@@ -298,7 +298,9 @@ set(TRAIN_SRC_LIST | |||||
"graph/passes/hccl_continuous_memcpy_pass.cc" | "graph/passes/hccl_continuous_memcpy_pass.cc" | ||||
"graph/passes/identity_pass.cc" | "graph/passes/identity_pass.cc" | ||||
"graph/passes/ref_identity_delete_op_pass.cc" | "graph/passes/ref_identity_delete_op_pass.cc" | ||||
"graph/passes/infer_base_pass.cc" | |||||
"graph/passes/infershape_pass.cc" | "graph/passes/infershape_pass.cc" | ||||
"graph/passes/infer_value_range_pass.cc" | |||||
"graph/passes/iterator_op_pass.cc" | "graph/passes/iterator_op_pass.cc" | ||||
"graph/passes/link_gen_mask_nodes_pass.cc" | "graph/passes/link_gen_mask_nodes_pass.cc" | ||||
"graph/passes/merge_pass.cc" | "graph/passes/merge_pass.cc" | ||||
@@ -553,7 +555,9 @@ set(INFER_SRC_LIST | |||||
"graph/passes/shape_operate_op_remove_pass.cc" | "graph/passes/shape_operate_op_remove_pass.cc" | ||||
"graph/passes/assert_pass.cc" | "graph/passes/assert_pass.cc" | ||||
"graph/passes/dropout_pass.cc" | "graph/passes/dropout_pass.cc" | ||||
"graph/passes/infer_base_pass.cc" | |||||
"graph/passes/infershape_pass.cc" | "graph/passes/infershape_pass.cc" | ||||
"graph/passes/infer_value_range_pass.cc" | |||||
"graph/passes/unused_const_pass.cc" | "graph/passes/unused_const_pass.cc" | ||||
"graph/passes/permute_pass.cc" | "graph/passes/permute_pass.cc" | ||||
"graph/passes/ctrl_edge_transfer_pass.cc" | "graph/passes/ctrl_edge_transfer_pass.cc" | ||||
@@ -20,35 +20,9 @@ | |||||
#include "graph/operator_factory.h" | #include "graph/operator_factory.h" | ||||
#include "graph/utils/node_utils.h" | #include "graph/utils/node_utils.h" | ||||
#include "graph/utils/type_utils.h" | #include "graph/utils/type_utils.h" | ||||
#include "init/gelib.h" | |||||
namespace ge { | namespace ge { | ||||
const int64_t kStartCallNum = 1; | const int64_t kStartCallNum = 1; | ||||
const std::string kKernelLibName = "aicpu_tf_kernel"; | |||||
// tf_kernel.json opsFlag config | |||||
const std::string kOpsFlagClose = "0"; | |||||
Status RunOpKernelWithCheck(NodePtr &node, | |||||
const vector<ConstGeTensorPtr> &inputs, | |||||
std::vector<GeTensorPtr> &outputs) { | |||||
std::shared_ptr<GELib> instance_ptr = ge::GELib::GetInstance(); | |||||
if ((instance_ptr == nullptr) || (!instance_ptr->InitFlag())) { | |||||
GELOGE(GE_CLI_GE_NOT_INITIALIZED, "[Check][Param] GE is not initialized or is finalized."); | |||||
return UNSUPPORTED; | |||||
} | |||||
OpsKernelInfoStorePtr kernel_info = instance_ptr->OpsKernelManagerObj().GetOpsKernelInfoStore(kKernelLibName); | |||||
if (kernel_info == nullptr) { | |||||
GELOGE(FAILED, "[Get][OpsKernelInfoStore] %s failed", kKernelLibName.c_str()); | |||||
return UNSUPPORTED; | |||||
} | |||||
std::string ops_flag; | |||||
kernel_info->opsFlagCheck(*node, ops_flag); | |||||
if (ops_flag == kOpsFlagClose) { | |||||
return UNSUPPORTED; | |||||
} | |||||
return FoldingPass::RunOpKernel(node, inputs, outputs); | |||||
} | |||||
const map<string, pair<uint64_t, uint64_t>> &ConstantFoldingPass::GetGeConstantFoldingPerfStatistic() const { | const map<string, pair<uint64_t, uint64_t>> &ConstantFoldingPass::GetGeConstantFoldingPerfStatistic() const { | ||||
return statistic_of_ge_constant_folding_; | return statistic_of_ge_constant_folding_; | ||||
@@ -81,7 +55,7 @@ Status ConstantFoldingPass::Run(ge::NodePtr &node) { | |||||
vector<GeTensorPtr> outputs; | vector<GeTensorPtr> outputs; | ||||
// Statistic of ge constant folding kernel | // Statistic of ge constant folding kernel | ||||
uint64_t start_time = GetCurrentTimestamp(); | uint64_t start_time = GetCurrentTimestamp(); | ||||
auto ret = RunOpKernelWithCheck(node, inputs, outputs); | |||||
auto ret = FoldingPass::RunOpKernelWithCheck(node, inputs, outputs); | |||||
if (ret != SUCCESS) { | if (ret != SUCCESS) { | ||||
auto op_kernel = folding_pass::GetKernelByType(node); | auto op_kernel = folding_pass::GetKernelByType(node); | ||||
if (op_kernel == nullptr) { | if (op_kernel == nullptr) { | ||||
@@ -29,7 +29,7 @@ | |||||
#include "inc/kernel_factory.h" | #include "inc/kernel_factory.h" | ||||
#include "graph/debug/ge_attr_define.h" | #include "graph/debug/ge_attr_define.h" | ||||
#include "ge_local_engine/engine/host_cpu_engine.h" | #include "ge_local_engine/engine/host_cpu_engine.h" | ||||
#include "init/gelib.h" | |||||
namespace ge { | namespace ge { | ||||
namespace folding_pass { | namespace folding_pass { | ||||
@@ -59,6 +59,9 @@ bool IsNoNeedConstantFolding(const NodePtr &node) { | |||||
} // namespace folding_pass | } // namespace folding_pass | ||||
namespace { | namespace { | ||||
const std::string kKernelLibName = "aicpu_tf_kernel"; | |||||
const std::string kOpsFlagClose = "0"; | |||||
IndexsToAnchors GetIndexAndPeerInDataAnchors(NodePtr &node) { | IndexsToAnchors GetIndexAndPeerInDataAnchors(NodePtr &node) { | ||||
IndexsToAnchors indexes_to_anchors; | IndexsToAnchors indexes_to_anchors; | ||||
for (auto &out_anchor : node->GetAllOutDataAnchors()) { | for (auto &out_anchor : node->GetAllOutDataAnchors()) { | ||||
@@ -129,6 +132,27 @@ Status FoldingPass::RunOpKernel(NodePtr &node, | |||||
return HostCpuEngine::GetInstance().Run(node, inputs, outputs); | return HostCpuEngine::GetInstance().Run(node, inputs, outputs); | ||||
} | } | ||||
Status FoldingPass::RunOpKernelWithCheck(NodePtr &node, const vector<ConstGeTensorPtr> &inputs, | |||||
std::vector<GeTensorPtr> &outputs) { | |||||
std::shared_ptr<GELib> instance_ptr = ge::GELib::GetInstance(); | |||||
if ((instance_ptr == nullptr) || (!instance_ptr->InitFlag())) { | |||||
GELOGE(GE_CLI_GE_NOT_INITIALIZED, "[Check][Param] GE is not initialized or is finalized."); | |||||
return UNSUPPORTED; | |||||
} | |||||
OpsKernelInfoStorePtr kernel_info = instance_ptr->OpsKernelManagerObj().GetOpsKernelInfoStore(kKernelLibName); | |||||
if (kernel_info == nullptr) { | |||||
GELOGE(FAILED, "[Get][OpsKernelInfoStore] %s failed", kKernelLibName.c_str()); | |||||
return UNSUPPORTED; | |||||
} | |||||
std::string ops_flag; | |||||
kernel_info->opsFlagCheck(*node, ops_flag); | |||||
if (ops_flag == kOpsFlagClose) { | |||||
return UNSUPPORTED; | |||||
} | |||||
return FoldingPass::RunOpKernel(node, inputs, outputs); | |||||
} | |||||
Status FoldingPass::Folding(NodePtr &node, vector<GeTensorPtr> &outputs) { | Status FoldingPass::Folding(NodePtr &node, vector<GeTensorPtr> &outputs) { | ||||
GE_CHECK_NOTNULL(node); | GE_CHECK_NOTNULL(node); | ||||
GELOGD("begin folding node:%s", node->GetName().c_str()); | GELOGD("begin folding node:%s", node->GetName().c_str()); | ||||
@@ -36,6 +36,9 @@ using IndexsToAnchors = std::map<int, std::vector<InDataAnchorPtr>>; | |||||
class FoldingPass : public BaseNodePass { | class FoldingPass : public BaseNodePass { | ||||
public: | public: | ||||
static Status RunOpKernel(NodePtr &node, const vector<ConstGeTensorPtr> &inputs, vector<GeTensorPtr> &outputs); | static Status RunOpKernel(NodePtr &node, const vector<ConstGeTensorPtr> &inputs, vector<GeTensorPtr> &outputs); | ||||
static Status RunOpKernelWithCheck(NodePtr &node, const vector<ConstGeTensorPtr> &inputs, | |||||
std::vector<GeTensorPtr> &outputs); | |||||
protected: | protected: | ||||
Status Folding(NodePtr &node, vector<GeTensorPtr> &outputs); | Status Folding(NodePtr &node, vector<GeTensorPtr> &outputs); | ||||
private: | private: | ||||
@@ -0,0 +1,676 @@ | |||||
/** | |||||
* Copyright 2021 Huawei Technologies Co., Ltd | |||||
* | |||||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||||
* you may not use this file except in compliance with the License. | |||||
* You may obtain a copy of the License at | |||||
* | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, software | |||||
* distributed under the License is distributed on an "AS IS" BASIS, | |||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
* See the License for the specific language governing permissions and | |||||
* limitations under the License. | |||||
*/ | |||||
#include "infer_base_pass.h" | |||||
#include "common/ge/ge_util.h" | |||||
#include "common/util/error_manager/error_manager.h" | |||||
#include "framework/common/debug/ge_log.h" | |||||
#include "framework/common/util.h" | |||||
#include "graph/debug/ge_attr_define.h" | |||||
#include "graph/debug/ge_util.h" | |||||
#include "graph/utils/graph_utils.h" | |||||
#include "graph/utils/node_utils.h" | |||||
#include "graph/utils/tensor_utils.h" | |||||
#include "graph/utils/type_utils.h" | |||||
namespace ge { | |||||
namespace { | |||||
string Serial(const vector<int64_t> &dims) { | |||||
string serial_string; | |||||
serial_string += "["; | |||||
for (int64_t dim : dims) { | |||||
serial_string += std::to_string(dim) + " "; | |||||
} | |||||
serial_string += "]"; | |||||
return serial_string; | |||||
} | |||||
void SerialShapeRange(const GeTensorDescPtr &desc, std::string &desc_str) { | |||||
desc_str += "["; | |||||
std::vector<std::pair<int64_t, int64_t>> shape_range; | |||||
(void)desc->GetShapeRange(shape_range); | |||||
for (const auto &pair : shape_range) { | |||||
desc_str += "{"; | |||||
desc_str += std::to_string(pair.first) + "," + std::to_string(pair.second); | |||||
desc_str += "},"; | |||||
} | |||||
desc_str += "]"; | |||||
shape_range.clear(); | |||||
(void)desc->GetOriginShapeRange(shape_range); | |||||
for (const auto &pair : shape_range) { | |||||
desc_str += ",{"; | |||||
desc_str += std::to_string(pair.first) + "," + std::to_string(pair.second); | |||||
desc_str += "},"; | |||||
} | |||||
} | |||||
void SerialValueRange(const GeTensorDescPtr &desc, std::string &desc_str) { | |||||
desc_str += "["; | |||||
std::vector<std::pair<int64_t, int64_t>> value_range; | |||||
(void)desc->GetValueRange(value_range); | |||||
for (const auto &pair : value_range) { | |||||
desc_str += "{"; | |||||
desc_str += std::to_string(pair.first) + "," + std::to_string(pair.second); | |||||
desc_str += "},"; | |||||
} | |||||
desc_str += "]"; | |||||
} | |||||
graphStatus FindSubgraphDataAndNetoutput(const ComputeGraphPtr &sub_graph, NodePtr &netoutput, const ConstNodePtr &node, | |||||
std::vector<std::vector<GeTensorDesc>> &ref_data_tensors) { | |||||
auto sub_nodes = sub_graph->GetDirectNode(); | |||||
for (size_t i = sub_nodes.size(); i > 0; --i) { | |||||
auto sub_node = sub_nodes.at(i - 1); | |||||
if (sub_node->GetType() == NETOUTPUT) { | |||||
netoutput = sub_node; | |||||
} | |||||
if (sub_node->GetType() == DATA) { | |||||
if (sub_node->GetOpDesc() == nullptr) { | |||||
return GRAPH_FAILED; | |||||
} | |||||
int ref_i; | |||||
if (!AttrUtils::GetInt(sub_node->GetOpDesc(), ATTR_NAME_PARENT_NODE_INDEX, ref_i)) { | |||||
REPORT_INNER_ERROR("E19999", "subgraph data node[%s] has no parent node!", sub_node->GetName().c_str()); | |||||
GELOGE(GRAPH_FAILED, "[Get][Int] subgraph data node[%s] has no parent node!", sub_node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
if (ref_i < 0 || static_cast<uint32_t>(ref_i) >= node->GetAllInDataAnchorsSize()) { | |||||
REPORT_INNER_ERROR("E19999", "data node[%s]'s ref index[%d] is not in range [0, %u)!", | |||||
sub_node->GetName().c_str(), ref_i, node->GetAllInDataAnchorsSize()); | |||||
GELOGE(GRAPH_FAILED, "[Check][Param] data node[%s]'s ref index[%d] is not in range [0, %u)!", | |||||
sub_node->GetName().c_str(), ref_i, node->GetAllInDataAnchorsSize()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
ref_data_tensors[ref_i].emplace_back(sub_node->GetOpDesc()->GetOutputDesc(0)); | |||||
} | |||||
} | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
} // namespace | |||||
Status InferBasePass::Run(NodePtr &node) { | |||||
GE_CHECK_NOTNULL(node); | |||||
GE_CHECK_NOTNULL(node->GetOpDesc()); | |||||
bool need_infer = NeedInfer(node); | |||||
if (!need_infer) { | |||||
GELOGD("Node %s does not need to infer.", node->GetName().c_str()); | |||||
return SUCCESS; | |||||
} | |||||
std::set<NodePtr> changed_nodes; | |||||
auto ret = InferAndUpdate(node, !OptionExists(kOptimizeAfterSubGraph), changed_nodes); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
(void)AnalyzeFailedInfo(node); | |||||
return GE_GRAPH_INFERSHAPE_FAILED; | |||||
} | |||||
/* | |||||
* we will use changed nodes to do repass for control_ops. | |||||
* AddChangedNodesImmediateRepass(changed_nodes); | |||||
*/ | |||||
auto status = DoRepassForLoopNode(node); | |||||
if (status != SUCCESS) { | |||||
GELOGE(GE_GRAPH_INFERSHAPE_FAILED, "repass failed. node: %s", node->GetName().c_str()); | |||||
return GE_GRAPH_INFERSHAPE_FAILED; | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
bool InferBasePass::NeedInfer(const NodePtr &node) { return true; } | |||||
void InferBasePass::AnalyzeFailedInfo(const NodePtr &node) { /* Analyze and select failed info*/ } | |||||
Status InferBasePass::DoRepassForLoopNode(NodePtr &node) { return SUCCESS; } | |||||
graphStatus InferBasePass::UpdatePeerInputs(NodePtr &node) { return GRAPH_SUCCESS; } | |||||
void InferBasePass::AddChangedNodesImmediateRepass(std::set<NodePtr> &changed_nodes) { | |||||
