Merge pull request !65 from yanghaoran/r0.5tags/v0.5.0-beta-827^0
@@ -204,9 +204,6 @@ const std::string SAVE_ORIGINAL_MODEL = "ge.saveOriginalModel"; | |||
// Save original model file name | |||
const std::string ORIGINAL_MODEL_FILE = "ge.originalModelFile"; | |||
// FE enable quant optimize | |||
const std::string QUANT_OPTIMIZE = "ge.quantOptimize"; | |||
const char *const OPTION_GE_MAX_DUMP_FILE_NUM = "ge.maxDumpFileNum"; | |||
const char *const OPTION_GE_MAX_DUMP_FILE_SIZE = "ge.maxDumpFileSize"; | |||
const char *const OPTION_GE_MAX_DUMP_OP_NUM = "ge.maxDumpOpNum"; | |||
@@ -274,7 +271,6 @@ static const char *const ENABLE_SINGLE_STREAM = ge::ENABLE_SINGLE_STREAM; | |||
static const char *const AICORE_NUM = ge::AICORE_NUM.c_str(); | |||
static const char *const FUSION_SWITCH_FILE = ge::FUSION_SWITCH_FILE.c_str(); | |||
static const char *const ENABLE_SMALL_CHANNEL = ge::ENABLE_SMALL_CHANNEL.c_str(); | |||
static const char *const QUANT_OPTIMIZE = ge::QUANT_OPTIMIZE.c_str(); | |||
static const char *const OP_SELECT_IMPL_MODE = ge::OP_SELECT_IMPL_MODE.c_str(); | |||
static const char *const OUTPUT_TYPE = ge::OUTPUT_DATATYPE.c_str(); | |||
static const char *const BUFFER_OPTIMIZE = ge::BUFFER_OPTIMIZE.c_str(); | |||
@@ -304,7 +300,6 @@ const std::set<std::string> global_options = {CORE_TYPE, | |||
AICORE_NUM, | |||
FUSION_SWITCH_FILE, | |||
ENABLE_SMALL_CHANNEL, | |||
QUANT_OPTIMIZE, | |||
OP_SELECT_IMPL_MODE, | |||
OPTYPELIST_FOR_IMPLMODE}; | |||
} // namespace ir_option | |||
@@ -43,6 +43,7 @@ | |||
#define DYNAMIC_INPUT_TD_NUM(name) ("__dynamic_input_" + name + "_cnt") | |||
namespace ge { | |||
class Operator; | |||
class OperatorImpl; | |||
class NamedAttrs; | |||
class Graph; | |||
@@ -50,6 +51,7 @@ class AttrValue; | |||
using SubgraphBuilder = std::function<Graph()>; | |||
using OperatorImplPtr = std::shared_ptr<OperatorImpl>; | |||
using OperatorPtr = std::shared_ptr<Operator>; | |||
class OpIO; | |||
using OutHandler = std::shared_ptr<OpIO>; | |||
@@ -67,6 +67,7 @@ using google::protobuf::Message; | |||
class OpRegistrationDataImpl; | |||
using ParseParamFunc = std::function<domi::Status(const google::protobuf::Message *, ge::Operator &)>; | |||
using ParseParamByOpFunc = std::function<domi::Status(const ge::Operator &, ge::Operator &)>; | |||
using FusionParseParamFunc = | |||
std::function<domi::Status(const std::vector<const google::protobuf::Message *>, ge::Operator &)>; | |||
using ParseSubgraphFunc = std::function<Status(const std::string &subgraph_name, const ge::Graph &graph)>; | |||
@@ -85,6 +86,8 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY OpRegistrationData { | |||
OpRegistrationData &ParseParamsFn(const ParseParamFunc &parseParamFn); | |||
OpRegistrationData &ParseParamsByOperatorFn(const ParseParamByOpFunc &parse_param_by_op_fn); | |||
OpRegistrationData &FusionParseParamsFn(const FusionParseParamFunc &fusionParseParamFn); | |||
OpRegistrationData &ParseSubgraphPostFn(const ParseSubgraphFunc &subgraph_post_fn); | |||
@@ -100,6 +103,7 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY OpRegistrationData { | |||
std::set<std::string> GetOriginOpTypeSet() const; | |||
domi::FrameworkType GetFrameworkType() const; | |||
ParseParamFunc GetParseParamFn() const; | |||
ParseParamByOpFunc GetParseParamByOperatorFn() const; | |||
FusionParseParamFunc GetFusionParseParamFn() const; | |||
ParseSubgraphFunc GetParseSubgraphPostFn() const; | |||
@@ -183,6 +183,7 @@ struct ModelData { | |||
uint32_t model_len = 0; // Model binary data length | |||
int32_t priority = 0; // Model priority | |||
std::string key; // Key path for encrypt model, Empty for unencrypt | |||
std::string om_name; // om file name, used for data dump | |||
}; | |||
// The definition of Model information | |||
@@ -46,6 +46,8 @@ class ModelHelper { | |||
static Status TransModelToGeModel(const ModelPtr& model, GeModelPtr& ge_model); | |||
static Status TransGeModelToModel(const GeModelPtr& geModelPtr, ModelPtr& modelPtr); | |||
Status GetBaseNameFromFileName(const std::string& file_name, std::string& base_name); | |||
Status GetModelNameFromMergedGraphName(const std::string& graph_name, std::string& model_name); | |||
private: | |||
bool is_assign_model_ = false; | |||
@@ -62,7 +62,7 @@ class GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY GeExecutor { | |||
// Get input and output descriptor | |||
ge::Status GetModelDescInfo(uint32_t model_id, std::vector<ge::TensorDesc> &input_desc, | |||
std::vector<ge::TensorDesc> &output_desc); | |||
std::vector<ge::TensorDesc> &output_desc, bool new_model_desc = false); | |||
/// | |||
/// @ingroup ge | |||
@@ -98,8 +98,10 @@ Status DumpInfershapeJson(const ge::Graph &graph, const char *json_file); | |||
Status SetOutputNodeInfo(ge::Graph &graph, const std::string &output_type, const std::string &output_format); | |||
Status GetOutputLeaf(ge::NodePtr node, std::vector<std::pair<ge::NodePtr, int32_t>> &output_nodes_info, | |||
std::vector<std::string> &output_nodes_name); | |||
Status GetOutputLeaf(ge::NodePtr node, std::vector<std::pair<ge::NodePtr, int32_t>> &output_nodes_info); | |||
void GetOutputNodesNameAndIndex(std::vector<std::pair<ge::NodePtr, int32_t>> &output_nodes_info, | |||
std::vector<std::string> &output_nodes_name); | |||
void UpdateOmgCtxWithParserCtx(); | |||
@@ -94,6 +94,8 @@ struct OmgContext { | |||
std::vector<std::pair<std::string, int32_t>> user_out_nodes; | |||
// net out nodes (where user_out_nodes or leaf nodes) | |||
std::vector<std::string> net_out_nodes; | |||
// net out nodes top names(only caffe has top) | |||
std::vector<std::string> out_top_names; | |||
// path for the aicpu custom operator so_file | |||
std::vector<std::string> aicpu_op_run_paths; | |||
// ddk version | |||
@@ -139,6 +139,8 @@ GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string NEW_AIPP | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_AIPP_INPUTS; | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_AIPP_OUTPUTS; | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_INPUT_DIMS; | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_SESSION_GRAPH_ID; | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_PARENT_GRAPH_NAME; | |||
@@ -181,6 +183,8 @@ GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAM | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_STREAM_CYCLE_EVENT_FLAG; | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_DYNAMIC_OUTPUT_DIMS; | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_INPUT_ORIGIN_SIZE; | |||
// to be deleted | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_TO_BE_DELETED; | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string PERMUTE_RESHAPE_FUSION; | |||
@@ -31,6 +31,7 @@ class ShapeRefiner { | |||
static graphStatus InferShapeAndType(const NodePtr &node, bool before_subgraph); | |||
static graphStatus InferShapeAndType(const NodePtr &node); | |||
static graphStatus InferShapeAndType(const ConstNodePtr &node, Operator &op); | |||
static void ClearContextMap(); | |||
private: | |||
static void PrintInOutTensorShape(const ge::NodePtr &node, const std::string &phase); | |||
@@ -121,6 +121,8 @@ const std::string NEW_AIPP_CONV_OP = "new_conv_op_for_aipp"; | |||
const std::string ATTR_NAME_AIPP_INPUTS = "_aipp_inputs"; | |||
const std::string ATTR_NAME_AIPP_OUTPUTS = "_aipp_outputs"; | |||
const std::string ATTR_NAME_INPUT_DIMS = "input_dims"; | |||
const std::string ATTR_NAME_SESSION_GRAPH_ID = "_session_graph_id"; | |||
const std::string ATTR_NAME_PARENT_GRAPH_NAME = "_parent_graph_name"; | |||
@@ -154,6 +156,7 @@ const std::string ATTR_NAME_RTSWITCH_RECV_EVENT_ID = "rtswitch_event_id"; | |||
const std::string ATTR_NAME_AUTOMIC_ADD_START = "automic_add_addr_start"; | |||
const std::string ATTR_NAME_AUTOMIC_ADD_MEM_SIZE = "automic_add_mem_size"; | |||
const std::string ATTR_NAME_DYNAMIC_OUTPUT_DIMS = "_dynamic_output_dims"; | |||
const std::string ATTR_NAME_INPUT_ORIGIN_SIZE = "input_origin_size"; | |||
// To be deleted | |||
const std::string ATTR_TO_BE_DELETED = "to_be_deleted"; | |||
@@ -1,5 +1,5 @@ | |||
LOCAL_PATH := $(call my-dir) | |||
include $(LOCAL_PATH)/stub/Makefile | |||
COMMON_LOCAL_SRC_FILES := \ | |||
./proto/om.proto \ | |||
./proto/ge_ir.proto \ | |||
@@ -85,6 +85,29 @@ LOCAL_PROPRIETARY_MODULE := true | |||
include $(BUILD_HOST_SHARED_LIBRARY) | |||
#compiler for host | |||
include $(CLEAR_VARS) | |||
LOCAL_MODULE := stub/libgraph | |||
LOCAL_CFLAGS += -DFMK_SUPPORT_DUMP -O2 | |||
LOCAL_CPPFLAGS += -fexceptions | |||
LOCAL_C_INCLUDES := $(COMMON_LOCAL_C_INCLUDES) | |||
LOCAL_SRC_FILES := \ | |||
../../out/atc/lib64/stub/graph.cc \ | |||
../../out/atc/lib64/stub/operator.cc \ | |||
../../out/atc/lib64/stub/tensor.cc \ | |||
../../out/atc/lib64/stub/operator_factory.cc \ | |||
LOCAL_SHARED_LIBRARIES := | |||
LOCAL_LDFLAGS := -lrt -ldl | |||
LOCAL_MULTILIB := 64 | |||
LOCAL_PROPRIETARY_MODULE := true | |||
include $(BUILD_HOST_SHARED_LIBRARY) | |||
#compiler for device | |||
include $(CLEAR_VARS) | |||
@@ -111,6 +134,32 @@ LOCAL_PROPRIETARY_MODULE := true | |||
include $(BUILD_SHARED_LIBRARY) | |||
#compiler for device | |||
include $(CLEAR_VARS) | |||
LOCAL_MODULE := stub/libgraph | |||
LOCAL_CFLAGS += -O2 | |||
LOCAL_C_INCLUDES := $(COMMON_LOCAL_C_INCLUDES) | |||
LOCAL_SRC_FILES := \ | |||
../../out/atc/lib64/stub/graph.cc \ | |||
../../out/atc/lib64/stub/operator.cc \ | |||
../../out/atc/lib64/stub/tensor.cc \ | |||
../../out/atc/lib64/stub/operator_factory.cc \ | |||
LOCAL_SHARED_LIBRARIES := | |||
LOCAL_LDFLAGS := -lrt -ldl | |||
ifeq ($(device_os),android) | |||
LOCAL_LDFLAGS := -ldl | |||
endif | |||
LOCAL_MULTILIB := 64 | |||
LOCAL_PROPRIETARY_MODULE := true | |||
include $(BUILD_SHARED_LIBRARY) | |||
# compile for ut/st | |||
include $(CLEAR_VARS) | |||
@@ -759,6 +759,7 @@ graphStatus Node::Verify() const { | |||
GELOGW("Verify UpdateOutputName failed"); | |||
} | |||
} | |||
node_op.BreakConnect(); | |||
} | |||
if (op_->CommonVerify() == GRAPH_SUCCESS) { | |||
@@ -818,7 +818,9 @@ graphStatus OpDesc::InferShapeAndType() { | |||
} | |||
} | |||
Operator op_proxy = ge::OpDescUtils::CreateOperatorFromOpDesc(shared_from_this()); | |||
return (graphStatus)infer_func_(op_proxy); | |||
graphStatus ret = (graphStatus)infer_func_(op_proxy); | |||
op_proxy.BreakConnect(); | |||
return ret; | |||
} | |||
graphStatus OpDesc::DefaultInferFormat() { | |||
@@ -863,12 +865,14 @@ graphStatus OpDesc::DefaultInferFormat() { | |||
} | |||
graphStatus OpDesc::OpVerify() { | |||
Operator op_proxy = ge::OpDescUtils::CreateOperatorFromOpDesc(shared_from_this()); | |||
if (verifier_func_ == nullptr) { | |||
verifier_func_ = OperatorFactoryImpl::GetVerifyFunc(GetType()); | |||
} | |||
if (verifier_func_ != nullptr) { | |||
return (graphStatus)verifier_func_(op_proxy); | |||
Operator op_proxy = ge::OpDescUtils::CreateOperatorFromOpDesc(shared_from_this()); | |||
graphStatus ret = (graphStatus)verifier_func_(op_proxy); | |||
op_proxy.BreakConnect(); | |||
return ret; | |||
} | |||
return GRAPH_SUCCESS; | |||
} | |||
@@ -21,7 +21,7 @@ | |||
#include <mutex> | |||
#include <queue> | |||
#include <set> | |||
#include "array_ops.h" | |||
#include "./array_ops.h" | |||
#include "debug/ge_log.h" | |||
#include "debug/ge_op_types.h" | |||
#include "debug/ge_util.h" | |||
@@ -931,7 +931,7 @@ OperatorImplPtr Operator::GetOperatorImplPtr() const { return operator_impl_; } | |||
void Operator::BreakConnect() const { | |||
if (operator_impl_ == nullptr) { | |||
GELOGE(GRAPH_FAILED, "operator impl is nullptr."); | |||
GELOGW("operator impl is nullptr."); | |||
return; | |||
} | |||
operator_impl_->ClearInputLinks(); | |||
@@ -1318,6 +1318,8 @@ class GraphBuilderImpl { | |||
string type = src_op_impl->op_desc_->GetType(); | |||
auto node_op = ge::OperatorFactory::CreateOperator("node_op", type); | |||
auto tensor_desc = ge::OpDescUtils::GetOpDescFromOperator(node_op); | |||
node_op.BreakConnect(); | |||
GE_CHK_BOOL_EXEC(tensor_desc != nullptr, continue, "tensor_desc is null."); | |||
if ((tensor_desc->GetInputsSize() == 0 && tensor_desc->GetOutputsSize() > 0) || type == DATA || | |||
type == VARIABLE || type == INITDATA || type == GETNEXT) { | |||
@@ -1542,6 +1544,7 @@ void GraphUtils::BreakConnect(const std::map<OperatorImplPtr, NodePtr> &all_node | |||
} | |||
op_impl->ClearOutputLinks(); | |||
op_impl->ClearInputLinks(); | |||
OperatorKeeper::GetInstance().CheckOutOperator(op_impl); | |||
} | |||
} | |||
} // namespace ge |
@@ -235,6 +235,7 @@ graphStatus ShapeRefiner::InferShapeAndType(const ConstNodePtr &node, Operator & | |||
GELOGD("get op from OperatorFactory success. opType: %s", op_type.c_str()); | |||
auto temp_op_desc = ge::OpDescUtils::GetOpDescFromOperator(node_op); | |||
node_op.BreakConnect(); | |||
if (temp_op_desc == nullptr) { | |||
GELOGE(GRAPH_FAILED, "temp op desc is null"); | |||
return GRAPH_FAILED; | |||
@@ -328,6 +329,9 @@ InferenceContextPtr CreateInferenceContext(const std::unordered_map<NodePtr, Inf | |||
namespace { | |||
std::unordered_map<NodePtr, InferenceContextPtr> context_map; | |||
} | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY void ShapeRefiner::ClearContextMap() { context_map.clear(); } | |||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY graphStatus ShapeRefiner::InferShapeAndType(const NodePtr &node) { | |||
return InferShapeAndType(node, true); | |||
} | |||
@@ -0,0 +1,6 @@ | |||
inc_path := $(shell pwd)/inc/external/ | |||
out_path := $(shell pwd)/out/atc/lib64/stub/ | |||
stub_path := $(shell pwd)/common/graph/stub/ | |||
mkdir_stub := $(shell mkdir -p $(out_path)) | |||
graph_local_stub := $(shell $(HI_PYTHON) $(stub_path)/gen_stubapi.py $(inc_path) $(out_path)) |
@@ -0,0 +1,573 @@ | |||
import os | |||
import re | |||
import sys | |||
import logging | |||
logging.basicConfig(stream=sys.stdout, format='[%(asctime)s] [%(lineno)s] %(levelname)s: %(message)s', | |||
level=logging.INFO) | |||
""" | |||
this attr is used for symbol table visible | |||
""" | |||
GE_ATTR = 'GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY' | |||
""" | |||
generate stub func body by return type | |||
""" | |||
RETURN_STATEMENTS = { | |||
'graphStatus': ' return GRAPH_SUCCESS;', | |||
'Status': ' return SUCCESS;', | |||
'Graph': ' return Graph();', | |||
'Graph&': ' return *this;', | |||
'Format': ' return Format();', | |||
'Format&': ' return *this;', | |||
'Shape': ' return Shape();', | |||
'Shape&': ' return *this;', | |||
'TensorDesc': ' return TensorDesc();', | |||
'TensorDesc&': ' return *this;', | |||
'Tensor': ' return Tensor();', | |||
'Tensor&': ' return *this;', | |||
'Operator': ' return Operator();', | |||
'Operator&': ' return *this;', | |||
'Ptr': ' return nullptr;', | |||
'std::string': ' return "";', | |||
'std::string&': ' return "";', | |||
'string': ' return "";', | |||
'int': ' return 0;', | |||
'DataType': ' return DT_FLOAT;', | |||
'InferenceContextPtr': ' return nullptr;', | |||
'SubgraphBuilder': ' return nullptr;', | |||
'OperatorImplPtr': ' return nullptr;', | |||
'OutHandler': ' return nullptr;', | |||
'std::vector<std::string>': ' return {};', | |||
'std::vector<int64_t>': ' return {};', | |||
'std::map': ' return {};', | |||
'uint32_t': ' return 0;', | |||
'int64_t': ' return 0;', | |||
'uint64_t': ' return 0;', | |||
'size_t': ' return 0;', | |||
'float': ' return 0.0f;', | |||
'bool': ' return false;', | |||
} | |||
""" | |||
max code len per line in hua_wei software programming specifications | |||
""" | |||
max_code_len_per_line = 100 | |||
""" | |||
white_list_for_debug, include_dir_key_words is to | |||
determines which header files to generate cc files from | |||
when DEBUG on | |||
""" | |||
white_list_for_debug = ["operator.h", "tensor.h", | |||
"graph.h", "operator_factory.h", | |||
"ge_ir_build.h"] | |||
include_dir_key_words = ["ge", "graph"] | |||
DEBUG = True | |||
def need_generate_func(func_line): | |||
""" | |||
:param func_line: | |||
:return: | |||
""" | |||
if func_line.strip().endswith("default") or func_line.strip().endswith("delete") \ | |||
or func_line.strip().startswith("typedef") or func_line.strip().startswith("using"): | |||
return False | |||
return True | |||
def file_endswith_white_list_suffix(file): | |||
""" | |||
:param file: | |||
:return: | |||
""" | |||
if DEBUG: | |||
for suffix in white_list_for_debug: | |||
if file.endswith(suffix): | |||
return True | |||
return False | |||
else: | |||
return True | |||
""" | |||
belows are patterns used for analyse .h file | |||
""" | |||
# pattern function | |||
pattern_func = re.compile(r"""(^[\s]*) #leading with space,we will find and delete after | |||
([a-zA-Z~_] # void int likely | |||
.* | |||
[)] #we find ) | |||
(?!.*{) # we do not want the case int abc() const { return 1;} | |||
.*) | |||
(;.*) #we want to find ; and after for we will replace these later | |||
\n$ | |||
""", re.VERBOSE | re.MULTILINE | re.DOTALL) | |||
# pattern comment | |||
pattern_comment = re.compile(r'^\s*//') | |||
pattern_comment_2_start = re.compile(r'^\s*/[*]') | |||
pattern_comment_2_end = re.compile(r'[*]/\s*$') | |||
# pattern define | |||
pattern_define = re.compile(r'^\s*#define') | |||
pattern_define_return = re.compile(r'\\\s*$') | |||
# blank line | |||
pattern_blank_line = re.compile(r'^\s*$') | |||
# virtual,explicit,friend,static | |||
pattern_keyword = re.compile(r'(virtual\s+|explicit\s+|friend\s+|static\s+)') | |||
# lead space | |||
pattern_leading_space = re.compile(r'(^[\s]*)[a-zA-Z~_]') | |||
# functions will have patterns such as func ( or func( | |||
# but operator is an exception; the class name is preceded by an operator, and the above mode does not exist | |||
# format like :"operator = ()" | |||
pattern_func_name = re.compile(r'([a-zA-Z0-9~_\-]+\s*|operator?.*)[(]') | |||
# template | |||
pattern_template = re.compile(r'^\s*template') | |||
pattern_template_end = re.compile(r'>\s*$') | |||
# namespace | |||
pattern_namespace = re.compile(r'namespace.*{') | |||
# class : which can handle classA a and {not on the same line, but if found ';' after class,then don't deal with | |||
pattern_class = re.compile(r'^[\s]*(class|struct)\s+(%s\s+)?([a-zA-Z0-9_\-]+<?)(?!.*;)' % GE_ATTR) | |||
# {} | |||
pattern_start = re.compile('{') | |||
pattern_end = re.compile('}') | |||
line_index = 0 | |||
class H2CC(object): | |||
def __init__(self, input_file, output_file, shared_includes_content): | |||
""" | |||
:param input_file: | |||
:param output_file: | |||
:param shared_includes_content: | |||
""" | |||
self.input_file = input_file | |||
self.output_file = output_file | |||
self.shared_includes_content = shared_includes_content | |||
self.line_index = 0 | |||
self.input_fd = open(self.input_file, 'r') | |||
self.input_content = self.input_fd.readlines() | |||
self.output_fd = open(self.output_file, 'w') | |||
# The state may be normal_now(in the middle of {}),class_now,namespace_now | |||
self.stack = [] | |||
self.stack_class = [] | |||
self.stack_template = [] | |||
# record funcs generated by h2cc func | |||
self.func_list_exist = [] | |||
def __del__(self): | |||
self.input_fd.close() | |||
self.output_fd.close() | |||
del self.stack | |||
del self.stack_class | |||
del self.stack_template | |||
del self.func_list_exist | |||
def just_skip(self): | |||
# skip blank line or comment | |||
if pattern_blank_line.search(self.input_content[self.line_index]) or pattern_comment.search( | |||
self.input_content[self.line_index]): # /n or comment using // | |||
self.line_index += 1 | |||
if pattern_comment_2_start.search(self.input_content[self.line_index]): # comment using /* | |||
while not pattern_comment_2_end.search(self.input_content[self.line_index]): # */ | |||
self.line_index += 1 | |||
self.line_index += 1 | |||
# skip define | |||
if pattern_define.search(self.input_content[self.line_index]): | |||
while pattern_blank_line.search(self.input_content[self.line_index]) or pattern_define_return.search( | |||
self.input_content[self.line_index]): | |||
self.line_index += 1 | |||
self.line_index += 1 | |||
def write_inc_content(self): | |||
for shared_include_content in self.shared_includes_content: | |||
self.output_fd.write(shared_include_content) | |||
def h2cc(self): | |||
""" | |||
:return: | |||
""" | |||
logging.info("start generate cc_file[%s] from h_file[%s]", self.output_file, self.input_file) | |||
global pattern_comment | |||
global pattern_comment_2_start | |||
global pattern_comment_2_end | |||
global pattern_blank_line | |||
global pattern_func | |||
global pattern_keyword | |||
global pattern_leading_space | |||
global pattern_func_name | |||
global pattern_template | |||
global pattern_template_end | |||
global pattern_namespace | |||
global pattern_class | |||
global pattern_start | |||
global pattern_end | |||
global line_index | |||
# write inc content | |||
self.write_inc_content() | |||
# core processing cycle, process the input .h file by line | |||
while self.line_index < len(self.input_content): | |||
# handle comment and blank line | |||
self.just_skip() | |||
# match namespace | |||
self.handle_namespace() | |||
# match template | |||
template_string = self.handle_template() | |||
# match class | |||
line = self.input_content[self.line_index] | |||
match_class = pattern_class.search(line) | |||
match_start = pattern_start.search(line) | |||
handle_class_result = self.handle_class(template_string, line, match_start, match_class) | |||
if handle_class_result == "continue": | |||
continue | |||
# match "}" | |||
handle_stack_result = self.handle_stack(match_start) | |||
if handle_stack_result == "continue": | |||
continue | |||
# handle func | |||
handle_func1_result, line, start_i = self.handle_func1(line) | |||
if handle_func1_result == "continue": | |||
continue | |||
# here means func is found | |||
# delete key word | |||
line = pattern_keyword.sub('', line) | |||
logging.info("line[%s]", line) | |||
# Class member function | |||
# if friend we will not add class name | |||
friend_match = re.search('friend ', line) | |||
if len(self.stack_class) > 0 and not friend_match: | |||
line, func_name = self.handle_class_member_func(line, template_string) | |||
# Normal functions | |||
else: | |||
line, func_name = self.handle_normal_func(line, template_string) | |||
need_generate = need_generate_func(line) | |||
# func body | |||
line += self.implement_function(line) | |||
# comment | |||
line = self.gen_comment(start_i) + line | |||
# write to out file | |||
self.write_func_content(line, func_name, need_generate) | |||
# next loop | |||
self.line_index += 1 | |||
logging.info('Added %s functions', len(self.func_list_exist)) | |||
logging.info('Successfully converted,please see ' + self.output_file) | |||
def handle_func1(self, line): | |||
""" | |||
:param line: | |||
:return: | |||
""" | |||
find1 = re.search('[(]', line) | |||
if not find1: | |||
self.line_index += 1 | |||
return "continue", line, None | |||
find2 = re.search('[)]', line) | |||
start_i = self.line_index | |||
space_match = pattern_leading_space.search(line) | |||
# deal with | |||
# int abc(int a, | |||
# int b) | |||
if find1 and (not find2): | |||
self.line_index += 1 | |||
line2 = self.input_content[self.line_index] | |||
if space_match: | |||
line2 = re.sub('^' + space_match.group(1), '', line2) | |||
line += line2 | |||
while self.line_index < len(self.input_content) and (not re.search('[)]', line2)): | |||
self.line_index += 1 | |||
line2 = self.input_content[self.line_index] | |||
line2 = re.sub('^' + space_match.group(1), '', line2) | |||
line += line2 | |||
match_start = pattern_start.search(self.input_content[self.line_index]) | |||
match_end = pattern_end.search(self.input_content[self.line_index]) | |||
if match_start: # like ) { or ) {} int the last line | |||
if not match_end: | |||
self.stack.append('normal_now') | |||
ii = start_i | |||
while ii <= self.line_index: | |||
ii += 1 | |||
self.line_index += 1 | |||
return "continue", line, start_i | |||
logging.info("line[%s]", line) | |||
# ' int abc();'->'int abc()' | |||
(line, match) = pattern_func.subn(r'\2\n', line) | |||
logging.info("line[%s]", line) | |||
# deal with case: | |||
# 'int \n abc(int a, int b)' | |||
if re.search(r'^\s*(inline)?\s*[a-zA-Z0-9_]+\s*$', self.input_content[start_i - 1]): | |||
line = self.input_content[start_i - 1] + line | |||
line = line.lstrip() | |||
if not match: | |||
self.line_index += 1 | |||
return "continue", line, start_i | |||
return "pass", line, start_i | |||
def handle_stack(self, match_start): | |||
""" | |||
:param match_start: | |||
:return: | |||
""" | |||
line = self.input_content[self.line_index] | |||
match_end = pattern_end.search(line) | |||
if match_start: | |||
self.stack.append('normal_now') | |||
if match_end: | |||
top_status = self.stack.pop() | |||
if top_status == 'namespace_now': | |||
self.output_fd.write(line + '\n') | |||
elif top_status == 'class_now': | |||
self.stack_class.pop() | |||
self.stack_template.pop() | |||
if match_start or match_end: | |||
self.line_index += 1 | |||
return "continue" | |||
if len(self.stack) > 0 and self.stack[-1] == 'normal_now': | |||
self.line_index += 1 | |||
return "continue" | |||
return "pass" | |||
def handle_class(self, template_string, line, match_start, match_class): | |||
""" | |||
:param template_string: | |||
:param line: | |||
:param match_start: | |||
:param match_class: | |||
:return: | |||
""" | |||
if match_class: # we face a class | |||
self.stack_template.append(template_string) | |||
self.stack.append('class_now') | |||
class_name = match_class.group(3) | |||
# class template specializations: class A<u,Node<u> > | |||
if '<' in class_name: | |||
k = line.index('<') | |||
fit = 1 | |||
for ii in range(k + 1, len(line)): | |||
if line[ii] == '<': | |||
fit += 1 | |||
if line[ii] == '>': | |||
fit -= 1 | |||
if fit == 0: | |||
break | |||
class_name += line[k + 1:ii + 1] | |||
logging.info('class_name[%s]', class_name) | |||
self.stack_class.append(class_name) | |||
while not match_start: | |||
self.line_index += 1 | |||
line = self.input_content[self.line_index] | |||
match_start = pattern_start.search(line) | |||
self.line_index += 1 | |||
return "continue" | |||
return "pass" | |||
def handle_template(self): | |||
line = self.input_content[self.line_index] | |||
match_template = pattern_template.search(line) | |||
