
  203. vector<uintptr_t> input_addrs;
  204. vector<uintptr_t> output_addrs;
  205. for (int i = 0; i < context_->NumInputs(); i++) {
  206. auto tensor_value = context_->GetInput(i);
  207. GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "[Get][Tensor] value is nullptr.");
  208. uintptr_t input_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData());
  209. input_addrs.emplace_back(input_addr);
  210. }
  211. for (int j = 0; j < context_->NumOutputs(); j++) {
  212. auto tensor_value = context_->GetOutput(j);
  213. GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "[Get][Tensor] value is nullptr.");
  214. uintptr_t output_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData());
  215. output_addrs.emplace_back(output_addr);
  216. }
  217. dump_op_.SetDumpInfo(context_->GetDumpProperties(), op_desc, input_addrs, output_addrs, stream);
  218. void *loop_per_iter = nullptr;
  219. TensorValue *varible_loop_per_iter = context_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_PER_ITER);
  220. if (varible_loop_per_iter != nullptr) {
  221. loop_per_iter = const_cast<void *>(varible_loop_per_iter->GetData());
  222. }
  223. void *loop_cond = nullptr;
  224. TensorValue *varible_loop_cond = context_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_COND);
  225. if (varible_loop_cond != nullptr) {
  226. loop_cond = const_cast<void *>(varible_loop_cond->GetData());
  227. }
  228. void *global_step = context_->GetExecutionContext()->global_step;
  229. dump_op_.SetLoopAddr(global_step, loop_per_iter, loop_cond);
  230. GE_CHK_STATUS_RET(dump_op_.LaunchDumpOp(), "[Launch][DumpOp] failed in hybird model.");
  231. auto rt_ret = rtStreamSynchronize(stream);
  232. if (rt_ret != RT_ERROR_NONE) {
  233. GELOGE(rt_ret, "[Call][rtStreamSynchronize] failed, ret = %d.", rt_ret);
  234. REPORT_CALL_ERROR("E19999", "call rtStreamSynchronize failed, ret = %d.", rt_ret);
  235. return rt_ret;
  236. }
  237. return SUCCESS;
  238. }
  239. Status NodeDoneCallback::SaveDumpOpInfo() {
  240. GE_CHECK_NOTNULL(graph_context_);
  241. GE_CHECK_NOTNULL(graph_context_->model);
  242. auto node = context_->GetNodeItem().node;
  243. if (node == nullptr) {
  244. GELOGE(PARAM_INVALID, "[Save][DumpOpInfo] Get node is nullptr.");
  245. return PARAM_INVALID;
  246. }
  247. auto op_desc = node->GetOpDesc();
  248. GE_CHECK_NOTNULL(op_desc);
  249. vector<void *> input_addrs;
  250. vector<void *> output_addrs;
  251. for (int i = 0; i < context_->NumInputs(); i++) {
  252. auto tensor_value = context_->GetInput(i);
  253. GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "[Save][DumpOpInfo] Tensor value is nullptr.");
  254. void *input_addr = const_cast<void *>(tensor_value->GetData());
  255. input_addrs.emplace_back(input_addr);
  256. }
  257. for (int j = 0; j < context_->NumOutputs(); j++) {
  258. auto tensor_value = context_->GetOutput(j);
  259. GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "[Save][DumpOpInfo] Tensor value is nullptr.");
  260. void *output_addr = const_cast<void *>(tensor_value->GetData());
  261. output_addrs.emplace_back(output_addr);
  262. }
  263. uint32_t stream_id = context_->GetStreamId();
  264. uint32_t task_id = context_->GetTaskId();
  265. graph_context_->exception_dumper.SaveDumpOpInfo(op_desc, task_id, stream_id, input_addrs, output_addrs);
  266. return SUCCESS;
  267. }
  268. Status NodeDoneCallback::OnNodeDone() {
  269. auto &node_item = context_->GetNodeItem();
  270. GELOGI("[%s] Start callback process.", node_item.NodeName().c_str());
  271. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[Compute] End");
  272. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[Callback] Start");
  273. const DumpProperties &dump_properties = context_->GetDumpProperties();
  274. if (dump_properties.IsDumpOpen() || context_->IsOverFlow()) {
