You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

node_state.h 5.9 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_HYBRID_EXECUTOR_NODE_STATE_H_
  17. #define GE_HYBRID_EXECUTOR_NODE_STATE_H_
  18. #include <condition_variable>
  19. #include <future>
  20. #include <mutex>
  21. #include "common/blocking_queue.h"
  22. #include "external/ge/ge_api_error_codes.h"
  23. #include "hybrid/model/node_item.h"
  24. #include "node_done_manager.h"
  25. namespace ge {
  26. namespace hybrid {
  27. class NodeTask;
  28. struct GraphExecutionContext;
  29. class SubgraphContext;
  30. class TaskContext;
  31. struct NodeState;
  32. struct FrameState;
  33. using NodeStatePtr = std::shared_ptr<NodeState>;
  34. using FrameStatePtr = std::shared_ptr<FrameState>;
  35. class ShapeFuture {
  36. public:
  37. ShapeFuture(NodeState *src_node, uint32_t src_index, SubgraphContext *subgraph_context);
  38. ~ShapeFuture() = default;
  39. Status Get(GeShape &ori_shape, GeShape &shape);
  40. Status GetTensorDesc(const GeTensorDesc **tensor_desc);
  41. private:
  42. NodeState *src_node_;
  43. uint32_t src_index_;
  44. SubgraphContext *subgraph_context_;
  45. };
  46. struct ShapeInferenceState {
  47. explicit ShapeInferenceState(const NodeItem &node_item);
  48. void InitShapeState();
  49. Status UpdateInputShape(int idx, const GeTensorDesc &tensor_desc);
  50. void UpdateInputShapeFuture(int idx, ShapeFuture &&future);
  51. Status AwaitShapesReady(const GraphExecutionContext &context);
  52. Status UpdateOutputDesc();
  53. const vector<GeTensorDesc> &GetOutputTensorDesc() const;
  54. const NodeItem &node_item;
  55. private:
  56. Status UpdateInputForMerge(const GraphExecutionContext &context);
  57. friend struct NodeState;
  58. std::vector<std::pair<int, ShapeFuture>> shape_futures;
  59. // do not directly update op_desc, in case race condition across pipelines
  60. std::vector<GeTensorDesc> input_tensor_desc;
  61. std::vector<GeTensorDesc> output_tensor_desc;
  62. int num_pending_shapes_ = 0;
  63. std::condition_variable ready_cv_;
  64. std::mutex mu_;
  65. };
  66. struct FrameState {
  67. public:
  68. FrameState(int64_t id) : frame_id_(id) {}
  69. ~FrameState() = default;
  70. int64_t frame_id_{0};
  71. uint64_t active_count_{0};
  72. uint64_t iteration_count_{0};
  73. std::shared_ptr<FrameState> parent_frame_;
  74. };
  75. // saving sth. dynamic during execution
  76. struct NodeState {
  77. public:
  78. NodeState(const NodeItem &node_item, SubgraphContext *subgraph_context);
  79. ~NodeState() = default;
  80. OpDesc *GetOpDesc() const {
  81. return op_desc_.get();
  82. }
  83. inline const NodeItem *GetNodeItem() const {
  84. return node_item_;
  85. }
  86. inline const string &GetName() const {
  87. return node_item_->NodeName();
  88. }
  89. inline const string &GetType() const {
  90. return node_item_->NodeType();
  91. }
  92. ShapeInferenceState &GetShapeInferenceState() {
  93. return shape_inference_state_;
  94. }
  95. Status UpdateOutputShapes(int index, const GeShape &shape, const GeShape &ori_shape);
  96. inline bool IsShapeDependence() const {
  97. return node_item_->IsControlFlowOp() || node_item_->shape_inference_type >= DEPEND_SHAPE_RANGE;
  98. }
  99. void RunStreamActive();
  100. void RunNextIteration();
  101. void SavePersistTensor(int input_idx, const TensorValue &tensor);
  102. Status NodeScheduled(const std::function<void(const NodeItem *)> &ready) const;
  103. void SetScheduleFuture(std::future<Status> &&future);
  104. Status WaitForScheduleDone();
  105. void SetSwitchIndex(int index) {
  106. switch_index_ = index;
  107. }
  108. int GetSwitchIndex() const {
  109. return switch_index_;
  110. }
  111. void SetMergeIndex(int index) {
  112. merge_index_ = index;
  113. }
  114. int GetMergeIndex() const {
  115. return merge_index_;
  116. }
  117. void SetGroup(int group) {
  118. group_ = group;
  119. }
  120. int GetGroup() const {
  121. return group_;
  122. }
  123. void SetFrameState(const shared_ptr<FrameState> &frame_state) {
  124. frame_state_ = frame_state;
  125. }
  126. const shared_ptr<NodeTask> &GetKernelTask() const {
  127. return kernel_task_;
  128. }
  129. void SetKernelTask(const shared_ptr<NodeTask> &kernel_task) {
  130. kernel_task_ = kernel_task;
  131. }
  132. Status WaitForPrepareDone();
  133. void SetPrepareFuture(std::future<Status> &&prepare_future) {
  134. this->prepare_future_ = std::move(prepare_future);
  135. }
  136. Status AwaitInputTensors(GraphExecutionContext &context) const;
  137. void SetTaskContext(std::shared_ptr<TaskContext> &task_context);
  138. std::shared_ptr<TaskContext> GetTaskContext();
  139. private:
  140. bool IsScheduleReady() const;
  141. void SetDataSchedule(const NodeState &node_state, const std::function<void(const NodeItem *)> &ready);
  142. void SetCtrlSchedule(const NodeState &node_state, const std::function<void(const NodeItem *)> &ready);
  143. void ResetContext(uint64_t iteration);
  144. void ScheduleContext(const NodeState &node_state);
  145. void UpdatePersistTensor(int input_idx);
  146. const NodeItem *node_item_ = nullptr;
  147. std::shared_ptr<NodeTask> kernel_task_ = nullptr;
  148. std::future<Status> prepare_future_;
  149. OpDescPtr op_desc_;
  150. ShapeInferenceState shape_inference_state_;
  151. SubgraphContext *subgraph_context_;
  152. std::shared_ptr<TaskContext> task_context_ = nullptr;
  153. std::mutex mu_;
  154. std::future<Status> schedule_future_;
  155. std::shared_ptr<FrameState> frame_state_;
  156. std::map<int, TensorValue> root_tensor_values_;
  157. uint64_t active_count_ = 0;
  158. uint64_t iteration_count_ = 0;
  159. uint32_t ctrl_scheduled_ = 0;
  160. uint32_t data_scheduled_ = 0;
  161. int merge_index_ = -1; // Use for Execute (Reset after Executed).
  162. int switch_index_ = -1; // Use for Schedule (Reset after Prepared).
  163. int group_ = -1;
  164. };
  165. } // namespace hybrid
  166. } // namespace ge
  167. #endif // GE_HYBRID_EXECUTOR_NODE_STATE_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示