template_string = '' | |||
if match_template: | |||
match_template_end = pattern_template_end.search(line) | |||
template_string = line | |||
while not match_template_end: | |||
self.line_index += 1 | |||
line = self.input_content[self.line_index] | |||
template_string += line | |||
match_template_end = pattern_template_end.search(line) | |||
self.line_index += 1 | |||
return template_string | |||
def handle_namespace(self): | |||
line = self.input_content[self.line_index] | |||
match_namespace = pattern_namespace.search(line) | |||
if match_namespace: # we face namespace | |||
self.output_fd.write(line + '\n') | |||
self.stack.append('namespace_now') | |||
self.line_index += 1 | |||
def handle_normal_func(self, line, template_string): | |||
template_line = '' | |||
self.stack_template.append(template_string) | |||
if self.stack_template[-1] != '': | |||
template_line = re.sub(r'\s*template', 'template', self.stack_template[-1]) | |||
# change '< class T = a, class U = A(3)>' to '<class T, class U>' | |||
template_line = re.sub(r'\s*=.*>(\s*)$', r'>\1', template_line) | |||
template_line = re.sub(r'\s*=.*,', ',', template_line) | |||
template_line = re.sub(r'\s*=.*', '', template_line) | |||
line = re.sub(r'\s*=.*,', ',', line) | |||
line = re.sub(r'\s*=.*\)', ')', line) | |||
line = template_line + line | |||
self.stack_template.pop() | |||
func_name = re.search(r'^.*\)', line, re.MULTILINE | re.DOTALL).group() | |||
logging.info("line[%s]", line) | |||
logging.info("func_name[%s]", func_name) | |||
return line, func_name | |||
def handle_class_member_func(self, line, template_string): | |||
template_line = '' | |||
x = '' | |||
if template_string != '': | |||
template_string = re.sub(r'\s*template', 'template', template_string) | |||
template_string = re.sub(r'\s*=.*>(\s*)$', r'>\1', template_string) | |||
template_string = re.sub(r'\s*=.*,', ',', template_string) | |||
template_string = re.sub(r'\s*=.*', '', template_string) | |||
if self.stack_template[-1] != '': | |||
if not (re.search(r'<\s*>', stack_template[-1])): | |||
template_line = re.sub(r'^\s*template', 'template', stack_template[-1]) | |||
if not (re.search(r'<.*>', self.stack_class[-1])): | |||
# for x we get like template<class T, typename U> -> <T,U> | |||
x = re.sub(r'template\s*<', '<', template_line) # remove template -> <class T, typename U> | |||
x = re.sub(r'\n', '', x) | |||
x = re.sub(r'\s*=.*,', ',', x) | |||
x = re.sub(r'\s*=.*\>', '>', x) | |||
x = x.rstrip() # remove \n | |||
x = re.sub(r'(class|typename)\s+|(<class>|<typename>\s*class)', '', | |||
x) # remove class,typename -> <T, U> | |||
x = re.sub(r'<\s+', '<', x) | |||
x = re.sub(r'\s+>', '>', x) | |||
x = re.sub(r'\s+,', ',', x) | |||
x = re.sub(r',\s+', ', ', x) | |||
line = re.sub(r'\s*=\s+0', '', line) | |||
line = re.sub(r'\s*=\s+.*,', ',', line) | |||
line = re.sub(r'\s*=\s+.*\)', ')', line) | |||
logging.info("x[%s]\nline[%s]", x, line) | |||
# if the function is long, void ABC::foo() | |||
# breaks into two lines void ABC::\n foo() | |||
temp_line = pattern_func_name.sub(self.stack_class[-1] + x + '::' + r'\1(', line, count=1) | |||
if len(temp_line) > max_code_len_per_line: | |||
line = pattern_func_name.sub(self.stack_class[-1] + x + '::\n' + r'\1(', line, count=1) | |||
else: | |||
line = temp_line | |||
logging.info("line[%s]", line) | |||
# add template as the above if there is one | |||
template_line = re.sub(r'\s*=.*>(\s*)$', r'>\1', template_line) | |||
template_line = re.sub(r'\s*=.*,', ',', template_line) | |||
template_line = re.sub(r'\s*=.*', '', template_line) | |||
line = template_line + template_string + line | |||
func_name = re.search(r'^.*\)', line, re.MULTILINE | re.DOTALL).group() | |||
logging.info("line[%s]", line) | |||
logging.info("func_name[%s]", func_name) | |||
return line, func_name | |||
def write_func_content(self, content, func_name, need_generate): | |||
if not (func_name in self.func_list_exist) and need_generate: | |||
self.output_fd.write(content) | |||
self.func_list_exist.append(func_name) | |||
logging.info('add func:[%s]', func_name) | |||
def gen_comment(self, start_i): | |||
comment_line = '' | |||
# Function comments are on top of function declarations, copy them over | |||
k = start_i - 1 # one line before this func start | |||
if pattern_template.search(self.input_content[k]): | |||
k -= 1 | |||
if pattern_comment_2_end.search(self.input_content[k]): | |||
comment_line = self.input_content[k].lstrip() | |||
while not pattern_comment_2_start.search(self.input_content[k]): | |||
k -= 1 | |||
comment_line = self.input_content[k].lstrip() + comment_line | |||
else: | |||
for j in range(k, 0, -1): | |||
c_line = self.input_content[j] | |||
if pattern_comment.search(c_line): | |||
c_line = re.sub(r'\s*//', '//', c_line) | |||
comment_line = c_line + comment_line | |||
else: | |||
break | |||
return comment_line | |||
@staticmethod | |||
def implement_function(func): | |||
function_def = '' | |||
function_def += '{\n' | |||
all_items = func.split() | |||
start = 0 | |||
return_type = all_items[start] | |||
if return_type == "const": | |||
start += 1 | |||
return_type = all_items[start] | |||
if return_type.startswith(('std::map', 'std::set', 'std::vector')): | |||
return_type = "std::map" | |||
if return_type.endswith('*') or (len(all_items) > start + 1 and all_items[start + 1].startswith('*')): | |||
return_type = "Ptr" | |||
if len(all_items) > start + 1 and all_items[start + 1].startswith('&'): | |||
return_type += "&" | |||
if RETURN_STATEMENTS.__contains__(return_type): | |||
function_def += RETURN_STATEMENTS[return_type] | |||
else: | |||
logging.warning("Unhandled return type[%s]", return_type) | |||
function_def += '\n' | |||
function_def += '}\n' | |||
function_def += '\n' | |||
return function_def | |||
def collect_header_files(path): | |||
""" | |||
:param path: | |||
:return: | |||
""" | |||
header_files = [] | |||
shared_includes_content = [] | |||
for root, dirs, files in os.walk(path): | |||
files.sort() | |||
for file in files: | |||
if file.find("git") >= 0: | |||
continue | |||
if not file.endswith('.h'): | |||
continue | |||
file_path = os.path.join(root, file) | |||
file_path = file_path.replace('\\', '/') | |||
header_files.append(file_path) | |||
include_str = '#include "{}"\n'.format(file_path[path.rindex('/') + 1:]) | |||
shared_includes_content.append(include_str) | |||
return header_files, shared_includes_content | |||
def generate_stub_file(inc_dir, out_cc_dir): | |||
""" | |||
:param inc_dir: | |||
:param out_cc_dir: | |||
:return: | |||
""" | |||
target_header_files, shared_includes_content = collect_header_files(inc_dir) | |||
for header_file in target_header_files: | |||
if not file_endswith_white_list_suffix(header_file): | |||
continue | |||
cc_file = re.sub('.h*$', '.cc', header_file) | |||
h_2_cc = H2CC(header_file, out_cc_dir + cc_file[cc_file.rindex('/') + 1:], shared_includes_content) | |||
h_2_cc.h2cc() | |||
def gen_code(inc_dir, out_cc_dir): | |||
""" | |||
:param inc_dir: | |||
:param out_cc_dir: | |||
:return: | |||
""" | |||
if not inc_dir.endswith('/'): | |||
inc_dir += '/' | |||
if not out_cc_dir.endswith('/'): | |||
out_cc_dir += '/' | |||
for include_dir_key_word in include_dir_key_words: | |||
generate_stub_file(inc_dir + include_dir_key_word, out_cc_dir) | |||
if __name__ == '__main__': | |||
inc_dir = sys.argv[1] | |||
out_cc_dir = sys.argv[2] | |||
gen_code(inc_dir, out_cc_dir) |
@@ -187,12 +187,9 @@ void TBEPluginManager::LoadCustomOpLib() { | |||
std::vector<OpRegistrationData> registration_datas = domi::OpRegistry::Instance()->registrationDatas; | |||
GELOGI("The size of registration_datas is: %zu", registration_datas.size()); | |||
for (OpRegistrationData reg_data : registration_datas) { | |||
bool ret = CheckRegisterStatus(reg_data); | |||
if (ret) { | |||
GELOGD("Begin to register optype: %s, imply_type: %u", reg_data.GetOmOptype().c_str(), | |||
static_cast<uint32_t>(reg_data.GetImplyType())); | |||
domi::OpRegistry::Instance()->Register(reg_data); | |||
} | |||
GELOGD("Begin to register optype: %s, imply_type: %u", reg_data.GetOmOptype().c_str(), | |||
static_cast<uint32_t>(reg_data.GetImplyType())); | |||
domi::OpRegistry::Instance()->Register(reg_data); | |||
} | |||
} | |||
@@ -230,31 +227,6 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY void TBEPluginManager::LoadPlug | |||
} | |||
} | |||
bool TBEPluginManager::CheckRegisterStatus(const OpRegistrationData ®_data) { | |||
bool ret = true; | |||
static char *parser_priority = std::getenv("PARSER_PRIORITY"); | |||
static bool keep_cce = parser_priority != nullptr && string(parser_priority) == "cce"; | |||
auto ori_optype_set = reg_data.GetOriginOpTypeSet(); | |||
for (const auto &op_type : ori_optype_set) { | |||
domi::ImplyType imply_type = domi::OpRegistry::Instance()->GetImplyTypeByOriOpType(op_type); | |||
GELOGD("Enter into reg_data loop. op_type = %s , om_optype_ = %s", op_type.c_str(), reg_data.GetOmOptype().c_str()); | |||
if (imply_type != domi::ImplyType::BUILDIN) { | |||
if ((keep_cce && reg_data.GetImplyType() != domi::ImplyType::CCE) || | |||
(!keep_cce && reg_data.GetImplyType() != domi::ImplyType::TVM)) { | |||
GELOGD("op_type[%s] does not need to be changed, om_optype:%s.", op_type.c_str(), | |||
reg_data.GetOmOptype().c_str()); | |||
ret = false; | |||
} else { | |||
GELOGI("op_type[%s] will be changed to om_optype:%s.", op_type.c_str(), reg_data.GetOmOptype().c_str()); | |||
} | |||
} else { | |||
GELOGD("First register in ge initialize, original type: %s, om_optype: %s, imply type: %d.", op_type.c_str(), | |||
reg_data.GetOmOptype().c_str(), static_cast<int>(reg_data.GetImplyType())); | |||
} | |||
} | |||
return ret; | |||
} | |||
Status TBEPluginManager::CheckCustomAiCpuOpLib() { | |||
std::vector<std::string> vec_op_type; | |||
@@ -63,7 +63,6 @@ class TBEPluginManager { | |||
static void GetCustomOpPath(std::string &customop_path); | |||
void LoadCustomOpLib(); | |||
static Status CheckCustomAiCpuOpLib(); | |||
static bool CheckRegisterStatus(const OpRegistrationData ®_data); | |||
SoHandlesVec handles_vec_; | |||
static std::map<string, string> options_; | |||
@@ -184,7 +184,8 @@ ModelHelper::SaveOriginalGraphToOmModel(const ge::Graph &graph, const std::strin | |||
// Model | |||
ModelPtr model_ptr = ge::MakeShared<ge::Model>(); | |||
GE_CHECK_NOTNULL_EXEC(model_ptr, return MEMALLOC_FAILED); | |||
model_ptr->SetName(compute_graph->GetName()); | |||
std::string original_model_name = compute_graph->GetName() + "_original"; | |||
model_ptr->SetName(original_model_name); | |||
model_ptr->SetGraph(graph); | |||
model_ptr->SetVersion(static_cast<uint32_t>(OM_PROTO_VERSION)); | |||
string framework_version; | |||
@@ -504,4 +505,36 @@ Status ModelHelper::ReleaseLocalModelData() noexcept { | |||
} | |||
return result; | |||
} | |||
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status ModelHelper::GetBaseNameFromFileName(const string &file_name, | |||
string &base_name) { | |||
GELOGD("Get base_name from file, file_name:%s", file_name.c_str()); | |||
GE_CHK_BOOL_EXEC_WARN(!file_name.empty(), return FAILED, "File path may not valid, check params --output"); | |||
size_t start_position = 0; | |||
// using output as base_name (ignore ".om") | |||
size_t filename_suffixes = 3; | |||
if (file_name.find_last_of('/') != string::npos) { | |||
start_position = file_name.find_last_of('/') + 1; | |||
} | |||
size_t end_position = file_name.length() - filename_suffixes; | |||
base_name = file_name.substr(start_position, end_position - start_position); | |||
GE_CHK_BOOL_EXEC_WARN(!base_name.empty(), return FAILED, "Get base_name failed, check params --output"); | |||
return SUCCESS; | |||
} | |||
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status | |||
ModelHelper::GetModelNameFromMergedGraphName(const string &graph_name, string &model_name) { | |||
GELOGD("Get model_name from graph_name, graph_name:%s", graph_name.c_str()); | |||
// this can only be used after merged graph(graph name will be append with "_x", x is index); | |||
GE_CHK_BOOL_EXEC_WARN(!graph_name.empty(), return FAILED, "File path may not valid, check params --output"); | |||
size_t start_position = 0; | |||
size_t end_position = graph_name.length(); | |||
// using graph as model_name (ignore "_x", x is the index of graph) | |||
if (graph_name.find_last_of('_') != string::npos) { | |||
end_position = graph_name.find_last_of('_'); | |||
} | |||
model_name = graph_name.substr(start_position, end_position); | |||
GE_CHK_BOOL_EXEC_WARN(!model_name.empty(), return FAILED, "Get model_name failed, check params --output"); | |||
return SUCCESS; | |||
} | |||
} // namespace ge |
@@ -15,7 +15,7 @@ | |||
*/ | |||
#include "common/model_parser/base.h" | |||
#include "common/helper/model_helper.h" | |||
#include <securec.h> | |||
#include <sys/sysinfo.h> | |||
#include <fstream> | |||
@@ -61,7 +61,8 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status ModelParserBase::LoadFro | |||
// read data as a block: | |||
(void)fs.read(data, len); | |||
ModelHelper model_helper; | |||
model_helper.GetBaseNameFromFileName(model_path, model_data.om_name); | |||
// Set the model data parameter | |||
model_data.model_data = data; | |||
model_data.model_len = len; | |||
@@ -16,15 +16,12 @@ | |||
#include "common/profiling/profiling_manager.h" | |||
#include <nlohmann/json.hpp> | |||
#include "framework/common/debug/ge_log.h" | |||
#include "framework/common/debug/log.h" | |||
#include "framework/common/string_util.h" | |||
#include "graph/ge_context.h" | |||
#include "runtime/base.h" | |||
using Json = nlohmann::json; | |||
namespace { | |||
const char *const kJobID = "jobID"; | |||
const char *const kDeviceID = "deviceID"; | |||
@@ -35,6 +32,7 @@ const char *const kEvents = "events"; | |||
const char *const kAiCoreEvents = "ai_core_events"; | |||
const char *const kName = "name"; | |||
const char *const kTraceID = "traceId"; | |||
const char *const kProfDir = "resultPath"; | |||
const size_t kReportMaxLen = 2048; | |||
} // namespace | |||
@@ -100,6 +98,10 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ge::Status ProfilingManager::In | |||
Json start_prof_conf = Json::parse(config); | |||
Json &prof_conf = start_prof_conf[kStartCfg][0]; | |||
job_id_ = prof_conf[kJobID]; | |||
auto iter = prof_conf.find(kProfDir); | |||
if (iter != prof_conf.end()) { | |||
prof_dir_ = prof_conf[kProfDir]; | |||
} | |||
Json &device_id = prof_conf[kDeviceID]; | |||
if (device_id.size() != 0) { | |||
vector<int32_t>().swap(device_id_); | |||
@@ -126,23 +128,36 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ge::Status ProfilingManager::In | |||
} | |||
} | |||
GELOGI("Profiling json config from acl:%s", config.c_str()); | |||
Json &features = prof_conf[kFeatures]; | |||
if (ParseFeaturesFromAclCfg(features) != SUCCESS) { | |||
GELOGE(FAILED, "Parse feature from acl cfg failed."); | |||
return FAILED; | |||
} | |||
is_profiling_ = true; | |||
} catch (...) { | |||
GELOGE(FAILED, "Json conf is not invalid !"); | |||
return ge::PARAM_INVALID; | |||
} | |||
#endif | |||
return ge::SUCCESS; | |||
} | |||
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ge::Status ProfilingManager::ParseFeaturesFromAclCfg( | |||
const Json &features) { | |||
#ifdef DAVINCI_SUPPORT_PROFILING | |||
try { | |||
for (size_t i = 0; i < features.size(); ++i) { | |||
Json &feature = features[i]; | |||
const Json &feature = features[i]; | |||
if ((feature.find(kName) == feature.end()) || feature[kName].is_null()) { | |||
continue; | |||
} | |||
const std::string &name = feature[kName]; | |||
if (name == "op_trace") { | |||
GELOGI("Op trace config from acl"); | |||
Json &conf = feature[kConf]; | |||
Json &events = conf[0][kEvents]; | |||
const Json &conf = feature[kConf]; | |||
const Json &events = conf[0][kEvents]; | |||
const std::string &ai_core_events = events[0][kAiCoreEvents]; | |||
GELOGI("Op trace config from acl ai_core_events:%s", ai_core_events.c_str()); | |||
is_op_trace_ = true; | |||
// op trace get conf | |||
ProfMgrConf prof_mgr_conf; | |||
int result = ProfMgrGetConf(ai_core_events, &prof_mgr_conf); | |||
if (result != 0) { | |||
@@ -154,10 +169,16 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ge::Status ProfilingManager::In | |||
GELOGI("Op trace profiling iter num %d,", op_trace_iter_num_); | |||
} else if (name == "task_trace") { | |||
is_op_trace_ = false; | |||
if (feature.find(kConf) != feature.end()) { | |||
const Json &conf = feature[kConf]; | |||
std::stringstream task_trace_conf; | |||
task_trace_conf << conf; | |||
task_trace_conf_ = task_trace_conf.str(); | |||
} | |||
GELOGI("Task trace config from acl"); | |||
} else if (name == "system_trace") { | |||
is_op_trace_ = false; | |||
Json &conf = feature[kConf]; | |||
const Json &conf = feature[kConf]; | |||
std::stringstream system_trace_conf; | |||
system_trace_conf << conf; | |||
system_trace_conf_ = system_trace_conf.str(); | |||
@@ -165,10 +186,8 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ge::Status ProfilingManager::In | |||
} | |||
profiling_opts_.push_back(name); | |||
} | |||
is_profiling_ = true; | |||
} catch (...) { | |||
GELOGE(FAILED, "Json conf is not invalid !"); | |||
GELOGE(ge::PARAM_INVALID, "Json conf feature is not invalid !"); | |||
return ge::PARAM_INVALID; | |||
} | |||
#endif | |||
@@ -235,6 +254,10 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ge::Status ProfilingManager::St | |||
p_device[kDeviceID] = std::to_string(device_id); | |||
p_device[kJobID] = job_id_; | |||
p_device[kTraceID] = std::to_string(GetContext().TraceId()); | |||
if (!prof_dir_.empty()) { | |||
p_device[kProfDir] = prof_dir_; | |||
GELOGI("Prof dir: %s.", prof_dir_.c_str()); | |||
} | |||
Json features; | |||
if (is_op_trace_) { | |||
@@ -258,6 +281,10 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ge::Status ProfilingManager::St | |||
Json f; | |||
if (profiling_opts_[i] == "system_trace") { | |||
f[kConf] = nlohmann::json::parse(system_trace_conf_); | |||
} else if (profiling_opts_[i] == "task_trace") { | |||
if (!task_trace_conf_.empty()) { | |||
f[kConf] = nlohmann::json::parse(task_trace_conf_); | |||
} | |||
} | |||
f[kName] = profiling_opts_[i]; | |||
features[i] = f; | |||
@@ -292,6 +319,7 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ge::Status ProfilingManager::St | |||
GELOGW("ProfMgrStartUp failed."); | |||
return FAILED; | |||
} | |||
GELOGD("StartProfiling, prof_handle: %p", prof_handle); | |||
prof_handle_vec_.push_back(prof_handle); | |||
} | |||
#endif | |||
@@ -314,8 +342,7 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY void ProfilingManager::StopProf | |||
for (size_t i = 0; i < prof_handle_vec_.size(); ++i) { | |||
int result = ProfMgrStop(prof_handle_vec_[i]); | |||
if (result != 0) { | |||
GELOGW("ProfMgr stop return fail:%d.", result); | |||
return; | |||
GELOGW("ProfMgr stop return fail:%d, handle:%p", result, prof_handle_vec_[i]); | |||
} | |||
} | |||
vector<void *>().swap(prof_handle_vec_); | |||
@@ -17,6 +17,7 @@ | |||
#ifndef GE_COMMON_PROFILING_PROFILING_MANAGER_H_ | |||
#define GE_COMMON_PROFILING_PROFILING_MANAGER_H_ | |||
#include <nlohmann/json.hpp> | |||
#include <map> | |||
#include <string> | |||
#include <vector> | |||
@@ -30,6 +31,7 @@ | |||
using std::map; | |||
using std::string; | |||
using std::vector; | |||
using Json = nlohmann::json; | |||
namespace ge { | |||
const std::string GE_PROFILING_MODULE = "Framework"; | |||
@@ -84,11 +86,13 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ProfilingManager { | |||
void PluginUnInit(const std::string &module) const; | |||
private: | |||
ge::Status ParseFeaturesFromAclCfg(const Json &feature); | |||
bool is_profiling_ = false; | |||
bool is_op_trace_ = false; | |||
bool is_load_ = false; | |||
int32_t op_trace_iter_num_ = 0; | |||
string job_id_; | |||
string prof_dir_; | |||
vector<int32_t> device_id_; | |||
vector<string> op_trace_conf_; | |||
vector<string> profiling_opts_; | |||
@@ -96,6 +100,7 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ProfilingManager { | |||
string recv_profiling_config_; | |||
string send_profiling_config_; | |||
string system_trace_conf_; | |||
string task_trace_conf_; | |||
const ProfilingEngineImpl engine_; | |||
}; | |||
} // namespace ge | |||
@@ -208,6 +208,7 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY std::set<std::string> Propertie | |||
} | |||
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY bool PropertiesManager::IsLayerNeedDump(const std::string &model, | |||
const std::string &om_name, | |||
const std::string &op_name) { | |||
std::lock_guard<std::mutex> lock(dump_mutex_); | |||
// if dump all | |||
@@ -216,9 +217,11 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY bool PropertiesManager::IsLayer | |||
} | |||
// if this model need dump | |||
auto model_iter = model_dump_properties_map_.find(model); | |||
if (model_iter != model_dump_properties_map_.end()) { | |||
auto om_name_iter = model_dump_properties_map_.find(om_name); | |||
auto model_name_iter = model_dump_properties_map_.find(model); | |||
if (om_name_iter != model_dump_properties_map_.end() || model_name_iter != model_dump_properties_map_.end()) { | |||
// if no dump layer info, dump all layer in this model | |||
auto model_iter = om_name_iter != model_dump_properties_map_.end() ? om_name_iter : model_name_iter; | |||
if (model_iter->second.empty()) { | |||
return true; | |||
} | |||
@@ -84,7 +84,7 @@ class PropertiesManager { | |||
void AddDumpPropertyValue(const std::string &model, const std::set<std::string> &layers); | |||
std::set<std::string> GetAllDumpModel(); | |||
std::set<std::string> GetDumpPropertyValue(const std::string &model); | |||
bool IsLayerNeedDump(const std::string &model, const std::string &op_name); | |||
bool IsLayerNeedDump(const std::string &model, const std::string &om_name, const std::string &op_name); | |||
void DeleteDumpPropertyValue(const std::string &model); | |||
void ClearDumpPropertyValue(); | |||
bool QueryModelDumpStatus(const std::string &model); | |||
@@ -452,7 +452,7 @@ Status GeExecutor::RunModel(const ge::RunModelData &input_data, ge::RunModelData | |||
// Get input and output descriptor | |||
Status GeExecutor::GetModelDescInfo(uint32_t model_id, std::vector<ge::TensorDesc> &input_desc, | |||
std::vector<ge::TensorDesc> &output_desc) { | |||
std::vector<ge::TensorDesc> &output_desc, bool new_model_desc) { | |||
GELOGI("get model desc info begin."); | |||
if (!isInit_) { | |||
GELOGE(GE_EXEC_NOT_INIT, "GeExecutor has not been initialized!"); | |||
@@ -464,8 +464,8 @@ Status GeExecutor::GetModelDescInfo(uint32_t model_id, std::vector<ge::TensorDes | |||
std::vector<uint32_t> input_formats; | |||
std::vector<uint32_t> output_formats; | |||
Status ret = | |||
GraphExecutor::GetInputOutputDescInfo(model_id, input_desc_infos, output_desc_infos, input_formats, output_formats); | |||
Status ret = GraphExecutor::GetInputOutputDescInfo(model_id, input_desc_infos, output_desc_infos, input_formats, | |||
output_formats, new_model_desc); | |||
if (ret != domi::SUCCESS) { | |||
GELOGE(ret, "GetInputOutputDescInfo failed. ret = %u", ret); | |||
return TransferDomiErrorCode(ret); | |||
@@ -641,7 +641,6 @@ Status GeExecutor::LoadDataFromFile(const std::string &path, ModelData &model_da | |||
model_data.model_data = nullptr; | |||
} | |||
} | |||
return ret; | |||
} | |||
@@ -1,5 +1,5 @@ | |||
LOCAL_PATH := $(call my-dir) | |||
include $(LOCAL_PATH)/stub/Makefile | |||
COMMON_LOCAL_SRC_FILES := \ | |||
proto/fusion_model.proto \ | |||
proto/optimizer_priority.proto \ | |||
@@ -355,6 +355,28 @@ LOCAL_LDFLAGS := -lrt -ldl | |||
include $(BUILD_HOST_SHARED_LIBRARY) | |||
#compiler for host infer | |||
include $(CLEAR_VARS) | |||
LOCAL_MODULE := stub/libge_compiler | |||
LOCAL_CFLAGS += -DPROTOBUF_INLINE_NOT_IN_HEADERS=0 -DREUSE_MEMORY=1 -O2 | |||
LOCAL_CFLAGS += -DFMK_HOST_INFER -DFMK_SUPPORT_DUMP | |||
ifeq ($(DEBUG), 1) | |||
LOCAL_CFLAGS += -g -O0 | |||
endif | |||
LOCAL_C_INCLUDES := $(COMMON_LOCAL_C_INCLUDES) | |||
LOCAL_SRC_FILES := ../../out/atc/lib64/stub/ge_ir_build.cc | |||
LOCAL_SHARED_LIBRARIES := | |||
LOCAL_LDFLAGS := -lrt -ldl | |||
include $(BUILD_HOST_SHARED_LIBRARY) | |||
#compiler for device | |||
include $(CLEAR_VARS) | |||
@@ -131,6 +131,7 @@ Status HostCpuEngine::RunInternal(const ge::OpDescPtr &op_desc, HostCpuOp &op_ke | |||
GELOGE(FAILED, "Failed to compute host cpu op. node = %s, ret = %u", op_desc->GetName().c_str(), ret); | |||
return FAILED; | |||
} | |||
op.BreakConnect(); | |||
return SUCCESS; | |||
} | |||
@@ -20,6 +20,7 @@ | |||
#include "common/helper/model_helper.h" | |||
#include "common/helper/om_file_helper.h" | |||
#include "common/util.h" | |||
#include "common/util/error_manager/error_manager.h" | |||
#include "framework/common/debug/ge_log.h" | |||
#include "ge/ge_api.h" | |||
#include "graph/ge_context.h" | |||
@@ -125,17 +126,7 @@ static Status AddInputs(const ComputeGraphPtr &graph, const NodePtr &node, GeTen | |||
if (data_op == nullptr) { | |||
return FAILED; | |||
} | |||
auto op_desc = node->GetOpDesc(); | |||
GE_CHECK_NOTNULL_EXEC(op_desc, return PARAM_INVALID); | |||
auto input_desc = op_desc->MutableInputDesc(index); | |||
GE_CHECK_NOTNULL_EXEC(input_desc, return PARAM_INVALID); | |||
ge::Format old_format = input_desc->GetFormat(); | |||
if (old_format == FORMAT_FRACTAL_NZ || old_format == FORMAT_FRACTAL_Z) { | |||
input_desc->SetFormat(FORMAT_ND); | |||
input_desc->SetOriginFormat(FORMAT_ND); | |||
(void)AttrUtils::SetStr(data_op, "_single_input_format", TypeUtils::FormatToSerialString(old_format)); | |||
(void)AttrUtils::SetBool(data_op, "_is_single_op", true); | |||
} | |||
(void)AttrUtils::SetBool(data_op, "_is_single_op", true); | |||
GE_CHK_BOOL_EXEC(data_op->AddInputDesc(tensor) == GRAPH_SUCCESS, return FAILED, "Add input desc fail."); | |||
GE_CHK_BOOL_EXEC(data_op->AddOutputDesc(tensor) == GRAPH_SUCCESS, return FAILED, "Add output desc fail."); | |||
@@ -157,17 +148,7 @@ static Status AddOutputs(const ComputeGraphPtr &graph, const NodePtr &node, cons | |||
if (op_desc == nullptr) { | |||
return FAILED; | |||
} | |||
auto single_op_desc = node->GetOpDesc(); | |||
GE_CHECK_NOTNULL_EXEC(single_op_desc, return PARAM_INVALID); | |||