for (const auto &node_ele : changed_nodes) { | |||||
AddImmediateRePassNode(node_ele); | |||||
} | |||||
} | |||||
graphStatus InferBasePass::InferAndUpdate(NodePtr &node, bool before_subgraph, std::set<NodePtr> &changed_nodes) { | |||||
auto ret = GRAPH_SUCCESS; | |||||
bool is_unknown_graph = node->GetOwnerComputeGraph()->GetGraphUnknownFlag(); | |||||
auto opdesc = node->GetOpDesc(); | |||||
// some op can not infershape twice such as aipp | |||||
bool need_update_input = !is_unknown_graph && !opdesc->HasAttr("has_infered_verified"); | |||||
if (need_update_input) { | |||||
ret = UpdateCurOpInputDesc(node); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "update op input_desc failed! ret:%d, node:%s", ret, node->GetName().c_str()); | |||||
GELOGE(GRAPH_FAILED, "[Update][OpInputDesc] failed! ret:%d", ret); | |||||
return ret; | |||||
} | |||||
} | |||||
bool contain_subgraph = ContainsSubgraph(node); | |||||
if (contain_subgraph && before_subgraph) { | |||||
ret = UpdateTensorDescToSubgraphData(node, changed_nodes); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
return ret; | |||||
} | |||||
} | |||||
ret = Infer(node); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
return ret; | |||||
} | |||||
if (contain_subgraph && !before_subgraph) { | |||||
ret = UpdateTensorDescToParentNode(node, changed_nodes); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
return ret; | |||||
} | |||||
} | |||||
ret = UpdatePeerInputs(node); | |||||
return ret; | |||||
} | |||||
graphStatus InferBasePass::UpdateCurOpInputDesc(const NodePtr &node_ptr) { | |||||
for (const auto &in_anchor : node_ptr->GetAllInDataAnchors()) { | |||||
auto in_idx = in_anchor->GetIdx(); | |||||
auto peer_out_data_anchor = in_anchor->GetPeerOutAnchor(); | |||||
if (peer_out_data_anchor == nullptr) { | |||||
continue; | |||||
} | |||||
auto peer_out_data_node = peer_out_data_anchor->GetOwnerNode(); | |||||
if (peer_out_data_node == nullptr || peer_out_data_node->GetOpDesc() == nullptr) { | |||||
continue; | |||||
} | |||||
int peer_out_idx = peer_out_data_anchor->GetIdx(); | |||||
auto peer_out_desc = peer_out_data_node->GetOpDesc()->MutableOutputDesc(static_cast<uint32_t>(peer_out_idx)); | |||||
// check shape and dtype continuity. do not stop process | |||||
auto in_desc = node_ptr->GetOpDesc()->MutableInputDesc(static_cast<uint32_t>(in_idx)); | |||||
if (in_desc == nullptr) { | |||||
continue; | |||||
} | |||||
auto in_shape = in_desc->MutableShape().GetDims(); | |||||
auto in_dtype = in_desc->GetDataType(); | |||||
auto peer_out_shape = peer_out_desc->MutableShape().GetDims(); | |||||
auto peer_out_dtype = peer_out_desc->GetDataType(); | |||||
if (peer_out_dtype != in_dtype) { | |||||
GELOGW( | |||||
"current node [%s] [%d]\'th in_dtype is [%s].peer output node [%s] [%d]\'th " | |||||
"output_dtype is [%s].The two dtype should be same! Please check graph and fix it", | |||||
node_ptr->GetName().c_str(), in_idx, TypeUtils::DataTypeToSerialString(in_dtype).c_str(), | |||||
peer_out_data_node->GetName().c_str(), peer_out_idx, TypeUtils::DataTypeToSerialString(peer_out_dtype).c_str()); | |||||
} else if ((!in_shape.empty()) && (in_shape != peer_out_shape)) { | |||||
string in_shape_str = Serial(in_shape); | |||||
string peer_out_shape_str = Serial(peer_out_shape); | |||||
GELOGW( | |||||
"current node [%s] [%d]\'th in_shape is [%s].peer output node [%s] [%d]\'th " | |||||
"output_shape is [%s].The two shape should be same! Please check graph and fix it", | |||||
node_ptr->GetName().c_str(), in_idx, in_shape_str.c_str(), peer_out_data_node->GetName().c_str(), peer_out_idx, | |||||
peer_out_shape_str.c_str()); | |||||
} | |||||
// refresh current node input desc | |||||
bool output_changed = false; | |||||
(void)UpdateInputDescAttr(peer_out_desc, in_desc, output_changed); | |||||
} | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
graphStatus InferBasePass::UpdateInputDescAttr(const GeTensorDescPtr &src, GeTensorDescPtr &dst, bool &changed) { | |||||
changed = false; | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
bool InferBasePass::ContainsSubgraph(const NodePtr &node) { | |||||
auto op_desc = node->GetOpDesc(); | |||||
auto sub_graph_names = op_desc->GetSubgraphInstanceNames(); | |||||
if (sub_graph_names.empty()) { | |||||
return false; | |||||
} | |||||
auto root_graph = GraphUtils::FindRootGraph(node->GetOwnerComputeGraph()); | |||||
if (root_graph == nullptr) { | |||||
return false; | |||||
} | |||||
for (const auto &name : sub_graph_names) { | |||||
if (name.empty()) { | |||||
continue; | |||||
} | |||||
auto sub_graph = root_graph->GetSubgraph(name); | |||||
if (sub_graph != nullptr) { | |||||
return true; | |||||
} | |||||
} | |||||
return false; | |||||
} | |||||
std::vector<ComputeGraphPtr> InferBasePass::GetCurNodeSubgraphs(const NodePtr &node) { | |||||
std::vector<ComputeGraphPtr> cur_node_subgraph; | |||||
auto op_desc = node->GetOpDesc(); | |||||
auto sub_graph_names = op_desc->GetSubgraphInstanceNames(); | |||||
if (sub_graph_names.empty()) { | |||||
return cur_node_subgraph; | |||||
} | |||||
auto root_graph = GraphUtils::FindRootGraph(node->GetOwnerComputeGraph()); | |||||
for (const auto &name : sub_graph_names) { | |||||
if (name.empty()) { | |||||
GELOGW("The node %s contains empty subgraph instance name", node->GetName().c_str()); | |||||
continue; | |||||
} | |||||
auto sub_graph = root_graph->GetSubgraph(name); | |||||
if (sub_graph == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", "Can not find the subgrpah %s for node %s", name.c_str(), node->GetName().c_str()); | |||||
GE_LOGE("[Get][Graph] can not find the subgrpah %s for node %s", name.c_str(), node->GetName().c_str()); | |||||
continue; | |||||
} | |||||
cur_node_subgraph.emplace_back(sub_graph); | |||||
} | |||||
return cur_node_subgraph; | |||||
} | |||||
graphStatus InferBasePass::UpdateTensorDescToSubgraphData(NodePtr &node, std::set<NodePtr> &changed_nodes) { | |||||
// if infer again, update output of while into subgraph data node | |||||
auto op_desc = node->GetOpDesc(); | |||||
for (const auto &sub_graph : GetCurNodeSubgraphs(node)) { | |||||
for (const auto &node_sub : sub_graph->GetDirectNode()) { | |||||
if (node_sub->GetType() != DATA) { | |||||
continue; | |||||
} | |||||
auto name = sub_graph->GetName(); | |||||
int ref_i; | |||||
auto data_opdesc = node_sub->GetOpDesc(); | |||||
if (data_opdesc == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", "Invalid data node on the sub graph %s parent node %s, no OpDesc", name.c_str(), | |||||
node->GetName().c_str()); | |||||
GE_LOGE("[Get][OpDesc] Invalid data node on the sub graph %s parent node %s, no OpDesc", name.c_str(), | |||||
node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
if (!AttrUtils::GetInt(data_opdesc, ATTR_NAME_PARENT_NODE_INDEX, ref_i)) { | |||||
REPORT_INNER_ERROR("E19999", "Invalid data node on the sub graph %s parent node %s, no ref-index attribute", | |||||
name.c_str(), node->GetName().c_str()); | |||||
GE_LOGE("[Get][Int] Invalid data node on the sub graph %s parent node %s, no ref-index attribute", name.c_str(), | |||||
node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
if (data_opdesc->HasAttr(ATTR_MBATCH_ORIGIN_INPUT_DIMS)) { | |||||
continue; | |||||
} | |||||
auto input_desc = op_desc->MutableInputDesc(ref_i); | |||||
if (input_desc == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", | |||||
"The ref index(%d) on the data %s on the sub graph %s " | |||||
"parent node %s are incompatible, inputs num %u", | |||||
ref_i, node_sub->GetName().c_str(), name.c_str(), node->GetName().c_str(), | |||||
node->GetAllInDataAnchorsSize()); | |||||
GE_LOGE( | |||||
"[Call][MutableInputDesc] The ref index(%d) on the data %s on the sub graph %s " | |||||
"parent node %s are incompatible, inputs num %u", | |||||
ref_i, node_sub->GetName().c_str(), name.c_str(), node->GetName().c_str(), node->GetAllInDataAnchorsSize()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
GELOGI("Ref index is %d, input_desc dtype is %d, node name is %s", ref_i, input_desc->GetDataType(), | |||||
node->GetName().c_str()); | |||||
// if need infer again, refresh subgraph input with output | |||||
bool is_infer_again = false; | |||||
AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_NEED_INFER_AGAIN, is_infer_again); | |||||
if (is_infer_again) { | |||||
input_desc = op_desc->MutableOutputDesc(ref_i); | |||||
if (input_desc == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", | |||||
"The ref index(%d) on the data %s on the subgraph %s " | |||||
"parent node %s are incompatible, outputs num %u.", | |||||
ref_i, node_sub->GetName().c_str(), name.c_str(), node->GetName().c_str(), | |||||
node->GetAllOutDataAnchorsSize()); | |||||
GELOGE(PARAM_INVALID, | |||||
"[Call][MutableOutputDesc] The ref index(%d) on the data %s on the subgraph %s " | |||||
"parent node %s are incompatible, outputs num %u.", | |||||
ref_i, node_sub->GetName().c_str(), name.c_str(), node->GetName().c_str(), | |||||
node->GetAllOutDataAnchorsSize()); | |||||
} | |||||
GELOGD("Update input desc of data %s on the sub graph %s of node %s,output idx: %d from [%s] to [%s]", | |||||
node_sub->GetName().c_str(), name.c_str(), node->GetName().c_str(), ref_i, | |||||
data_opdesc->GetInputDescPtr(0)->GetShape().ToString().c_str(), | |||||
input_desc->GetShape().ToString().c_str()); | |||||
} | |||||
auto data_input_desc = data_opdesc->MutableInputDesc(0); | |||||
auto ret = data_opdesc->UpdateInputDesc(0, *input_desc); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "Failed to update input desc of data %s on the sub graph %s parent node %s", | |||||
node_sub->GetName().c_str(), name.c_str(), node->GetName().c_str()); | |||||
GE_LOGE("[Update][InputDesc] of data %s on the sub graph %s parent node %s failed", node_sub->GetName().c_str(), | |||||
name.c_str(), node->GetName().c_str()); | |||||
return ret; | |||||
} | |||||
bool input_changed = TensorDescChanged(input_desc, data_input_desc); | |||||
auto data_output_desc = data_opdesc->MutableOutputDesc(0); | |||||
ret = data_opdesc->UpdateOutputDesc(0, *input_desc); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "Failed to update output desc of data %s on the sub graph %s parent node %s", | |||||
node_sub->GetName().c_str(), name.c_str(), node->GetName().c_str()); | |||||
GE_LOGE("[Update][OutputDesc] of data %s on the sub graph %s parent node %s failed", | |||||
node_sub->GetName().c_str(), name.c_str(), node->GetName().c_str()); | |||||
return ret; | |||||
} | |||||
bool output_changed = TensorDescChanged(input_desc, data_output_desc); | |||||
if (input_changed || output_changed) { | |||||
changed_nodes.insert(node_sub); | |||||
} | |||||
} | |||||
} | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
graphStatus InferBasePass::UpdateTensorDescToParentNode(NodePtr &node, std::set<NodePtr> &changed_nodes) { | |||||
std::vector<std::vector<GeTensorDesc>> ref_data_tensors(node->GetAllInDataAnchorsSize()); | |||||
std::vector<std::vector<GeTensorDesc>> ref_out_tensors(node->GetAllOutDataAnchorsSize()); | |||||
for (const auto &sub_graph : GetCurNodeSubgraphs(node)) { | |||||
auto name = sub_graph->GetName(); | |||||
NodePtr netoutput = nullptr; | |||||
auto ret = FindSubgraphDataAndNetoutput(sub_graph, netoutput, node, ref_data_tensors); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
return ret; | |||||
} | |||||
if (netoutput == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", "No NetOutput node on sub graph %s, parent node %s", name.c_str(), | |||||
node->GetName().c_str()); | |||||
GE_LOGE("[Check][Param] No NetOutput node on sub graph %s, parent node %s", name.c_str(), | |||||
node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
auto netoutput_opdesc = netoutput->GetOpDesc(); | |||||
if (netoutput_opdesc == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", "Invalid NetOutput node on sub graph %s, parent node %s, no OpDesc on it", | |||||
name.c_str(), node->GetName().c_str()); | |||||
GE_LOGE("[Get][OpDesc] Invalid NetOutput node on sub graph %s, parent node %s, no OpDesc on it", name.c_str(), | |||||
node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
for (auto &edge_anchor : netoutput->GetAllInDataAnchors()) { | |||||
auto edge_desc = netoutput_opdesc->MutableInputDesc(edge_anchor->GetIdx()); | |||||
if (edge_desc == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", | |||||
"Invalid NetOutput node on sub graph %s, parent node %s, " | |||||
"can not find input tensor %d", | |||||
name.c_str(), node->GetName().c_str(), edge_anchor->GetIdx()); | |||||
GE_LOGE("[Get][Tensor] Invalid NetOutput node on sub graph %s, parent node %s, can not find input tensor %d", | |||||
name.c_str(), node->GetName().c_str(), edge_anchor->GetIdx()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
GELOGI("Netoutput in anchor index is %d, input tensor dim is %zu", edge_anchor->GetIdx(), | |||||