  275. GELOGI("Start to dump dynamic shape op");
  276. GE_CHK_STATUS_RET(DumpDynamicNode(), "[Call][DumpDynamicNode] Failed.");
  277. }
  278. auto model_manager = ModelManager::GetInstance();
  279. GE_CHECK_NOTNULL(model_manager);
  280. if (model_manager->IsDumpExceptionOpen()) {
  281. GE_CHK_STATUS_RET(SaveDumpOpInfo(), "[Save][DumpOpInfo] Failed to dump op info.");
  282. }
  283. if (ProfilingManager::Instance().ProfilingModelExecuteOn()) {
  284. GE_CHK_STATUS_RET(ProfilingReport(), "[Report][Profiling] of node[%s] failed.", node_item.NodeName().c_str());
  285. }
  286. // release workspace
  287. context_->ReleaseWorkspace();
  288. // release inputs
  289. for (int i = 0; i < context_->NumInputs(); ++i) {
  290. context_->ReleaseInput(i);
  291. }
  292. GE_CHK_STATUS_RET_NOLOG(PrepareConstInputs(node_item));
  293. if (node_item.shape_inference_type == DEPEND_SHAPE_RANGE || node_item.shape_inference_type == DEPEND_COMPUTE) {
  294. // update output tensor sizes
  295. GE_CHK_STATUS_RET_NOLOG(ShapeInferenceEngine::CalcOutputTensorSizes(node_item));
  296. GE_CHK_STATUS_RET_NOLOG(context_->GetNodeState()->GetShapeInferenceState().UpdateOutputDesc());
  297. }
  298. // PropagateOutputs for type == DEPEND_COMPUTE
  299. if (node_item.shape_inference_type == DEPEND_COMPUTE) {
  300. if (graph_context_->trace_enabled) {
  301. (void) LogOutputs(node_item, *context_);
  302. }
  303. GE_CHK_STATUS_RET(context_->PropagateOutputs(), "[Propagate][Outputs] of [%s] failed.",
  304. node_item.NodeName().c_str());
  305. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[PropagateOutputs] End");
  306. }
  307. // release condition variable
  308. if (node_item.has_observer) {
  309. GELOGI("[%s] Notify observer. node_id = %d", node_item.NodeName().c_str(), node_item.node_id);
  310. context_->NodeDone();
  311. }
  312. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[Callback] End");
  313. return SUCCESS;
  314. }
  315. Status ExecutionEngine::ExecuteAsync(NodeState &node_state,
  316. const std::shared_ptr<TaskContext> &task_context,
  317. GraphExecutionContext &execution_context) {
  318. GELOGI("[%s] Node is ready for execution", task_context->GetNodeName());
  319. RECORD_EXECUTION_EVENT(&execution_context, task_context->GetNodeName(), "Start");
  320. std::function<void()> callback = nullptr;
  321. GE_CHK_STATUS_RET_NOLOG(InitCallback(task_context, execution_context, callback));
  322. GE_CHK_STATUS_RET_NOLOG(DoExecuteAsync(node_state, *task_context, execution_context, callback));
  323. GE_CHK_STATUS_RET_NOLOG(PropagateOutputs(*node_state.GetNodeItem(), *task_context, execution_context));
  324. return SUCCESS;
  325. }
  326. Status ExecutionEngine::InitCallback(const std::shared_ptr<TaskContext> &task_context,
  327. GraphExecutionContext &execution_context, std::function<void()> &callback) {
  328. if (task_context->NeedCallback()) {
  329. auto cb = std::shared_ptr<NodeDoneCallback>(new(std::nothrow) NodeDoneCallback(&execution_context, task_context));
  330. GE_CHECK_NOTNULL(cb);
  331. callback = [task_context, cb]() {
  332. auto ret = cb->OnNodeDone();
  333. if (ret != SUCCESS) {
  334. task_context->OnError(ret);
  335. }
  336. };
  337. }
  338. return SUCCESS;
  339. }
  340. Status ExecutionEngine::DoExecuteAsync(NodeState &node_state,
  341. TaskContext &task_context,
  342. GraphExecutionContext &context,
  343. const std::function<void()> &callback) {
  344. const auto &task = node_state.GetKernelTask();
  345. if (task == nullptr) {
  346. GELOGE(INTERNAL_ERROR, "[Get][KernelTask] of [%s] is null.", node_state.GetName().c_str());
  347. REPORT_INNER_ERROR("E19999", "GetKernelTask of %s failed.", node_state.GetName().c_str());
  348. return INTERNAL_ERROR;
  349. }
  350. // Wait for dependent nodes(DEPEND_COMPUTE), so that the input tensors are valid.