auto output_desc = single_op_desc->MutableOutputDesc(0); | |||
GE_CHECK_NOTNULL_EXEC(output_desc, return PARAM_INVALID); | |||
ge::Format old_format = output_desc->GetFormat(); | |||
if (old_format == FORMAT_FRACTAL_NZ || old_format == FORMAT_FRACTAL_Z) { | |||
output_desc->SetFormat(FORMAT_ND); | |||
output_desc->SetOriginFormat(FORMAT_ND); | |||
(void)AttrUtils::SetStr(op_desc, "_single_output_format", TypeUtils::FormatToSerialString(old_format)); | |||
(void)AttrUtils::SetBool(op_desc, "_is_single_op", true); | |||
} | |||
(void)AttrUtils::SetBool(op_desc, "_is_single_op", true); | |||
int32_t count = 0; | |||
for (const auto &out_desc : outputs) { | |||
GeTensorDesc tensor = out_desc.GetTensorDesc(); | |||
@@ -212,19 +193,6 @@ static void GetOpsProtoPath(string &opsproto_path) { | |||
opsproto_path = (path_base + "ops/op_proto/custom/" + ":") + (path_base + "ops/op_proto/built-in/"); | |||
} | |||
static string GetModelNameFromFileName(const string &file_name_prefix) { | |||
int start_position = 0; | |||
// using output as model_name (ignore ".om") | |||
int filename_suffixes = 3; | |||
if (file_name_prefix.find_last_of('/') != string::npos) { | |||
start_position += 1; | |||
} | |||
int end_position = file_name_prefix.length() - filename_suffixes; | |||
string model_name = file_name_prefix.substr(start_position, end_position - start_position); | |||
GELOGI("Get model_name from file, model_name:%s", model_name.c_str()); | |||
return model_name; | |||
} | |||
class GeGenerator::Impl { | |||
public: | |||
Status BuildModel(const Graph &graph, const vector<GeTensor> &inputs, GraphId &graph_id, GeRootModelPtr &ge_models); | |||
@@ -332,8 +300,6 @@ Status GeGenerator::GenerateModel(const Graph &graph, const string &file_name_pr | |||
GraphId graph_id; | |||
GeRootModelPtr ge_root_model = nullptr; | |||
GE_CHECK_NOTNULL_EXEC(impl_, return PARAM_INVALID); | |||
const string model_name = GetModelNameFromFileName(file_name_prefix); | |||
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(model_name.empty(), return PARAM_INVALID, "om name is not valid!"); | |||
impl_->is_offline_ = is_offline; | |||
Status ret = impl_->BuildModel(graph, inputs, graph_id, ge_root_model); | |||
if (ret != SUCCESS) { | |||
@@ -345,9 +311,15 @@ Status GeGenerator::GenerateModel(const Graph &graph, const string &file_name_pr | |||
} | |||
GE_CHECK_NOTNULL(ge_root_model); | |||
GE_CHECK_NOTNULL(ge_root_model->GetRootGraph()); | |||
ModelHelper model_helper; | |||
string model_name = ""; | |||
Status name_ret = model_helper.GetModelNameFromMergedGraphName(ge_root_model->GetRootGraph()->GetName(), model_name); | |||
if (name_ret != SUCCESS) { | |||
GELOGE(FAILED, "Get model_name failed. Param --output is invalid"); | |||
return PARAM_INVALID; | |||
} | |||
map<string, GeModelPtr> name_to_ge_model = ge_root_model->GetSubgraphInstanceNameToModel(); | |||
GeModelPtr &ge_model = name_to_ge_model[ge_root_model->GetRootGraph()->GetName()]; | |||
GE_RETURN_WITH_LOG_IF_FALSE(ge_model != nullptr, "ge_model can not be null"); | |||
ge_model->SetName(model_name); | |||
ret = impl_->SaveModel(file_name_prefix, ge_model, model); | |||
@@ -38,6 +38,7 @@ | |||
namespace { | |||
const char *const kAttrNameWorkspaceReuseFlag = "workspace_reuse_flag"; | |||
const char *const kL2FusionDynamicConvergeOp = "l2fusion_dynamic_converge_op"; | |||
const char *const kOpNoReuseMem = "no_reuse_mem_flag"; | |||
const char *const kDisableReuseMemory = "ge.exec.disableReuseMemory"; | |||
const char *const OP_NO_REUSE_MEM = "OP_NO_REUSE_MEM"; | |||
const int kReuseMaxCount = 10; | |||
@@ -624,8 +625,8 @@ MemoryBlock *BlockMemAssigner::ApplyMemory(size_t block_size, size_t real_size, | |||
(void)ge::GetContext().GetOption(kDisableReuseMemory, ge_disable_reuse_mem_env); | |||
if (ge_disable_reuse_mem_env != "1") { | |||
bool reuse_mem_flag = !((workspace_reuse_flag.size() > out_index) && !workspace_reuse_flag[out_index]); | |||
is_reuse_memory = !node_op_desc->HasAttr(kL2FusionDynamicConvergeOp) && reuse_mem_flag && is_op_reuse_mem && | |||
(IsPreReuse(n, out_index)); | |||
is_reuse_memory = !node_op_desc->HasAttr(kL2FusionDynamicConvergeOp) && !node_op_desc->HasAttr(kOpNoReuseMem) && | |||
reuse_mem_flag && is_op_reuse_mem && (IsPreReuse(n, out_index)); | |||
auto stream_id = node_op_desc->GetStreamId(); | |||
auto map_iter = reusable_streams_map_.find(stream_id); | |||
if (is_reuse_memory && map_iter != reusable_streams_map_.end()) { | |||
@@ -1182,6 +1183,9 @@ void ReAssignContinuousBlocks(const std::vector<MemoryBlock *> &org_blocks, | |||
GELOGI("Block continuous input index:%d", memory_block->input_index_); | |||
count++; | |||
if (count == 1) { | |||
memory_block->first_continuous_block_ = true; | |||
} | |||
if (count == continuous_blocks.size()) { | |||
memory_block->last_continuous_block_ = true; | |||
} | |||
@@ -1242,6 +1246,10 @@ void BlockMemAssigner::ResizeMemoryBlocks() { | |||
if (memory_block == nullptr || memory_block->deleted_block_ || memory_block->is_zero_copy_) { | |||
continue; | |||
} | |||
if (memory_block->first_continuous_block_) { | |||
mem_offset_ += MEM_ALIGN_SIZE; | |||
} | |||
memory_block->Resize(); | |||
memory_block->SetHeadOffset(mem_offset_); | |||
mem_offset_ += memory_block->Size(); | |||
@@ -64,6 +64,7 @@ class MemoryBlock { | |||
reuse_mem_(reuse_mem), | |||
input_index_(0), | |||
continuous_block_(false), | |||
first_continuous_block_(false), | |||
last_continuous_block_(false), | |||
is_zero_copy_(false), | |||
block_size_(block_size), | |||
@@ -129,6 +130,7 @@ class MemoryBlock { | |||
bool reuse_mem_; | |||
uint32_t input_index_; | |||
bool continuous_block_; | |||
bool first_continuous_block_; | |||
bool last_continuous_block_; | |||
bool is_zero_copy_; | |||
std::map<int64_t, size_t> depend_stream_life_; | |||
@@ -446,6 +446,7 @@ Status GraphMemoryAssigner::AssignContinuousOutputMemory(const ge::NodePtr &node | |||
return ge::FAILED; | |||
} | |||
memory_offset_[0].mem_offset_ += MEM_ALIGN_SIZE; | |||
for (auto &out_data_anchor : node->GetAllOutDataAnchors()) { | |||
output_list[out_data_anchor->GetIdx()] = memory_offset_[0].mem_offset_; | |||
size_t pre_mem_offset = memory_offset_[0].mem_offset_; | |||
@@ -450,11 +450,13 @@ Status GraphExecutor::GetInputOutputDescInfo(const uint32_t model_id, vector<Inp | |||
Status GraphExecutor::GetInputOutputDescInfo(const uint32_t model_id, vector<InputOutputDescInfo> &input_desc, | |||
vector<InputOutputDescInfo> &output_desc, | |||
std::vector<uint32_t> &input_formats, std::vector<uint32_t> &out_formats) { | |||
std::vector<uint32_t> &input_formats, std::vector<uint32_t> &out_formats, | |||
bool new_model_desc) { | |||
try { | |||
auto model_manager = ge::ModelManager::GetInstance(); | |||
GE_CHECK_NOTNULL(model_manager); | |||
Status ret = model_manager->GetInputOutputDescInfo(model_id, input_desc, output_desc, input_formats, out_formats); | |||
Status ret = model_manager->GetInputOutputDescInfo(model_id, input_desc, output_desc, input_formats, out_formats, | |||
new_model_desc); | |||
if (ret != SUCCESS) { | |||
GELOGE(ret, "GetInputOutputDescInfo failed."); | |||
CsaInteract::GetInstance().WriteErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC); | |||
@@ -71,7 +71,7 @@ class GraphExecutor { | |||
static Status GetInputOutputDescInfo(const uint32_t model_id, vector<InputOutputDescInfo> &input_desc, | |||
vector<InputOutputDescInfo> &output_desc, std::vector<uint32_t> &input_formats, | |||
std::vector<uint32_t> &output_formats); | |||
std::vector<uint32_t> &output_formats, bool new_model_desc = false); | |||
static Status GetAIPPInfo(uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info); | |||
@@ -21,6 +21,7 @@ | |||
#include <utility> | |||
#include <vector> | |||
#include "common/debug/log.h" | |||
#include "common/properties_manager.h" | |||
#include "framework/common/debug/ge_log.h" | |||
#include "framework/common/util.h" | |||
@@ -28,6 +29,7 @@ | |||
#include "graph/debug/ge_attr_define.h" | |||
#include "graph/load/new_model_manager/model_utils.h" | |||
#include "graph/utils/attr_utils.h" | |||
#include "graph/utils/tensor_utils.h" | |||
#include "proto/ge_ir.pb.h" | |||
#include "proto/op_mapping_info.pb.h" | |||
#include "runtime/mem.h" | |||
@@ -106,6 +108,7 @@ void DataDumper::SetLoopAddr(void *global_step, void *loop_per_iter, void *loop_ | |||
} | |||
void DataDumper::SaveDumpInput(const std::shared_ptr<Node> &node) { | |||
GELOGI("Start to save data %s message", node->GetName().c_str()); | |||
if (node != nullptr) { | |||
auto input_op_desc = node->GetOpDesc(); | |||
if (input_op_desc == nullptr) { | |||
@@ -126,6 +129,7 @@ void DataDumper::SaveDumpInput(const std::shared_ptr<Node> &node) { | |||
{op_desc->GetName(), {input_op_desc, dst_in_data_anchor->GetIdx(), out_data_anchor->GetIdx()}}); | |||
} | |||
} | |||
GELOGI("Save data message successfully"); | |||
} | |||
} | |||
@@ -159,30 +163,39 @@ void DataDumper::SaveDumpTask(uint32_t task_id, uint32_t stream_id, const std::s | |||
return; | |||
} | |||
GELOGI("Save input dump task %s, id: %u.", data_op->GetName().c_str(), task_id); | |||
int64_t data_size = 0; | |||
if (AttrUtils::GetInt(input_tensor, ATTR_NAME_INPUT_ORIGIN_SIZE, data_size)) { | |||
GELOGI("Get aipp data size according to attr is %ld", data_size); | |||
} else if (TensorUtils::GetTensorSizeInBytes(*input_tensor, data_size) != SUCCESS) { | |||
GELOGE(PARAM_INVALID, "Get input size filed"); | |||
return; | |||
} | |||
GELOGI("Save input dump task %s, id: %u,stream id :%u,data size :%ld", data_op->GetName().c_str(), task_id, | |||
stream_id, data_size); | |||
op_list_.push_back({task_id, stream_id, data_op, args, false, inner_input_mapping.input_anchor_index, | |||
inner_input_mapping.output_anchor_index, input_tensor->GetShape().GetDims()}); | |||
inner_input_mapping.output_anchor_index, input_tensor->GetShape().GetDims(), data_size}); | |||
} | |||
} | |||
static void SetOpMappingLoopAddr(uintptr_t step_id, uintptr_t loop_per_iter, uintptr_t loop_cond, | |||
aicpu::dump::OpMappingInfo &op_mapping_info) { | |||
if (step_id != 0) { | |||
GELOGI("step_id exist."); | |||
GELOGI("step_id exists."); | |||
op_mapping_info.set_step_id_addr(static_cast<uint64_t>(step_id)); | |||
} else { | |||
GELOGI("step_id is null."); | |||
} | |||
if (loop_per_iter != 0) { | |||
GELOGI("loop_per_iter exist."); | |||
GELOGI("loop_per_iter exists."); | |||
op_mapping_info.set_iterations_per_loop_addr(static_cast<uint64_t>(loop_per_iter)); | |||
} else { | |||
GELOGI("loop_per_iter is null."); | |||
} | |||
if (loop_cond != 0) { | |||
GELOGI("loop_cond exist."); | |||
GELOGI("loop_cond exists."); | |||
op_mapping_info.set_loop_cond_addr(static_cast<uint64_t>(loop_cond)); | |||
} else { | |||
GELOGI("loop_cond is null."); | |||
@@ -211,10 +224,19 @@ Status DataDumper::DumpOutput(const InnerDumpInfo &inner_dump_info, aicpu::dump: | |||
output.mutable_shape()->add_dim(dim); | |||
} | |||
int64_t output_size = 0; | |||
if (TensorUtils::GetTensorSizeInBytes(output_descs.at(i), output_size) != SUCCESS) { | |||
GELOGE(PARAM_INVALID, "Get output size filed"); | |||
return PARAM_INVALID; | |||
} | |||
GELOGI("Get output size in dump is %ld", output_size); | |||
std::string origin_name; | |||
int32_t origin_output_index = -1; | |||
(void)AttrUtils::GetStr(&output_descs.at(i), ATTR_NAME_DATA_DUMP_ORIGIN_NAME, origin_name); | |||
(void)AttrUtils::GetInt(&output_descs.at(i), ATTR_NAME_DATA_DUMP_ORIGIN_OUTPUT_INDEX, origin_output_index); | |||
GE_IF_BOOL_EXEC(output_size <= 0, GELOGE(PARAM_INVALID, "Output size %ld is less than zero", output_size); | |||
return PARAM_INVALID) | |||
output.set_size(output_size); | |||
output.set_original_name(origin_name); | |||
output.set_original_output_index(origin_output_index); | |||
output.set_original_output_format(static_cast<int32_t>(output_descs.at(i).GetOriginFormat())); | |||
@@ -247,6 +269,10 @@ Status DataDumper::DumpOutput(const InnerDumpInfo &inner_dump_info, aicpu::dump: | |||
int32_t origin_output_index = -1; | |||
(void)AttrUtils::GetStr(output_tensor, ATTR_NAME_DATA_DUMP_ORIGIN_NAME, origin_name); | |||
(void)AttrUtils::GetInt(output_tensor, ATTR_NAME_DATA_DUMP_ORIGIN_OUTPUT_INDEX, origin_output_index); | |||
GE_IF_BOOL_EXEC(inner_dump_info.data_size <= 0, | |||
GELOGE(PARAM_INVALID, "The size of data %ld is less than zero", inner_dump_info.data_size); | |||
return PARAM_INVALID) | |||
output.set_size(inner_dump_info.data_size); | |||
output.set_original_name(origin_name); | |||
output.set_original_output_index(origin_output_index); | |||
output.set_original_output_format(static_cast<int32_t>(output_tensor->GetOriginFormat())); | |||
@@ -283,6 +309,17 @@ Status DataDumper::DumpInput(const InnerDumpInfo &inner_dump_info, aicpu::dump:: | |||
input.mutable_shape()->add_dim(dim); | |||
} | |||
int64_t input_size = 0; | |||
if (AttrUtils::GetInt(&input_descs.at(i), ATTR_NAME_INPUT_ORIGIN_SIZE, input_size)) { | |||
GELOGI("Get aipp input size according to attr is %ld", input_size); | |||
} else if (TensorUtils::GetTensorSizeInBytes(input_descs.at(i), input_size) != SUCCESS) { | |||
GELOGE(PARAM_INVALID, "Get input size filed"); | |||
return PARAM_INVALID; | |||
} | |||
GELOGI("Get input size in dump is %ld", input_size); | |||
GE_IF_BOOL_EXEC(input_size <= 0, GELOGE(PARAM_INVALID, "Input size %ld is less than zero", input_size); | |||
return PARAM_INVALID;) | |||
input.set_size(input_size); | |||
input.set_address(static_cast<uint64_t>(inner_dump_info.args + sizeof(void *) * i)); | |||
task.mutable_input()->Add(std::move(input)); | |||
} | |||
@@ -323,7 +360,7 @@ Status DataDumper::ExecuteLoadDumpInfo(aicpu::dump::OpMappingInfo &op_mapping_in | |||
} | |||
load_flag_ = true; | |||
GELOGI("LoadDumpInfo success, proto size: %zu.", proto_size); | |||
GELOGI("LoadDumpInfo success, proto size is: %zu.", proto_size); | |||
return SUCCESS; | |||
} | |||
@@ -360,11 +397,12 @@ Status DataDumper::ExecuteUnLoadDumpInfo(aicpu::dump::OpMappingInfo &op_mapping_ | |||
return RT_FAILED; | |||
} | |||
load_flag_ = false; | |||
GELOGI("UnloadDumpInfo success, proto size: %zu.", proto_size); | |||
GELOGI("UnloadDumpInfo success, proto size is: %zu.", proto_size); | |||
return SUCCESS; | |||
} | |||
Status DataDumper::LoadDumpInfo() { | |||
PrintCheckLog(); | |||
std::string dump_list_key; | |||
PrintCheckLog(dump_list_key); | |||
if (op_list_.empty()) { | |||
return SUCCESS; | |||
@@ -374,12 +412,13 @@ Status DataDumper::LoadDumpInfo() { | |||
auto dump_path = PropertiesManager::Instance().GetDumpOutputPath(); | |||
op_mapping_info.set_dump_path(PropertiesManager::Instance().GetDumpOutputPath() + std::to_string(device_id_) + "/"); | |||
op_mapping_info.set_model_name(model_name_); | |||
op_mapping_info.set_model_name(dump_list_key); | |||
op_mapping_info.set_model_id(model_id_); | |||
op_mapping_info.set_flag(kAicpuLoadFlag); | |||
op_mapping_info.set_dump_step(PropertiesManager::Instance().GetDumpStep()); | |||
SetOpMappingLoopAddr(global_step_, loop_per_iter_, loop_cond_, op_mapping_info); | |||
GELOGD("Dump step in load dump info is %s", PropertiesManager::Instance().GetDumpStep().c_str()); | |||
GELOGI("Dump step is %s and dump path is %s in load dump info", PropertiesManager::Instance().GetDumpStep().c_str(), | |||
dump_path.c_str()); | |||
for (const auto &op_iter : op_list_) { | |||
aicpu::dump::Task task; | |||
@@ -441,7 +480,7 @@ void DataDumper::SetEndGraphIdToAicpu(uint32_t task_id, uint32_t stream_id, | |||
if (PropertiesManager::Instance().GetDumpMode() == kDumpOutput || | |||
PropertiesManager::Instance().GetDumpMode() == kDumpInput || | |||
PropertiesManager::Instance().GetDumpMode() == kDumpAll) { | |||
GELOGI("add end_graph_info to aicpu, task_id is %u, stream_id is %u", end_graph_task_id_, end_graph_stream_id_); | |||
GELOGI("Add end_graph_info to aicpu, task_id is %u, stream_id is %u", end_graph_task_id_, end_graph_stream_id_); | |||
aicpu::dump::Task task; | |||
task.set_end_graph(true); | |||
task.set_task_id(end_graph_task_id_); | |||
@@ -477,7 +516,7 @@ Status DataDumper::UnloadDumpInfo() { | |||
return SUCCESS; | |||
} | |||
void DataDumper::PrintCheckLog() { | |||
void DataDumper::PrintCheckLog(string &dump_list_key) { | |||
std::set<std::string> model_list = PropertiesManager::Instance().GetAllDumpModel(); | |||
if (model_list.empty()) { | |||
GELOGI("No model need dump."); | |||
@@ -485,19 +524,21 @@ void DataDumper::PrintCheckLog() { | |||
} | |||
GELOGI("%zu op need dump in %s.", op_list_.size(), model_name_.c_str()); | |||
if (model_list.find(ge::DUMP_ALL_MODEL) == model_list.end()) { | |||
if (model_list.find(model_name_) == model_list.end()) { | |||
bool not_find_by_omname = model_list.find(om_name_) == model_list.end(); | |||
bool not_find_by_modelname = model_list.find(model_name_) == model_list.end(); | |||
if (model_list.find(DUMP_ALL_MODEL) == model_list.end()) { | |||
if (not_find_by_omname && not_find_by_modelname) { | |||
std::string model_list_str; | |||
for (auto &model : model_list) { | |||
model_list_str += "[" + model + "]."; | |||
} | |||
GELOGW("Model %s not be set to dump, dump list: %s", model_name_.c_str(), model_list_str.c_str()); | |||
GELOGW("Model %s will not be set to dump, dump list: %s", model_name_.c_str(), model_list_str.c_str()); | |||
return; | |||
} | |||
} | |||
std::set<std::string> config_dump_op_list = PropertiesManager::Instance().GetDumpPropertyValue(model_name_); | |||
dump_list_key = not_find_by_omname ? model_name_ : om_name_; | |||
std::set<std::string> config_dump_op_list = PropertiesManager::Instance().GetDumpPropertyValue(dump_list_key); | |||
std::set<std::string> dump_op_list; | |||
for (auto &inner_dump_info : op_list_) { | |||
// oplist value OpDescPtr is not nullptr | |||
@@ -506,7 +547,7 @@ void DataDumper::PrintCheckLog() { | |||
for (auto &dump_op : config_dump_op_list) { | |||
if (dump_op_list.find(dump_op) == dump_op_list.end()) { | |||
GELOGW("Op %s set to dump but not exist in model %s or not a valid op.", dump_op.c_str(), model_name_.c_str()); | |||
GELOGW("Op %s set to dump but not exist in model %s or not a valid op.", dump_op.c_str(), dump_list_key.c_str()); | |||
} | |||
} | |||
} | |||
@@ -64,6 +64,8 @@ class DataDumper { | |||
void SaveDumpTask(uint32_t task_id, uint32_t stream_id, const std::shared_ptr<OpDesc> &op_desc, uintptr_t args); | |||
void SaveEndGraphId(uint32_t task_id, uint32_t stream_id); | |||
void SetOmName(const std::string &om_name) { om_name_ = om_name; } | |||
Status LoadDumpInfo(); | |||
Status UnloadDumpInfo(); | |||
@@ -71,9 +73,13 @@ class DataDumper { | |||
private: | |||
void ReleaseDevMem(void **ptr) noexcept; | |||
void PrintCheckLog(); | |||
void PrintCheckLog(string &dump_list_key); | |||
std::string model_name_; | |||
// for inference data dump | |||
std::string om_name_; | |||
uint32_t model_id_; | |||
RuntimeParam runtime_param_; | |||
void *dev_mem_load_; | |||
@@ -107,6 +113,7 @@ struct DataDumper::InnerDumpInfo { | |||
int input_anchor_index; | |||
int output_anchor_index; | |||
std::vector<int64_t> dims; | |||
int64_t data_size; | |||
}; | |||
struct DataDumper::InnerInputMapping { | |||
@@ -78,7 +78,7 @@ namespace { | |||
const uint32_t kDataIndex = 0; | |||
const uint32_t kOutputNum = 1; | |||
const uint32_t kTrueBranchStreamNum = 1; | |||
const uint32_t kThreadNum = 16; | |||
const uint32_t kThreadNum = 1; | |||
const uint32_t kAddrLen = sizeof(void *); | |||
const char *const kNeedDestroySpecifiedAicpuKernel = "need_destroy_specified_aicpu_kernel"; | |||
const int kDecimal = 10; | |||
@@ -94,42 +94,9 @@ inline bool IsCallDumpInputOp(const OpDescPtr &op_desc) { | |||
(void)ge::AttrUtils::GetBool(op_desc, ATTR_NO_TASK_AND_DUMP_NEEDED, skip_task_generate); | |||
return skip_task_generate; | |||
} | |||
void CreateInputDimsInfo(const OpDescPtr &op_desc, Format format, InputOutputDescInfo &input) { | |||
uint32_t n, c, h, w; | |||
n = format == FORMAT_NHWC ? NHWC_DIM_N : NCHW_DIM_N; | |||
c = format == FORMAT_NHWC ? NHWC_DIM_C : NCHW_DIM_C; | |||
h = format == FORMAT_NHWC ? NHWC_DIM_H : NCHW_DIM_H; | |||
w = format == FORMAT_NHWC ? NHWC_DIM_W : NCHW_DIM_W; | |||
if (!op_desc->HasAttr(ATTR_MBATCH_ORIGIN_INPUT_DIMS)) { | |||
if (op_desc->GetInputDescPtr(0)->GetShape().GetDimNum() == static_cast<size_t>(NORMAL_TENSOR_SIZE)) { | |||
input.shape_info.num = op_desc->GetInputDescPtr(0)->GetShape().GetDim(n); | |||
input.shape_info.height = op_desc->GetInputDescPtr(0)->GetShape().GetDim(h); | |||
input.shape_info.width = op_desc->GetInputDescPtr(0)->GetShape().GetDim(w); | |||
input.shape_info.channel = op_desc->GetInputDescPtr(0)->GetShape().GetDim(c); | |||
} | |||
for (size_t k = 0; k < op_desc->GetInputDescPtr(0)->GetShape().GetDimNum(); k++) { | |||
input.shape_info.dims.push_back(op_desc->GetInputDescPtr(0)->GetShape().GetDim(k)); | |||
} | |||
} else { | |||
vector<int64_t> origin_input_dims; | |||
(void)AttrUtils::GetListInt(op_desc, ATTR_MBATCH_ORIGIN_INPUT_DIMS, origin_input_dims); | |||
if (origin_input_dims.size() == static_cast<size_t>(NORMAL_TENSOR_SIZE)) { | |||
input.shape_info.num = origin_input_dims[n]; | |||
input.shape_info.height = origin_input_dims[h]; | |||
input.shape_info.width = origin_input_dims[w]; | |||
input.shape_info.channel = origin_input_dims[c]; | |||
} | |||
for (size_t k = 0; k < origin_input_dims.size(); ++k) { | |||
input.shape_info.dims.push_back(origin_input_dims[k]); | |||
} | |||
} | |||
} | |||
} // namespace | |||
std::mutex DavinciModel::tvm_bin_mutex_; | |||
std::set<std::string> DavinciModel::tvm_bin_kernel_; | |||
DavinciModel::DavinciModel(int32_t priority, const std::shared_ptr<ModelListener> &listener) | |||
: weights_mem_base_(nullptr), | |||
@@ -536,7 +503,7 @@ Status DavinciModel::Init(void *dev_ptr, size_t mem_size, void *weight_ptr, size | |||
compute_graph_ = GraphUtils::GetComputeGraph(graph); | |||
GE_CHK_BOOL_RET_STATUS(compute_graph_ != nullptr, INTERNAL_ERROR, "Get compute graph is nullptr."); | |||
runtime_param_.graph_id = GetGraphID(compute_graph_->GetName()); | |||
runtime_param_.graph_id = compute_graph_->GetGraphID(); | |||
GE_TIMESTAMP_START(TransAllVarData); | |||
GE_CHK_STATUS_RET(TransAllVarData(compute_graph_, runtime_param_.graph_id), "TransAllVarData failed."); | |||
@@ -1447,6 +1414,55 @@ Status DavinciModel::GetInputOutputDescInfoForZeroCopy(vector<InputOutputDescInf | |||
return SUCCESS; | |||
} | |||
void DavinciModel::CreateInputDimsInfo(const OpDescPtr &op_desc, Format format, InputOutputDescInfo &input) { | |||
uint32_t n, c, h, w; | |||
n = format == FORMAT_NHWC ? NHWC_DIM_N : NCHW_DIM_N; | |||
c = format == FORMAT_NHWC ? NHWC_DIM_C : NCHW_DIM_C; | |||
h = format == FORMAT_NHWC ? NHWC_DIM_H : NCHW_DIM_H; | |||
w = format == FORMAT_NHWC ? NHWC_DIM_W : NCHW_DIM_W; | |||
if (is_new_model_desc_ && op_desc->HasAttr(ATTR_NAME_INPUT_DIMS)) { | |||
// When static aipp is set, need to get the model input dims which processed by aipp | |||
vector<int64_t> model_input_dims; | |||
(void)AttrUtils::GetListInt(op_desc, ATTR_NAME_INPUT_DIMS, model_input_dims); | |||
if (model_input_dims.size() == static_cast<size_t>(NORMAL_TENSOR_SIZE)) { | |||
input.shape_info.num = model_input_dims[n]; | |||
input.shape_info.height = model_input_dims[h]; | |||
input.shape_info.width = model_input_dims[w]; | |||
input.shape_info.channel = model_input_dims[c]; | |||
} | |||
for (size_t k = 0; k < model_input_dims.size(); ++k) { | |||
input.shape_info.dims.push_back(model_input_dims[k]); | |||
} | |||
is_new_model_desc_ = false; | |||
return; | |||
} | |||
if (!op_desc->HasAttr(ATTR_MBATCH_ORIGIN_INPUT_DIMS)) { | |||
if (op_desc->GetInputDescPtr(0)->GetShape().GetDimNum() == static_cast<size_t>(NORMAL_TENSOR_SIZE)) { | |||
input.shape_info.num = op_desc->GetInputDescPtr(0)->GetShape().GetDim(n); | |||
input.shape_info.height = op_desc->GetInputDescPtr(0)->GetShape().GetDim(h); | |||
input.shape_info.width = op_desc->GetInputDescPtr(0)->GetShape().GetDim(w); | |||
input.shape_info.channel = op_desc->GetInputDescPtr(0)->GetShape().GetDim(c); | |||
} | |||
for (size_t k = 0; k < op_desc->GetInputDescPtr(0)->GetShape().GetDimNum(); k++) { | |||
input.shape_info.dims.push_back(op_desc->GetInputDescPtr(0)->GetShape().GetDim(k)); | |||
} | |||
} else { | |||
vector<int64_t> origin_input_dims; | |||
(void)AttrUtils::GetListInt(op_desc, ATTR_MBATCH_ORIGIN_INPUT_DIMS, origin_input_dims); | |||
if (origin_input_dims.size() == static_cast<size_t>(NORMAL_TENSOR_SIZE)) { | |||
input.shape_info.num = origin_input_dims[n]; | |||
input.shape_info.height = origin_input_dims[h]; | |||
input.shape_info.width = origin_input_dims[w]; | |||
input.shape_info.channel = origin_input_dims[c]; | |||
} | |||
for (size_t k = 0; k < origin_input_dims.size(); ++k) { | |||
input.shape_info.dims.push_back(origin_input_dims[k]); | |||
} | |||
} | |||
} | |||
Status DavinciModel::GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, std::vector<uint32_t> &formats) { | |||
for (size_t index = 0; index < data_op_list_.size(); ++index) { | |||
InputOutputDescInfo input; | |||
@@ -1455,6 +1471,7 @@ Status DavinciModel::GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, s | |||
Format format = data_op_list_[index]->GetInputDescPtr(0)->GetFormat(); | |||
CreateInputDimsInfo(data_op_list_[index], format, input); | |||
input.data_type = data_op_list_[index]->GetInputDescPtr(0)->GetDataType(); | |||
input.name = data_op_list_[index]->GetName(); | |||
int64_t input_size = 0; | |||
@@ -1535,7 +1552,10 @@ Status DavinciModel::GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, | |||
"construct output_name failed."); | |||
// forward compatbility, if old om has no out_node_name, need to return output follow origin way | |||
if (out_size == out_node_name.size()) { | |||
output_name = out_node_name[index] + ":" + std::to_string(src_index[index]); | |||
// neweast plan, the index will add to name during generate model. | |||
bool contains_colon = out_node_name[index].find(":") != std::string::npos; | |||
output_name = | |||
contains_colon ? out_node_name[index] : out_node_name[index] + ":" + std::to_string(src_index[index]); | |||
} else { | |||
output_name = std::string("output_") + std::to_string(index) + "_" + src_name[index] + "_" + | |||
std::to_string(src_index[index]); | |||
@@ -1966,6 +1986,10 @@ Status DavinciModel::CopyOutputDataToUser(OpDescPtr &op_desc, std::vector<DataBu | |||