edge_desc->GetShape().GetDimNum()); | |||||
int ref_i; | |||||
if (!AttrUtils::GetInt(edge_desc, ATTR_NAME_PARENT_NODE_INDEX, ref_i)) { | |||||
// if there is no ref index on the TensorDesc, it means the output data will be ignored outer. | |||||
continue; | |||||
} | |||||
GELOGI("Parent node index of edge desc is %d", ref_i); | |||||
if (ref_i < 0 || static_cast<uint32_t>(ref_i) >= node->GetAllOutDataAnchorsSize()) { | |||||
return GRAPH_FAILED; | |||||
} | |||||
ref_out_tensors[ref_i].emplace_back(*edge_desc); | |||||
} | |||||
} | |||||
if (node->GetType() == WHILE) { | |||||
return UpdateParentNodeForWhile(node, ref_data_tensors, ref_out_tensors, changed_nodes); | |||||
} | |||||
return UpdateParentNodeForBranch(node, ref_out_tensors, changed_nodes); | |||||
} | |||||
graphStatus InferBasePass::UpdateParentNodeForWhile(NodePtr &node, | |||||
std::vector<std::vector<GeTensorDesc>> &ref_data_tensors, | |||||
std::vector<std::vector<GeTensorDesc>> &ref_out_tensors, | |||||
std::set<NodePtr> &changed_nodes) { | |||||
GELOGD("Enter update parent node shape for class while op process"); | |||||
if (ref_data_tensors.size() != ref_out_tensors.size()) { | |||||
REPORT_INNER_ERROR("E19999", "op:%s(%s) input number[%zu] and output number[%zu] is not same!", | |||||
node->GetName().c_str(), node->GetType().c_str(), ref_data_tensors.size(), | |||||
ref_out_tensors.size()); | |||||
GELOGE(GRAPH_FAILED, "[Check][Param] while op [%s] input number[%zu] and output number[%zu] is not same!", | |||||
node->GetName().c_str(), ref_data_tensors.size(), ref_out_tensors.size()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
for (size_t i = 0; i < ref_data_tensors.size(); i++) { | |||||
if (ref_out_tensors[i].size() != 1) { | |||||
REPORT_INNER_ERROR("E19999", "while op, every output should only find one output tensor in all graph!"); | |||||
GELOGE(GRAPH_FAILED, "[Check][Param] while op, every output should only find one output tensor in all graph!"); | |||||
return GRAPH_FAILED; | |||||
} | |||||
} | |||||
bool need_infer_again = false; | |||||
// check input and output | |||||
for (size_t i = 0; i < ref_out_tensors.size(); i++) { | |||||
if (ref_out_tensors[i].empty()) { | |||||
continue; | |||||
} | |||||
auto ref_out_tensor = ref_out_tensors[i].at(0); | |||||
auto out_shape = ref_out_tensor.MutableShape(); | |||||
vector<std::pair<int64_t, int64_t>> data_shape_range; | |||||
// ref_i's data and output tensor shape should be same | |||||
for (auto &tensor : ref_data_tensors[i]) { | |||||
if (ref_out_tensor.GetDataType() != tensor.GetDataType()) { | |||||
REPORT_INNER_ERROR("E19999", "node[%s] does not support diff dtype or format among all ref output", | |||||
node->GetName().c_str()); | |||||
GELOGE(GRAPH_FAILED, "[Check][Param] node[%s] does not support diff dtype or format output.", | |||||
node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
auto data_shape = tensor.MutableShape(); | |||||
// input is dynamic, here use dim_num | |||||
if (data_shape.GetDims() != out_shape.GetDims()) { | |||||
GELOGI("After infer, While %s %zu output shape [%s] is not match with input shape [%s].Need infer again.", | |||||
node->GetName().c_str(), i, out_shape.ToString().c_str(), data_shape.ToString().c_str()); | |||||
if (data_shape.GetDimNum() != out_shape.GetDimNum()) { | |||||
ref_out_tensor.SetUnknownDimNumShape(); | |||||
} else { | |||||
for (size_t j = 0; j < data_shape.GetDimNum(); ++j) { | |||||
if (data_shape.GetDim(j) != out_shape.GetDim(j)) { | |||||
if (data_shape.GetDim(j) != UNKNOWN_DIM) { | |||||
// if input data is fix shape, output is different, need_infer_again | |||||
need_infer_again = true; | |||||
} | |||||
data_shape.SetDim(j, UNKNOWN_DIM); | |||||
} | |||||
// set shape rang of while, if dim is unknown ,set shape range as {1,-1} | |||||
if (data_shape.GetDim(j) == UNKNOWN_DIM) { | |||||
data_shape_range.emplace_back(std::make_pair(1, UNKNOWN_DIM)); | |||||
} else { | |||||
data_shape_range.emplace_back(std::make_pair(data_shape.GetDim(j), data_shape.GetDim(j))); | |||||
} | |||||
} | |||||
ref_out_tensor.SetShape(data_shape); | |||||
ref_out_tensor.SetShapeRange(data_shape_range); | |||||
} | |||||
} | |||||
} | |||||
auto output_desc = node->GetOpDesc()->MutableOutputDesc(i); | |||||
(void)node->GetOpDesc()->UpdateOutputDesc(i, ref_out_tensor); | |||||
bool output_changed = TensorDescChanged(ComGraphMakeShared<GeTensorDesc>(ref_out_tensor), output_desc); | |||||
if (output_changed) { | |||||
changed_nodes.insert(node); | |||||
} | |||||
} | |||||
AttrUtils::SetBool(node->GetOpDesc(), ATTR_NAME_NEED_INFER_AGAIN, need_infer_again); | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
graphStatus InferBasePass::UpdateOutputForMultiBatch(NodePtr &node, | |||||
std::vector<std::vector<GeTensorDesc>> &ref_out_tensors, | |||||
std::set<NodePtr> &changed_nodes) { | |||||
// check sub_graph shape. Get max for update. | |||||
for (size_t i = 0; i < ref_out_tensors.size(); ++i) { | |||||
if (ref_out_tensors[i].empty()) { | |||||
continue; | |||||
} | |||||
int64_t max_size = 0; | |||||
size_t max_shape_index = 0; | |||||
auto &ref_out_tensor = ref_out_tensors[i].at(0); | |||||
for (size_t j = 0; j < ref_out_tensors[i].size(); ++j) { | |||||
auto &tensor = ref_out_tensors[i].at(j); | |||||
if (ref_out_tensor.GetDataType() != tensor.GetDataType()) { | |||||
REPORT_INNER_ERROR("E19999", "node[%s] does not support diff dtype among all ref output", | |||||
node->GetName().c_str()); | |||||
GELOGE(GRAPH_FAILED, "[Check][Param] node[%s] does not support diff dtype among all ref output", | |||||
node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
auto shape = tensor.MutableShape(); | |||||
int64_t size = 1; | |||||
for (auto dim : shape.GetDims()) { | |||||
if (dim != 0 && INT64_MAX / dim < size) { | |||||
REPORT_INNER_ERROR("E19999", "The shape:%s size overflow, node:%s", shape.ToString().c_str(), | |||||
node->GetName().c_str()); | |||||
GELOGE(PARAM_INVALID, "[Check][Overflow] The shape size overflow"); | |||||
return PARAM_INVALID; | |||||
} | |||||
size *= dim; | |||||
} | |||||
if (size > max_size) { | |||||
max_size = size; | |||||
max_shape_index = j; | |||||
} | |||||
} | |||||
auto output_desc = node->GetOpDesc()->MutableOutputDesc(i); | |||||
(void)node->GetOpDesc()->UpdateOutputDesc(i, ref_out_tensors[i].at(max_shape_index)); | |||||
bool output_changed = | |||||
TensorDescChanged(ComGraphMakeShared<GeTensorDesc>(ref_out_tensors[i].at(max_shape_index)), output_desc); | |||||
if (output_changed) { | |||||
changed_nodes.insert(node); | |||||
} | |||||
} | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
graphStatus InferBasePass::UpdateParentNodeForBranch(NodePtr &node, | |||||
std::vector<std::vector<GeTensorDesc>> &ref_out_tensors, | |||||
std::set<NodePtr> &changed_nodes) { | |||||
GELOGD("Enter update parent node shape for class branch op process"); | |||||
if (node->GetOpDesc()->HasAttr(ATTR_NAME_BATCH_NUM)) { | |||||
return UpdateOutputForMultiBatch(node, ref_out_tensors, changed_nodes); | |||||
} | |||||
// check sub_graph shape.If not same ,do unknown shape process | |||||
for (size_t i = 0; i < ref_out_tensors.size(); i++) { | |||||
if (ref_out_tensors[i].empty()) { | |||||
continue; | |||||
} | |||||
auto ref_out_tensor = ref_out_tensors[i].at(0); | |||||
ge::GeShape &ref_out_tensor_shape = ref_out_tensor.MutableShape(); | |||||
for (auto &tensor : ref_out_tensors[i]) { | |||||
if (ref_out_tensor.GetDataType() != tensor.GetDataType()) { | |||||
REPORT_INNER_ERROR("E19999", "node[%s] does not support diff dtype among all ref output, shape:%s", | |||||
node->GetName().c_str(), ref_out_tensor_shape.ToString().c_str()); | |||||
GELOGE(GRAPH_FAILED, "[Check][Param] node[%s] does not support diff dtype output", node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
auto shape = tensor.MutableShape(); | |||||
if (shape.GetDims().size() != ref_out_tensor_shape.GetDims().size()) { | |||||
GELOGD("node is %s, i : %zu, shape size: %lu, ref_out_tensor_shape size: %lu", node->GetName().c_str(), i, | |||||
shape.GetShapeSize(), ref_out_tensor_shape.GetShapeSize()); | |||||
ref_out_tensor_shape = GeShape(UNKNOWN_RANK); | |||||
break; | |||||
} | |||||
for (size_t j = 0; j < ref_out_tensor_shape.GetDims().size(); j++) { | |||||
if (ref_out_tensor_shape.GetDim(j) == shape.GetDim(j)) { | |||||
continue; | |||||
} | |||||
GELOGD("node is %s, i : %zu, j: %zu ,shape size: %lu, ref_out_tensor_shape size: %lu", node->GetName().c_str(), | |||||
i, j, shape.GetShapeSize(), ref_out_tensor_shape.GetShapeSize()); | |||||
(void)ref_out_tensor_shape.SetDim(j, UNKNOWN_DIM); | |||||
} | |||||
} | |||||
auto output_desc = node->GetOpDesc()->MutableOutputDesc(i); | |||||
(void)node->GetOpDesc()->UpdateOutputDesc(i, ref_out_tensor); | |||||
bool output_changed = | |||||
TensorDescChanged(ComGraphMakeShared<GeTensorDesc>(ref_out_tensor), output_desc); | |||||
if (output_changed) { | |||||
changed_nodes.insert(node); | |||||
} | |||||
} | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
void InferBasePass::PrintInOutTensorShape(const NodePtr &node, const std::string &phase) { | |||||
if (!IsLogEnable(GE, DLOG_DEBUG)) { | |||||
return; | |||||
} | |||||
if (node == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", "param node is nullprt, check invalid"); | |||||
GELOGE(GRAPH_FAILED, "[Check][Param] node is null"); | |||||
return; | |||||
} | |||||
ge::OpDescPtr op_desc = node->GetOpDesc(); | |||||
GE_IF_BOOL_EXEC(op_desc == nullptr, REPORT_INNER_ERROR("E19999", "node has no opdesc, check invalid"); | |||||
GELOGE(GRAPH_FAILED, "[Get][OpDesc] op_desc is null."); return ); | |||||
std::stringstream ss; | |||||
ss << "{"; | |||||
int32_t in_idx = 0; | |||||
int32_t out_idx = 0; | |||||
for (const auto &input_desc : op_desc->GetAllInputsDescPtr()) { | |||||
if (input_desc == nullptr) { | |||||
in_idx++; | |||||
continue; | |||||
} | |||||
if (in_idx > 0) { | |||||
ss << " "; | |||||
} | |||||
ss << "input_" << in_idx << " " | |||||
<< "tensor: ["; | |||||
ss << "(shape:[" << input_desc->MutableShape().ToString() << "]),"; | |||||
ss << "(format:" << TypeUtils::FormatToSerialString(input_desc->GetFormat()) << "),"; | |||||
ss << "(dtype:" << TypeUtils::DataTypeToSerialString(input_desc->GetDataType()) << "),"; | |||||
ss << "(origin_shape:" << input_desc->GetOriginShape().ToString() << "),"; | |||||
ss << "(origin_format:" << TypeUtils::FormatToSerialString(input_desc->GetOriginFormat()) << "),"; | |||||
ss << "(origin_dtype:" << TypeUtils::DataTypeToSerialString(input_desc->GetOriginDataType()) << "),"; | |||||
string range_str; | |||||
SerialShapeRange(input_desc, range_str); | |||||
ss << "(shape_range:" << range_str << "),"; | |||||
string value_range_str; | |||||
SerialValueRange(input_desc, value_range_str); | |||||
ss << "(value_range:" << value_range_str << ")]"; | |||||
in_idx++; | |||||
} | |||||
for (const auto &output_desc : op_desc->GetAllOutputsDescPtr()) { | |||||
if (output_desc == nullptr) { | |||||
out_idx++; | |||||
continue; | |||||
} | |||||
ss << " "; | |||||
ss << "output_" << out_idx << " " | |||||
<< "tensor: ["; | |||||
ss << "(shape:[" << output_desc->MutableShape().ToString() << "]),"; | |||||
ss << "(format:" << TypeUtils::FormatToSerialString(output_desc->GetFormat()) << "),"; | |||||
ss << "(dtype:" << TypeUtils::DataTypeToSerialString(output_desc->GetDataType()) << "),"; | |||||
ss << "(origin_shape:" << output_desc->GetOriginShape().ToString() << "),"; | |||||
ss << "(origin_format:" << TypeUtils::FormatToSerialString(output_desc->GetOriginFormat()) << "),"; | |||||
ss << "(origin_dtype:" << TypeUtils::DataTypeToSerialString(output_desc->GetOriginDataType()) << "),"; | |||||
string range_str; | |||||
SerialShapeRange(output_desc, range_str); | |||||
ss << "(shape_range:" << range_str << "),"; | |||||
string value_range_str; | |||||
SerialValueRange(output_desc, value_range_str); | |||||
ss << "(value_range:" << value_range_str << ")]"; | |||||
out_idx++; | |||||
} | |||||
ss << "}"; | |||||
GELOGD("Shape dump [%s], Node name: [%s]. %s", phase.c_str(), node->GetName().c_str(), ss.str().c_str()); | |||||
} | |||||
} // namespace ge |
@@ -0,0 +1,53 @@ | |||||
/** | |||||
* Copyright 2021 Huawei Technologies Co., Ltd | |||||
* | |||||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||||
* you may not use this file except in compliance with the License. | |||||
* You may obtain a copy of the License at | |||||
* | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, software | |||||
* distributed under the License is distributed on an "AS IS" BASIS, | |||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
* See the License for the specific language governing permissions and | |||||
* limitations under the License. | |||||
*/ | |||||
#ifndef GE_GRAPH_PASSES_INFER_BASE_PASS_H_ | |||||
#define GE_GRAPH_PASSES_INFER_BASE_PASS_H_ | |||||