  351. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[AwaitDependents] Start");
  352. HYBRID_CHK_STATUS_RET(node_state.AwaitInputTensors(context),
  353. "[%s] Failed to wait for dependent nodes.",
  354. node_state.GetName().c_str());
  355. const auto &node_item = *node_state.GetNodeItem();
  356. auto executor = node_item.node_executor;
  357. GE_CHECK_NOTNULL(executor);
  358. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] Start");
  359. GE_CHK_STATUS_RET(executor->PrepareTask(*task, task_context), "[Prepare][Task] for [%s] failed.",
  360. node_state.GetName().c_str());
  361. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] End");
  362. GELOGD("[%s] Done task preparation successfully.", node_state.GetName().c_str());
  363. if (context.trace_enabled) {
  364. LogInputs(node_item, task_context);
  365. if (node_item.shape_inference_type != DEPEND_COMPUTE) {
  366. LogOutputs(node_item, task_context);
  367. }
  368. }
  369. GE_CHK_STATUS_RET(ValidateInputTensors(node_state, task_context), "[Validate][InputTensors] for %s failed.",
  370. node_state.GetName().c_str());
  371. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[ValidateInputTensors] End");
  372. if (context.profiling_level > 0) {
  373. auto *ctx = &context;
  374. const string &name = node_state.GetName();
  375. (void)task_context.RegisterCallback([ctx, name]() {
  376. RECORD_CALLBACK_EVENT(ctx, name.c_str(), "[Compute] Start");
  377. });
  378. }
  379. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[ExecuteTask] Start");
  380. HYBRID_CHK_STATUS_RET(node_item.node_executor->ExecuteTask(*task, task_context, callback),
  381. "[%s] Failed to execute task",
  382. node_state.GetName().c_str());
  383. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[ExecuteTask] End");
  384. GELOGD("[%s] Done task launch successfully.", node_state.GetName().c_str());
  385. return SUCCESS;
  386. }
  387. Status ExecutionEngine::ValidateInputTensors(const NodeState &node_state, const TaskContext &task_context) {
  388. for (auto i = 0; i < task_context.NumInputs(); ++i) {
  389. const auto &input_tensor = task_context.GetInput(i);
  390. GE_CHECK_NOTNULL(input_tensor);
  391. if (input_tensor->GetData() == nullptr) {
  392. GELOGD("[%s] Skipping null input, index = %d", task_context.GetNodeName(), i);
  393. continue;
  394. }
  395. const auto &tensor_desc = task_context.MutableInputDesc(i);
  396. GE_CHECK_NOTNULL(tensor_desc);
  397. if (tensor_desc->GetDataType() == DT_STRING) {
  398. GELOGD("[%s] Skipping DT_STRING input, index = %d", task_context.GetNodeName(), i);
  399. continue;
  400. }
  401. if (input_tensor->GetData() == nullptr) {
  402. GELOGD("[%s] Skipping null input, index = %d", task_context.GetNodeName(), i);
  403. continue;
  404. }
  405. int64_t expected_size;
  406. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, expected_size));
  407. GELOGD("[%s] Input[%d] expects [%ld] bytes.", task_context.GetNodeName(), i, expected_size);
  408. auto size_diff = expected_size - static_cast<int64_t>(input_tensor->GetSize());
  409. if (size_diff > 0) {
  410. if (size_diff <= kMaxPadding) {
  411. GELOGW("[%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu",
  412. task_context.GetNodeName(),
  413. i,
  414. expected_size,
  415. input_tensor->GetSize());
  416. } else {
  417. GELOGE(INTERNAL_ERROR,
  418. "[Check][Size] for [%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu.",
  419. task_context.GetNodeName(), i, expected_size, input_tensor->GetSize());
  420. REPORT_INNER_ERROR("E19999", "[%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu.",
  421. task_context.GetNodeName(), i, expected_size, input_tensor->GetSize());
  422. return INTERNAL_ERROR;
  423. }
  424. }
  425. }
  426. return SUCCESS;
  427. }
  428. Status ExecutionEngine::PropagateOutputs(const NodeItem &node_item,
  429. TaskContext &task_context,
  430. GraphExecutionContext &context) {
  431. if (node_item.shape_inference_type != DEPEND_COMPUTE) {
  432. GE_CHK_STATUS_RET(task_context.PropagateOutputs(), "[Propagate][Outputs] for [%s] failed.",
  433. node_item.NodeName().c_str());
  434. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PropagateOutputs] End");
  435. GELOGD("[%s] Done propagating outputs successfully.", node_item.NodeName().c_str());
  436. }
  437. return SUCCESS;
  438. }
  439. } // namespace hybrid
  440. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示