"Model output data size(%u) does not match required size(%u).", v_output_size[i], | |||
data_buf.length); | |||
if (copy_only_addrs_.count(v_output_data_addr[i]) == 0) { | |||
GELOGI("[ZCPY] This addr[%p] has already feed by zero copy.", v_output_data_addr[i]); | |||
continue; // Skip: Feed by zero copy. | |||
} | |||
GELOGI( | |||
"CopyOutputDataToUser memcpy graph_%u type[F] name[%s] output[%lu] dst[%p] src[%p] mem_size[%u] datasize[%u]", | |||
runtime_param_.graph_id, op_desc->GetName().c_str(), i, data_buf.data, v_output_data_addr[i], data_buf.length, | |||
@@ -2510,51 +2534,19 @@ Status DavinciModel::UpdateKnownNodeArgs(const vector<void *> &inputs, const vec | |||
} | |||
Status DavinciModel::InitTaskInfo(domi::ModelTaskDef &model_task_def) { | |||
GELOGI("InitTaskInfo in,task size %zu", model_task_def.task().size()); | |||
GELOGI("InitTaskInfo in,task size %d", model_task_def.task().size()); | |||
task_list_.resize(model_task_def.task_size()); | |||
std::vector<std::future<Status>> futures(model_task_def.task_size()); | |||
ThreadPool executor(kThreadNum); | |||
rtContext_t ctx = nullptr; | |||
rtError_t rt_ret = rtCtxGetCurrent(&ctx); | |||
if (rt_ret != RT_ERROR_NONE || ctx == nullptr) { | |||
GELOGE(RT_FAILED, "Failed to get current context from rt, error-code 0x%X.", rt_ret); | |||
return RT_FAILED; | |||
} | |||
for (int32_t i = 0; i < model_task_def.task_size(); ++i) { | |||
std::future<Status> f = executor.commit( | |||
[](const domi::TaskDef &task, DavinciModel *model, rtContext_t ctx, int32_t idx) -> Status { | |||
rtError_t rt_ret = rtCtxSetCurrent(ctx); | |||
if (rt_ret != RT_ERROR_NONE) { | |||
GELOGE(RT_FAILED, "Failed to set context from rt, error-code 0x%X.", rt_ret); | |||
return RT_FAILED; | |||
} | |||
Status ret = FAILED; | |||
// dynamic shape will create task_list_ before | |||
if (model->task_list_[idx] == nullptr) { | |||
model->task_list_[idx] = TaskInfoFactory::Instance().Create(static_cast<rtModelTaskType_t>(task.type())); | |||
GE_CHECK_NOTNULL(model->task_list_[idx]); | |||
} | |||
ret = model->task_list_[idx]->Init(task, model); | |||
return ret; | |||
}, | |||
model_task_def.task(i), this, ctx, i); | |||
if (!f.valid()) { | |||
GELOGE(FAILED, "Future is invalid"); | |||
return FAILED; | |||
} | |||
futures[i] = std::move(f); | |||
} | |||
Status ret; | |||
for (size_t i = 0; i < futures.size(); ++i) { | |||
ret = futures[i].get(); | |||
for (int i = 0; i < model_task_def.task_size(); ++i) { | |||
// dynamic shape will create task_list_ before | |||
const domi::TaskDef &task = model_task_def.task(i); | |||
task_list_[i] = TaskInfoFactory::Instance().Create(static_cast<rtModelTaskType_t>(task.type())); | |||
GE_CHECK_NOTNULL(task_list_[i]); | |||
Status ret = task_list_[i]->Init(task, this); | |||
if (ret != SUCCESS) { | |||
GELOGE(ret, "Task index %zu init failed.", i); | |||
GELOGE(ret, "Task index %d init failed.", i); | |||
return ret; | |||
} | |||
} | |||
GELOGI("InitTaskInfo out"); | |||
return SUCCESS; | |||
} | |||
@@ -2623,7 +2615,7 @@ Status DavinciModel::DistributeTask() { | |||
return PARAM_INVALID; | |||
} | |||
if (PropertiesManager::Instance().IsLayerNeedDump(name_, op->GetName())) { | |||
if (PropertiesManager::Instance().IsLayerNeedDump(name_, om_name_, op->GetName())) { | |||
SaveDumpTask(task->GetTaskID(), task->GetStreamId(), op, task->GetDumpArgs()); | |||
} | |||
} | |||
@@ -2661,8 +2653,9 @@ Status DavinciModel::DistributeTask() { | |||
void DavinciModel::SetEndGraphId(uint32_t task_id, uint32_t stream_id) { | |||
auto all_dump_model = PropertiesManager::Instance().GetAllDumpModel(); | |||
if (all_dump_model.find(ge::DUMP_ALL_MODEL) != all_dump_model.end() || | |||
all_dump_model.find(name_) != all_dump_model.end()) { | |||
bool findByOmName = all_dump_model.find(om_name_) != all_dump_model.end(); | |||
bool findByModelName = all_dump_model.find(name_) != all_dump_model.end(); | |||
if (all_dump_model.find(ge::DUMP_ALL_MODEL) != all_dump_model.end() || findByOmName || findByModelName) { | |||
GELOGI("start save end_graph_info to dumper, task_id is %u, stream_id is %u", task_id, stream_id); | |||
data_dumper_.SaveEndGraphId(task_id, stream_id); | |||
} | |||
@@ -2696,7 +2689,7 @@ void DavinciModel::SetOutputOutsideAddr(const std::vector<void *> &outside_addrs | |||
if (output_outside_addrs_.find(addr) != output_outside_addrs_.end()) { | |||
continue; | |||
} | |||
DisableZeroCopy(addr); // Data to NetOutput directly. | |||
(void)output_outside_addrs_.emplace(std::pair<const void *, std::vector<void *>>(addr, {})); | |||
GELOGI("SetOutputOutsideAddr success."); | |||
} | |||
@@ -2902,11 +2895,15 @@ Status DavinciModel::UpdateIoTaskArgs(const map<uint32_t, pair<int64_t, void *>> | |||
} | |||
// For input data, just copy for rts task. | |||
if (is_input && copy_only_addrs_.count(addr) > 0) { | |||
if (rtMemcpy(addr, size, buffer.data, buffer.length, RT_MEMCPY_DEVICE_TO_DEVICE) != RT_ERROR_NONE) { | |||
GELOGE(FAILED, "Non-zero copy data node copy failed"); | |||
return FAILED; | |||
if (copy_only_addrs_.count(addr) > 0) { | |||
if (is_input) { | |||
GELOGI("[IMAS] Find addr %p need direct copy from user malloc input %p.", addr, buffer.data); | |||
if (rtMemcpy(addr, size, buffer.data, buffer.length, RT_MEMCPY_DEVICE_TO_DEVICE) != RT_ERROR_NONE) { | |||
GELOGE(FAILED, "Non-zero copy data node copy failed"); | |||
return FAILED; | |||
} | |||
} | |||
GELOGI("No need to exeucte zero copy task because this addr %p need direct copy.", addr); | |||
continue; | |||
} | |||
@@ -2953,7 +2950,6 @@ const char *DavinciModel::GetRegisterStub(const string &binfile, const string &s | |||
} else { | |||
binfile_key = session_graph_id + "_" + binfile; | |||
} | |||
std::lock_guard<std::mutex> lock(tvm_bin_mutex_); | |||
auto it = tvm_bin_kernel_.find(binfile_key); | |||
if (it != tvm_bin_kernel_.end()) { | |||
return it->c_str(); | |||
@@ -3089,7 +3085,6 @@ void DavinciModel::StoreTbeHandle(const std::string &handle_key) { | |||
// Online mode FE may call rtFunctionRegister. | |||
TBEHandleStore &kernel_store = TBEHandleStore::GetInstance(); | |||
// Need protection of tvm_bin_mutex_. | |||
auto it = used_tbe_handle_map_.find(handle_key); | |||
if (it != used_tbe_handle_map_.end()) { | |||
// GE registered, increase reference. | |||
@@ -3109,9 +3104,9 @@ void DavinciModel::StoreTbeHandle(const std::string &handle_key) { | |||
void DavinciModel::CleanTbeHandle() { | |||
TBEHandleStore &kernel_store = TBEHandleStore::GetInstance(); | |||
std::lock_guard<std::mutex> lock(tvm_bin_mutex_); | |||
kernel_store.EraseTBEHandle(used_tbe_handle_map_); | |||
used_tbe_handle_map_.clear(); | |||
tvm_bin_kernel_.clear(); | |||
} | |||
/// | |||
@@ -3246,15 +3241,8 @@ Status DavinciModel::NnExecute(rtStream_t stream, bool async_mode, const InputDa | |||
bool is_dynamic_batch = input_data.is_dynamic_batch; | |||
InitZeroCopyUtil(is_dynamic_batch, input_use_zero_copy, output_use_zero_copy); | |||
// Empty task, Just copy input to output, need direct copy. | |||
if (task_list_.empty() && (input_use_zero_copy || output_use_zero_copy)) { | |||
GELOGE(FAILED, "Empty task, Just copy input to output, need direct copy."); | |||
return FAILED; | |||
} | |||
GE_IF_BOOL_EXEC(ProfilingManager::Instance().ProfilingOn(), SetProfileTime(MODEL_PRE_PROC_START)); | |||
Status ret = | |||
input_use_zero_copy ? CopyModelData(input_data, output_data, is_dynamic_batch) : CopyInputData(input_data, true); | |||
Status ret = CopyModelData(input_data, output_data, is_dynamic_batch); | |||
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(ret != SUCCESS, return INTERNAL_ERROR, "Copy input data to model failed."); | |||
GELOGI("current_data.index=%u", input_data.index); | |||
@@ -3271,7 +3259,7 @@ Status DavinciModel::NnExecute(rtStream_t stream, bool async_mode, const InputDa | |||
if (!is_async_mode_) { | |||
GE_IF_BOOL_EXEC(ProfilingManager::Instance().ProfilingOn(), SetProfileTime(MODEL_AFTER_PROC_START)); | |||
ret = output_use_zero_copy ? SyncDataAndDump() : CopyOutputData(input_data.index, output_data); | |||
ret = CopyOutputData(input_data.index, output_data); | |||
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(ret != SUCCESS, return INTERNAL_ERROR, "Copy Output data to user failed."); | |||
GE_IF_BOOL_EXEC(ProfilingManager::Instance().ProfilingOn(), SetProfileTime(MODEL_AFTER_PROC_END)); | |||
} | |||
@@ -3344,17 +3332,6 @@ void DavinciModel::FreeWeightsMem() { | |||
} | |||
} | |||
uint32_t DavinciModel::GetGraphID(const std::string &session_graph_id) { | |||
std::string session_id = "_"; | |||
auto pos = session_graph_id.find(session_id); | |||
if (pos != std::string::npos) { | |||
size_t graph_id_length = session_graph_id.length() - pos - session_id.length(); | |||
std::string graph_id = session_graph_id.substr(pos + session_id.length(), graph_id_length); | |||
return static_cast<uint32_t>(std::strtol(graph_id.c_str(), nullptr, kDecimal)); | |||
} | |||
return 0; | |||
} | |||
Status DavinciModel::TransAllVarData(ComputeGraphPtr &graph, uint32_t graph_id) { | |||
GELOGI("TransAllVarData start: session_id:%lu, graph_id: %u.", session_id_, graph_id); | |||
rtContext_t ctx = nullptr; | |||
@@ -3387,6 +3364,7 @@ void DavinciModel::SetDataDumperArgs() { | |||
data_dumper_.SetModelName(name_); | |||
data_dumper_.SetModelId(model_id_); | |||
data_dumper_.SetMemory(runtime_param_); | |||
data_dumper_.SetOmName(om_name_); | |||
int32_t device_id = 0; | |||
rtError_t rt_ret = rtGetDevice(&device_id); | |||
@@ -187,6 +187,8 @@ class DavinciModel { | |||
// model name | |||
string Name() { return name_; } | |||
// om_name | |||
string OmName() { return om_name_; } | |||
// version | |||
uint32_t Version() const { return version_; } | |||
@@ -273,7 +275,7 @@ class DavinciModel { | |||
/// @brief For TVM Op, avoid Addr Reuse. | |||
/// @return void* | |||
/// | |||
static const char *GetRegisterStub(const string &tvm_binfile_key, const string &session_graph_model_id = ""); | |||
const char *GetRegisterStub(const string &tvm_binfile_key, const string &session_graph_model_id = ""); | |||
/// | |||
/// @ingroup ge | |||
@@ -471,6 +473,9 @@ class DavinciModel { | |||
Status GetOrigInputInfo(uint32_t index, OriginInputInfo &orig_input_info); | |||
Status GetAllAippInputOutputDims(uint32_t index, std::vector<InputOutputDims> &input_dims, | |||
std::vector<InputOutputDims> &output_dims); | |||
void SetModelDescVersion(bool is_new_model_desc) { is_new_model_desc_ = is_new_model_desc; } | |||
// om file name | |||
void SetOmName(string om_name) { om_name_ = om_name; } | |||
private: | |||
// memory address of weights | |||
@@ -560,6 +565,8 @@ class DavinciModel { | |||
Status InitModelMem(void *dev_ptr, size_t memsize, void *weight_ptr, size_t weightsize); | |||
void CreateInputDimsInfo(const OpDescPtr &op_desc, Format format, InputOutputDescInfo &input); | |||
Status GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, std::vector<uint32_t> &formats); | |||
Status InitTaskInfo(domi::ModelTaskDef &modelTaskInfo); | |||
@@ -752,8 +759,6 @@ class DavinciModel { | |||
void CreateOutput(uint32_t index, OpDescPtr &op_desc, InputOutputDescInfo &output, uint32_t &format_result); | |||
uint32_t GetGraphID(const std::string &session_graph_id); | |||
Status TransAllVarData(ComputeGraphPtr &graph, uint32_t graph_id); | |||
Status CopyVarData(ComputeGraphPtr &graph); | |||
@@ -771,6 +776,10 @@ class DavinciModel { | |||
uint32_t model_id_; | |||
uint32_t runtime_model_id_; | |||
string name_; | |||
// used for inference data dump | |||
string om_name_; | |||
uint32_t version_; | |||
GeModelPtr ge_model_; | |||
@@ -860,8 +869,8 @@ class DavinciModel { | |||
std::set<uint32_t> hcom_streams_; | |||
RuntimeParam runtime_param_; | |||
static std::mutex tvm_bin_mutex_; // lock for tvm maps. | |||
static std::set<std::string> tvm_bin_kernel_; | |||
static std::mutex tvm_bin_mutex_; | |||
std::set<std::string> tvm_bin_kernel_; | |||
std::map<std::string, uint32_t> used_tbe_handle_map_; | |||
@@ -884,6 +893,7 @@ class DavinciModel { | |||
std::map<const void *, void *> knonw_output_data_info_; | |||
vector<uint64_t> batch_size_; | |||
bool is_new_model_desc_{false}; | |||
}; | |||
} // namespace ge | |||
#endif // GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_ |
@@ -325,6 +325,12 @@ Status ModelManager::DeleteModel(uint32_t id) { | |||
auto it = model_map_.find(id); | |||
auto hybrid_model_it = hybrid_model_map_.find(id); | |||
if (it != model_map_.end()) { | |||
uint64_t session_id = it->second->GetSessionId(); | |||
std::string model_key = std::to_string(session_id) + "_" + std::to_string(id); | |||
auto iter_aicpu_kernel = model_aicpu_kernel_.find(model_key); | |||
if (iter_aicpu_kernel != model_aicpu_kernel_.end()) { | |||
(void)model_aicpu_kernel_.erase(iter_aicpu_kernel); | |||
} | |||
(void)model_map_.erase(it); | |||
} else if (hybrid_model_it != hybrid_model_map_.end()) { | |||
(void)hybrid_model_map_.erase(hybrid_model_it); | |||
@@ -685,11 +691,14 @@ Status ModelManager::GetInputOutputDescInfo(const uint32_t model_id, vector<Inpu | |||
Status ModelManager::GetInputOutputDescInfo(const uint32_t model_id, vector<InputOutputDescInfo> &input_desc, | |||
vector<InputOutputDescInfo> &output_desc, | |||
std::vector<uint32_t> &inputFormats, std::vector<uint32_t> &outputFormats) { | |||
std::vector<uint32_t> &inputFormats, std::vector<uint32_t> &outputFormats, | |||
bool new_model_desc) { | |||
std::shared_ptr<DavinciModel> davinci_model = GetModel(model_id); | |||
GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, PARAM_INVALID, | |||
"GetInputOutputDescInfo Failed, Invalid Model ID %u !", model_id); | |||
davinci_model->SetModelDescVersion(new_model_desc); | |||
return davinci_model->GetInputOutputDescInfo(input_desc, output_desc, inputFormats, outputFormats); | |||
} | |||
@@ -820,6 +829,7 @@ Status ModelManager::LoadModelOffline(uint32_t &model_id, const ModelData &model | |||
return FAILED; | |||
} | |||
davinci_model->SetDeviceId(device_id); | |||
davinci_model->SetOmName(model.om_name); | |||
/// In multi-threaded inference, using the same session_id among multiple threads may cause some threads to fail. | |||
/// These session_ids come from the same model, so the values of session_id are the same. | |||
@@ -178,7 +178,7 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ModelManager { | |||
ge::Status GetInputOutputDescInfo(const uint32_t model_id, std::vector<InputOutputDescInfo> &input_desc, | |||
std::vector<InputOutputDescInfo> &output_desc, std::vector<uint32_t> &inputFormats, | |||
std::vector<uint32_t> &outputFormats); | |||
std::vector<uint32_t> &outputFormats, bool new_model_desc = false); | |||
/// | |||
/// @ingroup ge | |||
/// @brief Get dynamic batch_info | |||
@@ -47,7 +47,8 @@ Status EndGraphTaskInfo::Distribute() { | |||
GE_CHECK_NOTNULL(davinci_model_); | |||
auto all_dump_model = PropertiesManager::Instance().GetAllDumpModel(); | |||
if (all_dump_model.find(ge::DUMP_ALL_MODEL) != all_dump_model.end() || | |||
all_dump_model.find(davinci_model_->Name()) != all_dump_model.end()) { | |||
all_dump_model.find(davinci_model_->Name()) != all_dump_model.end() || | |||
all_dump_model.find(davinci_model_->OmName()) != all_dump_model.end()) { | |||
GELOGI("Start to call rtEndGraphEx"); | |||
rtError_t rt_ret = rtEndGraphEx(model_, stream_, kDumpFlag); | |||
if (rt_ret != RT_ERROR_NONE) { | |||
@@ -153,7 +153,8 @@ Status KernelExTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davin | |||
GE_IF_BOOL_EXEC(rt_ret != RT_ERROR_NONE, GELOGE(rt_ret, "rtMemcpy to input_output_addr_ error: 0x%X", rt_ret); | |||
return FAILED;) | |||
if (PropertiesManager::Instance().IsLayerNeedDump(davinci_model_->Name(), op_desc->GetName())) { | |||
if (PropertiesManager::Instance().IsLayerNeedDump(davinci_model_->Name(), davinci_model_->OmName(), | |||
op_desc->GetName())) { | |||
dump_flag_ = RT_KERNEL_DUMPFLAG; | |||
dump_args_ = input_output_addr_; | |||
} | |||
@@ -63,7 +63,7 @@ Status KernelTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davinci | |||
return ret; | |||
} | |||
domi::KernelDef kernel_def = task_def.kernel(); | |||
const domi::KernelDef &kernel_def = task_def.kernel(); | |||
block_dim_ = kernel_def.block_dim(); | |||
args_size_ = kernel_def.args_size(); | |||
// get opcontext stored in model | |||
@@ -92,7 +92,7 @@ Status KernelTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davinci | |||
string session_graph_model_id; | |||
davinci_model_->GetUniqueId(op_desc_, session_graph_model_id); | |||
// get bin_file_key | |||
const char *bin_file_key = DavinciModel::GetRegisterStub(op_desc_->GetName(), session_graph_model_id); | |||
const char *bin_file_key = davinci_model_->GetRegisterStub(op_desc_->GetName(), session_graph_model_id); | |||
// new aicpu kernel(rtCpuKernelLaunch) no need to check function | |||
if (kernel_type_ == cce::ccKernelType::CCE_AI_CORE) { | |||
rtError_t rt_ret; | |||
@@ -494,7 +494,7 @@ Status KernelTaskInfo::InitTVMTask(uint16_t offset, const domi::KernelDef &kerne | |||
// When inferencing, stub_func_ is different from dynamic-registration to runtime, and needs to be modified. | |||
string session_graph_model_id; | |||
davinci_model_->GetUniqueId(op_desc, session_graph_model_id); | |||
const char *bin_file_key = DavinciModel::GetRegisterStub(op_desc->GetName(), session_graph_model_id); | |||
const char *bin_file_key = davinci_model_->GetRegisterStub(op_desc->GetName(), session_graph_model_id); | |||
rtError_t rt_ret = rtQueryFunctionRegistered(const_cast<char *>(bin_file_key)); | |||
if (rt_ret != RT_ERROR_NONE) { | |||
stub_func_ = const_cast<char *>(bin_file_key); | |||
@@ -549,7 +549,8 @@ Status KernelTaskInfo::InitTVMTask(uint16_t offset, const domi::KernelDef &kerne | |||
return FAILED; | |||
} | |||
if (PropertiesManager::Instance().IsLayerNeedDump(davinci_model_->Name(), op_desc->GetName())) { | |||
if (PropertiesManager::Instance().IsLayerNeedDump(davinci_model_->Name(), davinci_model_->OmName(), | |||
op_desc->GetName())) { | |||
dump_flag_ = RT_KERNEL_DUMPFLAG; | |||
dump_args_ = static_cast<char *>(args_) + offset; | |||
} | |||
@@ -818,7 +819,8 @@ Status KernelTaskInfo::InitAicpuTask(uint32_t op_index, const domi::KernelDef &k | |||
return RT_FAILED; | |||
} | |||
if (PropertiesManager::Instance().IsLayerNeedDump(davinci_model_->Name(), op_desc->GetName())) { | |||
if (PropertiesManager::Instance().IsLayerNeedDump(davinci_model_->Name(), davinci_model_->OmName(), | |||
op_desc->GetName())) { | |||
dump_flag_ = RT_KERNEL_DUMPFLAG; | |||
dump_args_ = static_cast<char *>(args_) + sizeof(aicpu::AicpuParamHead); | |||
} | |||
@@ -396,8 +396,6 @@ Status GraphManager::PreRun(const GraphNodePtr &graph_node, const std::vector<Ge | |||
if (save_ret != SUCCESS) { | |||
GELOGW("Fail to save cache."); | |||
} | |||
// release rts generate context | |||
RtContextUtil::GetInstance().DestroyrtContexts(); | |||
GEEVENT("[GEPERFTRACE] GE PreRun End"); | |||
return SUCCESS; | |||
} | |||
@@ -420,6 +418,8 @@ Status GraphManager::StartForRunGraph(const GraphNodePtr &graph_node, const std: | |||
ret = IncreBuild(graph_node, ge_model); | |||
if (ret != SUCCESS) { | |||
ret = PreRun(graph_node, inputs, ge_root_model, session_id); | |||
// release rts generate context | |||
RtContextUtil::GetInstance().DestroyrtContexts(); | |||
if (ret != SUCCESS) { | |||
GELOGE(ret, "PreRun Failed."); | |||
return ret; | |||
@@ -2165,6 +2165,8 @@ void GraphManager::PreRunThread(GraphManager *graph_manager) { | |||
GeModelPtr ge_model = nullptr; | |||
if (graph_manager->IncreBuild(graph_node, ge_model) != SUCCESS) { | |||
ret = graph_manager->PreRun(graph_node, ge_inputs, ge_root_model, args.session_id); | |||
// release rts generate context | |||
RtContextUtil::GetInstance().DestroyrtContexts(); | |||
if (ret != SUCCESS) { | |||
graph_node->SetRunFlag(false); | |||
ReturnError(graph_manager, args.callback, ret, "PreRun Failed, thread exit.."); | |||
@@ -91,7 +91,7 @@ ge::Status VarResource::SaveVarAddr(const std::string &var_name, const ge::GeTen | |||
std::string var_key = VarKey(var_name, tensor_desc); | |||
GELOGD("VarResource::SaveVarAddr, var_key = %s", var_key.c_str()); | |||
if (var_addr_mgr_map_.count(var_key) == 0) { | |||
uint64_t logic_address = VarManager::Instance(0)->GetVarMemLogicBase() + | |||
uint64_t logic_address = VarManager::Instance(session_id_)->GetVarMemLogicBase() + | |||
reinterpret_cast<uint64_t>(reinterpret_cast<std::uintptr_t>(address)); | |||
GELOGI("SaveVarAddr node_name %s, tensor_desc format %s, type %s.", var_name.c_str(), | |||
TypeUtils::FormatToSerialString(tensor_desc.GetFormat()).c_str(), | |||
@@ -105,9 +105,8 @@ void ge::GraphPartitioner::SetMergedGraphId(ge::ComputeGraphPtr &output_merged_c | |||
Status ge::GraphPartitioner::RemoveNodeAndEdgeBetweenEndPld(ge::ComputeGraphPtr &output_merged_compute_graph, | |||
const std::vector<SubGraphInfoPtr> &sub_graph_list) { | |||
ComputeGraphPtr new_sub_graph = MakeShared<ComputeGraph>("mergedGraph"); | |||
output_merged_compute_graph = new_sub_graph; | |||
if ((new_sub_graph == nullptr) || (MergeAllSubGraph(output_merged_compute_graph, sub_graph_list) != SUCCESS)) { | |||
if ((output_merged_compute_graph == nullptr) || | |||
(MergeAllSubGraph(output_merged_compute_graph, sub_graph_list) != SUCCESS)) { | |||
GELOGE(GE_GRAPH_PARAM_NULLPTR, "[GraphPartitioner]: MergeAllSubGraph failed."); | |||
return FAILED; | |||
} | |||
@@ -229,6 +228,9 @@ Status ge::GraphPartitioner::MergeSubGraph(ge::ComputeGraphPtr &output_merged_co | |||
return FAILED; | |||
} | |||
} | |||
ComputeGraphPtr new_sub_graph = MakeShared<ComputeGraph>(original_compute_graph->GetName()); | |||
GE_CHECK_NOTNULL(new_sub_graph); | |||
output_merged_compute_graph = new_sub_graph; | |||
GE_TIMESTAMP_START(MergeGraphRemoveNode); | |||
if (RemoveNodeAndEdgeBetweenEndPld(output_merged_compute_graph, sub_graph_list) != ge::SUCCESS) { | |||
GELOGE(GE_GRAPH_PARAM_NULLPTR, "[GraphPartitioner]: merging sub-graphs failed"); | |||
@@ -70,6 +70,7 @@ OpDescPtr SameTransdataBreadthFusionPass::GetCastOp(const GeTensorDesc &in_desc, | |||
cast_op_name << "fusion_cast_" << fusion_cast_op_count++; | |||
auto node_op = ge::OperatorFactory::CreateOperator(cast_op_name.str(), CAST); | |||
auto cast_op = ge::OpDescUtils::GetOpDescFromOperator(node_op); | |||
node_op.BreakConnect(); | |||
if (cast_op == nullptr) { | |||
GELOGE(INTERNAL_ERROR, "new fusion cast op failed!"); | |||
return nullptr; | |||
@@ -501,6 +501,7 @@ OpDescPtr TransOpWithoutReshapeFusionPass::GetCastOp(const GeTensorDesc &cast_in | |||
cast_op_name << "fusion_cast_op_" << fusion_cast_op_count++; | |||
auto node_op = ge::OperatorFactory::CreateOperator(cast_op_name.str(), CAST); | |||
auto cast_op = ge::OpDescUtils::GetOpDescFromOperator(node_op); | |||
node_op.BreakConnect(); | |||
if (cast_op == nullptr) { | |||
GELOGE(INTERNAL_ERROR, "new cast op failed!"); | |||
return nullptr; | |||
@@ -19,8 +19,6 @@ | |||
#include <set> | |||
#include <string> | |||
#include <utility> | |||
#include "common/formats/format_transfers/format_transfer_fractal_nz.h" | |||
#include "common/formats/format_transfers/format_transfer_fractal_z.h" | |||
#include "common/formats/format_transfers/format_transfer_nchw_nc1hwc0.h" | |||
#include "common/formats/format_transfers/format_transfer_nhwc_nc1hwc0.h" | |||
#include "common/formats/format_transfers/format_transfer_transpose.h" | |||
@@ -34,6 +32,7 @@ | |||
#include "graph/common/transop_util.h" | |||
#include "graph/debug/ge_attr_define.h" | |||
#include "graph/ge_context.h" | |||
#include "graph/shape_refiner.h" | |||
#include "graph/manager/graph_var_manager.h" | |||
#include "graph/manager/util/rt_context_util.h" | |||
#include "graph/optimize/graph_optimize.h" | |||
@@ -123,9 +122,6 @@ static std::map<std::string, ge::DataType> output_type_str_to_datatype = { | |||
{"UINT32", ge::DT_UINT32}, {"UINT64", ge::DT_UINT64}, {"DOUBLE", ge::DT_DOUBLE}}; | |||
const char *const kMbatchSwitchnName = "mbatch-switch-name"; | |||
const int64_t kGemmNdShapeSize = 2; | |||
const int64_t kGemmAlignSize32 = 32; | |||
const int64_t kGemmAlignSize16 = 16; | |||
OpDescPtr CreateTensorShape(const GeTensorDesc &data_tensor) { | |||
GeTensorPtr tensor = MakeShared<GeTensor>(); | |||
@@ -1135,114 +1131,9 @@ Status ProcessInputNC1HWC0DynShape(NodePtr &node_ptr, bool &is_dynamic_batch, No | |||
return SUCCESS; | |||
} | |||
Status ProcessGemmFractalZ(GeShape &src_shape, std::vector<int64_t> &dst_shape_vec) { | |||
dst_shape_vec.clear(); | |||
if (src_shape.GetDims().size() != kGemmNdShapeSize) { | |||
GELOGE(INTERNAL_ERROR, "gemm shape size must be 2"); | |||
return FAILED; | |||
} | |||
dst_shape_vec.push_back(formats::Ceil(src_shape.GetDim(0), kGemmAlignSize32)); | |||
dst_shape_vec.push_back(formats::Ceil(src_shape.GetDim(1), kGemmAlignSize16)); | |||
dst_shape_vec.push_back(kGemmAlignSize16); | |||
dst_shape_vec.push_back(kGemmAlignSize32); | |||
return SUCCESS; | |||
} | |||
Status SetInOutForGemm(GeTensorDescPtr &input, GeTensorDescPtr &output, GeShape shape, Format format) { | |||
input->SetShape(shape); | |||
input->SetFormat(format); | |||
output->SetShape(shape); | |||
output->SetFormat(format); | |||
int64_t input_shape_size = 0; | |||
int64_t output_shape_size = 0; | |||
ge::graphStatus input_graph_status = ge::TensorUtils::GetTensorSizeInBytes(*input, input_shape_size); | |||
ge::graphStatus output_graph_status = ge::TensorUtils::GetTensorMemorySizeInBytes(*output, output_shape_size); | |||
if ((input_graph_status != ge::GRAPH_SUCCESS) && (output_graph_status != ge::GRAPH_SUCCESS)) { | |||
GELOGE(GRAPH_FAILED, "GetTensorSize failed!"); | |||
return FAILED; | |||
} | |||
ge::TensorUtils::SetSize(*input, input_shape_size); | |||
ge::TensorUtils::SetSize(*output, output_shape_size); | |||
return SUCCESS; | |||
} | |||
Status ProcessSingleOpInput(NodePtr &node_ptr, string &single_op_input_format) { | |||
ge::Format input_format = TypeUtils::SerialStringToFormat(single_op_input_format); | |||
auto op_desc = node_ptr->GetOpDesc(); | |||
auto data_input = op_desc->MutableInputDesc(0); | |||
auto data_output = op_desc->MutableOutputDesc(0); | |||
ge::Format src_format = data_input->GetFormat(); | |||
ge::DataType src_dt = data_input->GetDataType(); | |||