#include "graph/passes/base_pass.h" | |||||
namespace ge { | |||||
class InferBasePass : public BaseNodePass { | |||||
public: | |||||
Status Run(NodePtr &node) override; | |||||
graphStatus InferAndUpdate(NodePtr &node, bool before_subgraph, std::set<NodePtr> &changed_nodes); | |||||
void PrintInOutTensorShape(const NodePtr &node, const std::string &phase); | |||||
protected: | |||||
virtual graphStatus Infer(NodePtr &node) = 0; | |||||
virtual bool TensorDescChanged(const GeTensorDescPtr &src, const GeTensorDescPtr &dst) = 0; | |||||
virtual graphStatus UpdateInputDescAttr(const GeTensorDescPtr &src, GeTensorDescPtr &dst, bool &changed); | |||||
virtual bool NeedInfer(const NodePtr &node); | |||||
virtual void AnalyzeFailedInfo(const NodePtr &node); | |||||
virtual Status DoRepassForLoopNode(NodePtr &node); // only for infershape, will be deleted | |||||
virtual graphStatus UpdatePeerInputs(NodePtr &node); // only for infershape, will be deleted | |||||
private: | |||||
void AddChangedNodesImmediateRepass(std::set<NodePtr> &changed_nodes); | |||||
graphStatus UpdateCurOpInputDesc(const NodePtr &node_ptr); | |||||
bool ContainsSubgraph(const NodePtr &node); | |||||
std::vector<ComputeGraphPtr> GetCurNodeSubgraphs(const NodePtr &node); | |||||
graphStatus UpdateTensorDescToSubgraphData(NodePtr &node, std::set<NodePtr> &changed_nodes); | |||||
graphStatus UpdateTensorDescToParentNode(NodePtr &node, std::set<NodePtr> &changed_nodes); | |||||
graphStatus UpdateParentNodeForWhile(NodePtr &node, std::vector<std::vector<GeTensorDesc>> &ref_data_tensors, | |||||
std::vector<std::vector<GeTensorDesc>> &ref_out_tensors, | |||||
std::set<NodePtr> &changed_nodes); | |||||
graphStatus UpdateParentNodeForBranch(NodePtr &node, std::vector<std::vector<GeTensorDesc>> &ref_out_tensors, | |||||
std::set<NodePtr> &changed_nodes); | |||||
graphStatus UpdateOutputForMultiBatch(NodePtr &node, std::vector<std::vector<GeTensorDesc>> &ref_out_tensors, | |||||
std::set<NodePtr> &changed_nodes); | |||||
}; | |||||
} // namespace ge | |||||
#endif // GE_GRAPH_PASSES_INFER_BASE_PASS_H_ |
@@ -0,0 +1,388 @@ | |||||
/** | |||||
* Copyright 2020 Huawei Technologies Co., Ltd | |||||
* | |||||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||||
* you may not use this file except in compliance with the License. | |||||
* You may obtain a copy of the License at | |||||
* | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, software | |||||
* distributed under the License is distributed on an "AS IS" BASIS, | |||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
* See the License for the specific language governing permissions and | |||||
* limitations under the License. | |||||
*/ | |||||
#include "graph/passes/infer_value_range_pass.h" | |||||
#include "common/util/error_manager/error_manager.h" | |||||
#include "framework/common/debug/ge_log.h" | |||||
#include "graph/debug/ge_attr_define.h" | |||||
#include "graph/operator_factory_impl.h" | |||||
#include "graph/passes/folding_pass.h" | |||||
#include "common/ge/ge_util.h" | |||||
#include "init/gelib.h" | |||||
using std::unique_ptr; | |||||
namespace ge { | |||||
namespace { | |||||
#define GET_DATA_BY_DTYPE(DTYPE, TYPE) \ | |||||
case (DTYPE): \ | |||||
ConstructValueRange<TYPE>(lower_tensor, higher_tensor, output_tensor_value_range); \ | |||||
break; | |||||
Status RunCpuKernelForValueRange(NodePtr &node, const vector<ConstGeTensorPtr> &inputs, | |||||
std::vector<GeTensorPtr> &outputs) { | |||||
// should use RunOpKernelWithCheck, RunOpKernel for ut test | |||||
auto ret = FoldingPass::RunOpKernel(node, inputs, outputs); | |||||
if (ret != SUCCESS) { | |||||
auto op_kernel = folding_pass::GetKernelByType(node); | |||||
if (op_kernel == nullptr) { | |||||
GELOGE(PARAM_INVALID, "Calculate value range failed, no op kernel for node %s type %s", node->GetName().c_str(), | |||||
node->GetType().c_str()); | |||||
return PARAM_INVALID; | |||||
} | |||||
ret = op_kernel->Compute(node->GetOpDesc(), inputs, outputs); | |||||
if (ret != SUCCESS) { | |||||
REPORT_INNER_ERROR("E19999", "Calculate for node %s(%s) failed", node->GetName().c_str(), | |||||
node->GetType().c_str()); | |||||
GELOGE(INTERNAL_ERROR, "Calculate for node %s failed in constant folding", node->GetName().c_str()); | |||||
return ret; | |||||
} | |||||
} | |||||
GELOGI("Node %s type %s, run cpu kernel success.", node->GetName().c_str(), node->GetType().c_str()); | |||||
return SUCCESS; | |||||
} | |||||
} // namespace | |||||
graphStatus InferValueRangePass::Infer(NodePtr &node) { | |||||
PrintInOutTensorShape(node, "before_infer_value_range"); | |||||
auto infer_value_range_param = OperatorFactoryImpl::GetInferValueRangePara(node->GetType()); | |||||
// Use registered func to calculate value range | |||||
if (!infer_value_range_param.use_cpu_kernel) { | |||||
if (infer_value_range_param.infer_value_func == nullptr) { | |||||
GELOGE(GRAPH_PARAM_INVALID, "The registered func to infer value range is nullptr."); | |||||
return GRAPH_PARAM_INVALID; | |||||
} | |||||
Operator op = OpDescUtils::CreateOperatorFromNode(node); | |||||
auto ret = node->GetOpDesc()->CallInferValueRangeFunc(op); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "Node %s call infer value range function failed.", node->GetName().c_str()); | |||||
GELOGE(GRAPH_FAILED, "[Call][InferFunction] failed, node: %s.", node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
// Use CPU kernel func to calculate value range | |||||
return ConstructInputAndInferValueRange(node); | |||||
} | |||||
bool InferValueRangePass::NeedInfer(const NodePtr &node) { | |||||
auto infer_value_range_param = OperatorFactoryImpl::GetInferValueRangePara(node->GetType()); | |||||
if (!infer_value_range_param.is_initialized) { | |||||
GELOGD("Node %s does not register func to infer value range, skip infer_value_range_pass.", | |||||
node->GetName().c_str()); | |||||
return false; | |||||
} | |||||
if (infer_value_range_param.when_call == INPUT_IS_DYNAMIC) { | |||||
// Only do infer for node that all inputs are dynamic, such as shape | |||||
if (InputIsDynamic(node)) { | |||||
return true; | |||||
} | |||||
GELOGD("Node %s register func to infer value range and when_call is INPUT_IS_DYNAMIC, but check input failed.", | |||||
node->GetName().c_str()); | |||||
} else if (infer_value_range_param.when_call == INPUT_HAS_VALUE_RANGE) { | |||||
// Only do infer for node that all inputs have value_range or node type of inputs is constant/const | |||||
if (InputIsConstOrHasValueRange(node)) { | |||||
return true; | |||||
} | |||||
GELOGD("Node %s register func to infer value range and when_call is INPUT_HAS_VALUE_RANGE, but check input failed.", | |||||
node->GetName().c_str()); | |||||
} | |||||
GELOGD("Node %s does not need to infer value range, skip infer_value_range_pass.", node->GetName().c_str()); | |||||
return false; | |||||
} | |||||
bool InferValueRangePass::TensorDescChanged(const GeTensorDescPtr &src, const GeTensorDescPtr &dst) { | |||||
bool changed = false; | |||||
std::vector<std::pair<int64_t, int64_t>> src_value_range; | |||||
std::vector<std::pair<int64_t, int64_t>> dst_value_range; | |||||
(void)src->GetValueRange(src_value_range); | |||||
(void)dst->GetValueRange(dst_value_range); | |||||
if (src_value_range != dst_value_range) { | |||||
changed = true; | |||||
} | |||||
return changed; | |||||
} | |||||
graphStatus InferValueRangePass::UpdateInputDescAttr(const GeTensorDescPtr &src, GeTensorDescPtr &dst, bool &changed) { | |||||
changed = false; | |||||
std::vector<std::pair<int64_t, int64_t>> src_value_range; | |||||
std::vector<std::pair<int64_t, int64_t>> dst_value_range; | |||||
(void)src->GetValueRange(src_value_range); | |||||
(void)dst->GetValueRange(dst_value_range); | |||||
if (src_value_range != dst_value_range) { | |||||
changed = true; | |||||
} | |||||
dst->SetValueRange(src_value_range); | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
void InferValueRangePass::AnalyzeFailedInfo(const NodePtr &node) { | |||||
REPORT_CALL_ERROR("E19999", "Infer value range for node:%s(%s) failed.", node->GetName().c_str(), | |||||
node->GetType().c_str()); | |||||
GELOGE(GE_GRAPH_INFERSHAPE_FAILED, "infer value range failed. node: %s", node->GetName().c_str()); | |||||
} | |||||
bool InferValueRangePass::InputIsDynamic(const NodePtr &node) { | |||||
bool input_is_dynamic = false; | |||||
auto cur_op_desc = node->GetOpDesc(); | |||||
for (const auto &input_desc : cur_op_desc->GetAllInputsDescPtr()) { | |||||
auto dims = input_desc->GetShape().GetDims(); | |||||
for (auto dim : dims) { | |||||
if (dim == UNKNOWN_DIM || dim == UNKNOWN_DIM_NUM) { | |||||
input_is_dynamic = true; | |||||
break; | |||||
} | |||||
} | |||||
} | |||||
return input_is_dynamic; | |||||
} | |||||
bool InferValueRangePass::InputIsConstOrHasValueRange(const NodePtr &node) { | |||||
bool input_is_const_or_has_value_range = true; | |||||
auto cur_op_desc = node->GetOpDesc(); | |||||
auto in_data_anchors = node->GetAllInDataAnchors(); | |||||
for (auto i = 0; i < in_data_anchors.size(); ++i) { | |||||
auto peer_out_anchor = in_data_anchors.at(i)->GetPeerOutAnchor(); | |||||
if (peer_out_anchor == nullptr) { | |||||
continue; | |||||
} | |||||
auto peer_node = peer_out_anchor->GetOwnerNode(); | |||||
if (peer_node == nullptr || peer_node->GetOpDesc() == nullptr) { | |||||
continue; | |||||
} | |||||
if ((peer_node->GetType() == CONSTANT) || (peer_node->GetType() == CONSTANTOP)) { | |||||
continue; | |||||
} | |||||
const auto &input_desc = cur_op_desc->GetInputDesc(i); | |||||
std::vector<std::pair<int64_t, int64_t>> value_range; | |||||
(void)input_desc.GetValueRange(value_range); | |||||
if (value_range.empty()) { | |||||
int peer_out_idx = peer_out_anchor->GetIdx(); | |||||
auto peer_out_desc = peer_node->GetOpDesc()->MutableOutputDesc(static_cast<uint32_t>(peer_out_idx)); | |||||
(void)peer_out_desc->GetValueRange(value_range); | |||||
if (value_range.empty()) { | |||||
input_is_const_or_has_value_range = false; | |||||
break; | |||||
} | |||||
} | |||||
} | |||||
return input_is_const_or_has_value_range; | |||||
} | |||||
template <typename T> | |||||
graphStatus InferValueRangePass::ConstructData(const GeTensorDesc &tensor_desc, bool use_floor_value, GeTensorPtr &output_ptr) { | |||||
std::vector<std::pair<int64_t, int64_t>> value_range; | |||||
(void)tensor_desc.GetValueRange(value_range); | |||||
if (value_range.size() != tensor_desc.GetShape().GetShapeSize()) { | |||||
REPORT_INNER_ERROR("E19999", "Value range of input %s is invalid.", tensor_desc.GetName().c_str()); | |||||
GELOGE(GRAPH_PARAM_INVALID, "Value range of input %s is invalid.", tensor_desc.GetName().c_str()); | |||||
return GRAPH_PARAM_INVALID; | |||||
} | |||||
auto value_range_data_num = value_range.size(); | |||||
unique_ptr<T[]> buf(new (std::nothrow) T[value_range_data_num]()); | |||||
if (buf == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", "New buf failed"); | |||||
GELOGE(MEMALLOC_FAILED, "new buf failed"); | |||||
return GRAPH_FAILED; | |||||
} | |||||
for (auto j = 0; j < value_range_data_num; ++j) { | |||||
auto value_range_j = use_floor_value ? value_range[j].first : value_range[j].second; | |||||
buf[j] = static_cast<T>(value_range_j); | |||||
} | |||||
if (output_ptr->SetData(reinterpret_cast<uint8_t *>(buf.get()), value_range_data_num * sizeof(T)) != GRAPH_SUCCESS) { | |||||
GELOGE(GRAPH_FAILED, "set data failed"); | |||||
return GRAPH_FAILED; | |||||
} | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
graphStatus InferValueRangePass::ConstructDataByType(const GeTensorDesc &tensor_desc, bool use_floor_value, GeTensorPtr &output_ptr) { | |||||
graphStatus ret = GRAPH_SUCCESS; | |||||
auto data_type = tensor_desc.GetDataType(); | |||||
output_ptr->MutableTensorDesc().SetDataType(data_type); | |||||
switch (data_type) { | |||||
case DT_FLOAT: | |||||
ret = ConstructData<float>(tensor_desc, use_floor_value, output_ptr); | |||||
break; | |||||
case DT_DOUBLE: | |||||
ret = ConstructData<double>(tensor_desc, use_floor_value, output_ptr); | |||||
break; | |||||
case DT_UINT8: | |||||
ret = ConstructData<uint8_t>(tensor_desc, use_floor_value, output_ptr); | |||||
break; | |||||
case DT_INT8: | |||||
ret = ConstructData<int8_t>(tensor_desc, use_floor_value, output_ptr); | |||||
break; | |||||
case DT_UINT16: | |||||
ret = ConstructData<uint16_t>(tensor_desc, use_floor_value, output_ptr); | |||||
break; | |||||
case DT_INT16: | |||||
ret = ConstructData<int16_t>(tensor_desc, use_floor_value, output_ptr); | |||||
break; | |||||
case DT_INT32: | |||||
ret = ConstructData<int32_t>(tensor_desc, use_floor_value, output_ptr); | |||||
break; | |||||
case DT_INT64: | |||||
ret = ConstructData<int64_t>(tensor_desc, use_floor_value, output_ptr); | |||||
break; | |||||
default: | |||||
GELOGW("Data type:%s is not supported.", TypeUtils::DataTypeToSerialString(data_type).c_str()); | |||||
ret = GRAPH_FAILED; | |||||