ge::GeShape src_shape = data_input->GetShape(); | |||
std::vector<int64_t> dst_shape_vec; | |||
if (input_format == FORMAT_FRACTAL_NZ) { | |||
formats::FormatTransferFractalNz transfer; | |||
if (transfer.TransShape(src_format, src_shape.GetDims(), src_dt, FORMAT_FRACTAL_NZ, dst_shape_vec) != SUCCESS) { | |||
GELOGE(INTERNAL_ERROR, "Op [%s] trans FZ Shape failed.", op_desc->GetName().c_str()); | |||
return FAILED; | |||
} | |||
ge::GeShape dst_shape(dst_shape_vec); | |||
if (SetInOutForGemm(data_input, data_output, dst_shape, FORMAT_FRACTAL_NZ) != SUCCESS) { | |||
GELOGE(INTERNAL_ERROR, "Op [%s] set FRACTAL_NZ desc failed.", op_desc->GetName().c_str()); | |||
return FAILED; | |||
} | |||
} else if (input_format == FORMAT_FRACTAL_Z) { | |||
if (ProcessGemmFractalZ(src_shape, dst_shape_vec) != SUCCESS) { | |||
GELOGE(INTERNAL_ERROR, "Op [%s] trans FRACTAL_Z Shape failed.", op_desc->GetName().c_str()); | |||
return FAILED; | |||
} | |||
ge::GeShape dst_shape(dst_shape_vec); | |||
if (SetInOutForGemm(data_input, data_output, dst_shape, FORMAT_FRACTAL_Z) != SUCCESS) { | |||
GELOGE(INTERNAL_ERROR, "Op [%s] set FRACTAL_Z desc failed.", op_desc->GetName().c_str()); | |||
return FAILED; | |||
} | |||
} | |||
// Gemm shape and format should be set at this stage, temporary solution. | |||
auto out_anchor = node_ptr->GetOutDataAnchor(0); | |||
for (auto &in_anchor : out_anchor->GetPeerInDataAnchors()) { | |||
GE_CHECK_NOTNULL(in_anchor); | |||
auto index = static_cast<uint32_t>(in_anchor->GetIdx()); | |||
ge::NodePtr next_node = in_anchor->GetOwnerNode(); | |||
GE_CHECK_NOTNULL(next_node); | |||
auto next_op_desc = next_node->GetOpDesc(); | |||
GE_CHECK_NOTNULL(next_op_desc); | |||
auto input_desc = next_op_desc->MutableInputDesc(index); | |||
GE_CHECK_NOTNULL(input_desc); | |||
input_desc->SetFormat(input_format); | |||
input_desc->SetShape(data_output->GetShape()); | |||
} | |||
return SUCCESS; | |||
} | |||
Status ProcessSingleOpOutput(OpDescPtr &op_desc, string &single_op_output_format) { | |||
ge::Format input_format = TypeUtils::SerialStringToFormat(single_op_output_format); | |||
auto data_input = op_desc->MutableInputDesc(0); | |||
ge::Format src_format = data_input->GetFormat(); | |||
ge::DataType src_dt = data_input->GetDataType(); | |||
ge::GeShape src_shape = data_input->GetShape(); | |||
std::vector<int64_t> dst_shape_vec; | |||
if (input_format == FORMAT_FRACTAL_NZ) { | |||
formats::FormatTransferFractalNz transfer; | |||
if (transfer.TransShape(src_format, src_shape.GetDims(), src_dt, FORMAT_FRACTAL_NZ, dst_shape_vec) != SUCCESS) { | |||
GELOGE(INTERNAL_ERROR, "Op [%s] trans FZ Shape failed.", op_desc->GetName().c_str()); | |||
return FAILED; | |||
} | |||
ge::GeShape dst_shape(dst_shape_vec); | |||
data_input->SetShape(dst_shape); | |||
data_input->SetFormat(FORMAT_FRACTAL_NZ); | |||
} | |||
return SUCCESS; | |||
} | |||
Status ProcessDataNodeDynShape(NodePtr &node_ptr, bool &is_single_op) { | |||
Status ProcessDataNodeDynShape(NodePtr &node_ptr) { | |||
auto op_desc = node_ptr->GetOpDesc(); | |||
GE_CHECK_NOTNULL(op_desc); | |||
std::string single_op_input_format; | |||
if (is_single_op && (ge::AttrUtils::GetStr(op_desc, "_single_input_format", single_op_input_format))) { | |||
if (ProcessSingleOpInput(node_ptr, single_op_input_format) != SUCCESS) { | |||
GELOGE(INTERNAL_ERROR, "Process single op input [%s] failed.", node_ptr->GetName().c_str()); | |||
return FAILED; | |||
} | |||
} | |||
bool set_fp16 = false; | |||
if (!ge::AttrUtils::GetBool(node_ptr->GetOpDesc(), "input_fp16", set_fp16) || !set_fp16) { | |||
return SUCCESS; | |||
@@ -1375,16 +1266,9 @@ bool NeedUpdateOutputByOutputTypeParm(std::string &output_type, NodePtr &src_nod | |||
return false; | |||
} | |||
Status ProcessNetoutputNodeDynShape(NodePtr &node, std::string &output_type, bool &is_single_op) { | |||
Status ProcessNetoutputNodeDynShape(NodePtr &node, std::string &output_type) { | |||
auto op_desc = node->GetOpDesc(); | |||
GE_CHECK_NOTNULL(op_desc); | |||
std::string single_op_output_format; | |||
if (is_single_op && (ge::AttrUtils::GetStr(op_desc, "_single_output_format", single_op_output_format))) { | |||
if (ProcessSingleOpOutput(op_desc, single_op_output_format) != SUCCESS) { | |||
GELOGE(INTERNAL_ERROR, "Process single op output [%s] failed.", node->GetName().c_str()); | |||
return FAILED; | |||
} | |||
} | |||
ge::DataType output_data_type = ge::DT_FLOAT; | |||
for (const auto &in_anchor : node->GetAllInDataAnchors()) { | |||
@@ -1717,7 +1601,8 @@ Status GraphPrepare::UpdateInput(const std::vector<GeTensor> &user_input) { | |||
auto format = desc.GetFormat(); | |||
auto origin_format = desc.GetOriginFormat(); | |||
bool is_internal = TypeUtils::IsInternalFormat(format) || TypeUtils::IsInternalFormat(origin_format); | |||
if (is_internal) { | |||
bool need_check_internal_format = (!options_.is_single_op) && is_internal; | |||
if (need_check_internal_format) { | |||
GELOGE(PARAM_INVALID, "Input format %s or origin_format %s is not support.", | |||
TypeUtils::FormatToSerialString(format).c_str(), TypeUtils::FormatToSerialString(origin_format).c_str()); | |||
return FAILED; | |||
@@ -2164,6 +2049,7 @@ Status GraphPrepare::GenerateInfershapeGraph(ConstGraphPtr graph) { | |||
GELOGE(ret, "Run ge_passes infershape for preprocess failed, ret:%u.", ret); | |||
return ret; | |||
} | |||
ShapeRefiner::ClearContextMap(); | |||
return SUCCESS; | |||
} | |||
@@ -2389,6 +2275,7 @@ Status GraphPrepare::InferShapeForPreprocess() { | |||
} | |||
} | |||
} | |||
ShapeRefiner::ClearContextMap(); | |||
if (ret != SUCCESS) { | |||
GELOGE(ret, "Run ge_passes infershape for preprocess failed, ret:%u.", ret); | |||
return ret; | |||
@@ -2821,14 +2708,14 @@ Status GraphPrepare::UpdateInputOutputByOptions() { | |||
} | |||
if (node_ptr->GetType() == DATA) { | |||
if (ProcessDataNodeDynShape(node_ptr, options_.is_single_op) != SUCCESS) { | |||
if (ProcessDataNodeDynShape(node_ptr) != SUCCESS) { | |||
GELOGE(INTERNAL_ERROR, "Process data node failed"); | |||
return FAILED; | |||
} | |||
} | |||
if (node_ptr->GetType() == ge::NETOUTPUT) { | |||
if (ProcessNetoutputNodeDynShape(node_ptr, options_.output_datatype, options_.is_single_op) != SUCCESS) { | |||
if (ProcessNetoutputNodeDynShape(node_ptr, options_.output_datatype) != SUCCESS) { | |||
GELOGE(INTERNAL_ERROR, "Process netoutput node failed"); | |||
return FAILED; | |||
} | |||
@@ -389,8 +389,8 @@ Status AippOp::SetDefaultParams() { | |||
GELOGI("parse aipp params:input_format:%s, csc_switch:%d.", | |||
domi::AippOpParams::InputFormat_Name(aipp_params_->input_format()).c_str(), aipp_params_->csc_switch()); | |||
GELOGI("parse aipp params:mean_chn_0:%d, mean_chn_1:%d, mean_chn_2:%d.", aipp_params_->mean_chn_0(), | |||
aipp_params_->mean_chn_1(), aipp_params_->mean_chn_2()); | |||
GELOGI("parse aipp params:mean_chn_0:%d, mean_chn_1:%d, mean_chn_2:%d, mean_chn_3:%d.", aipp_params_->mean_chn_0(), | |||
aipp_params_->mean_chn_1(), aipp_params_->mean_chn_2(), aipp_params_->mean_chn_3()); | |||
GELOGI("parse aipp params:min_chn_0:%f, min_chn_1:%f, min_chn_2:%f.", aipp_params_->min_chn_0(), | |||
aipp_params_->min_chn_1(), aipp_params_->min_chn_2()); | |||
@@ -40,6 +40,23 @@ namespace ge { | |||
namespace { | |||
const char *const kMbatchSwitchnName = "mbatch-switch-name"; | |||
} // namespace | |||
static void ConvertShape2Nhwc(Format &format, vector<int64_t> &shape_vec) { | |||
if ((format == FORMAT_NHWC) || (shape_vec.size() != static_cast<size_t>(NORMAL_TENSOR_SIZE))) { | |||
return; | |||
} | |||
if (format != FORMAT_NCHW) { | |||
GELOGW("The format is not NCHW, current format is %s", TypeUtils::FormatToSerialString(format).c_str()); | |||
return; | |||
} | |||
vector<int64_t> shape_vec_tmp; | |||
shape_vec.swap(shape_vec_tmp); | |||
shape_vec.push_back(shape_vec_tmp[NCHW_DIM_N]); | |||
shape_vec.push_back(shape_vec_tmp[NCHW_DIM_H]); | |||
shape_vec.push_back(shape_vec_tmp[NCHW_DIM_W]); | |||
shape_vec.push_back(shape_vec_tmp[NCHW_DIM_C]); | |||
return; | |||
} | |||
Status InsertNewOpUtil::Init() { | |||
insert_op_conf_.reset((new (std::nothrow) domi::InsertNewOps())); | |||
GE_CHECK_NOTNULL(insert_op_conf_); | |||
@@ -223,11 +240,13 @@ Status InsertNewOpUtil::UpdatePrevNodeByAipp(NodePtr &node, std::set<NodePtr> &s | |||
GELOGE(FAILED, "UpdateOutputDesc fail, graph_ret:%d", graph_ret); | |||
return FAILED; | |||
} | |||
GELOGI("Get size [%ld] from aipp [%s].", size, aipp_op_desc->GetName().c_str()); | |||
GELOGI("Get input size [%ld] from aipp [%s].", size, aipp_op_desc->GetName().c_str()); | |||
if (size == 0) { | |||
GELOGE(FAILED, "Can not get size from aipp [%s]", aipp_op_desc->GetName().c_str()); | |||
return FAILED; | |||
} | |||
// Save the input size of aipp node, which will be used in dumping aipp node or fused aipp node | |||
(void)AttrUtils::SetInt(aipp_input, ATTR_NAME_INPUT_ORIGIN_SIZE, size); | |||
auto in_data_anchor = node->GetInDataAnchor(0); | |||
GE_CHECK_NOTNULL(in_data_anchor); | |||
@@ -305,6 +324,8 @@ Status InsertNewOpUtil::UpdateDataBySwitchN(const NodePtr &switchn, const NodePt | |||
auto data_opdesc = data->GetOpDesc(); | |||
GE_CHECK_NOTNULL(data_opdesc); | |||
Format old_format = data_opdesc->MutableOutputDesc(0)->GetFormat(); | |||
auto ret = data_opdesc->UpdateOutputDesc(0, *input_desc); | |||
if (ret != GRAPH_SUCCESS) { | |||
GELOGE(INTERNAL_ERROR, "Failed to update data %s output using switchn %s", data->GetName().c_str(), | |||
@@ -317,9 +338,34 @@ Status InsertNewOpUtil::UpdateDataBySwitchN(const NodePtr &switchn, const NodePt | |||
switchn->GetName().c_str()); | |||
return INTERNAL_ERROR; | |||
} | |||
// Update attr _mbatch_origin_input_dims for data when it is linked to aipp | |||
UpdateMultiBatchInputDims(data_opdesc, old_format); | |||
return SUCCESS; | |||
} | |||
void InsertNewOpUtil::UpdateMultiBatchInputDims(const OpDescPtr &data_opdesc, Format &old_format) { | |||
if (!data_opdesc->HasAttr(ATTR_MBATCH_ORIGIN_INPUT_DIMS)) { | |||
GELOGW("Failed to acquire _mbatch_origin_input_dims attr from node [%s]", data_opdesc->GetName().c_str()); | |||
return; | |||
} | |||
auto new_data_dims = data_opdesc->GetOutputDesc(0).GetShape().GetDims(); | |||
vector<int64_t> origin_input_dims; | |||
(void)AttrUtils::GetListInt(data_opdesc, ATTR_MBATCH_ORIGIN_INPUT_DIMS, origin_input_dims); | |||
// Convert origin_input_dims to NHWC because data format is set to NHWC when it is linked to aipp. | |||
ConvertShape2Nhwc(old_format, origin_input_dims); | |||
if (new_data_dims.size() != origin_input_dims.size()) { | |||
return; | |||
} | |||
for (size_t i = 0; i < origin_input_dims.size(); ++i) { | |||
// Need to update shape when aipp has crop function because H,W is different, ignore -1. | |||
if (origin_input_dims[i] > 0) { | |||
origin_input_dims[i] = new_data_dims[i]; | |||
} | |||
} | |||
(void)AttrUtils::SetListInt(data_opdesc, ATTR_MBATCH_ORIGIN_INPUT_DIMS, origin_input_dims); | |||
return; | |||
} | |||
Status InsertNewOpUtil::GetDataRelatedNode(NodePtr &node, std::map<NodePtr, std::set<NodePtr>> &data_next_node_map) { | |||
GELOGI("Start to get data and next node %s.", node->GetName().c_str()); | |||
OpDescPtr data_op = node->GetOpDesc(); | |||
@@ -420,15 +466,18 @@ Status InsertNewOpUtil::RecordAIPPInfoToData(const ComputeGraphPtr &graph) { | |||
GetInputOutputInfo(data_node, aipp_it, input, output); | |||
input_dims.emplace_back(input); | |||
output_dims.emplace_back(output); | |||
// When static aipp is set, need to get the model input dims which processed by aipp | |||
GE_RETURN_IF_ERROR(SetModelInputDims(data_node, aipp_it)); | |||
} | |||
if (!AttrUtils::SetListStr(data_node->GetOpDesc(), ATTR_NAME_AIPP_INPUTS, input_dims)) { | |||
GELOGE(FAILED, "SetListInt of %s failed.", ATTR_NAME_AIPP_INPUTS.c_str()); | |||
GELOGE(FAILED, "SetListStr of %s failed.", ATTR_NAME_AIPP_INPUTS.c_str()); | |||
return FAILED; | |||
} | |||
if (!AttrUtils::SetListStr(data_node->GetOpDesc(), ATTR_NAME_AIPP_OUTPUTS, output_dims)) { | |||
GELOGE(FAILED, "SetListInt of %s failed.", ATTR_NAME_AIPP_OUTPUTS.c_str()); | |||
GELOGE(FAILED, "SetListStr of %s failed.", ATTR_NAME_AIPP_OUTPUTS.c_str()); | |||
return FAILED; | |||
} | |||
} | |||
@@ -473,4 +522,41 @@ Status InsertNewOpUtil::GetInputOutputInfo(NodePtr &data_node, NodePtr &aipp_nod | |||
data_node->GetName().c_str(), aipp_node->GetName().c_str(), input.c_str(), output.c_str()); | |||
return SUCCESS; | |||
} | |||
Status InsertNewOpUtil::SetModelInputDims(NodePtr &data_node, NodePtr &aipp_node) { | |||
GE_CHECK_NOTNULL(data_node); | |||
GE_CHECK_NOTNULL(aipp_node); | |||
OpDescPtr data_opdesc = data_node->GetOpDesc(); | |||
GE_CHECK_NOTNULL(data_opdesc); | |||
OpDescPtr aipp_opdesc = aipp_node->GetOpDesc(); | |||
GE_CHECK_NOTNULL(aipp_opdesc); | |||
// In dynamic bacth/hw scenario, the new model input dims only need be set once | |||
if (data_node->GetOpDesc()->HasAttr(ATTR_NAME_INPUT_DIMS)) { | |||
GELOGD("Data %s already has attribute %s", data_node->GetOpDesc()->GetName().c_str(), ATTR_NAME_INPUT_DIMS.c_str()); | |||
return SUCCESS; | |||
} | |||
vector<int64_t> model_input_dims; | |||
vector<int64_t> origin_input_dims; | |||
if (AttrUtils::GetListInt(aipp_opdesc, ATTR_NAME_INPUT_DIMS, model_input_dims) && !model_input_dims.empty()) { | |||
// When dynamic bacth/hw is set, N or HW need to be set to -1 | |||
if (AttrUtils::GetListInt(data_opdesc, ATTR_MBATCH_ORIGIN_INPUT_DIMS, origin_input_dims) && | |||
!origin_input_dims.empty()) { | |||
GELOGI("In dynamic bacth/hw scenario, N or HW need to be set to -1. model_input_dims: %s, origin_input_dims: %s", | |||
formats::JoinToString(model_input_dims).c_str(), formats::JoinToString(origin_input_dims).c_str()); | |||
for (size_t i = 0; i < origin_input_dims.size(); ++i) { | |||
// N or HW need to be set to -1 | |||
if (origin_input_dims[i] < 0) { | |||
model_input_dims[i] = origin_input_dims[i]; | |||
} | |||
} | |||
} | |||
GELOGD("After set H/W to -1, the model input dims: %s.", formats::JoinToString(model_input_dims).c_str()); | |||
if (!AttrUtils::SetListInt(data_opdesc, ATTR_NAME_INPUT_DIMS, model_input_dims)) { | |||
GELOGE(FAILED, "SetListInt of %s failed.", ATTR_NAME_INPUT_DIMS.c_str()); | |||
return FAILED; | |||
} | |||
} | |||
return SUCCESS; | |||
} | |||
} // namespace ge |
@@ -61,11 +61,13 @@ class InsertNewOpUtil { | |||
std::unique_ptr<domi::InsertNewOps> insert_op_conf_; | |||
void UpdateMultiBatchInputDims(const OpDescPtr &data_opdesc, Format &old_format); | |||
Status UpdatePrevNodeByAipp(NodePtr &node, std::set<NodePtr> &switchns); | |||
Status UpdateDataBySwitchN(const NodePtr &switchn, const NodePtr &data); | |||
Status GetDataRelatedNode(NodePtr &node, std::map<NodePtr, std::set<NodePtr>> &data_next_node_map); | |||
Status GetAllAipps(const NodePtr &node, std::vector<NodePtr> &aipps); | |||
Status GetInputOutputInfo(NodePtr &data_node, NodePtr &aipp_node, std::string &input, std::string &output); | |||
Status SetModelInputDims(NodePtr &data_node, NodePtr &aipp_node); | |||
}; | |||
} // namespace ge | |||
@@ -44,6 +44,7 @@ const int kSwitchNPredIndex = 1; | |||
const int kDataOutIndex = 0; | |||
const int kDataInIndex = 0; | |||
const int kMergeDataOutIndex = 0; | |||
const int kStaticOutput = -1; | |||
const size_t kMaxShapesCount = 100; | |||
const size_t kMinShapesCount = 2; | |||
@@ -947,15 +948,18 @@ Status GetDynamicOutputShape(ComputeGraphPtr &graph) { | |||
GELOGE(PARAM_INVALID, "Graph is null ,para is invalid"); | |||
return PARAM_INVALID; | |||
} | |||
for (auto &node : graph->GetAllNodes()) { | |||
for (auto &node : graph->GetDirectNode()) { | |||
if (node->GetType() == NETOUTPUT) { | |||
auto netoutput_desc = node->GetOpDesc(); | |||
auto inputnode_to_netoutput = node->GetInAllNodes(); | |||
std::vector<size_t> dynamic_output_index; | |||
for (size_t j = 0; j < inputnode_to_netoutput.size(); j++) { | |||
bool ret = false; | |||
(void)AttrUtils::GetBool(inputnode_to_netoutput.at(j)->GetOpDesc(), ATTR_INSERT_BY_MBATCH, ret); | |||
if (inputnode_to_netoutput.at(j)->GetType() == MERGE && ret) { | |||
GELOGI("Find the merge node %s with mbatch attr", inputnode_to_netoutput.at(j)->GetName().c_str()); | |||
GELOGI("Find the merge node %s with mbatch attr and the index is %zu", | |||
inputnode_to_netoutput.at(j)->GetName().c_str(), j); | |||
dynamic_output_index.emplace_back(j); | |||
for (size_t i = 0; i < inputnode_to_netoutput.at(j)->GetInNodes().size(); i++) { | |||
auto input_desc = inputnode_to_netoutput.at(j)->GetOpDesc(); | |||
auto input_tensor_desc = input_desc->GetInputDesc(i); | |||
@@ -967,6 +971,17 @@ Status GetDynamicOutputShape(ComputeGraphPtr &graph) { | |||
} | |||
} | |||
if (dynamic_output_dims.size() > 0) { | |||
for (size_t k = 0; k < inputnode_to_netoutput.size(); k++) { | |||
auto it = std::find(dynamic_output_index.begin(), dynamic_output_index.end(), k); | |||
if (it != dynamic_output_index.end()) { | |||
continue; | |||
} | |||
auto tensor_desc = netoutput_desc->GetInputDesc(k); | |||
auto shape = tensor_desc.GetShape().ToString(); | |||
std::string static_output_shape = std::to_string(kStaticOutput) + "," + std::to_string(k) + "," + shape; | |||
GELOGI("The static output shape msg is %s", static_output_shape.c_str()); | |||
dynamic_output_dims.emplace_back(static_output_shape); | |||
} | |||
if (!AttrUtils::SetListStr(netoutput_desc, ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims)) { | |||
GELOGE(FAILED, "Set dynamic output dims attr failed"); | |||
return FAILED; | |||
@@ -31,6 +31,7 @@ | |||
namespace ge { | |||
namespace { | |||
const size_t kConcatV2InputNum = 3; | |||
const int kSupportEmptyTensorRank = 1; | |||
const std::set<DataType> concatv2_supported_type = {DT_INT32, DT_FLOAT}; | |||
template <typename T> | |||
@@ -39,7 +40,12 @@ void GetOutputData(std::vector<T> &y_data, int64_t loop, size_t &input_size, | |||
for (int64_t i = 0; i < loop; i++) { | |||
for (size_t k = 0; k < input_size; k++) { | |||
GeShape datak_shape = input.at(k)->GetTensorDesc().GetShape(); | |||
const T *datak = reinterpret_cast<const T *>(input.at(k)->GetData().data()); | |||
auto buffer = input.at(k)->GetData(); | |||
const T *datak = reinterpret_cast<const T *>(buffer.data()); | |||
if (datak == nullptr || buffer.size() == 0) { | |||
GELOGW("input[%zu] is with no data", k); | |||
continue; | |||
} | |||
int64_t gapk = datak_shape.GetShapeSize() / loop; // [2,3] is 6/loop | |||
for (int64_t j = 0; j < gapk; j++) { | |||
y_data.push_back(datak[j + gapk * i]); | |||
@@ -63,7 +69,8 @@ Status ConcatV2Kernel::Compute(const ge::OpDescPtr op_desc_ptr, const vector<ge: | |||
return PARAM_INVALID; | |||
} | |||
int tidx = -1; | |||
Status ret = ConcatV2PreCompute(input, tidx); | |||
ConstGeTensorPtr tensor = nullptr; | |||
Status ret = ConcatV2PreCompute(input, tidx, tensor); | |||
if (ret != SUCCESS) { | |||
return ret; | |||
} | |||
@@ -71,9 +78,8 @@ Status ConcatV2Kernel::Compute(const ge::OpDescPtr op_desc_ptr, const vector<ge: | |||
size_t input_size = input.size(); // N + 1 | |||
input_size--; // N | |||
ConstGeTensorPtr tensor0 = input.at(0); | |||
GE_CHECK_NOTNULL(tensor0); | |||
DataType data_type = tensor0->GetTensorDesc().GetDataType(); | |||
GE_CHECK_NOTNULL(tensor); | |||
DataType data_type = tensor->GetTensorDesc().GetDataType(); | |||
uint32_t length = 0; | |||
if (!TypeUtils::GetDataTypeLength(data_type, length)) { | |||
GELOGW("Can't GetDataTypeLength of data_type: %s", TypeUtils::DataTypeToSerialString(data_type).c_str()); | |||
@@ -91,7 +97,7 @@ Status ConcatV2Kernel::Compute(const ge::OpDescPtr op_desc_ptr, const vector<ge: | |||
return MEMALLOC_FAILED; | |||
} | |||
GeShape data0_shape = tensor0->GetTensorDesc().GetShape(); | |||
GeShape data0_shape = tensor->GetTensorDesc().GetShape(); | |||
int64_t loop = 1; | |||
for (int i = 0; i < tidx; i++) { | |||
loop *= data0_shape.GetDim(i); | |||
@@ -110,29 +116,33 @@ Status ConcatV2Kernel::Compute(const ge::OpDescPtr op_desc_ptr, const vector<ge: | |||
return SUCCESS; | |||
} | |||
Status ConcatV2Kernel::ConcatV2PreCompute(const std::vector<ConstGeTensorPtr> &input, int &tidx) { | |||
Status ConcatV2Kernel::ConcatV2PreCompute(const std::vector<ConstGeTensorPtr> &input, int &tidx, | |||
ConstGeTensorPtr &tensor) { | |||
size_t input_size = input.size(); | |||
// N >= 2 and N + 1 >= 3 | |||
if (input_size < kConcatV2InputNum) { | |||
GELOGI("The number of input for ConcatV2 must not be less than %zu.", kConcatV2InputNum); | |||
return NOT_CHANGED; | |||
} | |||
bool has_empty_tensor = false; | |||
input_size--; | |||
for (size_t i = 0; i < input_size; i++) { | |||
if (input[i] == nullptr) { | |||
GELOGI("Input%zu must not be null.", i); | |||
return NOT_CHANGED; | |||
} | |||
if (input.at(i)->GetData().size() == 0) { | |||
GELOGI("Check data size fail. input%zu size is 0.", i); | |||
return NOT_CHANGED; | |||
GELOGW("input[%zu] is with no data.", i); | |||
has_empty_tensor = true; | |||
continue; | |||
} | |||
if (tensor == nullptr) { | |||
tensor = input.at(i); // get first valid tensor with data | |||
} | |||
} | |||
input_size--; | |||
ConstGeTensorPtr tensor0 = input.at(0); | |||
GE_CHECK_NOTNULL(tensor0); | |||
DataType data_type = tensor0->GetTensorDesc().GetDataType(); | |||
GE_CHECK_NOTNULL(tensor); | |||
DataType data_type = tensor->GetTensorDesc().GetDataType(); | |||
for (size_t i = 1; i < input_size; i++) { | |||
if (data_type != input.at(i)->GetTensorDesc().GetDataType()) { | |||
GELOGI("Data type of N inputs for ConcatV2 not the same, check input %zu failed.", i); | |||
@@ -149,13 +159,18 @@ Status ConcatV2Kernel::ConcatV2PreCompute(const std::vector<ConstGeTensorPtr> &i | |||
ConstGeTensorPtr tensor_axis = input.at(input_size); | |||
GE_CHECK_NOTNULL(tensor_axis); | |||
const int *axis = reinterpret_cast<const int *>(tensor_axis->GetData().data()); | |||
tidx = axis[0]; // [-rank(values), rank(values)) | |||
int dims = static_cast<int>(tensor0->GetTensorDesc().GetShape().GetDimNum()); // rank | |||
GE_CHECK_NOTNULL(axis); | |||
tidx = axis[0]; // [-rank(values), rank(values)) | |||
int rank = static_cast<int>(tensor->GetTensorDesc().GetShape().GetDimNum()); // rank | |||
if (tidx < 0) { | |||
tidx += dims; | |||
tidx += rank; | |||
} | |||
if (tidx < 0 || tidx > dims) { | |||
GELOGI("ConcatV2 tidx not legal."); | |||
// 1. tidx should in range [0,rank) | |||
// 2. empty tensor only support case: [n],[m],[] | |||
// case: [[],[]] ,[[],[]] ,[] or other case when rank >=2 is not supported | |||
if (tidx < 0 || tidx >= rank || (has_empty_tensor && rank > kSupportEmptyTensorRank)) { | |||
GELOGW("ConcatV2 info: tidx[%d]_rank[%d]_has_empty_tensor[bool:%d] cannot be supported, skip fold.", tidx, rank, | |||
has_empty_tensor); | |||
return NOT_CHANGED; | |||
} | |||
@@ -28,7 +28,7 @@ class ConcatV2Kernel : public Kernel { | |||
std::vector<GeTensorPtr> &v_output) override; | |||
private: | |||
Status ConcatV2PreCompute(const std::vector<ConstGeTensorPtr> &input, int &tidx); | |||
Status ConcatV2PreCompute(const std::vector<ConstGeTensorPtr> &input, int &tidx, ConstGeTensorPtr &tensor); | |||
}; | |||
} // namespace ge | |||
@@ -46,6 +46,8 @@ namespace ge { | |||
namespace { | |||
const int kDecimal = 10; | |||
const int kSocVersionLen = 50; | |||
const int kDefaultDeviceIdForTrain = 0; | |||
const int kDefaultDeviceIdForInfer = -1; | |||
} // namespace | |||
static std::shared_ptr<GELib> instancePtr_ = nullptr; | |||
@@ -194,8 +196,12 @@ Status GELib::SystemInitialize(const map<string, string> &options) { | |||
// In train and infer, profiling is always needed. | |||
InitOptions(options); | |||
InitProfiling(this->options_); | |||
if (is_train_mode_) { | |||
// 1.`is_train_mode_` means case: train | |||
// 2.`(!is_train_mode_) && (options_.device_id != kDefaultDeviceIdForInfer)` means case: online infer | |||
// these two case need call `InitSystemWithOptions->rtGetDeviceIndexByPhyId` | |||
// to convert phy device id to logical device id | |||
// note:rtGetDeviceIndexByPhyId return `0` logical id when input phy device id is `0` | |||
if (is_train_mode_ || (options_.device_id != kDefaultDeviceIdForInfer)) { | |||
status = InitSystemWithOptions(this->options_); | |||
} else { | |||
status = InitSystemWithoutOptions(); | |||
@@ -237,7 +243,7 @@ void GELib::InitOptions(const map<string, string> &options) { | |||
if (iter != options.end()) { | |||
this->options_.session_id = std::strtoll(iter->second.c_str(), nullptr, kDecimal); | |||
} | |||
this->options_.device_id = 0; | |||
this->options_.device_id = is_train_mode_ ? kDefaultDeviceIdForTrain : kDefaultDeviceIdForInfer; | |||
iter = options.find(OPTION_EXEC_DEVICE_ID); | |||
if (iter != options.end()) { | |||
this->options_.device_id = static_cast<int32_t>(std::strtol(iter->second.c_str(), nullptr, kDecimal)); | |||
@@ -289,7 +295,8 @@ void GELib::InitOptions(const map<string, string> &options) { | |||
} | |||
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status GELib::InitSystemWithOptions(Options &options) { | |||
GELOGI("Training init GELib. session Id:%ld, device id :%d ", options.session_id, options.device_id); | |||
std::string mode = is_train_mode_ ? "Training" : "Online infer"; | |||
GELOGI("%s init GELib. session Id:%ld, device id :%d ", mode.c_str(), options.session_id, options.device_id); | |||
GEEVENT("System init with options begin, job id %s", options.job_id.c_str()); | |||
std::lock_guard<std::mutex> lock(status_mutex_); | |||
GE_IF_BOOL_EXEC(is_system_inited && !is_shutdown, | |||
@@ -329,13 +336,14 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status GELib::InitSystemWithOpt | |||
is_system_inited = true; | |||
is_shutdown = false; | |||
GELOGI("Training init GELib success."); | |||
GELOGI("%s init GELib success.", mode.c_str()); | |||
return SUCCESS; | |||
} | |||
Status GELib::SystemShutdownWithOptions(const Options &options) { | |||
GELOGI("Training finalize GELib begin."); | |||
std::string mode = is_train_mode_ ? "Training" : "Online infer"; | |||
GELOGI("%s finalize GELib begin.", mode.c_str()); | |||
std::lock_guard<std::mutex> lock(status_mutex_); | |||
GE_IF_BOOL_EXEC(is_shutdown || !is_system_inited, | |||
@@ -353,8 +361,7 @@ Status GELib::SystemShutdownWithOptions(const Options &options) { | |||
is_system_inited = false; | |||
is_shutdown = true; | |||
GELOGI("Training finalize GELib success."); | |||