} | |||||
return ret; | |||||
} | |||||
vector<ConstGeTensorPtr> InferValueRangePass::ConstructInputTensors(const NodePtr &node, bool use_floor_value) { | |||||
vector<ConstGeTensorPtr> input_tensors; | |||||
auto cur_op_desc = node->GetOpDesc(); | |||||
auto in_data_anchors = node->GetAllInDataAnchors(); | |||||
for (auto i = 0; i < in_data_anchors.size(); ++i) { | |||||
auto peer_out_anchor = in_data_anchors.at(i)->GetPeerOutAnchor(); | |||||
if (peer_out_anchor == nullptr) { | |||||
continue; | |||||
} | |||||
auto peer_node = peer_out_anchor->GetOwnerNode(); | |||||
if (peer_node == nullptr) { | |||||
continue; | |||||
} | |||||
// construct input tensor by constant node | |||||
if ((peer_node->GetType() == CONSTANT) || (peer_node->GetType() == CONSTANTOP)) { | |||||
vector<GeTensorPtr> const_weight = OpDescUtils::MutableWeights(peer_node); | |||||
if (const_weight.empty()) { | |||||
REPORT_INNER_ERROR("E19999", "MutableWeights failed, weight is empty, node: %s(%s)", | |||||
peer_node->GetName().c_str(), peer_node->GetType().c_str()); | |||||
GELOGE(INTERNAL_ERROR, "MutableWeights failed, weight is empty, node: %s(%s)", peer_node->GetName().c_str(), | |||||
peer_node->GetType().c_str()); | |||||
return vector<ConstGeTensorPtr>(); | |||||
} | |||||
// const/constant op has only one weight | |||||
if (const_weight.at(0) == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", "MutableWeights failed, weight of constant is null, node: %s(%s)", | |||||
peer_node->GetName().c_str(), peer_node->GetType().c_str()); | |||||
GELOGE(INTERNAL_ERROR, "MutableWeights failed, weight of constant is null, node name: %s(%s)", | |||||
peer_node->GetName().c_str(), peer_node->GetType().c_str()); | |||||
return vector<ConstGeTensorPtr>(); | |||||
} | |||||
input_tensors.push_back(const_weight.at(0)); | |||||
continue; | |||||
} | |||||
// construct input tensor by boundary of value range | |||||
const auto &input_tensor_desc = cur_op_desc->GetInputDesc(i); | |||||
GeTensorPtr tmp_tensor_ptr = MakeShared<GeTensor>(input_tensor_desc); | |||||
if (tmp_tensor_ptr == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", "Make shared failed"); | |||||
GELOGE(MEMALLOC_FAILED, "Make shared failed"); | |||||
return vector<ConstGeTensorPtr>(); | |||||
} | |||||
auto ret = ConstructDataByType(input_tensor_desc, use_floor_value, tmp_tensor_ptr); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
REPORT_INNER_ERROR("E19999", "Input %s construct input tensor by boundary of value range failed.", | |||||
input_tensor_desc.GetName().c_str()); | |||||
GELOGE(GRAPH_PARAM_INVALID, "Input %s construct input tensor by boundary of value range failed.", | |||||
input_tensor_desc.GetName().c_str()); | |||||
return vector<ConstGeTensorPtr>(); | |||||
} | |||||
input_tensors.push_back(tmp_tensor_ptr); | |||||
} | |||||
return input_tensors; | |||||
} | |||||
graphStatus InferValueRangePass::ConstructInputAndInferValueRange(NodePtr &node) { | |||||
auto inputs = ConstructInputTensors(node, true); | |||||
if (inputs.empty()) { | |||||
return GRAPH_PARAM_INVALID; | |||||
} | |||||
vector<GeTensorPtr> outputs_lower; | |||||
auto ret = RunCpuKernelForValueRange(node, inputs, outputs_lower); | |||||
if (ret != SUCCESS) { | |||||
REPORT_INNER_ERROR("E19999", "Calculate for node %s(%s) failed", node->GetName().c_str(), node->GetType().c_str()); | |||||
GELOGE(GRAPH_FAILED, "Calculate for node %s failed in constant folding", node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
inputs = ConstructInputTensors(node, false); | |||||
if (inputs.empty()) { | |||||
return GRAPH_PARAM_INVALID; | |||||
} | |||||
vector<GeTensorPtr> outputs_higher; | |||||
ret = RunCpuKernelForValueRange(node, inputs, outputs_higher); | |||||
if (ret != SUCCESS) { | |||||
REPORT_INNER_ERROR("E19999", "Calculate for node %s(%s) failed", node->GetName().c_str(), node->GetType().c_str()); | |||||
GELOGE(GRAPH_FAILED, "Calculate for node %s failed in constant folding", node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
// construct value range from output tensor | |||||
OpDescPtr node_desc = node->GetOpDesc(); | |||||
std::vector<std::pair<int64_t, int64_t>> output_tensor_value_range; | |||||
size_t node_output_desc_size = node_desc->GetOutputsSize(); | |||||
for (size_t i = 0; i < node_output_desc_size; ++i) { | |||||
output_tensor_value_range.clear(); | |||||
auto lower_tensor = outputs_lower[i]; | |||||
auto lower_tensor_shape_size = lower_tensor->GetTensorDesc().GetShape().GetShapeSize(); | |||||
auto higher_tensor = outputs_higher[i]; | |||||
auto higher_tensor_shape_size = higher_tensor->GetTensorDesc().GetShape().GetShapeSize(); | |||||
auto output_tensor_desc = node_desc->MutableOutputDesc(i); | |||||
auto output_tensor_shape_size = output_tensor_desc->GetShape().GetShapeSize(); | |||||
if (output_tensor_shape_size != lower_tensor_shape_size || output_tensor_shape_size != higher_tensor_shape_size) { | |||||
GELOGE(GRAPH_PARAM_INVALID, "Value range of output %s is invalid.", output_tensor_desc->GetName().c_str()); | |||||
} | |||||
auto data_type = output_tensor_desc->GetDataType(); | |||||
switch (data_type) { | |||||
GET_DATA_BY_DTYPE(DT_INT8, int8_t) | |||||
GET_DATA_BY_DTYPE(DT_INT16, int16_t) | |||||
GET_DATA_BY_DTYPE(DT_INT32, int32_t) | |||||
GET_DATA_BY_DTYPE(DT_INT64, int64_t) | |||||
GET_DATA_BY_DTYPE(DT_UINT8, uint8_t) | |||||
GET_DATA_BY_DTYPE(DT_UINT16, uint16_t) | |||||
GET_DATA_BY_DTYPE(DT_UINT32, uint32_t) | |||||
GET_DATA_BY_DTYPE(DT_UINT64, uint64_t) | |||||
GET_DATA_BY_DTYPE(DT_FLOAT, float) | |||||
GET_DATA_BY_DTYPE(DT_DOUBLE, double) | |||||
default: | |||||
GELOGW("Data type:%s is not supported.", TypeUtils::DataTypeToSerialString(data_type).c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
output_tensor_desc->SetValueRange(output_tensor_value_range); | |||||
} | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
template <typename T> | |||||
void InferValueRangePass::ConstructValueRange(const GeTensorPtr &left_tensor, const GeTensorPtr &right_tensor, | |||||
std::vector<std::pair<int64_t, int64_t>> &value_range) { | |||||
auto x = reinterpret_cast<const T *>(left_tensor->GetData().GetData()); | |||||
auto y = reinterpret_cast<const T *>(right_tensor->GetData().GetData()); | |||||
for (auto j = 0; j < left_tensor->GetTensorDesc().GetShape().GetShapeSize(); ++j) { | |||||
auto left = static_cast<int64_t>(*(x + j)); | |||||
auto right = static_cast<int64_t>(*(y + j)); | |||||
value_range.emplace_back(std::make_pair(left, right)); | |||||
} | |||||
} | |||||
} // namespace ge |
@@ -0,0 +1,44 @@ | |||||
/** | |||||
* Copyright 2021 Huawei Technologies Co., Ltd | |||||
* | |||||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||||
* you may not use this file except in compliance with the License. | |||||
* You may obtain a copy of the License at | |||||
* | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, software | |||||
* distributed under the License is distributed on an "AS IS" BASIS, | |||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
* See the License for the specific language governing permissions and | |||||
* limitations under the License. | |||||
*/ | |||||
#ifndef GE_GRAPH_PASSES_INFER_VALUE_RANGE_PASS_H_ | |||||
#define GE_GRAPH_PASSES_INFER_VALUE_RANGE_PASS_H_ | |||||
#include "graph/passes/infer_base_pass.h" | |||||
namespace ge { | |||||
class InferValueRangePass : public InferBasePass { | |||||
public: | |||||
graphStatus Infer(NodePtr &node) override; | |||||
bool TensorDescChanged(const GeTensorDescPtr &src, const GeTensorDescPtr &dst) override; | |||||
graphStatus UpdateInputDescAttr(const GeTensorDescPtr &src, GeTensorDescPtr &dst, bool &changed) override; | |||||
bool NeedInfer(const NodePtr &node) override; | |||||
void AnalyzeFailedInfo(const NodePtr &node) override; | |||||
private: | |||||
bool InputIsDynamic(const NodePtr &node); | |||||
bool InputIsConstOrHasValueRange(const NodePtr &node); | |||||
template <typename T> | |||||
graphStatus ConstructData(const GeTensorDesc &tensor_desc, bool use_floor_value, GeTensorPtr &output_ptr); | |||||
graphStatus ConstructDataByType(const GeTensorDesc &tensor_desc, bool use_floor_value, GeTensorPtr &output_ptr); | |||||
vector<ConstGeTensorPtr> ConstructInputTensors(const NodePtr &node, bool use_floor_value); | |||||
template <typename T> | |||||
void ConstructValueRange(const GeTensorPtr &left_tensor, const GeTensorPtr &right_tensor, | |||||
std::vector<std::pair<int64_t, int64_t>> &value_range); | |||||
graphStatus ConstructInputAndInferValueRange(NodePtr &node); | |||||
}; | |||||
} // namespace ge | |||||
#endif // GE_GRAPH_PASSES_INFER_VALUE_RANGE_PASS_H_ |
@@ -19,15 +19,84 @@ | |||||
#include "framework/common/debug/ge_log.h" | #include "framework/common/debug/ge_log.h" | ||||
#include "analyzer/analyzer.h" | #include "analyzer/analyzer.h" | ||||
#include "framework/common/util.h" | #include "framework/common/util.h" | ||||
#include "graph/shape_refiner.h" | |||||
#include "graph/utils/graph_utils.h" | |||||
#include "graph/utils/node_utils.h" | |||||
#include "graph/common/omg_util.h" | #include "graph/common/omg_util.h" | ||||
#include "graph/debug/ge_attr_define.h" | #include "graph/debug/ge_attr_define.h" | ||||
#include "utils/tensor_utils.h" | |||||
#include "utils/type_utils.h" | |||||
#include "graph/debug/ge_util.h" | |||||
#include "graph/operator_factory_impl.h" | |||||
#include "graph/utils/graph_utils.h" | |||||
#include "graph/utils/node_utils.h" | |||||
#include "graph/utils/tensor_utils.h" | |||||
#include "graph/utils/type_utils.h" | |||||
namespace ge { | namespace ge { | ||||
namespace { | |||||
const char *const kPreOpInputShapeRange = "_pre_op_in_range"; | |||||
thread_local std::unordered_map<NodePtr, InferenceContextPtr> context_map; | |||||
} | |||||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY void InferShapePass::ClearContextMap() { context_map.clear(); } | |||||
InferenceContextPtr CreateInferenceContextPtr(const std::unordered_map<NodePtr, InferenceContextPtr> &context_map, | |||||
const NodePtr &node) { | |||||
if (node == nullptr) { | |||||
GELOGE(GRAPH_FAILED, "node is null"); | |||||
return nullptr; | |||||
} | |||||
InferenceContextPtr inference_context = std::shared_ptr<InferenceContext>(InferenceContext::Create()); | |||||
if (inference_context == nullptr) { | |||||
REPORT_CALL_ERROR("E19999", "Failed to alloc InferenceContext, node:%s", node->GetName().c_str()); | |||||
GELOGE(GRAPH_FAILED, "[Alloc][InferenceContext] failed."); | |||||
return nullptr; | |||||
} | |||||
auto all_in_data_anchors = node->GetAllInDataAnchors(); | |||||
std::vector<std::vector<ShapeAndType>> input_shapes_and_types(all_in_data_anchors.size()); | |||||
std::vector<std::string> marks; | |||||
bool has_input_shapes_and_types = false; | |||||
for (const auto &in_anchor : all_in_data_anchors) { | |||||
const auto &out_anchor = in_anchor->GetPeerOutAnchor(); | |||||
if (out_anchor == nullptr) { | |||||
continue; | |||||
} | |||||
auto input_node = out_anchor->GetOwnerNode(); | |||||
if (input_node == nullptr) { | |||||
continue; | |||||
} | |||||
auto iter = context_map.find(input_node); | |||||
if (iter != context_map.end()) { | |||||
const auto &src_context = iter->second; | |||||
GE_IF_BOOL_EXEC(src_context == nullptr, REPORT_INNER_ERROR("E19999", "src_context is null."); | |||||
GELOGE(GRAPH_FAILED, "[Check][Param] src_context is null."); return nullptr); | |||||
GELOGD("node:%s get %ld marks from node:%s", node->GetName().c_str(), src_context->GetMarks().size(), | |||||
input_node->GetName().c_str()); | |||||
for (auto mark : src_context->GetMarks()) { | |||||
marks.push_back(mark); | |||||
} | |||||
auto output_idx = out_anchor->GetIdx(); | |||||
auto input_idx = in_anchor->GetIdx(); | |||||
auto output_shape_and_type = src_context->GetOutputHandleShapesAndTypes(); | |||||
if (output_idx < static_cast<int>(output_shape_and_type.size())) { | |||||
GELOGI("Add shape and type from %s:%d to %s:%d", input_node->GetName().c_str(), output_idx, | |||||
node->GetName().c_str(), input_idx); | |||||
input_shapes_and_types[input_idx] = output_shape_and_type[output_idx]; | |||||
has_input_shapes_and_types = true; | |||||
} else { | |||||
GELOGI("[%s] Output out of range. index = %d, size = %zu", node->GetName().c_str(), output_idx, | |||||
output_shape_and_type.size()); | |||||
} | |||||
} | |||||
} | |||||
if (has_input_shapes_and_types) { | |||||
inference_context->SetInputHandleShapesAndTypes(std::move(input_shapes_and_types)); | |||||
} | |||||
inference_context->SetMarks(marks); | |||||
return inference_context; | |||||
} | |||||
void SerialShapeRange(const GeTensorDescPtr &desc, std::string &desc_str) { | void SerialShapeRange(const GeTensorDescPtr &desc, std::string &desc_str) { | ||||
desc_str += "["; | desc_str += "["; | ||||
@@ -61,7 +130,8 @@ std::string GetInTensorInfoWithString(const ge::NodePtr &node) { | |||||