GELOGI("%s finalize GELib success.", mode.c_str()); | |||
return SUCCESS; | |||
} | |||
@@ -424,7 +431,7 @@ Status GELib::Finalize() { | |||
// Shut down profiling | |||
ShutDownProfiling(); | |||
if (is_train_mode_) { | |||
if (is_train_mode_ || (options_.device_id != kDefaultDeviceIdForInfer)) { | |||
GELOGI("System ShutDown."); | |||
mid_state = SystemShutdownWithOptions(this->options_); | |||
if (mid_state != SUCCESS) { | |||
@@ -39,6 +39,7 @@ | |||
#include "ir_build/atc_ir_common.h" | |||
#include "omg/omg.h" | |||
#include "omg/parser/parser_factory.h" | |||
#include "omg/parser/parser_inner_ctx.h" | |||
#include "parser/common/register_tbe.h" | |||
#include "register/op_registry.h" | |||
#include "single_op_parser.h" | |||
@@ -178,8 +179,6 @@ DEFINE_string(compress_weight_conf, "", "Optional; the config file to compress w | |||
DEFINE_string(enable_single_stream, "", "Optional; enable single stream. true: enable; false(default): disable"); | |||
DEFINE_string(quant_optimize, "true", "Optional; enable quant optimize. true: enable; false(default): disable"); | |||
DEFINE_string(log, "default", "Optional; generate atc log. Support debug, info, warning, error, null"); | |||
DEFINE_string(dump_mode, "0", "Optional; generate infershape json,only support 1 , 0."); | |||
@@ -203,10 +202,7 @@ class GFlagUtils { | |||
"arguments explain:\n" | |||
" --model Model file\n" | |||
" --singleop Single op definition file. atc will generate offline " | |||
"model(s) for single op if --singleop is set. \n" | |||
" Note: Only output, soc_verion, core_type, aicore_num, auto_tune_mode, precision_mode, " | |||
"op_select_implmode, enable_small_channel, enable_compress_weight, compress_weight_conf " | |||
"enable_single_stream and log are valid in this mode \n" | |||
"model(s) for single op if --singleop is set.\n" | |||
" --weight Weight file. Required when framework is Caffe\n" | |||
" --framework Framework type(0:Caffe; 1:MindSpore; 3:Tensorflow)\n" | |||
" --output Output file path&name(needn't suffix, will add " | |||
@@ -253,6 +249,9 @@ class GFlagUtils { | |||
" --op_select_implmode Set op select implmode. Support high_precision, high_performance." | |||
"default: high_performance\n" | |||
"disable\n" | |||
" --optypelist_for_implmode Appoint which op to use op_select_implmode, used with op_select_implmode ." | |||
"Separate multiple nodes with commas (,). Use double quotation marks (\") to enclose each argument." | |||
"E.g.: \"node_name1,node_name2\"\n" | |||
" --head_stream Add head stream. 0(default): disable; 1: enable\n" | |||
" --soc_version The soc version. E.g.: \"Ascend310\"\n" | |||
" --core_type Set core type AiCore or VectorCore. VectorCore: use vector core. " | |||
@@ -270,8 +269,7 @@ class GFlagUtils { | |||
"Use double quotation marks (\") to enclose each argument." | |||
"E.g: \"imagesize1_height,imagesize1_width;imagesize2_height,imagesize2_width\"\n" | |||
" --auto_tune_mode Set tune mode. E.g.: \"GA,RL\", support configure multiple, spit by ,\n" | |||
" --enable_single_stream Enable single stream. true: enable; false(default): disable\n" | |||
" --quant_optimize Enable quant optimize. true(default): enable; false: disable\n"); | |||
" --enable_single_stream Enable single stream. true: enable; false(default): disable\n"); | |||
gflags::ParseCommandLineNonHelpFlags(&argc, &argv, true); | |||
// Using gflags to analyze input parameters | |||
@@ -656,13 +654,36 @@ void LoadCustomOpLib() { | |||
std::vector<OpRegistrationData> registrationDatas = OpRegistry::Instance()->registrationDatas; | |||
for (OpRegistrationData reg_data : registrationDatas) { | |||
bool ret = ge::OpRegistrationTbe::Instance()->Finalize(reg_data); | |||
if (ret) { | |||
OpRegistry::Instance()->Register(reg_data); | |||
if (reg_data.GetFrameworkType() == static_cast<domi::FrameworkType>(FLAGS_framework)) { | |||
bool ret = ge::OpRegistrationTbe::Instance()->Finalize(reg_data); | |||
if (ret) { | |||
(void)OpRegistry::Instance()->Register(reg_data); | |||
} | |||
} | |||
} | |||
} | |||
void SaveCustomCaffeProtoPath() { | |||
GELOGI("Enter save custom caffe proto path."); | |||
string customop_path; | |||
const char *path_env = std::getenv("ASCEND_OPP_PATH"); | |||
if (path_env != nullptr) { | |||
std::string path = path_env; | |||
customop_path = path + "/framework/custom/caffe/"; | |||
GELOGI("Get custom proto path from env : %s", path_env); | |||
ge::GetParserContext().custom_proto_path = customop_path; | |||
return; | |||
} | |||
std::string path_base = ge::GELib::GetPath(); | |||
GELOGI("path_base is %s", path_base.c_str()); | |||
path_base = path_base.substr(0, path_base.rfind('/')); | |||
path_base = path_base.substr(0, path_base.rfind('/') + 1); | |||
customop_path = path_base + "ops/framework/custom/caffe/"; | |||
ge::GetParserContext().custom_proto_path = customop_path; | |||
return; | |||
} | |||
#endif | |||
Status CreateInputsForInference(const ge::Graph &graph, vector<ge::GeTensor> &inputs) { | |||
@@ -850,6 +871,7 @@ domi::Status GenerateModel(std::map<string, string> &options, std::string output | |||
atc_params.insert(std::pair<string, string>("is_output_adjust_hw_layout", FLAGS_is_output_adjust_hw_layout)); | |||
atc_params.insert(std::pair<string, string>("compress_weight_conf", FLAGS_compress_weight_conf)); | |||
atc_params.insert(std::pair<string, string>(string(ge::OUTPUT_DATATYPE), FLAGS_output_type)); | |||
atc_params.insert(std::pair<string, string>("output", output)); | |||
Status ret = | |||
ParseGraph(graph, atc_params, FLAGS_model.c_str(), FLAGS_weight.c_str(), (domi::FrameworkType)FLAGS_framework, | |||
@@ -982,6 +1004,8 @@ domi::Status GenerateOmModel() { | |||
// Load custom operator Library | |||
LoadCustomOpLib(); | |||
SaveCustomCaffeProtoPath(); | |||
ret = ge::CheckCustomAiCpuOpLib(); | |||
GE_CHK_BOOL_EXEC(ret == domi::SUCCESS, return domi::FAILED, "check custom aicpu run so failed!"); | |||
@@ -1043,8 +1067,6 @@ domi::Status GenerateOmModel() { | |||
options.insert(std::pair<string, string>(string(ge::ENABLE_SINGLE_STREAM), FLAGS_enable_single_stream)); | |||
options.insert(std::pair<string, string>(string(ge::QUANT_OPTIMIZE), FLAGS_quant_optimize)); | |||
SetDynamicBatchSizeOrImagesizeOptions(); | |||
if (!FLAGS_save_original_model.empty()) { | |||
@@ -273,10 +273,6 @@ Status SingleOpParser::ConvertToBuildParam(int index, const SingleOpDesc &single | |||
} else { | |||
op_desc->AddInputDesc(desc.name, ge_tensor_desc); | |||
} | |||
if (desc.format == FORMAT_FRACTAL_NZ || desc.format == FORMAT_FRACTAL_Z) { | |||
ge_tensor_desc.SetFormat(FORMAT_ND); | |||
ge_tensor_desc.SetOriginFormat(FORMAT_ND); | |||
} | |||
build_param.inputs.emplace_back(ge_tensor_desc); | |||
} | |||
@@ -292,10 +288,6 @@ Status SingleOpParser::ConvertToBuildParam(int index, const SingleOpDesc &single | |||
TensorUtils::SetInputTensor(ge_tensor_desc, false); | |||
TensorUtils::SetOutputTensor(ge_tensor_desc, true); | |||
op_desc->AddOutputDesc(ge_tensor_desc); | |||
if (desc.format == FORMAT_FRACTAL_NZ || desc.format == FORMAT_FRACTAL_Z) { | |||
ge_tensor_desc.SetFormat(FORMAT_ND); | |||
ge_tensor_desc.SetOriginFormat(FORMAT_ND); | |||
} | |||
build_param.outputs.emplace_back(ge_tensor_desc); | |||
} | |||
@@ -29,6 +29,8 @@ | |||
#include "common/types.h" | |||
#include "common/util.h" | |||
#include "common/util/error_manager/error_manager.h" | |||
#include "common/helper/model_helper.h" | |||
#include "common/ge/ge_util.h" | |||
#include "framework/common/debug/ge_log.h" | |||
#include "framework/omg/parser/parser_inner_ctx.h" | |||
#include "google/protobuf/io/zero_copy_stream_impl.h" | |||
@@ -419,10 +421,6 @@ Status SetOutputNodeInfo(ge::Graph &graph, const std::string &output_type, const | |||
GELOGE(domi::FAILED, "Can not find src node (%s) in graph.", user_out_nodes[i].first.c_str()); | |||
return domi::FAILED; | |||
} | |||
if (out_node->GetType() == DATA) { | |||
GELOGE(domi::FAILED, "out_nodes [%s] can not be set input data, please check", user_out_nodes[i].first.c_str()); | |||
return domi::FAILED; | |||
} | |||
auto op_desc = out_node->GetOpDesc(); | |||
GE_CHECK_NOTNULL(op_desc); | |||
if (i < output_formats.size()) { | |||
@@ -441,24 +439,49 @@ Status SetOutputNodeInfo(ge::Graph &graph, const std::string &output_type, const | |||
(void)ge::AttrUtils::SetListInt(op_desc, "_output_dt_index", it_index->second); | |||
} | |||
output_nodes_info.push_back(std::make_pair(out_node, user_out_nodes[i].second)); | |||
output_nodes_name.push_back(out_node->GetName()); | |||
output_nodes_name.push_back(out_node->GetName() + ":" + std::to_string(user_out_nodes[i].second)); | |||
} | |||
// default output node (leaf) | |||
if (user_out_nodes.empty()) { | |||
for (ge::NodePtr node : compute_graph->GetDirectNode()) { | |||
if (!node->GetInDataNodes().empty() && node->GetOutDataNodes().empty()) { | |||
Status ret = GetOutputLeaf(node, output_nodes_info, output_nodes_name); | |||
Status ret = GetOutputLeaf(node, output_nodes_info); | |||
GE_CHK_BOOL_RET_STATUS(ret == SUCCESS, ret, "find leaf fail."); | |||
} | |||
} | |||
} | |||
GetOutputNodesNameAndIndex(output_nodes_info, output_nodes_name); | |||
compute_graph->SetGraphOutNodesInfo(output_nodes_info); | |||
domi::GetContext().net_out_nodes = output_nodes_name; | |||
return domi::SUCCESS; | |||
} | |||
Status GetOutputLeaf(NodePtr node, std::vector<std::pair<ge::NodePtr, int32_t>> &output_nodes_info, | |||
std::vector<std::string> &output_nodes_name) { | |||
void GetOutputNodesNameAndIndex(std::vector<std::pair<ge::NodePtr, int32_t>> &output_nodes_info, | |||
std::vector<std::string> &output_nodes_name) { | |||
output_nodes_name.clear(); | |||
if (domi::GetContext().out_top_names.empty()) { | |||
// tf process, no top name. | |||
for (const auto output_node_info : output_nodes_info) { | |||
std::string node_name = output_node_info.first->GetName(); | |||
int32_t index = output_node_info.second; | |||
output_nodes_name.push_back(node_name + ":" + std::to_string(index)); | |||
} | |||
return; | |||
} | |||
// caffe process, need add top name after node_name:index | |||
for (size_t i = 0; i < output_nodes_info.size(); ++i) { | |||
std::string node_name = output_nodes_info[i].first->GetName(); | |||
int32_t index = output_nodes_info[i].second; | |||
if (i < domi::GetContext().out_top_names.size()) { | |||
output_nodes_name.push_back(node_name + ":" + std::to_string(index) + ":" + domi::GetContext().out_top_names[i]); | |||
} else { | |||
GELOGW("Get top name of node [%s] fail.", node_name.c_str()); | |||
output_nodes_name.push_back(node_name + ":" + std::to_string(index)); | |||
} | |||
} | |||
} | |||
Status GetOutputLeaf(NodePtr node, std::vector<std::pair<ge::NodePtr, int32_t>> &output_nodes_info) { | |||
ge::OpDescPtr tmpDescPtr = node->GetOpDesc(); | |||
if (tmpDescPtr == nullptr) { | |||
GELOGE(domi::FAILED, "Get outnode op desc fail."); | |||
@@ -468,7 +491,6 @@ Status GetOutputLeaf(NodePtr node, std::vector<std::pair<ge::NodePtr, int32_t>> | |||
if (node->GetType() != NETOUTPUT) { | |||
for (size_t index = 0; index < size; ++index) { | |||
output_nodes_info.push_back(std::make_pair(node, index)); | |||
output_nodes_name.push_back(node->GetName()); | |||
} | |||
} else { | |||
const auto in_anchors = node->GetAllInDataAnchors(); | |||
@@ -480,7 +502,6 @@ Status GetOutputLeaf(NodePtr node, std::vector<std::pair<ge::NodePtr, int32_t>> | |||
} | |||
auto out_node = out_anchor->GetOwnerNode(); | |||
output_nodes_info.push_back(std::make_pair(out_node, out_anchor->GetIdx())); | |||
output_nodes_name.push_back(out_node->GetName()); | |||
} | |||
} | |||
return SUCCESS; | |||
@@ -612,9 +633,16 @@ FMK_FUNC_HOST_VISIBILITY Status ParseGraph(ge::Graph &graph, const std::map<stri | |||
Params::Instance()->SetTarget(target); | |||
// Create an empty computegraph | |||
ComputeGraphPtr compute_graph = nullptr; | |||
GE_MAKE_SHARED(compute_graph = std::make_shared<ComputeGraph>(kGraphDefaultName + "_" + CurrentTimeInStr()), | |||
return FAILED); | |||
std::string om_name; | |||
ParseAtcParms(atc_params, "output", om_name); | |||
ModelHelper model_helper; | |||
string graph_name = ""; | |||
Status name_ret = model_helper.GetBaseNameFromFileName(om_name, graph_name); | |||
if (name_ret != SUCCESS) { | |||
graph_name = kGraphDefaultName + "_" + CurrentTimeInStr(); | |||
} | |||
ComputeGraphPtr compute_graph = MakeShared<ComputeGraph>(graph_name); | |||
GE_CHECK_NOTNULL(compute_graph); | |||
graph = GraphUtils::CreateGraphFromComputeGraph(compute_graph); | |||
// initialize omgContext | |||
@@ -664,8 +692,6 @@ FMK_FUNC_HOST_VISIBILITY Status ParseGraph(ge::Graph &graph, const std::map<stri | |||
GELOGI("The pre-checking report has been saved to %s.", check_report.c_str()); | |||
} | |||
// Prevent data residue in multiple calls | |||
PreChecker::Instance().Clear(); | |||
GE_CHK_BOOL_RET_STATUS(ret == SUCCESS, ret, "ATC model parse ret fail."); | |||
std::string input_fp16_nodes; | |||
@@ -693,12 +719,19 @@ FMK_FUNC_HOST_VISIBILITY Status ParseGraph(ge::Graph &graph, const std::map<stri | |||
graph = GraphUtils::CreateGraphFromComputeGraph(compute_graph); | |||
auto weights_parser = WeightsParserFactory::Instance()->CreateWeightsParser(type); | |||
ret = weights_parser->Parse(weights_file, graph); | |||
GE_CHK_BOOL_RET_STATUS(ret == SUCCESS, ret, "ATC weights parse ret fail."); | |||
// IN ONLY_PRE_CHECK mode, generate pre inspection report only. | |||
if (run_mode == ONLY_PRE_CHECK) { | |||
if (PreChecker::Instance().HasError() || run_mode == ONLY_PRE_CHECK) { | |||
std::string check_report; | |||
ParseAtcParms(atc_params, "check_report", check_report); | |||
GE_RETURN_WITH_LOG_IF_ERROR(PreChecker::Instance().Save(check_report), "Generate pre-checking report failed."); | |||
GEEVENT("The pre-checking report has been saved to %s.", check_report.c_str()); | |||
return SUCCESS; | |||
} | |||
// Prevent data residue in multiple calls | |||
PreChecker::Instance().Clear(); | |||
GE_CHK_BOOL_RET_STATUS(ret == SUCCESS, ret, "ATC weights parse ret fail."); | |||
GELOGI("ATC parser success."); | |||
@@ -41,17 +41,18 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status SingleOpManager::GetOpFr | |||
uintptr_t resource_id; | |||
// runtime uses NULL to denote a default stream for each device | |||
if (stream == nullptr) { | |||
// use device id as resource key instead | |||
int32_t dev_id = 0; | |||
auto rt_err = rtGetDevice(&dev_id); | |||
// get current context | |||
rtContext_t rt_cur_ctx = nullptr; | |||
auto rt_err = rtCtxGetCurrent(&rt_cur_ctx); | |||
if (rt_err != RT_ERROR_NONE) { | |||
GELOGE(RT_FAILED, "Get current device id failed. ret = %d", static_cast<int>(rt_err)); | |||
GELOGE(RT_FAILED, "get current context failed, runtime result is %d", static_cast<int>(rt_err)); | |||
return RT_FAILED; | |||
} | |||
GELOGI("GetOpFromModel with default stream. device id = %d", dev_id); | |||
resource_id = static_cast<uintptr_t>(dev_id); | |||
// use current context as resource key instead | |||
GELOGI("use context as resource key instead when default stream"); | |||
resource_id = reinterpret_cast<uintptr_t>(rt_cur_ctx); | |||
} else { | |||
GELOGI("use stream as resource key instead when create stream"); | |||
resource_id = reinterpret_cast<uintptr_t>(stream); | |||
} | |||
@@ -0,0 +1,6 @@ | |||
inc_path := $(shell pwd)/inc/external/ | |||
out_path := $(shell pwd)/out/atc/lib64/stub/ | |||
stub_path := $(shell pwd)/framework/domi/stub/ | |||
mkdir_stub := $(shell mkdir -p $(out_path)) | |||
local_stub := $(shell $(HI_PYTHON) $(stub_path)/gen_stubapi.py $(inc_path) $(out_path)) |
@@ -0,0 +1,4 @@ | |||
################################################################################### | |||
the directory (stub) saves the stub file | |||
gen_stubapi.py is using for retrieving API and generating stub functions | |||
################################################################################### |
@@ -0,0 +1,573 @@ | |||
import os | |||
import re | |||
import sys | |||
import logging | |||
logging.basicConfig(stream=sys.stdout, format='[%(asctime)s] [%(lineno)s] %(levelname)s: %(message)s', | |||
level=logging.INFO) | |||
""" | |||
this attr is used for symbol table visible | |||
""" | |||
GE_ATTR = 'GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY' | |||
""" | |||
generate stub func body by return type | |||
""" | |||
RETURN_STATEMENTS = { | |||
'graphStatus': ' return GRAPH_SUCCESS;', | |||
'Status': ' return SUCCESS;', | |||
'Graph': ' return Graph();', | |||
'Graph&': ' return *this;', | |||
'Format': ' return Format();', | |||
'Format&': ' return *this;', | |||
'Shape': ' return Shape();', | |||
'Shape&': ' return *this;', | |||
'TensorDesc': ' return TensorDesc();', | |||
'TensorDesc&': ' return *this;', | |||
'Tensor': ' return Tensor();', | |||
'Tensor&': ' return *this;', | |||
'Operator': ' return Operator();', | |||
'Operator&': ' return *this;', | |||
'Ptr': ' return nullptr;', | |||
'std::string': ' return "";', | |||
'std::string&': ' return "";', | |||
'string': ' return "";', | |||
'int': ' return 0;', | |||
'DataType': ' return DT_FLOAT;', | |||
'InferenceContextPtr': ' return nullptr;', | |||
'SubgraphBuilder': ' return nullptr;', | |||
'OperatorImplPtr': ' return nullptr;', | |||
'OutHandler': ' return nullptr;', | |||
'std::vector<std::string>': ' return {};', | |||
'std::vector<int64_t>': ' return {};', | |||
'std::map': ' return {};', | |||
'uint32_t': ' return 0;', | |||
'int64_t': ' return 0;', | |||
'uint64_t': ' return 0;', | |||
'size_t': ' return 0;', | |||
'float': ' return 0.0f;', | |||
'bool': ' return false;', | |||
} | |||
""" | |||
max code len per line in hua_wei software programming specifications | |||
""" | |||
max_code_len_per_line = 100 | |||
""" | |||
white_list_for_debug, include_dir_key_words is to | |||
determines which header files to generate cc files from | |||
when DEBUG on | |||
""" | |||
white_list_for_debug = ["operator.h", "tensor.h", | |||
"graph.h", "operator_factory.h", | |||
"ge_ir_build.h"] | |||
include_dir_key_words = ["ge", "graph"] | |||
DEBUG = True | |||
def need_generate_func(func_line): | |||
""" | |||
:param func_line: | |||
:return: | |||
""" | |||
if func_line.strip().endswith("default") or func_line.strip().endswith("delete") \ | |||
or func_line.strip().startswith("typedef") or func_line.strip().startswith("using"): | |||
return False | |||
return True | |||
def file_endswith_white_list_suffix(file): | |||
""" | |||
:param file: | |||
:return: | |||
""" | |||
if DEBUG: | |||
for suffix in white_list_for_debug: | |||
if file.endswith(suffix): | |||
return True | |||
return False | |||
else: | |||
return True | |||
""" | |||
belows are patterns used for analyse .h file | |||
""" | |||
# pattern function | |||
pattern_func = re.compile(r"""(^[\s]*) #leading with space,we will find and delete after | |||
([a-zA-Z~_] # void int likely | |||
.* | |||
[)] #we find ) | |||
(?!.*{) # we do not want the case int abc() const { return 1;} | |||
.*) | |||
(;.*) #we want to find ; and after for we will replace these later | |||
\n$ | |||
""", re.VERBOSE | re.MULTILINE | re.DOTALL) | |||
# pattern comment | |||
pattern_comment = re.compile(r'^\s*//') | |||
pattern_comment_2_start = re.compile(r'^\s*/[*]') | |||
pattern_comment_2_end = re.compile(r'[*]/\s*$') | |||
# pattern define | |||
pattern_define = re.compile(r'^\s*#define') | |||
pattern_define_return = re.compile(r'\\\s*$') | |||
# blank line | |||
pattern_blank_line = re.compile(r'^\s*$') | |||
# virtual,explicit,friend,static | |||
pattern_keyword = re.compile(r'(virtual\s+|explicit\s+|friend\s+|static\s+)') | |||
# lead space | |||
pattern_leading_space = re.compile(r'(^[\s]*)[a-zA-Z~_]') | |||
# functions will have patterns such as func ( or func( | |||
# but operator is an exception; the class name is preceded by an operator, and the above mode does not exist | |||
# format like :"operator = ()" | |||
pattern_func_name = re.compile(r'([a-zA-Z0-9~_\-]+\s*|operator?.*)[(]') | |||
# template | |||
pattern_template = re.compile(r'^\s*template') | |||
pattern_template_end = re.compile(r'>\s*$') | |||
# namespace | |||
pattern_namespace = re.compile(r'namespace.*{') | |||
# class : which can handle classA a and {not on the same line, but if found ';' after class,then don't deal with | |||
pattern_class = re.compile(r'^[\s]*(class|struct)\s+(%s\s+)?([a-zA-Z0-9_\-]+<?)(?!.*;)' % GE_ATTR) | |||
# {} | |||
pattern_start = re.compile('{') | |||
pattern_end = re.compile('}') | |||
line_index = 0 | |||
class H2CC(object): | |||
def __init__(self, input_file, output_file, shared_includes_content): | |||
""" | |||
:param input_file: | |||
:param output_file: | |||
:param shared_includes_content: | |||
""" | |||
self.input_file = input_file | |||
self.output_file = output_file | |||
self.shared_includes_content = shared_includes_content | |||
self.line_index = 0 | |||
self.input_fd = open(self.input_file, 'r') | |||
self.input_content = self.input_fd.readlines() | |||
self.output_fd = open(self.output_file, 'w') | |||
# The state may be normal_now(in the middle of {}),class_now,namespace_now | |||
self.stack = [] | |||
self.stack_class = [] | |||
self.stack_template = [] | |||
# record funcs generated by h2cc func | |||
self.func_list_exist = [] | |||
def __del__(self): | |||
self.input_fd.close() | |||
self.output_fd.close() | |||
del self.stack | |||
del self.stack_class | |||
del self.stack_template | |||
del self.func_list_exist | |||
def just_skip(self): | |||
# skip blank line or comment | |||
if pattern_blank_line.search(self.input_content[self.line_index]) or pattern_comment.search( | |||
self.input_content[self.line_index]): # /n or comment using // | |||
self.line_index += 1 | |||
if pattern_comment_2_start.search(self.input_content[self.line_index]): # comment using /* | |||
while not pattern_comment_2_end.search(self.input_content[self.line_index]): # */ | |||
self.line_index += 1 | |||
self.line_index += 1 | |||
# skip define | |||
if pattern_define.search(self.input_content[self.line_index]): | |||
while pattern_blank_line.search(self.input_content[self.line_index]) or pattern_define_return.search( | |||
self.input_content[self.line_index]): | |||
self.line_index += 1 | |||
self.line_index += 1 | |||
def write_inc_content(self): | |||
for shared_include_content in self.shared_includes_content: | |||
self.output_fd.write(shared_include_content) | |||
def h2cc(self): | |||
""" | |||
:return: | |||
""" | |||
logging.info("start generate cc_file[%s] from h_file[%s]", self.output_file, self.input_file) | |||
global pattern_comment | |||
global pattern_comment_2_start | |||
global pattern_comment_2_end | |||
global pattern_blank_line | |||
global pattern_func | |||
global pattern_keyword | |||
global pattern_leading_space | |||
global pattern_func_name | |||
global pattern_template | |||
global pattern_template_end | |||
global pattern_namespace | |||
global pattern_class | |||
global pattern_start | |||
global pattern_end | |||
global line_index | |||
# write inc content | |||
self.write_inc_content() | |||
# core processing cycle, process the input .h file by line | |||
while self.line_index < len(self.input_content): | |||
# handle comment and blank line | |||
self.just_skip() | |||
# match namespace | |||
self.handle_namespace() | |||
# match template | |||
template_string = self.handle_template() | |||
# match class | |||
line = self.input_content[self.line_index] | |||
match_class = pattern_class.search(line) | |||
match_start = pattern_start.search(line) | |||
handle_class_result = self.handle_class(template_string, line, match_start, match_class) | |||
if handle_class_result == "continue": | |||
continue | |||
# match "}" | |||
handle_stack_result = self.handle_stack(match_start) | |||
if handle_stack_result == "continue": | |||
continue | |||
# handle func | |||
handle_func1_result, line, start_i = self.handle_func1(line) | |||
if handle_func1_result == "continue": | |||
continue | |||
# here means func is found | |||
# delete key word | |||
line = pattern_keyword.sub('', line) | |||
logging.info("line[%s]", line) | |||
# Class member function | |||
# if friend we will not add class name | |||
friend_match = re.search('friend ', line) | |||
if len(self.stack_class) > 0 and not friend_match: | |||
line, func_name = self.handle_class_member_func(line, template_string) | |||
# Normal functions | |||
else: | |||
line, func_name = self.handle_normal_func(line, template_string) | |||
need_generate = need_generate_func(line) | |||
# func body | |||
line += self.implement_function(line) | |||
# comment | |||
line = self.gen_comment(start_i) + line | |||
# write to out file | |||
self.write_func_content(line, func_name, need_generate) | |||
# next loop | |||
self.line_index += 1 | |||
logging.info('Added %s functions', len(self.func_list_exist)) | |||
logging.info('Successfully converted,please see ' + self.output_file) | |||
def handle_func1(self, line): | |||
""" | |||
:param line: | |||
:return: | |||
""" | |||
find1 = re.search('[(]', line) | |||
if not find1: | |||
self.line_index += 1 | |||
return "continue", line, None | |||
find2 = re.search('[)]', line) | |||
start_i = self.line_index | |||
space_match = pattern_leading_space.search(line) | |||
# deal with | |||
# int abc(int a, | |||
# int b) | |||
if find1 and (not find2): | |||
self.line_index += 1 | |||
line2 = self.input_content[self.line_index] | |||
if space_match: | |||
line2 = re.sub('^' + space_match.group(1), '', line2) | |||
line += line2 | |||
while self.line_index < len(self.input_content) and (not re.search('[)]', line2)): | |||
self.line_index += 1 | |||
line2 = self.input_content[self.line_index] | |||
line2 = re.sub('^' + space_match.group(1), '', line2) | |||
line += line2 | |||
match_start = pattern_start.search(self.input_content[self.line_index]) | |||
match_end = pattern_end.search(self.input_content[self.line_index]) | |||
if match_start: # like ) { or ) {} int the last line | |||
if not match_end: | |||
self.stack.append('normal_now') | |||
ii = start_i | |||
while ii <= self.line_index: | |||
ii += 1 | |||
self.line_index += 1 | |||
return "continue", line, start_i | |||
logging.info("line[%s]", line) | |||
# ' int abc();'->'int abc()' | |||
(line, match) = pattern_func.subn(r'\2\n', line) | |||