if (in_idx > 0) { | if (in_idx > 0) { | ||||
ss << " "; | ss << " "; | ||||
} | } | ||||
ss << "input_" << in_idx << " " << "tensor: ["; | |||||
ss << "input_" << in_idx << " " | |||||
<< "tensor: ["; | |||||
ss << "(shape:[" << input_desc->MutableShape().ToString() << "]),"; | ss << "(shape:[" << input_desc->MutableShape().ToString() << "]),"; | ||||
ss << "(format:" << TypeUtils::FormatToSerialString(input_desc->GetFormat()) << "),"; | ss << "(format:" << TypeUtils::FormatToSerialString(input_desc->GetFormat()) << "),"; | ||||
ss << "(dtype:" << TypeUtils::DataTypeToSerialString(input_desc->GetDataType()) << "),"; | ss << "(dtype:" << TypeUtils::DataTypeToSerialString(input_desc->GetDataType()) << "),"; | ||||
@@ -76,28 +146,180 @@ std::string GetInTensorInfoWithString(const ge::NodePtr &node) { | |||||
return ss.str(); | return ss.str(); | ||||
} | } | ||||
Status InferShapePass::Run(NodePtr &node) { | |||||
// kOptimizeAfterSubGraph exist means after subgraph | |||||
auto ret = ShapeRefiner::InferShapeAndType(node, !OptionExists(kOptimizeAfterSubGraph)); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
// select INFERSHAPE failed info | |||||
auto graph = node->GetOwnerComputeGraph(); | |||||
GE_CHECK_NOTNULL(graph); | |||||
auto root_graph = ge::GraphUtils::FindRootGraph(graph); | |||||
GE_CHECK_NOTNULL(root_graph); | |||||
analyzer::DataInfo analyze_info{root_graph->GetSessionID(), root_graph->GetGraphID(), | |||||
analyzer::INFER_SHAPE, node, "InferShapeFailed!"}; | |||||
(void)Analyzer::GetInstance()->DoAnalyze(analyze_info); | |||||
(void)Analyzer::GetInstance()->SaveAnalyzerDataToFile(root_graph->GetSessionID(), | |||||
root_graph->GetGraphID()); | |||||
REPORT_CALL_ERROR("E19999", "Call InferShapeAndType for node:%s(%s) failed, input_tensor:%s", | |||||
node->GetName().c_str(), node->GetType().c_str(), GetInTensorInfoWithString(node).c_str()); | |||||
GELOGE(GE_GRAPH_INFERSHAPE_FAILED, "[Call][InferShapeAndType] for node:%s(%s) failed, input_tensor:%s", | |||||
node->GetName().c_str(), node->GetType().c_str(), GetInTensorInfoWithString(node).c_str()); | |||||
return GE_GRAPH_INFERSHAPE_FAILED; | |||||
void InferShapePass::AnalyzeFailedInfo(const NodePtr &node) { | |||||
auto graph = node->GetOwnerComputeGraph(); | |||||
if (graph == nullptr) { | |||||
GELOGW("Owner compute graph of node %s is nullptr", node->GetName().c_str()); | |||||
} | |||||
auto root_graph = ge::GraphUtils::FindRootGraph(graph); | |||||
if (root_graph == nullptr) { | |||||
GELOGW("Root compute graph of node %s is nullptr", node->GetName().c_str()); | |||||
} | |||||
analyzer::DataInfo analyze_info{root_graph->GetSessionID(), root_graph->GetGraphID(), analyzer::INFER_SHAPE, node, | |||||
"InferShapeFailed!"}; | |||||
(void)Analyzer::GetInstance()->DoAnalyze(analyze_info); | |||||
(void)Analyzer::GetInstance()->SaveAnalyzerDataToFile(root_graph->GetSessionID(), root_graph->GetGraphID()); | |||||
REPORT_CALL_ERROR("E19999", "Call InferShapeAndType for node:%s(%s) failed, input_tensor:%s", node->GetName().c_str(), | |||||
node->GetType().c_str(), GetInTensorInfoWithString(node).c_str()); | |||||
GELOGE(GE_GRAPH_INFERSHAPE_FAILED, "[Call][InferShapeAndType] for node:%s(%s) failed, input_tensor:%s", | |||||
node->GetName().c_str(), node->GetType().c_str(), GetInTensorInfoWithString(node).c_str()); | |||||
} | |||||
bool InferShapePass::TensorDescChanged(const GeTensorDescPtr &src, const GeTensorDescPtr &dst) { | |||||
bool changed = false; | |||||
const auto &dst_dims = dst->GetShape().GetDims(); | |||||
const auto &src_dims = src->GetShape().GetDims(); | |||||
if (dst_dims != src_dims) { | |||||
changed = true; | |||||
} | |||||
return changed; | |||||
} | |||||
graphStatus InferShapePass::UpdateInputDescAttr(const GeTensorDescPtr &src, GeTensorDescPtr &dst, bool &changed) { | |||||
dst->SetOriginShape(src->GetOriginShape()); | |||||
dst->SetShape(src->MutableShape()); | |||||
dst->SetDataType(src->GetDataType()); | |||||
dst->SetOriginDataType(src->GetOriginDataType()); | |||||
if (src->MutableShape().GetDims() != UNKNOWN_RANK) { | |||||
std::vector<std::pair<int64_t, int64_t>> shape_range; | |||||
(void)src->GetShapeRange(shape_range); | |||||
dst->SetShapeRange(shape_range); | |||||
} | |||||
std::vector<int64_t> pre_op_in_range; | |||||
if (ge::AttrUtils::GetListInt(*src, kPreOpInputShapeRange, pre_op_in_range)) { | |||||
(void)ge::AttrUtils::SetListInt(*dst, kPreOpInputShapeRange, pre_op_in_range); | |||||
} | |||||
ge::TensorUtils::SetRealDimCnt(*dst, static_cast<uint32_t>(src->MutableShape().GetDims().size())); | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
graphStatus InferShapePass::Infer(NodePtr &node) { | |||||
bool is_unknown_graph = node->GetOwnerComputeGraph()->GetGraphUnknownFlag(); | |||||
auto opdesc = node->GetOpDesc(); | |||||
if (node->Verify() != GRAPH_SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "Verifying %s failed.", node->GetName().c_str()); | |||||
GELOGE(GRAPH_FAILED, "[Call][Verify] Verifying %s failed.", node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
PrintInOutTensorShape(node, "before_infershape"); | |||||
Operator op = OpDescUtils::CreateOperatorFromNode(node); | |||||
if (!is_unknown_graph) { | |||||
auto inference_context = CreateInferenceContextPtr(context_map, node); | |||||
GE_CHECK_NOTNULL(inference_context); | |||||
GELOGD("create context for node:%s, marks %zu", node->GetName().c_str(), inference_context->GetMarks().size()); | |||||
op.SetInferenceContext(inference_context); | |||||
} | |||||
graphStatus status = CallInferShapeFunc(node, op); | |||||
if (status != GRAPH_PARAM_INVALID && status != GRAPH_SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "%s call infer function failed.", node->GetName().c_str()); | |||||
GELOGE(GRAPH_FAILED, "[Call][InferFunction] failed, node:%s.", node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | } | ||||
if (!is_unknown_graph) { | |||||
auto ctx_after_infer = op.GetInferenceContext(); | |||||
if (ctx_after_infer != nullptr) { | |||||
GELOGD("[%s] after infershape. mark:%zu", node->GetName().c_str(), ctx_after_infer->GetMarks().size()); | |||||
if (!ctx_after_infer->GetOutputHandleShapesAndTypes().empty() || !ctx_after_infer->GetMarks().empty()) { | |||||
GELOGD("[%s] set inference context after. mark:%zu", node->GetName().c_str(), | |||||
ctx_after_infer->GetMarks().size()); | |||||
(void)context_map.emplace(node, ctx_after_infer); | |||||
} | |||||
} | |||||
} | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
graphStatus InferShapePass::CallInferShapeFunc(NodePtr &node, Operator &op) { | |||||
auto op_desc = node->GetOpDesc(); | |||||
const auto &op_type = op_desc->GetType(); | |||||
auto ret = op_desc->CallInferFunc(op); | |||||
if (ret == GRAPH_PARAM_INVALID) { | |||||
// Op ir no infer func, try to get infer func from operator factory | |||||
auto node_op = ge::OperatorFactory::CreateOperator("node_op", op_desc->GetType()); | |||||
if (node_op.IsEmpty()) { | |||||
GELOGW("get op from OperatorFactory fail. opType: %s", op_type.c_str()); | |||||
return ret; | |||||
} | |||||
GELOGD("get op from OperatorFactory success. opType: %s", op_type.c_str()); | |||||
auto temp_op_desc = ge::OpDescUtils::GetOpDescFromOperator(node_op); | |||||
node_op.BreakConnect(); | |||||
if (temp_op_desc == nullptr) { | |||||
REPORT_CALL_ERROR("E19999", "GetOpDescFromOperator failed, return nullptr."); | |||||
GELOGE(GRAPH_FAILED, "[Get][OpDesc] temp op desc is null"); | |||||
return GRAPH_FAILED; | |||||
} | |||||
if (!op_desc->UpdateInputName(temp_op_desc->GetAllInputName())) { | |||||
GELOGW("InferShapeAndType UpdateInputName failed"); | |||||
for (const auto &out_desc : op_desc->GetAllOutputsDescPtr()) { | |||||
if (out_desc != nullptr && out_desc->GetShape().GetDims().empty()) { | |||||
break; | |||||
} | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
} | |||||
if (!op_desc->UpdateOutputName(temp_op_desc->GetAllOutputName())) { | |||||
GELOGW("InferShapeAndType UpdateOutputName failed"); | |||||
} | |||||
op_desc->AddInferFunc(temp_op_desc->GetInferFunc()); | |||||
ret = op_desc->CallInferFunc(op); | |||||
GELOGI("op CallInferFunc second. ret: %u", ret); | |||||
} | |||||
return ret; | |||||
} | |||||
graphStatus InferShapePass::UpdatePeerInputs(NodePtr &node) { | |||||
bool is_unknown_graph = node->GetOwnerComputeGraph()->GetGraphUnknownFlag(); | |||||
if (is_unknown_graph) { | |||||
PrintInOutTensorShape(node, "after_infershape when running"); | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
UpdateInputOutputOriginAttr(node); | |||||
if (NodeUtils::UpdatePeerNodeInputDesc(node) != SUCCESS) { | |||||
return GRAPH_FAILED; | |||||
} | |||||
PrintInOutTensorShape(node, "after_infershape"); | |||||
return GRAPH_SUCCESS; | |||||
} | |||||
void InferShapePass::UpdateInputOutputOriginAttr(NodePtr &node) { | |||||
auto op_desc = node->GetOpDesc(); | |||||
for (const auto &out_anchor : node->GetAllOutDataAnchors()) { | |||||
auto output_tensor = op_desc->MutableOutputDesc(out_anchor->GetIdx()); | |||||
if (output_tensor == nullptr) { | |||||
continue; | |||||
} | |||||
if (output_tensor->MutableShape().GetDims().empty()) { | |||||
output_tensor->SetOriginShape(output_tensor->GetShape()); | |||||
} | |||||
ge::TensorUtils::SetRealDimCnt(*output_tensor, | |||||
static_cast<uint32_t>(output_tensor->GetOriginShape().GetDims().size())); | |||||
output_tensor->SetOriginDataType(output_tensor->GetDataType()); | |||||
// set output origin shape range | |||||
std::vector<std::pair<int64_t, int64_t>> range; | |||||
(void)output_tensor->GetShapeRange(range); | |||||
output_tensor->SetOriginShapeRange(range); | |||||
GELOGD("node name is %s, origin shape is %ld, origin format is %s, origin data type is %s", node->GetName().c_str(), | |||||
output_tensor->GetOriginShape().GetShapeSize(), | |||||
TypeUtils::FormatToSerialString(output_tensor->GetOriginFormat()).c_str(), | |||||
TypeUtils::DataTypeToSerialString(output_tensor->GetOriginDataType()).c_str()); | |||||
} | |||||
for (const auto &in_anchor : node->GetAllInDataAnchors()) { | |||||
auto input_tensor = op_desc->MutableInputDesc(in_anchor->GetIdx()); | |||||
if (input_tensor == nullptr) { | |||||
continue; | |||||
} | |||||
// set input origin shape range | |||||
std::vector<std::pair<int64_t, int64_t>> range; | |||||
(void)input_tensor->GetShapeRange(range); | |||||
input_tensor->SetOriginShapeRange(range); | |||||
} | |||||
} | |||||
Status InferShapePass::DoRepassForLoopNode(NodePtr &node) { | |||||
GE_CHK_STATUS_RET_NOLOG(RePassLoopNode(node)); | GE_CHK_STATUS_RET_NOLOG(RePassLoopNode(node)); | ||||
bool need_repass = false; | bool need_repass = false; | ||||
auto has_attr = AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_NEED_INFER_AGAIN, need_repass); | auto has_attr = AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_NEED_INFER_AGAIN, need_repass); | ||||
@@ -150,13 +372,13 @@ Status InferShapePass::RePassLoopNode(const NodePtr &node) { | |||||
GE_CHK_STATUS_RET(GetOriginalType(node, node_type), | GE_CHK_STATUS_RET(GetOriginalType(node, node_type), | ||||
"[Get][OriginalType] of node:%s failed.", node->GetName().c_str()); | "[Get][OriginalType] of node:%s failed.", node->GetName().c_str()); | ||||
if (kNextIterationOpTypes.count(node_type) > 0) { | if (kNextIterationOpTypes.count(node_type) > 0) { | ||||
return RePassNode(kMergeOpTypes); // Re-Pass Merge | |||||
return RePassNode(kMergeOpTypes); // Re-Pass Merge | |||||
} | } | ||||
if (kMergeOpTypes.count(node_type) > 0) { | if (kMergeOpTypes.count(node_type) > 0) { | ||||
if (node->GetOpDesc()->HasAttr(ATTR_NAME_NEED_INFER_AGAIN)) { | if (node->GetOpDesc()->HasAttr(ATTR_NAME_NEED_INFER_AGAIN)) { | ||||
node->GetOpDesc()->DelAttr(ATTR_NAME_NEED_INFER_AGAIN); | node->GetOpDesc()->DelAttr(ATTR_NAME_NEED_INFER_AGAIN); | ||||
return RePassNode(kSwitchOpTypes); // Re-Pass Switch | |||||
return RePassNode(kSwitchOpTypes); // Re-Pass Switch | |||||
} | } | ||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
@@ -164,12 +386,110 @@ Status InferShapePass::RePassLoopNode(const NodePtr &node) { | |||||
if (kSwitchOpTypes.count(node_type) > 0) { | if (kSwitchOpTypes.count(node_type) > 0) { | ||||
if (node->GetOpDesc()->HasAttr(ATTR_NAME_NEED_INFER_AGAIN)) { | if (node->GetOpDesc()->HasAttr(ATTR_NAME_NEED_INFER_AGAIN)) { | ||||
node->GetOpDesc()->DelAttr(ATTR_NAME_NEED_INFER_AGAIN); | node->GetOpDesc()->DelAttr(ATTR_NAME_NEED_INFER_AGAIN); | ||||
return ExProcNode(kExitOpTypes, &InferShapePass::AddNodeResume, "need resume"); // Resume Exit | |||||
return ExProcNode(kExitOpTypes, &InferShapePass::AddNodeResume, "need resume"); // Resume Exit | |||||
} else { | } else { | ||||
return ExProcNode(kExitOpTypes, &InferShapePass::AddNodeSuspend, "need suspend"); // Suspend Exit | |||||
return ExProcNode(kExitOpTypes, &InferShapePass::AddNodeSuspend, "need suspend"); // Suspend Exit | |||||
} | } | ||||