logging.info("line[%s]", line) | |||
# deal with case: | |||
# 'int \n abc(int a, int b)' | |||
if re.search(r'^\s*(inline)?\s*[a-zA-Z0-9_]+\s*$', self.input_content[start_i - 1]): | |||
line = self.input_content[start_i - 1] + line | |||
line = line.lstrip() | |||
if not match: | |||
self.line_index += 1 | |||
return "continue", line, start_i | |||
return "pass", line, start_i | |||
def handle_stack(self, match_start): | |||
""" | |||
:param match_start: | |||
:return: | |||
""" | |||
line = self.input_content[self.line_index] | |||
match_end = pattern_end.search(line) | |||
if match_start: | |||
self.stack.append('normal_now') | |||
if match_end: | |||
top_status = self.stack.pop() | |||
if top_status == 'namespace_now': | |||
self.output_fd.write(line + '\n') | |||
elif top_status == 'class_now': | |||
self.stack_class.pop() | |||
self.stack_template.pop() | |||
if match_start or match_end: | |||
self.line_index += 1 | |||
return "continue" | |||
if len(self.stack) > 0 and self.stack[-1] == 'normal_now': | |||
self.line_index += 1 | |||
return "continue" | |||
return "pass" | |||
def handle_class(self, template_string, line, match_start, match_class): | |||
""" | |||
:param template_string: | |||
:param line: | |||
:param match_start: | |||
:param match_class: | |||
:return: | |||
""" | |||
if match_class: # we face a class | |||
self.stack_template.append(template_string) | |||
self.stack.append('class_now') | |||
class_name = match_class.group(3) | |||
# class template specializations: class A<u,Node<u> > | |||
if '<' in class_name: | |||
k = line.index('<') | |||
fit = 1 | |||
for ii in range(k + 1, len(line)): | |||
if line[ii] == '<': | |||
fit += 1 | |||
if line[ii] == '>': | |||
fit -= 1 | |||
if fit == 0: | |||
break | |||
class_name += line[k + 1:ii + 1] | |||
logging.info('class_name[%s]', class_name) | |||
self.stack_class.append(class_name) | |||
while not match_start: | |||
self.line_index += 1 | |||
line = self.input_content[self.line_index] | |||
match_start = pattern_start.search(line) | |||
self.line_index += 1 | |||
return "continue" | |||
return "pass" | |||
def handle_template(self): | |||
line = self.input_content[self.line_index] | |||
match_template = pattern_template.search(line) | |||
template_string = '' | |||
if match_template: | |||
match_template_end = pattern_template_end.search(line) | |||
template_string = line | |||
while not match_template_end: | |||
self.line_index += 1 | |||
line = self.input_content[self.line_index] | |||
template_string += line | |||
match_template_end = pattern_template_end.search(line) | |||
self.line_index += 1 | |||
return template_string | |||
def handle_namespace(self): | |||
line = self.input_content[self.line_index] | |||
match_namespace = pattern_namespace.search(line) | |||
if match_namespace: # we face namespace | |||
self.output_fd.write(line + '\n') | |||
self.stack.append('namespace_now') | |||
self.line_index += 1 | |||
def handle_normal_func(self, line, template_string): | |||
template_line = '' | |||
self.stack_template.append(template_string) | |||
if self.stack_template[-1] != '': | |||
template_line = re.sub(r'\s*template', 'template', self.stack_template[-1]) | |||
# change '< class T = a, class U = A(3)>' to '<class T, class U>' | |||
template_line = re.sub(r'\s*=.*>(\s*)$', r'>\1', template_line) | |||
template_line = re.sub(r'\s*=.*,', ',', template_line) | |||
template_line = re.sub(r'\s*=.*', '', template_line) | |||
line = re.sub(r'\s*=.*,', ',', line) | |||
line = re.sub(r'\s*=.*\)', ')', line) | |||
line = template_line + line | |||
self.stack_template.pop() | |||
func_name = re.search(r'^.*\)', line, re.MULTILINE | re.DOTALL).group() | |||
logging.info("line[%s]", line) | |||
logging.info("func_name[%s]", func_name) | |||
return line, func_name | |||
def handle_class_member_func(self, line, template_string): | |||
template_line = '' | |||
x = '' | |||
if template_string != '': | |||
template_string = re.sub(r'\s*template', 'template', template_string) | |||
template_string = re.sub(r'\s*=.*>(\s*)$', r'>\1', template_string) | |||
template_string = re.sub(r'\s*=.*,', ',', template_string) | |||
template_string = re.sub(r'\s*=.*', '', template_string) | |||
if self.stack_template[-1] != '': | |||
if not (re.search(r'<\s*>', stack_template[-1])): | |||
template_line = re.sub(r'^\s*template', 'template', stack_template[-1]) | |||
if not (re.search(r'<.*>', self.stack_class[-1])): | |||
# for x we get like template<class T, typename U> -> <T,U> | |||
x = re.sub(r'template\s*<', '<', template_line) # remove template -> <class T, typename U> | |||
x = re.sub(r'\n', '', x) | |||
x = re.sub(r'\s*=.*,', ',', x) | |||
x = re.sub(r'\s*=.*\>', '>', x) | |||
x = x.rstrip() # remove \n | |||
x = re.sub(r'(class|typename)\s+|(<class>|<typename>\s*class)', '', | |||
x) # remove class,typename -> <T, U> | |||
x = re.sub(r'<\s+', '<', x) | |||
x = re.sub(r'\s+>', '>', x) | |||
x = re.sub(r'\s+,', ',', x) | |||
x = re.sub(r',\s+', ', ', x) | |||
line = re.sub(r'\s*=\s+0', '', line) | |||
line = re.sub(r'\s*=\s+.*,', ',', line) | |||
line = re.sub(r'\s*=\s+.*\)', ')', line) | |||
logging.info("x[%s]\nline[%s]", x, line) | |||
# if the function is long, void ABC::foo() | |||
# breaks into two lines void ABC::\n foo() | |||
temp_line = pattern_func_name.sub(self.stack_class[-1] + x + '::' + r'\1(', line, count=1) | |||
if len(temp_line) > max_code_len_per_line: | |||
line = pattern_func_name.sub(self.stack_class[-1] + x + '::\n' + r'\1(', line, count=1) | |||
else: | |||
line = temp_line | |||
logging.info("line[%s]", line) | |||
# add template as the above if there is one | |||
template_line = re.sub(r'\s*=.*>(\s*)$', r'>\1', template_line) | |||
template_line = re.sub(r'\s*=.*,', ',', template_line) | |||
template_line = re.sub(r'\s*=.*', '', template_line) | |||
line = template_line + template_string + line | |||
func_name = re.search(r'^.*\)', line, re.MULTILINE | re.DOTALL).group() | |||
logging.info("line[%s]", line) | |||
logging.info("func_name[%s]", func_name) | |||
return line, func_name | |||
def write_func_content(self, content, func_name, need_generate): | |||
if not (func_name in self.func_list_exist) and need_generate: | |||
self.output_fd.write(content) | |||
self.func_list_exist.append(func_name) | |||
logging.info('add func:[%s]', func_name) | |||
def gen_comment(self, start_i): | |||
comment_line = '' | |||
# Function comments are on top of function declarations, copy them over | |||
k = start_i - 1 # one line before this func start | |||
if pattern_template.search(self.input_content[k]): | |||
k -= 1 | |||
if pattern_comment_2_end.search(self.input_content[k]): | |||
comment_line = self.input_content[k].lstrip() | |||
while not pattern_comment_2_start.search(self.input_content[k]): | |||
k -= 1 | |||
comment_line = self.input_content[k].lstrip() + comment_line | |||
else: | |||
for j in range(k, 0, -1): | |||
c_line = self.input_content[j] | |||
if pattern_comment.search(c_line): | |||
c_line = re.sub(r'\s*//', '//', c_line) | |||
comment_line = c_line + comment_line | |||
else: | |||
break | |||
return comment_line | |||
@staticmethod | |||
def implement_function(func): | |||
function_def = '' | |||
function_def += '{\n' | |||
all_items = func.split() | |||
start = 0 | |||
return_type = all_items[start] | |||
if return_type == "const": | |||
start += 1 | |||
return_type = all_items[start] | |||
if return_type.startswith(('std::map', 'std::set', 'std::vector')): | |||
return_type = "std::map" | |||
if return_type.endswith('*') or (len(all_items) > start + 1 and all_items[start + 1].startswith('*')): | |||
return_type = "Ptr" | |||
if len(all_items) > start + 1 and all_items[start + 1].startswith('&'): | |||
return_type += "&" | |||
if RETURN_STATEMENTS.__contains__(return_type): | |||
function_def += RETURN_STATEMENTS[return_type] | |||
else: | |||
logging.warning("Unhandled return type[%s]", return_type) | |||
function_def += '\n' | |||
function_def += '}\n' | |||
function_def += '\n' | |||
return function_def | |||
def collect_header_files(path): | |||
""" | |||
:param path: | |||
:return: | |||
""" | |||
header_files = [] | |||
shared_includes_content = [] | |||
for root, dirs, files in os.walk(path): | |||
files.sort() | |||
for file in files: | |||
if file.find("git") >= 0: | |||
continue | |||
if not file.endswith('.h'): | |||
continue | |||
file_path = os.path.join(root, file) | |||
file_path = file_path.replace('\\', '/') | |||
header_files.append(file_path) | |||
include_str = '#include "{}"\n'.format(file_path[path.rindex('/') + 1:]) | |||
shared_includes_content.append(include_str) | |||
return header_files, shared_includes_content | |||
def generate_stub_file(inc_dir, out_cc_dir): | |||
""" | |||
:param inc_dir: | |||
:param out_cc_dir: | |||
:return: | |||
""" | |||
target_header_files, shared_includes_content = collect_header_files(inc_dir) | |||
for header_file in target_header_files: | |||
if not file_endswith_white_list_suffix(header_file): | |||
continue | |||
cc_file = re.sub('.h*$', '.cc', header_file) | |||
h_2_cc = H2CC(header_file, out_cc_dir + cc_file[cc_file.rindex('/') + 1:], shared_includes_content) | |||
h_2_cc.h2cc() | |||
def gen_code(inc_dir, out_cc_dir): | |||
""" | |||
:param inc_dir: | |||
:param out_cc_dir: | |||
:return: | |||
""" | |||
if not inc_dir.endswith('/'): | |||
inc_dir += '/' | |||
if not out_cc_dir.endswith('/'): | |||
out_cc_dir += '/' | |||
for include_dir_key_word in include_dir_key_words: | |||
generate_stub_file(inc_dir + include_dir_key_word, out_cc_dir) | |||
if __name__ == '__main__': | |||
inc_dir = sys.argv[1] | |||
out_cc_dir = sys.argv[2] | |||
gen_code(inc_dir, out_cc_dir) |
@@ -17,9 +17,10 @@ | |||
syntax = "proto3"; | |||
import "om.proto"; | |||
package domi; | |||
message FusionModelDef { | |||
string version = 1; | |||
repeated OpDef fusion_op = 2; | |||
} | |||
} |
@@ -1029,9 +1029,9 @@ REG_OP(BesselI1e) | |||
* y: A Tensor of type UnaryDataType. | |||
* @attention Constraints: | |||
* @li "base" is supposed to be greater than 0. Retaining the default \n | |||
* @li "base" is supposed to be greater than 0. Retaining the default | |||
* value "-1" sets "base" to "e". | |||
* @li If the input value of operator Log is within the range (0, 0.01] or \n | |||
* @li If the input value of operator Log is within the range (0, 0.01] or | |||
* [0.95, 1.05], the output accuracy is subject to change. | |||
* @par Third-party framework compatibility | |||
@@ -1047,11 +1047,11 @@ REG_OP(Log) | |||
.OP_END_FACTORY_REG(Log) | |||
/** | |||
* @brief Returns x1 * x2 element-wise.\n | |||
* @brief Returns x1 * x2 element-wise. | |||
* y = x1 * x2 | |||
* @par Inputs: | |||
* @li x1: A Tensor. Must be one of the following types: float16, float32,\n | |||
* @li x1: A Tensor. Must be one of the following types: float16, float32, | |||
* float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128. | |||
* @li x2: A Tensor. Must be one of the following types: float16, float32, | |||
* float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128. | |||
@@ -1079,7 +1079,7 @@ REG_OP(Mul) | |||
.OP_END_FACTORY_REG(Mul) | |||
/** | |||
* @brief Computes the gradient of the square root of "x" with regard to its\n | |||
* @brief Computes the gradient of the square root of "x" with regard to its | |||
* input. grad = dy * 0.5/y, where y = sqrt(x), and "dy" is the corresponding | |||
* input gradient. | |||
@@ -3022,6 +3022,7 @@ REG_OP(CosineEmbeddingLoss) | |||
*@brief Kullback-Leibler divergence. | |||
*@par Inputs: | |||
* Two inputs, including: | |||
*@li x: Tensor of arbitrary shape. | |||
*@li target: Tensor of the same shape and dtype as x. | |||
@@ -934,7 +934,6 @@ REG_OP(EncodeJpeg) | |||
/** | |||
*@brief PNG-encode an image. | |||
*@par Inputs: | |||
*Input image must be unit8 or uint16 type. Inputs include: \n | |||
*image: is a 3-D uint8 or uint16 Tensor of shape [height, width, channels] \n | |||
@@ -1224,6 +1223,16 @@ REG_OP(CombinedNonMaxSuppression) | |||
.ATTR(clip_boxes, Bool, true) | |||
.OP_END_FACTORY_REG(CombinedNonMaxSuppression) | |||
REG_OP(SpatialTransformerD) | |||
.INPUT(x, TensorType({DT_FLOAT,DT_FLOAT16})) | |||
.OPTIONAL_INPUT(theta, TensorType({DT_FLOAT,DT_FLOAT16})) | |||
.OUTPUT(y, TensorType({DT_FLOAT,DT_FLOAT16})) | |||
.ATTR(output_size, ListInt, {-1, -1}) | |||
.ATTR(default_theta, ListFloat, {}) | |||
.ATTR(align_corners, Bool, false) | |||
.ATTR(use_default_theta, ListBool, {}) | |||
.OP_END_FACTORY_REG(SpatialTransformerD) | |||
} // namespace ge | |||
#endif // GE_OP_MAGE_OPS_H_ |
@@ -93,31 +93,49 @@ REG_OP(MatMulV2) | |||
*@par Inputs: | |||
*Five inputs, including: | |||
*@li a: A matrix Tensor. 4D. Must be one of the following types:\n float16, int8. Has format [FRACTAL_NZ]. | |||
*@li b: A matrix Tensor. 4D. Must be one of the following types:\n float16, int8. When type is int8, has format [FRACTAL_Z], \n otherwise has format [FRACTAL_NZ]. | |||
*@li c: A matrix Tensor. 2D or higher. Must be one of the following types: \n float16, int32, float32. When type is int32, has format [ND], \n otherwise has format [FRACTAL_NZ]. | |||
*@li alpha: A 1D Tensor. The shape of alpha is [1].\n Must be one of the following types: float16, int32, float32. Has format [ND]. | |||
*@li beta: A 1D Tensor. The shape of beta is [1].\n Must be one of the following types: float16, int32, float32. Has format [ND]. | |||
*@li a: A matrix Tensor. Must be one of the following types: float16, int8. | |||
* Has format [ND, FRACTAL_NZ]. 2D(ND) or 4D(FRACTAL_NZ). | |||
*@li b: A matrix Tensor. Must be one of the following types: float16, int8. | |||
* Has format [ND, FRACTAL_NZ, FRACTAL_Z]. 2D(ND) or 4D(FRACTAL_NZ, FRACTAL_Z). | |||
*@li c: A matrix Tensor. Must be one of the following types: float16, int32, | |||
* float32. has format [ND, FRACTAL_NZ]. 2D(ND) or 4D(FRACTAL_NZ). | |||
*@li alpha: A 1D Tensor. The shape of alpha is [1].Must be one of the following | |||
* types: float16, int32, float32. Has format [ND]. | |||
*@li beta: A 1D Tensor. The shape of beta is [1]. Must be one of the following | |||
* types: float16, int32, float32. Has format [ND]. | |||
* The format of a, b, c has restriction:\n | |||
* When type of a is int8 and type of c is int32, the format of a, b, c should | |||
* all be ND, or a is FRACTAL_NZ and b is FRACTAL_Z and c is ND.\n | |||
* When type of a is int8 and type of c is float32, the format of a, b, c should | |||
* all be ND or a is FRACTAL_NZ and b is FRACTAL_Z and c is FRACTAL_NZ.\n | |||
* When type of a is float16 and type of c is float16, the format of a, b, c | |||
* should all be ND or FRACTAL_NZ.\n | |||
* When type of a is float16 and type of c is float32, the format of a, b, c | |||
* should all be ND or FRACTAL_NZ. | |||
*@par Attributes: | |||
*Two attributes, including: | |||
*@li transpose_a: Optional. A bool.\n If True, changes the shape of "a" from [M, K] to [K, M].\n Reserved parameters, not used for now. | |||
*@li transpose_b: Optional. A bool.\n If True, changes the shape of "b" from [M, K] to [K, M].\n Reserved parameters, not used for now. | |||
*@li transpose_a: Optional. A bool. If True, changes the shape of "a" from | |||
* [M, K] to [K, M]. | |||
*@li transpose_b: Optional. A bool. If True, changes the shape of "b" from | |||
* [K, N] to [N, K]. | |||
*@par Outputs: | |||
*@out: The result matrix Tensor. 4D. Must be one of the following types:\n float16, float32, int32. Has format [FRACTAL_NZ]. | |||
*y: The result matrix Tensor. Must be one of the following types: float16, | |||
* float32, int32. Has format [ND, FRACTAL_NZ], the format should be equal to a. | |||
* 2D(ND) or 4D(FRACTAL_NZ). | |||
*/ | |||
REG_OP(Gemm) | |||
REG_OP(GEMM) | |||
.INPUT(a, TensorType({DT_FLOAT16, DT_INT8})) | |||
.INPUT(b, TensorType({DT_FLOAT16, DT_INT8})) | |||
.INPUT(c, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||
.INPUT(alpha, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||
.INPUT(beta, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||
.OUTPUT(out, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||
.ATTR(transpose_a, Bool, false) | |||
.ATTR(transpose_b, Bool, false) | |||
.OP_END_FACTORY_REG(Gemm) | |||
.OP_END_FACTORY_REG(GEMM) | |||
/** | |||
*@brief Multiplies matrix "a" by matrix "b", producing "a * b". | |||
@@ -361,14 +361,14 @@ REG_OP(BatchNormGradExt2) | |||
*@par Inputs: | |||
*@li x: A 4D or 5D Tensor of type float16 or float32, with format NHWC or NCHW for 4D or NC1HWC0 for 5D. | |||
*@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | |||
*@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | |||
*@li momentum: An optional string, input x's Scale factor | |||
*@li variance: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the variance used for inference. | |||
*@li momentum: A Tensor of type float32 or float16, represents the mean and the variance's scale factor | |||
*@li scale: An optional tensor of type float16 or float32, no use | |||
*@li offset: An optional tensor of type float16 or float32, no use | |||
*@par Attributes: | |||
*@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.00001". | |||
*@li use_global_stats: mean inference mode , only can be "True". | |||
*@li mode: An optional input, not use | |||
*@li mode: An optional attr, not use | |||
*@par Outputs:\n | |||
*@li y: A 4D or 5D Tensor of type float16 or float32 for the normalized "x" | |||
*/ | |||
@@ -391,7 +391,7 @@ REG_OP(BNInference) | |||
*@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | |||
*@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | |||
*@li momentum: An optional float, input x's Scale factor | |||
*@li momentum: A Tensor of type float32 or float16, the mean and the variance's Scale factor | |||
*@par Attributes: | |||
*@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.00001". | |||
*@li use_global_stats: mean inference mode , only can be "True". | |||
@@ -420,13 +420,13 @@ REG_OP(BnHost) | |||
*@li x: A 4D or 5D Tensor of type float16 or float32, with format NHWC or NCHW for 4D or NC1HWC0 for 5D. | |||
*@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | |||
*@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | |||
*@li momentum: An optional float, input x's Scale factor | |||
*@li scale: An optional tensor of type float16 or float32, no use | |||
*@li offset: An optional tensor of type float16 or float32, no use | |||
*@par Attributes: | |||
*@li momentum: An optional float32 num, represents the mean and the variance's scale factor | |||
*@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.00001". | |||
*@li use_global_stats: mean inference mode , only can be "True". | |||
*@li mode: An optional inpout, not use | |||
*@li mode: An optional attr, not use | |||
*@par Outputs:\n | |||
*@li y: A 4D or 5D Tensor of type float16 or float32 for the normalized "x" | |||
*/ | |||
@@ -62,7 +62,7 @@ namespace ge { | |||
* data is 5D with shape [N, C1, Ho, Wo, C0], | |||
* where C is the same as that of the feature map and C0 is 16.\n | |||
* Limited by Tiling and L1 / L0 buffer memory: 512 * ceil(Wo, 16) + (480 * | |||
* stride_h + 32 * filter_h) * ceil(Wi, 16) �?l1_size and Hf*Wf �?l0b_size/512.\n | |||
* stride_h + 32 * filter_h) * ceil(Wi, 16) <= l1_size and Hf*Wf <= l0b_size/512. | |||
* @par Third-party framework compatibility | |||
* @li Compatible with the TensorFlow operator DepthwiseConv2DBackpropFilter. | |||
@@ -119,7 +119,7 @@ REG_OP(DepthwiseConv2DBackpropFilter) | |||
* data is 5D with shape [N, C1, Ho, Wo, C0], | |||
* where C is the same as that of the feature map and C0 is 16.\n | |||
* Limited by Tiling and L1 / L0 buffer memory: 512 * ceil(Wo, 16) + (480 * | |||
* stride_h + 32 * filter_h) * ceil(Wi, 16) �?l1_size and Hf*Wf �?l0b_size/512.\n | |||
* stride_h + 32 * filter_h) * ceil(Wi, 16) <= l1_size and Hf*Wf <= l0b_size/512. | |||
* @par Third-party framework compatibility | |||
* @li Compatible with the TensorFlow operator DepthwiseConv2DBackpropFilter. | |||
@@ -178,7 +178,7 @@ REG_OP(DepthwiseConv2DBackpropFilterD) | |||
* Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the | |||
* data is 5D with shape [N, C1, Ho, Wo, C0], | |||
* where C is the same as that of the feature map and C0 is 16.\n | |||
* Limited by Tiling: max_h_in_l1 �?C0, where max_h_in_l1 = (l1_size - Hf * | |||
* Limited by Tiling: max_h_in_l1 >= C0, where max_h_in_l1 = (l1_size - Hf * | |||
* Wf * C0 * C0 * 2) / (2 * Wo *C0).\n | |||
* @par Third-party framework compatibility | |||
@@ -235,7 +235,7 @@ REG_OP(DepthwiseConv2DBackpropInput) | |||
* Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the | |||
* data is 5D with shape [N, C1, Ho, Wo, C0], | |||
* where C is the same as that of the feature map and C0 is 16.\n | |||
* Limited by Tiling: max_h_in_l1 �?C0, where max_h_in_l1 = (l1_size - Hf * | |||
* Limited by Tiling: max_h_in_l1 >= C0, where max_h_in_l1 = (l1_size - Hf * | |||
* Wf * C0 * C0 * 2) / (2 * Wo *C0).\n | |||
* @par Third-party framework compatibility | |||
@@ -459,45 +459,44 @@ REG_OP(Conv2DBackpropInputD) | |||
*@brief Computes the Deconvolution with respect to the input. | |||
*@par Inputs: | |||
* Three inputs: | |||
* @li x: A Tensor. Must have the same type as "filter". 4D with shape | |||
* [batch, out_height, out_width, out_channels] | |||
* or [batch, out_channels, out_height, out_width]. Gradients with respect | |||
* @li x: A Tensor of type float16 or int8. 4D with shape | |||
* [batch, out_channels, out_height, out_width]. Gradients with respect | |||
* to the output of the convolution. | |||
* @li filter: A Tensor of type float16. | |||
* 4D with shape [filter_height, filter_width, in_channels, out_channels], | |||
* or [out_channels, filter_height, filter_width, in_channels], | |||
* or [out_channels, in_channel, filter_height, filter_width]. | |||
* @li filter: A Tensor. Must have the same type as "x". | |||
* 4D with shape [out_channels, in_channel, filter_height, filter_width].\n | |||
* Two optional inputs: | |||
* @li bias: An optional tensor of type float16 | |||
* @li offset_w: An optional 1D tensor for quantized deconvolution. Reserved.\n | |||
* @li bias: An optional tensor. Must have the same type as "y". | |||
* @li offset_w: An optional 1D tensor for quantized deconvolution. | |||
* Type is int8. Reserved.\n | |||
*@par Attributes: | |||
* Six attributes: | |||
* @li strides: A tuple or list of 2 integers. The stride of the sliding window | |||
* for H/W dimension. | |||
* @li pads: A tuple or list of 4 integers. The [top, bottom, left, right] | |||
* padding on the feature map | |||
* padding on the feature map. | |||
* @li dilations: A tuple or list of 4 integers. The dilation factor for each | |||
* dimension of input. Must be [1, 1, 1, 1]. | |||
* @li groups: Number of blocked connections from input channels to \n | |||
output channels. | |||
* @li data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC".\n | |||
* @li groups: Number of blocked connections from input channels to | |||
output channels. Defaults to "1". | |||
* @li data_format: An optional string from: "NCHW". Defaults to "NCHW". \n | |||
Specify the data format of the input and output data. | |||
* @li offset_x: An optional integer for quantized deconvolution. | |||
* @li offset_x: An optional integer for quantized deconvolution. Defaults to "0". | |||
*@par Outputs: | |||
* y: A Tensor. Has the same type as "filter". 4D tensor with shape | |||
* [batch, height, width, channels] or [batch, channels, height, width]. | |||
* y: A Tensor. 4D tensor with shape [batch, channels, height, width]. | |||
* When type of x is float16, the type of y must be float16. | |||
* When type of x is int8, the type of y must be int32. | |||
*/ | |||
REG_OP(Deconvolution) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8})) | |||
.INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8})) | |||
.OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32})) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_INT8})) | |||
.INPUT(filter, TensorType({DT_FLOAT16, DT_INT8})) | |||
.OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_INT32})) | |||
.OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32})) | |||
.ATTR(strides, ListInt, {1, 1, 1, 1}) | |||
.ATTR(pads, ListInt, {0, 0, 0, 0}) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32})) | |||
.REQUIRED_ATTR(strides, ListInt) | |||
.REQUIRED_ATTR(pads, ListInt) | |||
.ATTR(dilations, ListInt, {1, 1, 1, 1}) | |||
.ATTR(groups, Int, 1) | |||
.ATTR(data_format, String, "NHWC") | |||
.ATTR(data_format, String, "NCHW") | |||
.ATTR(offset_x, Int, 0) | |||
.OP_END_FACTORY_REG(Deconvolution) | |||
/** | |||
@@ -554,7 +553,7 @@ REG_OP(Conv2DBackpropFilter) | |||
* @li groups: Number of blocked connections from input channels to output channels. | |||
* @li data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC". Specify the data format of the input and output data. | |||
*@par Outputs: | |||
* y: A Tensor. Has the same type as x | |||
* y: A Tensor. Type is float32 | |||
*@par Third-party framework compatibility | |||
* Compatible with Tensorflow's conv2d_backprop_filter | |||
*/ | |||
@@ -586,8 +585,6 @@ REG_OP(Conv2DBackpropFilterD) | |||
|---------|---------|---------|----------|-------- | |||
| float32 | float32 | float32 | _ | float32 | |||
|---------|---------|---------|----------|-------- | |||
| float64 | float64 | float64 | _ | float64 | |||
|---------|---------|---------|----------|-------- | |||
| int8 | int8 | int32 | int8 | int32 | |||
-----------|---------|---------|---------|----------|-------- | |||
Format | NCHW | NCHW | ND | ND | NCHW | |||
@@ -607,7 +604,7 @@ REG_OP(Conv2DBackpropFilterD) | |||
* for dilated convolution. Has the same dimension order and value as "strides". | |||
* @li groups: Number of blocked connections from input channels to output | |||
* channels. Input channels and output channels must both be divisible by | |||
* "groups". Must be set to 1. | |||
* "groups". | |||
* @li offset_x: An optional integer for quantized convolution. | |||
* @li data_format: An optional string from: "NHWC", "NCHW". Specifying the | |||
* data format of the input and output images. Reserved. | |||
@@ -642,7 +639,7 @@ REG_OP(Conv2DBackpropFilterD) | |||
* @verbatim | |||
Output | Restrictions | |||
------------------|---------------------------------------------- | |||
W dimension == 1 | HxW(input) == HxW(filter) == 1x1,2x2...11x11. | |||
W dimension == 1 | HxW(input) == HxW(filter) | |||
H dimension == 1 | | |||
------------------|---------------------------------------------- | |||
W dimension == 1 | Not supported | |||
@@ -659,11 +656,11 @@ REG_OP(Conv2DBackpropFilterD) | |||
*@li Compatible with the Caffe operator 2D "Convolution". | |||
*/ | |||
REG_OP(Conv2D) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8})) | |||
.INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8})) | |||
.OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32})) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8})) | |||
.INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8})) | |||
.OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||
.OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||
.REQUIRED_ATTR(strides, ListInt) | |||
.REQUIRED_ATTR(pads, ListInt) | |||
.ATTR(dilations, ListInt, {1, 1, 1, 1}) | |||
@@ -186,7 +186,7 @@ REG_OP(ROIAlignGrad) | |||
* Three inputs, including: \n | |||
*@li features: A 5HD Tensor of type float32 or float16. | |||
*@li rois: ROI position. A 2D Tensor of float32 or float16 with shape (N, 5). "N" indicates the number of ROIs, the value "5" indicates the indexes of images where the ROIs are located, | |||
* "x0", "x1", "y0", and "y1". | |||
* "x0", "y0", "x1", and "y1". | |||
*@li rois_n: An optional input, specifying the number of valid ROIs. This parameter is reserved. | |||
*@par Attributes: | |||
@@ -219,7 +219,7 @@ REG_OP(MaxPool3D) | |||
* @attention Constraints: | |||
* @li Computing gradients of global pooling is not supported, which means | |||
* "ksize < x1". | |||
* @li "ksiez" is in the range [1, 255]. "strides" is in the range [1, 63] | |||
* @li "ksize" is in the range [1, 255]. "strides" is in the range [1, 63] | |||
* @par Third-party framework compatibility | |||
* Compatible with the TensorFlow operator MaxPoolGrad. | |||
@@ -239,10 +239,9 @@ REG_OP(MaxPoolGrad) | |||
* @brief Computes second-order gradients of the maxpooling function. | |||
* @par Inputs: | |||
* @li x1: Original forward input tensor. Supported type:float, double, int32, | |||
* uint8, int16, int8, int64, uint16, half, uint32, uint64. | |||
* @li x2: Has the same type and format as input "x1". | |||
* @li grad:Has the same type and format as input "x1". | |||
* @li x1: Original forward input tensor of type RealNumberType | |||
* @li x2: Original forward output tensor of type RealNumberType | |||
* @li grad: Gradient tensor of type RealNumberType | |||
* @par Attributes: | |||
* @li ksize: A required list or tuple, | |||
@@ -258,9 +257,12 @@ REG_OP(MaxPoolGrad) | |||
* @li "x1" and "grads" must have the same shape. | |||
* @li "x2" and "y" must have the same shape. Otherwise, an error is reported. | |||
* @li "x1", "x2", "grads", and "y" must be 5D tensors. | |||
* @li ksize[H] and ksize[W] is in the range [1, 255]. | |||
* @li strides[H] and strides[W] is in the range [1, 63]. | |||
* @li Other dimensions of ksize and strides is 1. | |||
* @par Outputs: | |||
* @li y: Has the same type and format as input "x1". | |||
* @li y: Result tensor of type RealNumberType | |||
* @par Third-party framework compatibility | |||
* @li Compatible with the TensorFlow operator MaxPoolGradGrad. | |||
@@ -399,18 +401,15 @@ REG_OP(MaxPoolGradWithArgmax) | |||
* @brief Computes second-order gradients of the maxpooling function. | |||
* @par Inputs: | |||
* @li x: Original forward input tensor. Supported type: float, double, int32, | |||
* uint8, int16, int8, int64, uint16, half, uint32, uint64. | |||
* @li grad: Gradient tensor. Supported type: float, double, int32, | |||
* uint8, int16, int8, int64, uint16, half, uint32, uint64. | |||
* @li argmax: An tensor of type int32 or int64. | |||
* @li x: Original forward input tensor of type RealNumberType | |||
* @li grad: Gradient tensor of type RealNumberType | |||
* @li argmax: An tensor of type IndexNumberType | |||
* @par Attributes: | |||
* @li ksize: A required list, specifying the size of the sliding window. | |||
* @li strides: A required list, specifying the stride of the sliding window. | |||
* @li padding: A required string, window sliding mode. Either SAME or VALID. | |||
* @par Outputs: | |||
* @li y:Result tensor. Supported type: float, double, int32, | |||
* uint8, int16, int8, int64, uint16, half, uint32, uint64 | |||
* @li y:Result tensor of type RealNumberType | |||
* @attention Constraints: | |||
* @li Only the cloud platform is supported. | |||
@@ -41,7 +41,7 @@ namespace ge { | |||
*@li beta1: A scalar. Has the same type as "var". | |||
*@li beta2: A scalar. Has the same type as "var". | |||
*@li epsilon: A scalar. Has the same type as "var". | |||
*@li grad: A tensor for the gradient. Has the same type as "var". | |||
*@li grad: A tensor for the gradient. Has the same type as "var". | |||
* | |||
*@par Attributes: | |||
* use_locking: An optional bool. Defaults to "False". | |||
@@ -465,7 +465,7 @@ REG_OP(ApplyKerasMomentumD) | |||
/** | |||
*@brief Updates '*var' according to the Adam algorithm.. | |||
*@brief Updates '*var' according to the Adam algorithm. | |||
* lr_t := {learning_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t) | |||
* m_t := beta_1 * m_{t-1} + (1 - beta_1) * g | |||
* v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g | |||
@@ -866,7 +866,7 @@ REG_OP(ApplyCenteredRMSProp) | |||
.OUTPUT(var, TensorType::NumberType()) | |||
.ATTR(use_locking, Bool, false) | |||
.OP_END_FACTORY_REG(ApplyCenteredRMSProp) | |||
/** | |||
*@brief Updates "var" according to the centered RMSProp algorithm. | |||
* The centered RMSProp algorithm uses an estimate of the centered second moment | |||
@@ -1262,7 +1262,7 @@ REG_OP(DataFormatDimMap) | |||
.OP_END_FACTORY_REG(DataFormatDimMap) | |||
/** | |||
* @brief Implements stochastic gradient descent (optionally with momentum).\n | |||
* @brief Implements stochastic gradient descent (optionally with momentum). | |||
* Nesterov momentum is based on the formula from | |||
* On the importance of initialization and momentum in deep learning.\n | |||
@@ -1508,7 +1508,7 @@ REG_OP(ApplyProximalAdagradD) | |||
*@par Attributes: | |||
*use_locking: An optional bool. Defaults to "False".\n | |||
* If "True", updating of the var and accum tensors will be protected by a lock; \n | |||
* If "False", the behavior is undefined, but may exhibit less contention. | |||
* If "False", the behavior is undefined, but may exhibit less contention. | |||
*@par Outputs: | |||
*var: A mutable Tensor. Has the same type as "var". | |||
@@ -2172,13 +2172,13 @@ REG_OP(SparseApplyFtrl) | |||
* Should be a Variable Tensor. | |||
* @li grad: A Tensor of the same type as "var", for the gradient. | |||
* @li indices: A vector of indices into the first dimension of var and accum. | |||
* @par Attributes: | |||
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar. | |||
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar. | |||
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar. | |||
* @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar. | |||
* @par Attributes: | |||
* use_locking: An optional bool. Defaults to "False". | |||
* @li use_locking: An optional bool. Defaults to "False". | |||
* If "True", updating of the "var" and "accum" tensors will be | |||
* protected by a lock; otherwise the behavior is undefined, | |||
* but may exhibit less contention. | |||
@@ -2314,6 +2314,7 @@ REG_OP(SparseApplyFtrlV2D) | |||
* var <- var - mom\n | |||
* | |||
* @par Inputs: | |||
* Nine inputs, including: | |||
* @li var: A mutable tensor. Must be one of the data types defined in\n | |||
* TensorType::NumberType(). Should be from a Variable(). | |||
* @li ms: A mutable tensor. Must have the same type as "var". Should be from a | |||
@@ -2367,6 +2368,7 @@ REG_OP(SparseApplyRMSProp) | |||
* var <- var - mom | |||
* | |||
* @par Inputs: | |||
* Six inputs, including: | |||
* @li var: A mutable tensor. Must be one of the data types defined in | |||
* TensorType::NumberType(). Should be from a Variable(). | |||
* @li ms: A mutable tensor. Must have the same type as "var". Should be from a | |||
@@ -2418,6 +2420,7 @@ REG_OP(SparseApplyRMSPropD) | |||
* accum_update <- rho() * accum_update + (1 - rho()) * update.square()\n | |||
* | |||
* @par Inputs: | |||
* Eight inputs, including: | |||
* @li var: A mutable tensor. Must be one of the data types defined in\n | |||
* TensorType::NumberType(). Should be from a Variable(). | |||
* @li accum: A mutable tensor. Must have the same type as "var". Should be from a | |||
@@ -2468,6 +2471,7 @@ REG_OP(SparseApplyAdadelta) | |||
* accum_update <- rho() * accum_update + (1 - rho()) * update.square()\n | |||
* | |||
* @par Inputs: | |||
* Seven inputs, including: | |||
* @li var: A mutable tensor. Must be one of the data types defined in | |||
* TensorType::NumberType(). Should be from a Variable(). | |||
* @li accum: A mutable tensor. Must have the same type as "var". Should be from a | |||
@@ -203,11 +203,11 @@ REG_OP(Sigmoid) | |||
* @brief Computes z = (y - y*y)*dy. | |||
* @par Inputs: | |||
* @li y: the input is tensor , dtype is UnaryDataType. | |||
* @li dy the input is tensor , dtype is UnaryDataType. | |||
* @li y: The input is Tensor, dtype is UnaryDataType. | |||
* @li dy: The input is Tensor, dtype is UnaryDataType. | |||
* @par Outputs: | |||
* z: the shape of output, dtype is UnaryDataType. | |||
* z: The shape of output, dtype is UnaryDataType. | |||
*/ | |||
REG_OP(SigmoidGrad) | |||
.INPUT(y, TensorType(UnaryDataType)) | |||
@@ -21,17 +21,17 @@ | |||
namespace ge { | |||
/** | |||
* @brief Dequantizes the input tensor into a float tensor.\n | |||
* [input_min_range, input_max_range] are scalar floats that specify the range | |||
* for "output_data". \n | |||
* @brief Dequantizes the input tensor into a float tensor. | |||
* [min_range, max_range] are float32 tensors that specify the range | |||
* for "y". \n | |||
* The "mode" attribute controls exactly which calculations are used to convert\n | |||
* the float values to their quantized equivalents. | |||
* @par Inputs: | |||
* @li input_data: A Tensor. Must be one of the following types: int8, uint8, | |||
* @li x: A Tensor. Must be one of the following types: int8, uint8, | |||
* int32. | |||
* @li input_min_range: A Tensor of type float32. | |||
* @li min_range: A Tensor of type float32. | |||
* Specifies the minimum scalar value possibly produced for the input. | |||
* @li input_max_range: A Tensor of type float32. | |||
* @li max_range: A Tensor of type float32. | |||
* Specifies the maximum scalar value possibly produced for the input. | |||
* @par Attributes: | |||
@@ -39,11 +39,11 @@ namespace ge { | |||
* Defaults to "MIN_COMBINED". | |||
* @par Outputs: | |||
* output_data: A dictionary of type float32. | |||
* y: A dictionary of type float32. | |||
* @attention Constraints: | |||
* @li "input_min_range" and "input_max_range" have the same shapes. | |||
* @li "input_data" and "output_data" have the same shapes. | |||
* @li "min_range" and "max_range" have the same shapes. | |||
* @li "x" and "y" have the same shapes. | |||
* @par Third-party framework compatibility | |||
* Compatible with the TensorFlow operator Dequantize. | |||
@@ -149,7 +149,7 @@ REG_OP(TileD) | |||
* @li indices: A Tensor of type IndexNumberType. | |||
* @par Outputs: | |||
* output: A Tensor of type BasicType. | |||
* y: A Tensor of type BasicType. | |||
* @see GatherNd() | |||
* @attention Constraints: | |||
@@ -767,6 +767,7 @@ REG_OP(SliceD) | |||
* dimension. | |||
* @par Inputs: | |||
* Two inputs, including: | |||
* @li x: A 1D or higher tensor of type float16, with the last dimension at | |||
* least "k". | |||
* Specifies the data to sort. | |||
@@ -789,7 +790,7 @@ REG_OP(SliceD) | |||
* @li indices: A Tensor of type int32, specifying the indices of sorted data. | |||
* @attention Constraints: | |||
* @li k =< 4096 | |||
* @li k =< 5120 | |||
* @li Size of the last dimension =< 65500 | |||
* @li sorted = true | |||
* @li Don't support to get score on the platform of Ascend310 | |||
@@ -813,6 +814,7 @@ REG_OP(TopKD) | |||
* dimension. | |||
* @par Inputs: | |||
* Two inputs, including: | |||
* @li x: A 1D or higher tensor of type BasicType, with the last dimension | |||
* at least "k". | |||
* @li k: A 0D Tensor of type int32.\n | |||
@@ -902,8 +904,8 @@ REG_OP(ScatterNdD) | |||
* @li x2: A 1D Tensor of type int32. A batch_size tensor of class ids. | |||
* @par Attributes: | |||
* @li k: A required int32, specifying the number of top elements to look at for | |||
* computing precision. | |||
* @li k: A required IndexNumberType, specifying the number of top elements to | |||
* look at for computing precision. | |||
* @par Outputs: | |||
* y: A Tensor of type bool. | |||
@@ -1000,6 +1002,7 @@ REG_OP(StridedSliceAssign) | |||
* "strides", etc. work exactly as in "StridedSlice". | |||
* @par Inputs: | |||
* Two inputs, including: | |||
* @li var: A mutable ND Tensor of type BasicType. | |||
* @li input_value: A mutable ND "Tensor" of type BasicType. | |||
@@ -1335,7 +1338,7 @@ REG_OP(InplaceSubD) | |||
.OP_END_FACTORY_REG(InplaceSubD) | |||
/** | |||
* @brief Applies sparse addition to input "x" using individual values or slices\n | |||
* @brief Applies sparse addition to input "x" using individual values or slices | |||
* from "updates" according to "indices". The updates are non-aliasing: "x" is\n | |||
* only modified in-place if no other operations will use it. Otherwise, a copy\n | |||
* of "x" is made. This operation has a gradient with respect to both "x" and | |||
@@ -1372,7 +1375,7 @@ REG_OP(ScatterNonAliasingAdd) | |||
* @li x: A Tensor of type RealNumberType. | |||
* @li segment_ids: A 1D Tensor of type IndexNumberType, whose shape is a prefix | |||
* of "x.shape". | |||
* @li k: A Tensor. | |||
* @li num_segments: A Tensor of type IndexNumberType. | |||
* @par Outputs: | |||
* y: A Tensor of type RealNumberType. | |||
@@ -1419,13 +1422,13 @@ REG_OP(UnsortedSegmentMinD) | |||
* @par Inputs: | |||
* Three inputs, including: | |||
* @li x: A Tensor of type RealNumberType. | |||
* @li x: A Tensor of type NumberType. | |||
* @li segment_ids: A 1D Tensor of type IndexNumberType, whose shape is a prefix | |||
* of "x.shape". | |||
* @li k: A Tensor. | |||
* @li num_segments: A Tensor of type IndexNumberType. | |||
* @par Outputs: | |||
* y: A Tensor of type RealNumberType. | |||
* y: A Tensor of type NumberType. | |||
* @see UnsortedSegmentSum(), UnsortedSegmentMin(), | |||
@@ -20,19 +20,38 @@ | |||
#include "graph/operator_reg.h" | |||
namespace ge { | |||
/** | |||
*@brief Convert tensor format from HWCN to C1HWNCoC0. | |||
*@par Inputs: | |||
*x: A Tensor. Must be 4D Tensor of type float16, float32, int32, uint16, with format HWCN. | |||
*@par Outputs: | |||
*y: A 6D Tensor. Has the same type as "x", with format C1HWNCoC0. | |||
*/ | |||
REG_OP(DepthwiseWeight4DTo6D) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT16})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT16})) | |||
.OP_END_FACTORY_REG(DepthwiseWeight4DTo6D) | |||
/** | |||
*@brief Convert tensor format from C1HWNCoC0 to HWCN. | |||
*@par Inputs: | |||
*x: A Tensor. Must be 6D Tensor of type float16, float32, int32, uint16, with format C1HWNCoC0. | |||
*@par Attributes: | |||
*channel_size: An optional int, specifying the channel size of 4D Tensor with format HWCN. | |||
*@par Outputs: | |||
*y: A 4D Tensor. Has the same type as "x", with format HWCN. | |||
*/ | |||
REG_OP(DepthwiseWeight6DTo4D) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT16})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT16})) | |||
.ATTR(channel_size, Int, 16) | |||
.OP_END_FACTORY_REG(DepthwiseWeight6DTo4D) | |||
/** | |||
*@brief Permutes the dimensions according to perm.\n | |||
The returned tensor's dimension i will correspond to the input dimension perm[i]. | |||
@@ -390,20 +409,20 @@ REG_OP(SpaceToBatchD) | |||
.OP_END_FACTORY_REG(SpaceToBatchD) | |||
/** | |||
* @brief Unpacks the given dimension of a rank-R tensor "x" into rank-(R-1) | |||
* @brief Unpacks the given dimension of a rank-R Tensor "x" into rank-(R-1) | |||
* tensors. | |||
* @par Inputs: | |||
* x: A rank-R tensor (R > 0) of type BasicType, with format ND or NC1HWC0. | |||
* @par Attributes: | |||
* @li num: An optional int, specifying the number of tensors to be unpacked to. | |||
* @li num: A required int, specifying the number of tensors to be unpacked to. | |||
* Defaults to "None". | |||
* @li axis: A required int, specifying the axis to unpack along. The value range | |||
* @li axis: An optional int, specifying the axis to unpack along. The value range | |||
* is [-R, R). | |||
* @par Outputs: | |||
* y: The list of Tensor objects unpacked from "x", of type BasicType. | |||
* y: Dynamic output. The list of Tensor objects unpacked from "x", of type BasicType. | |||
* @attention Constraints: | |||
* @li If "num" is not specified, it is inferred from the shape of "x". | |||
@@ -434,11 +453,11 @@ REG_OP(Unpack) | |||
* dimension of images. | |||
* @li strides: A required list or tuple. How far the centers of two consecutive | |||
* patches are in the images. Must be: [1, stride_rows, stride_cols, 1]. | |||
* @li rates: A required list or tuple. Must be: [1, rate_rows, rate_cols, 1]. \n | |||
* This is the input stride, specifying how far two consecutive patch \n | |||
* @li rates: A required list or tuple. Must be: [1, rate_rows, rate_cols, 1].\n | |||
* This is the input stride, specifying how far two consecutive patch\n | |||
* samples are in the input. Equivalent to extracting patches | |||
* with patch_sizes_eff = patch_sizes + (patch_sizes - 1) *\n | |||
* (rates - 1), followed by subsampling them spatially by a factor of rates. \n | |||
* (rates - 1), followed by subsampling them spatially by a factor of rates.\n | |||
* This is equivalent to rate in dilated (a.k.a. Atrous) convolutions. | |||
* @li padding: A required string. The type of padding algorithm to use. | |||
@@ -59,6 +59,8 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY OpRegistry { | |||
domi::ParseParamFunc GetParseParamFunc(const std::string &op_type); | |||
domi::ParseParamByOpFunc GetParseParamByOperatorFunc(const std::string &op_type); | |||
domi::FusionParseParamFunc GetFusionParseParamFunc(const std::string &op_type); | |||
domi::ParseSubgraphFunc GetParseSubgraphPostFunc(const std::string &op_type); | |||
@@ -73,6 +75,7 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY OpRegistry { | |||
std::unordered_map<std::string, std::set<std::string>> op_ori_optype_map_; | |||
std::unordered_map<std::string, domi::ImplyType> op_run_mode_map_; | |||
std::unordered_map<std::string, ParseParamFunc> opParseParamsFnMap_; | |||
std::unordered_map<std::string, ParseParamByOpFunc> parse_params_by_op_func_map_; | |||
std::unordered_map<std::string, FusionParseParamFunc> fusionOpParseParamsFnMap_; | |||
std::unordered_map<std::string, ParseSubgraphFunc> op_types_to_parse_subgraph_post_func_; | |||
std::unordered_map<std::string, std::vector<RemoveInputConfigure>> remove_input_configure_map_; | |||
@@ -100,6 +100,14 @@ RTS_API rtError_t rtCtxGetCurrent(rtContext_t *ctx); | |||
/** | |||
* @ingroup rt_context | |||
* @brief returns the primary context of device. | |||
* @param [out] ctx returned context | |||
* @return RT_ERROR_NONE for ok | |||
*/ | |||
RTS_API rtError_t rtGetPriCtxByDeviceId(int32_t device, rtContext_t *ctx); | |||
/** | |||
* @ingroup rt_context | |||
* @brief returns the device ID for the current context | |||
* @param [out] device returned device id | |||
* @return RT_ERROR_NONE for ok | |||
@@ -277,6 +277,7 @@ extern int dlog_setlevel(int moduleId, int level, int enableEvent); | |||
/** | |||
* @ingroup slog | |||
* @brief CheckLogLevel: check module level enable or not | |||
* users no need to call it because all dlog interface(include inner interface) has already called | |||
* | |||
* @param [in]moduleId: module id, eg: CCE | |||
* @param [in]logLevel: eg: DLOG_EVENT/DLOG_ERROR/DLOG_WARN/DLOG_INFO/DLOG_DEBUG | |||
@@ -291,46 +292,76 @@ extern int CheckLogLevel(int moduleId, int logLevel); | |||
* @param [in]moduleId: module id, eg: CCE | |||
* @param [in]fmt: log content | |||
*/ | |||
#define dlog_error(moduleId, fmt, ...) \ | |||
do { \ | |||
DlogErrorInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
#define dlog_error(moduleId, fmt, ...) \ | |||
do { \ | |||
DlogErrorInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} while (0) | |||
/** | |||
* @ingroup slog | |||
* @brief dlog_warn: print warning log | |||
* call CheckLogLevel in advance to optimize performance, call interface with fmt input take time | |||
* | |||
* @param [in]moduleId: module id, eg: CCE | |||
* @param [in]fmt: log content | |||
*/ | |||
#define dlog_warn(moduleId, fmt, ...) \ | |||
do { \ | |||
DlogWarnInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
#ifdef _SKIP_TOOLCHAIN_LOG_FUNC_ABCD | |||
#define dlog_warn(moduleId, fmt, ...) \ | |||
do { \ | |||
DlogWarnInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} while (0) | |||
#else | |||
#define dlog_warn(moduleId, fmt, ...) \ | |||
do { \ | |||
if(CheckLogLevel(moduleId, DLOG_WARN) == 1) { \ | |||
DlogWarnInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} \ | |||
} while (0) | |||
#endif | |||
/** | |||
* @ingroup slog | |||
* @brief dlog_info: print info log | |||
* call CheckLogLevel in advance to optimize performance, call interface with fmt input take time | |||
* | |||
* @param [in]moduleId: module id, eg: CCE | |||
* @param [in]fmt: log content | |||
*/ | |||
#define dlog_info(moduleId, fmt, ...) \ | |||
do { \ | |||
DlogInfoInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
#ifdef _SKIP_TOOLCHAIN_LOG_FUNC_ABCD | |||
#define dlog_info(moduleId, fmt, ...) \ | |||
do { \ | |||
DlogInfoInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} while (0) | |||
#else | |||
#define dlog_info(moduleId, fmt, ...) \ | |||
do { \ | |||
if(CheckLogLevel(moduleId, DLOG_INFO) == 1) { \ | |||
DlogInfoInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} \ | |||
} while (0) | |||
#endif | |||
/** | |||
* @ingroup slog | |||
* @brief dlog_debug: print debug log | |||
* call CheckLogLevel in advance to optimize performance, call interface with fmt input take time | |||
* | |||
* @param [in]moduleId: module id, eg: CCE | |||
* @param [in]fmt: log content | |||
*/ | |||
#define dlog_debug(moduleId, fmt, ...) \ | |||
do { \ | |||
DlogDebugInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
#ifdef _SKIP_TOOLCHAIN_LOG_FUNC_ABCD | |||
#define dlog_debug(moduleId, fmt, ...) \ | |||
do { \ | |||
DlogDebugInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} while (0) | |||
#else | |||
#define dlog_debug(moduleId, fmt, ...) \ | |||
do { \ | |||
if(CheckLogLevel(moduleId, DLOG_DEBUG) == 1) { \ | |||
DlogDebugInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} \ | |||
} while (0) | |||
#endif | |||
/** | |||
* @ingroup slog | |||
@@ -339,9 +370,9 @@ extern int CheckLogLevel(int moduleId, int logLevel); | |||
* @param [in]moduleId: module id, eg: CCE | |||
* @param [in]fmt: log content | |||
*/ | |||
#define dlog_event(moduleId, fmt, ...) \ | |||
do { \ | |||
DlogEventInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
#define dlog_event(moduleId, fmt, ...) \ | |||
do { \ | |||
DlogEventInner(moduleId, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} while (0) | |||
/** | |||
@@ -352,10 +383,19 @@ extern int CheckLogLevel(int moduleId, int logLevel); | |||
* @param [in]level(0: debug, 1: info, 2: warning, 3: error, 5: trace, 6: oplog, 16: event) | |||
* @param [in]fmt: log content | |||
*/ | |||
#define Dlog(moduleId, level, fmt, ...) \ | |||
do { \ | |||
DlogInner(moduleId, level, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
#ifdef _SKIP_TOOLCHAIN_LOG_FUNC_ABCD | |||
#define Dlog(moduleId, level, fmt, ...) \ | |||
do { \ | |||
DlogInner(moduleId, level, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} while (0) | |||
#else | |||
#define Dlog(moduleId, level, fmt, ...) \ | |||
do { \ | |||
if(CheckLogLevel(moduleId, level) == 1) { \ | |||
DlogInner(moduleId, level, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} \ | |||
} while (0) | |||
#endif | |||
/** | |||
* @ingroup slog | |||
@@ -366,10 +406,19 @@ extern int CheckLogLevel(int moduleId, int logLevel); | |||
* @param [in]level(0: debug, 1: info, 2: warning, 3: error, 5: trace, 6: oplog, 16: event) | |||
* @param [in]fmt: log content | |||
*/ | |||
#define DlogSub(moduleId, submodule, level, fmt, ...) \ | |||
do { \ | |||
DlogInner(moduleId, level, "[%s:%d][%s]" fmt, __FILE__, __LINE__, submodule, ##__VA_ARGS__); \ | |||
#ifdef _SKIP_TOOLCHAIN_LOG_FUNC_ABCD | |||
#define DlogSub(moduleId, submodule, level, fmt, ...) \ | |||
do { \ | |||
DlogInner(moduleId, level, "[%s:%d][%s]" fmt, __FILE__, __LINE__, submodule, ##__VA_ARGS__); \ | |||
} while (0) | |||
#else | |||
#define DlogSub(moduleId, submodule, level, fmt, ...) \ | |||
do { \ | |||
if(CheckLogLevel(moduleId, level) == 1) { \ | |||
DlogInner(moduleId, level, "[%s:%d][%s]" fmt, __FILE__, __LINE__, submodule, ##__VA_ARGS__); \ | |||
} \ | |||
} while (0) | |||
#endif | |||
/** | |||
* @ingroup slog | |||
@@ -381,11 +430,19 @@ extern int CheckLogLevel(int moduleId, int logLevel); | |||
* @param [in]kvNum: key-value element num in array | |||
* @param [in]fmt: log content | |||
*/ | |||
#define DlogWithKV(moduleId, level, pstKVArray, kvNum, fmt, ...) \ | |||
do { \ | |||
DlogWithKVInner(moduleId, level, pstKVArray, kvNum, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
#ifdef _SKIP_TOOLCHAIN_LOG_FUNC_ABCD | |||
#define DlogWithKV(moduleId, level, pstKVArray, kvNum, fmt, ...) \ | |||
do { \ | |||
DlogWithKVInner(moduleId, level, pstKVArray, kvNum, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} while (0) | |||
#else | |||
#define DlogWithKV(moduleId, level, pstKVArray, kvNum, fmt, ...) \ | |||
do { \ | |||
if(CheckLogLevel(moduleId, level) == 1) { \ | |||
DlogWithKVInner(moduleId, level, pstKVArray, kvNum, "[%s:%d]" fmt, __FILE__, __LINE__, ##__VA_ARGS__); \ | |||
} \ | |||
} while (0) | |||
#endif | |||
/** | |||
* @ingroup slog | |||