} | } | ||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY | |||||
graphStatus InferShapePass::InferShapeAndType(NodePtr &node) { | |||||
GE_CHECK_NOTNULL(node); | |||||
GE_CHECK_NOTNULL(node->GetOpDesc()); | |||||
InferShapePass pass; | |||||
std::set<NodePtr> unused_changed_nodes; | |||||
return pass.InferAndUpdate(node, true, unused_changed_nodes); | |||||
} | |||||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY | |||||
graphStatus InferShapePass::InferShapeAndType(NodePtr &node, bool before_subgraph) { | |||||
GE_CHECK_NOTNULL(node); | |||||
GE_CHECK_NOTNULL(node->GetOpDesc()); | |||||
InferShapePass pass; | |||||
std::set<NodePtr> unused_changed_nodes; | |||||
return pass.InferAndUpdate(node, before_subgraph, unused_changed_nodes); | |||||
} | |||||
graphStatus InferShapeForRunning::Infer(NodePtr &node) { | |||||
auto opdesc = node->GetOpDesc(); | |||||
vector<ge::DataType> temp_dtype; | |||||
for (auto &tensor_desc : opdesc->GetAllOutputsDescPtr()) { | |||||
temp_dtype.emplace_back(tensor_desc->GetDataType()); | |||||
} | |||||
PrintInOutTensorShape(node, "before_infershape when running"); | |||||
Operator op = OpDescUtils::CreateOperatorFromNode(node); | |||||
graphStatus status = CallInferShapeFuncForRunning(node, op); | |||||
if (status == GRAPH_PARAM_INVALID || status == GRAPH_SUCCESS) { | |||||
// ensure the dtype is not changed after infershape in running | |||||
auto after_opdesc = node->GetOpDesc(); | |||||
GE_IF_BOOL_EXEC(after_opdesc == nullptr, REPORT_INNER_ERROR("E19999", "param node has no opdesc, check invalid."); | |||||
GELOGE(GRAPH_FAILED, "[Get][OpDesc] after_opdesc is null."); return GRAPH_FAILED); | |||||
auto all_output_tensor = after_opdesc->GetAllOutputsDescPtr(); | |||||
for (size_t i = 0; i < all_output_tensor.size(); ++i) { | |||||
if (all_output_tensor.at(i)->GetDataType() != temp_dtype[i]) { | |||||
GELOGD("Op %s output %zu need reset dtype,original dtype is %s, new dtype is %s", node->GetName().c_str(), i, | |||||
TypeUtils::DataTypeToSerialString(all_output_tensor.at(i)->GetDataType()).c_str(), | |||||
TypeUtils::DataTypeToSerialString(temp_dtype[i]).c_str()); | |||||
all_output_tensor.at(i)->SetDataType(temp_dtype[i]); | |||||
} | |||||
} | |||||
PrintInOutTensorShape(node, "after_infershape when running"); | |||||
return GRAPH_SUCCESS; | |||||
} else { | |||||
REPORT_CALL_ERROR("E19999", "%s call infer function failed.", node->GetName().c_str()); | |||||
GELOGE(GRAPH_FAILED, "[Call][InferFunction] failed, node:%s.", node->GetName().c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
} | |||||
graphStatus InferShapeForRunning::CallInferShapeFuncForRunning(NodePtr &node, Operator &op) { | |||||
auto op_desc = node->GetOpDesc(); | |||||
const auto &op_type = op_desc->GetType(); | |||||
// Create InferenceContext to avoid null pointer access. | |||||
const static std::set<std::string> force_context_op_types{"Enter", "Switch", "RefSwitch"}; | |||||
if (force_context_op_types.count(op_type) > 0) { | |||||
GELOGD("Set InferenceContext for node [%s]", op_desc->GetName().c_str()); | |||||
op.SetInferenceContext(std::shared_ptr<InferenceContext>(InferenceContext::Create())); | |||||
} | |||||
// Get infer func and execute | |||||
auto ret = op_desc->CallInferFunc(op); | |||||
if (ret == GRAPH_PARAM_INVALID) { | |||||
GELOGD("NodeUtils::GetNodeType return value is: [%s]", NodeUtils::GetNodeType(*node).c_str()); | |||||
auto origin_type = NodeUtils::GetNodeType(*node); | |||||
auto infer_func = ge::OperatorFactoryImpl::GetInferShapeFunc(origin_type); | |||||
if (infer_func == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", "Failed to Get InferFunc. type is %s", origin_type.c_str()); | |||||
GELOGE(GRAPH_FAILED, "[Get][InferFunc] failed. type is %s", origin_type.c_str()); | |||||
return GRAPH_FAILED; | |||||
} | |||||
op_desc->AddInferFunc(infer_func); | |||||
ret = op_desc->CallInferFunc(op); | |||||
GELOGI("op CallInferFunc second. ret: %u", ret); | |||||
} | |||||
return ret; | |||||
} | |||||
bool InferShapeForRunning::TensorDescChanged(const GeTensorDescPtr &src, const GeTensorDescPtr &dst) { | |||||
bool changed = false; | |||||
const auto &dst_dims = dst->GetShape().GetDims(); | |||||
const auto &src_dims = src->GetShape().GetDims(); | |||||
if (dst_dims != src_dims) { | |||||
changed = true; | |||||
} | |||||
return changed; | |||||
} | |||||
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY | |||||
graphStatus InferShapeForRunning::InferShapeAndTypeForRunning(NodePtr &node, bool before_subgraph) { | |||||
GE_CHECK_NOTNULL(node); | |||||
GE_CHECK_NOTNULL(node->GetOpDesc()); | |||||
InferShapeForRunning pass; | |||||
std::set<NodePtr> unused_changed_nodes; | |||||
return pass.InferAndUpdate(node, before_subgraph, unused_changed_nodes); | |||||
} | |||||
} // namespace ge | } // namespace ge |
@@ -17,22 +17,38 @@ | |||||
#ifndef GE_GRAPH_PASSES_INFERSHAPE_PASS_H_ | #ifndef GE_GRAPH_PASSES_INFERSHAPE_PASS_H_ | ||||
#define GE_GRAPH_PASSES_INFERSHAPE_PASS_H_ | #define GE_GRAPH_PASSES_INFERSHAPE_PASS_H_ | ||||
#include "graph/passes/base_pass.h" | |||||
#include "graph/passes/infer_base_pass.h" | |||||
namespace ge { | namespace ge { | ||||
class InferShapePass : public BaseNodePass { | |||||
class InferShapePass : public InferBasePass { | |||||
public: | public: | ||||
/// | |||||
/// Entry of the InferShapePass optimizer | |||||
/// @param [in] graph: Input ComputeGraph | |||||
/// @return SUCCESS: Execution succeed | |||||
/// @return OTHERS: Execution failed | |||||
/// @author | |||||
/// | |||||
Status Run(ge::NodePtr &node) override; | |||||
static void ClearContextMap(); | |||||
graphStatus Infer(NodePtr &node) override; | |||||
bool TensorDescChanged(const GeTensorDescPtr &src, const GeTensorDescPtr &dst) override; | |||||
graphStatus UpdateInputDescAttr(const GeTensorDescPtr &src, GeTensorDescPtr &dst, bool &changed) override; | |||||
void AnalyzeFailedInfo(const NodePtr &node) override; | |||||
static graphStatus InferShapeAndType(NodePtr &node); // temp: visible static func | |||||
static graphStatus InferShapeAndType(NodePtr &node, bool before_subgraph); // temp: visible static func | |||||
private: | |||||
graphStatus CallInferShapeFunc(NodePtr &node, Operator &op); | |||||
graphStatus UpdatePeerInputs(NodePtr &node) override; // only for infershape, will be deleted | |||||
void UpdateInputOutputOriginAttr(NodePtr &node); // only for infershape, will be deleted | |||||
Status DoRepassForLoopNode(NodePtr &node) override; // only for infershape, will be deleted | |||||
Status RePassLoopNode(const NodePtr &node); // only for infershape, will be deleted | |||||
}; | |||||
class InferShapeForRunning : public InferBasePass { | |||||
public: | |||||
graphStatus Infer(NodePtr &node) override; | |||||
bool TensorDescChanged(const GeTensorDescPtr &src, const GeTensorDescPtr &dst) override; | |||||
static graphStatus InferShapeAndTypeForRunning(NodePtr &node, bool before_subgraph); // temp: visible static func | |||||
private: | private: | ||||
Status RePassLoopNode(const NodePtr &node); | |||||
graphStatus CallInferShapeFuncForRunning(NodePtr &node, Operator &op); | |||||
}; | }; | ||||
} // namespace ge | } // namespace ge | ||||
#endif // GE_GRAPH_PASSES_INFERSHAPE_PASS_H_ | #endif // GE_GRAPH_PASSES_INFERSHAPE_PASS_H_ |
@@ -54,6 +54,7 @@ | |||||
#include "graph/passes/hccl_group_pass.h" | #include "graph/passes/hccl_group_pass.h" | ||||
#include "graph/passes/identity_pass.h" | #include "graph/passes/identity_pass.h" | ||||
#include "graph/passes/infershape_pass.h" | #include "graph/passes/infershape_pass.h" | ||||
#include "graph/passes/infer_value_range_pass.h" | |||||
#include "graph/passes/merge_pass.h" | #include "graph/passes/merge_pass.h" | ||||
#include "graph/passes/net_output_pass.h" | #include "graph/passes/net_output_pass.h" | ||||
#include "graph/passes/no_use_reshape_remove_pass.h" | #include "graph/passes/no_use_reshape_remove_pass.h" | ||||
@@ -1989,6 +1990,8 @@ Status GraphPrepare::InferShapeForPreprocess() { | |||||
names_to_passes.emplace_back("MergePass", &merge_pass); | names_to_passes.emplace_back("MergePass", &merge_pass); | ||||
InferShapePass infer_shape_pass; | InferShapePass infer_shape_pass; | ||||
names_to_passes.emplace_back("InferShapePass", &infer_shape_pass); | names_to_passes.emplace_back("InferShapePass", &infer_shape_pass); | ||||
InferValueRangePass infer_value_pass; | |||||
names_to_passes.emplace_back("InferValuePass", &infer_value_pass); | |||||
ReplaceWithEmptyConstPass replace_with_empty_const_pass; | ReplaceWithEmptyConstPass replace_with_empty_const_pass; | ||||
names_to_passes.emplace_back("ReplaceWithEmptyConstPass", &replace_with_empty_const_pass); | names_to_passes.emplace_back("ReplaceWithEmptyConstPass", &replace_with_empty_const_pass); | ||||
DimensionComputePass dimension_compute_pass; | DimensionComputePass dimension_compute_pass; | ||||
@@ -219,7 +219,9 @@ set(COMMON_SRC_FILES | |||||
"${GE_CODE_DIR}/ge/graph/passes/shape_operate_op_remove_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/shape_operate_op_remove_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/assert_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/assert_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/dropout_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/dropout_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/infer_base_pass.cc" | |||||
"${GE_CODE_DIR}/ge/graph/passes/infershape_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/infershape_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/infer_value_range_pass.cc" | |||||
"${GE_CODE_DIR}/ge/graph/passes/unused_const_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/unused_const_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/permute_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/permute_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/ctrl_edge_transfer_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/ctrl_edge_transfer_pass.cc" | ||||
@@ -478,7 +480,7 @@ set(GRAPH_BUILD_COMMON_SRC_FILES | |||||
) | ) | ||||
set(GRAPH_PASS_COMMON_SRC_FILES | set(GRAPH_PASS_COMMON_SRC_FILES | ||||
"${GE_CODE_DIR}/ge/graph/passes/pass_manager.cc" | |||||
"${GE_CODE_DIR}/ge/graph/passes/pass_manager.cc" | |||||
"${GE_CODE_DIR}/ge/graph/passes/base_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/base_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/variable_prepare_op_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/variable_prepare_op_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/variable_ref_delete_op_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/variable_ref_delete_op_pass.cc" | ||||
@@ -532,7 +534,9 @@ set(GRAPH_PASS_COMMON_SRC_FILES | |||||
"${GE_CODE_DIR}/ge/graph/passes/transpose_transdata_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/transpose_transdata_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/hccl_memcpy_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/hccl_memcpy_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/no_use_reshape_remove_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/no_use_reshape_remove_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/infer_base_pass.cc" | |||||
"${GE_CODE_DIR}/ge/graph/passes/infershape_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/infershape_pass.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/infer_value_range_pass.cc" | |||||
"${GE_CODE_DIR}/ge/ge_local_engine/engine/host_cpu_engine.cc" | "${GE_CODE_DIR}/ge/ge_local_engine/engine/host_cpu_engine.cc" | ||||
"${GE_CODE_DIR}/ge/analyzer/analyzer.cc" | "${GE_CODE_DIR}/ge/analyzer/analyzer.cc" | ||||
"${GE_CODE_DIR}/ge/graph/passes/net_output_pass.cc" | "${GE_CODE_DIR}/ge/graph/passes/net_output_pass.cc" | ||||
@@ -708,6 +712,7 @@ set(PASS_TEST_FILES | |||||
"graph/passes/net_output_pass_unittest.cc" | "graph/passes/net_output_pass_unittest.cc" | ||||
"graph/passes/no_use_reshape_remove_pass_unittest.cc" | "graph/passes/no_use_reshape_remove_pass_unittest.cc" | ||||
"graph/passes/infershape_pass_unittest.cc" | "graph/passes/infershape_pass_unittest.cc" | ||||
"graph/passes/infer_value_range_pass_unittest.cc" | |||||
"graph/passes/mark_force_unknown_for_cond_pass_unittest.cc" | "graph/passes/mark_force_unknown_for_cond_pass_unittest.cc" | ||||
"graph/passes/multi_batch_clone_pass_unittest.cc" | "graph/passes/multi_batch_clone_pass_unittest.cc" | ||||
"graph/passes/replace_with_empty_const_pass_unittest.cc" | "graph/passes/replace_with_empty_const_pass_unittest.cc" | ||||
@@ -0,0 +1,281 @@ | |||||
/** | |||||
* Copyright 2021 Huawei Technologies Co., Ltd | |||||
* | |||||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||||
* you may not use this file except in compliance with the License. | |||||
* You may obtain a copy of the License at | |||||
* | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, software | |||||
* distributed under the License is distributed on an "AS IS" BASIS, | |||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
* See the License for the specific language governing permissions and | |||||
* limitations under the License. | |||||
*/ | |||||
#include <gtest/gtest.h> | |||||
#define protected public | |||||
#define private public | |||||
#include "graph/passes/infer_value_range_pass.h" | |||||
#include "graph/utils/tensor_utils.h" | |||||
#include "graph/utils/graph_utils.h" | |||||
#include "graph_builder_utils.h" | |||||
#include "inc/external/graph/operator_reg.h" | |||||
#include "inc/external/graph/operator.h" | |||||
#include "inc/external/graph/operator_factory.h" | |||||
#include "inc/graph/operator_factory_impl.h" | |||||
#include "inc/kernel.h" | |||||
#include "inc/kernel_factory.h" | |||||
using namespace std; | |||||
using namespace testing; | |||||
namespace ge { | |||||
class UtestGraphInferValueRangePass : public testing::Test { | |||||
protected: | |||||
void SetUp() {} | |||||
void TearDown() {} | |||||
}; | |||||
static NodePtr CreateNode(ComputeGraph &graph, const string &name, const string &type, int in_num, int out_num) { | |||||
auto op_desc = std::make_shared<OpDesc>("AddN", "AddN"); | |||||
return graph.AddNode(op_desc); | |||||
} | |||||
TEST_F(UtestGraphInferValueRangePass, infer_pass_not_register) { | |||||
auto graph = std::make_shared<ComputeGraph>("test_graph"); | |||||
GeTensorDesc ge_tensor_desc(GeShape({1, 1, 4, 192}), ge::FORMAT_NCHW, DT_FLOAT16); | |||||
auto addn_op_desc = std::make_shared<OpDesc>("AddN", "AddN"); | |||||
addn_op_desc->AddInputDesc(ge_tensor_desc); | |||||
addn_op_desc->AddOutputDesc(ge_tensor_desc); | |||||
auto addn_op_node = graph->AddNode(addn_op_desc); | |||||
InferValueRangePass infer_pass; | |||||
EXPECT_EQ(infer_pass.Run(addn_op_node), SUCCESS); | |||||
} | |||||
auto ShapeValueInfer = [&](Operator &op) { | |||||
auto op_desc = OpDescUtils::GetOpDescFromOperator(op); | |||||
auto output_tensor_desc = op_desc->MutableOutputDesc(0); | |||||
std::vector<std::pair<int64_t, int64_t>> in_shape_range; | |||||
op_desc->MutableInputDesc(0)->GetShapeRange(in_shape_range); | |||||
if (!in_shape_range.empty()) { | |||||
output_tensor_desc->SetValueRange(in_shape_range); | |||||
} | |||||
return SUCCESS; | |||||
}; | |||||
TEST_F(UtestGraphInferValueRangePass, infer_pass_when_call_1_not_infer) { | |||||
INFER_VALUE_RANGE_CUSTOM_FUNC_REG(Shape, INPUT_IS_DYNAMIC, ShapeValueInfer); | |||||
auto graph = std::make_shared<ComputeGraph>("test_graph"); | |||||
GeTensorDesc ge_tensor_desc(GeShape({1, 1, 4, 192}), ge::FORMAT_NCHW, DT_INT32); | |||||
std::vector<std::pair<int64_t, int64_t>> shape_range = {make_pair(1, 1), make_pair(1, 1), | |||||
make_pair(4, 4), make_pair(192, 192)}; | |||||
ge_tensor_desc.SetShapeRange(shape_range); | |||||
GeTensorDesc output_tensor_desc(GeShape({4}), ge::FORMAT_NCHW, DT_INT32); | |||||
auto op_desc = std::make_shared<OpDesc>("Shape", "Shape"); | |||||
op_desc->AddInputDesc(ge_tensor_desc); | |||||
op_desc->AddOutputDesc(output_tensor_desc); | |||||
auto op_node = graph->AddNode(op_desc); | |||||
InferValueRangePass infer_pass; | |||||
EXPECT_EQ(infer_pass.Run(op_node), SUCCESS); | |||||
auto output_0_desc = op_node->GetOpDesc()->GetOutputDesc(0); | |||||
std::vector<std::pair<int64_t, int64_t>> value_range; | |||||
output_0_desc.GetValueRange(value_range); | |||||
EXPECT_EQ(value_range.empty(), true); | |||||
} | |||||
TEST_F(UtestGraphInferValueRangePass, infer_pass_when_call_1_infer) { | |||||
// sqrt -> shape -> Output | |||||
INFER_VALUE_RANGE_CUSTOM_FUNC_REG(Shape, INPUT_IS_DYNAMIC, ShapeValueInfer); | |||||
auto graph = std::make_shared<ComputeGraph>("test_graph"); | |||||
GeTensorDesc sqrt_tensor_desc(GeShape({-1, -1, 4, 192}), ge::FORMAT_NCHW, DT_INT32); | |||||
std::vector<std::pair<int64_t, int64_t>> shape_range = {make_pair(1, 100), make_pair(1, 240), | |||||
make_pair(4, 4), make_pair(192, 192)}; | |||||
sqrt_tensor_desc.SetShapeRange(shape_range); | |||||
auto sqrt_op_desc = std::make_shared<OpDesc>("Sqrt", "Sqrt"); | |||||
sqrt_op_desc->AddInputDesc(sqrt_tensor_desc); | |||||
sqrt_op_desc->AddOutputDesc(sqrt_tensor_desc); | |||||
auto sqrt_node = graph->AddNode(sqrt_op_desc); | |||||
GeTensorDesc shape_output_desc(GeShape({4}), ge::FORMAT_NCHW, DT_INT32); | |||||
auto shape_op_desc = std::make_shared<OpDesc>("Shape", "Shape"); | |||||
shape_op_desc->AddInputDesc(sqrt_tensor_desc); | |||||
shape_op_desc->AddOutputDesc(shape_output_desc); | |||||
auto shape_node = graph->AddNode(shape_op_desc); | |||||
GeTensorDesc Output_in_tensor_desc(GeShape({4}), ge::FORMAT_NCHW, ge::DT_INT32); | |||||
auto Output_op_desc = std::make_shared<OpDesc>("Output", "Output"); | |||||
Output_op_desc->AddInputDesc(Output_in_tensor_desc); | |||||
auto Output_node = graph->AddNode(Output_op_desc); | |||||
ge::GraphUtils::AddEdge(sqrt_node->GetOutDataAnchor(0), shape_node->GetInDataAnchor(0)); | |||||
ge::GraphUtils::AddEdge(shape_node->GetOutDataAnchor(0), Output_node->GetInDataAnchor(0)); | |||||
EXPECT_EQ(graph->TopologicalSorting(), GRAPH_SUCCESS); | |||||
InferValueRangePass infer_pass; | |||||
auto ret = infer_pass.Run(shape_node); | |||||
EXPECT_EQ(ret, SUCCESS); | |||||
auto output_0_desc = shape_node->GetOpDesc()->GetOutputDesc(0); | |||||
std::vector<std::pair<int64_t, int64_t>> value_range; | |||||
output_0_desc.GetValueRange(value_range); | |||||
EXPECT_EQ(value_range.size(), 4); | |||||
std::vector<int64_t> target_value_range = {1, 100, 1, 240, 4, 4, 192, 192}; | |||||
std::vector<int64_t> output_value_range; | |||||
for (auto pair : value_range) { | |||||
output_value_range.push_back(pair.first); | |||||
output_value_range.push_back(pair.second); | |||||
} | |||||
EXPECT_EQ(target_value_range, output_value_range); | |||||
auto in_0_desc = Output_node->GetOpDesc()->GetInputDesc(0); | |||||
value_range.clear(); | |||||
in_0_desc.GetValueRange(value_range); | |||||
EXPECT_EQ(value_range.size(), 0); | |||||
/* | |||||
INFER_VALUE_RANGE_DEFAULT_REG(Output); | |||||
ret = infer_pass.Run(Output_node); | |||||
EXPECT_EQ(ret, FAILED); | |||||
auto in_0_desc_after_infer = Output_node->GetOpDesc()->GetInputDesc(0); | |||||
value_range.clear(); | |||||
in_0_desc_after_infer.GetValueRange(value_range); | |||||
EXPECT_EQ(value_range.size(), 4); | |||||
output_value_range.clear(); | |||||
for (auto pair : value_range) { | |||||
output_value_range.push_back(pair.first); | |||||
output_value_range.push_back(pair.second); | |||||
} | |||||
EXPECT_EQ(target_value_range, output_value_range); | |||||
auto out_0_desc = Output_node->GetOpDesc()->GetOutputDesc(0); | |||||
value_range.clear(); | |||||
out_0_desc.GetValueRange(value_range); | |||||
EXPECT_EQ(value_range.size(), 0); | |||||
*/ | |||||
} | |||||
class AddKernel : public Kernel { | |||||
public: | |||||
Status Compute(const ge::OpDescPtr op_desc_ptr, const std::vector<ge::ConstGeTensorPtr> &input, | |||||
std::vector<ge::GeTensorPtr> &v_output) override { | |||||
vector<int64_t> data_vec; | |||||
auto data_num = input[0]->GetTensorDesc().GetShape().GetShapeSize(); | |||||
auto x1_data = reinterpret_cast<const int64_t *>(input[0]->GetData().data()); | |||||
auto x2_data = reinterpret_cast<const int64_t *>(input[1]->GetData().data()); | |||||
for (size_t i = 0; i < data_num; i++) { | |||||
auto x_index = *(x1_data + i); | |||||
auto y_index = *(x2_data + i); | |||||
data_vec.push_back(x_index + y_index); | |||||
} | |||||
GeTensorPtr const_tensor = std::make_shared<ge::GeTensor>(input[0]->GetTensorDesc(), (uint8_t *)data_vec.data(), | |||||
data_num * sizeof(int64_t)); | |||||
v_output.emplace_back(const_tensor); | |||||
return SUCCESS; | |||||
} | |||||
}; | |||||
REGISTER_KERNEL(ADD, AddKernel); | |||||
TEST_F(UtestGraphInferValueRangePass, infer_pass_when_call_2_infer) { | |||||
// shape --- add --- sqrt | |||||
// constant / | |||||
INFER_VALUE_RANGE_DEFAULT_REG(Add); | |||||
auto graph = std::make_shared<ComputeGraph>("test_graph"); | |||||
vector<int64_t> dims_vec = {4}; | |||||
vector<int64_t> data_vec = {1, 1, 1, 1}; | |||||
GeTensorDesc const_tensor_desc(ge::GeShape(dims_vec), ge::FORMAT_NCHW, ge::DT_INT64); | |||||
GeTensorPtr const_tensor = | |||||
std::make_shared<ge::GeTensor>(const_tensor_desc, (uint8_t *)data_vec.data(), data_vec.size() * sizeof(int64_t)); | |||||
auto const_op_desc = std::make_shared<OpDesc>("Constant", "Constant"); | |||||
const_op_desc->AddOutputDesc(const_tensor_desc); | |||||
EXPECT_EQ(OpDescUtils::SetWeights(const_op_desc, const_tensor), GRAPH_SUCCESS); | |||||
auto const_node = graph->AddNode(const_op_desc); | |||||
GeTensorDesc shape_tensor_desc(GeShape({4}), ge::FORMAT_NCHW, ge::DT_INT64); | |||||
std::vector<std::pair<int64_t, int64_t>> value_range = {make_pair(1, 100), make_pair(1, 240), | |||||
make_pair(4, 4), make_pair(192, 192)}; | |||||
shape_tensor_desc.SetValueRange(value_range); | |||||
auto shape_op_desc = std::make_shared<OpDesc>("Shape", "Shape"); | |||||
shape_op_desc->AddOutputDesc(shape_tensor_desc); | |||||
auto shape_node = graph->AddNode(shape_op_desc); | |||||
GeTensorDesc add_tensor_desc(GeShape({4}), ge::FORMAT_NCHW, ge::DT_INT64); | |||||
auto add_op_desc = std::make_shared<OpDesc>("Add", "Add"); | |||||
add_op_desc->AddInputDesc(shape_tensor_desc); | |||||
add_op_desc->AddInputDesc(const_tensor_desc); | |||||
add_op_desc->AddOutputDesc(add_tensor_desc); | |||||
auto add_node = graph->AddNode(add_op_desc); | |||||
ge::GraphUtils::AddEdge(shape_node->GetOutDataAnchor(0), add_node->GetInDataAnchor(0)); | |||||
ge::GraphUtils::AddEdge(const_node->GetOutDataAnchor(0), add_node->GetInDataAnchor(1)); | |||||
InferValueRangePass infer_pass; | |||||
EXPECT_EQ(infer_pass.Run(add_node), SUCCESS); | |||||
auto output_0_desc = add_node->GetOpDesc()->GetOutputDesc(0); | |||||
std::vector<std::pair<int64_t, int64_t>> out_value_range; | |||||
output_0_desc.GetValueRange(out_value_range); | |||||
EXPECT_EQ(out_value_range.size(), 4); | |||||
std::vector<int64_t> target_value_range = {2, 101, 2, 241, 5, 5, 193, 193}; | |||||
std::vector<int64_t> output_value_range; | |||||
for (auto pair : out_value_range) { | |||||
output_value_range.push_back(pair.first); | |||||
output_value_range.push_back(pair.second); | |||||
} | |||||
EXPECT_EQ(target_value_range, output_value_range); | |||||
} | |||||
TEST_F(UtestGraphInferValueRangePass, test_value_range_infer_and_set_get) { | |||||
using std::make_pair; | |||||
std::function<ge::graphStatus(ge::Operator &)> ShapeValueInfer_ = [](ge::Operator &op) -> ge::graphStatus { | |||||
auto op_desc = OpDescUtils::GetOpDescFromOperator(op); | |||||
auto output_tensor_desc = op_desc->MutableOutputDesc(0); | |||||
std::vector<std::pair<int64_t, int64_t>> in_shape_range; | |||||
op_desc->MutableInputDesc(0)->GetShapeRange(in_shape_range); | |||||
if (!in_shape_range.empty()) { | |||||
output_tensor_desc->SetValueRange(in_shape_range); | |||||
} | |||||
return GRAPH_SUCCESS; | |||||
}; | |||||
INFER_VALUE_RANGE_CUSTOM_FUNC_REG(Shape, INPUT_IS_DYNAMIC, ShapeValueInfer_); | |||||
string op_type = "Shape"; | |||||
auto graph = std::make_shared<ComputeGraph>("test_graph"); | |||||
auto shape_op_desc = std::make_shared<OpDesc>("node_name", op_type); | |||||
GeTensorDesc tensor_desc(GeShape({-1, -1, 4, 192}), ge::FORMAT_NCHW, DT_INT32); | |||||
std::vector<std::pair<int64_t, int64_t>> shape_range = {make_pair(1, 100), make_pair(1, 240), | |||||
make_pair(4, 4), make_pair(192, 192)}; | |||||
tensor_desc.SetShapeRange(shape_range); | |||||
shape_op_desc->AddInputDesc(tensor_desc); | |||||
GeTensorDesc out_tensor_desc(GeShape({4}), ge::FORMAT_NCHW, DT_INT32); | |||||
shape_op_desc->AddOutputDesc(out_tensor_desc); | |||||
auto shape_node = graph->AddNode(shape_op_desc); | |||||
Operator op = OpDescUtils::CreateOperatorFromNode(shape_node); | |||||
auto ret = shape_node->GetOpDesc()->CallInferValueRangeFunc(op); | |||||
ASSERT_EQ(ret, GRAPH_SUCCESS); | |||||
auto output_0_desc = shape_node->GetOpDesc()->GetOutputDesc(0); | |||||
std::vector<std::pair<int64_t, int64_t>> value_range; | |||||
output_0_desc.GetValueRange(value_range); | |||||
EXPECT_EQ(value_range.size(), 4); | |||||
std::vector<int64_t> target_value_range = {1, 100, 1, 240, 4, 4, 192, 192}; | |||||
std::vector<int64_t> output_value_range; | |||||
for (auto pair : value_range) { | |||||
output_value_range.push_back(pair.first); | |||||
output_value_range.push_back(pair.second); | |||||
} | |||||
EXPECT_EQ(target_value_range, output_value_range); | |||||
} | |||||
} // namespace ge |
@@ -15,6 +15,7 @@ | |||||
*/ | */ | ||||
#include <gtest/gtest.h> | #include <gtest/gtest.h> | ||||
#include <operator_factory_impl.h> | |||||
#define protected public | #define protected public | ||||
#define private public | #define private public | ||||
@@ -22,9 +23,12 @@ | |||||
#include "graph/utils/tensor_utils.h" | #include "graph/utils/tensor_utils.h" | ||||
#include "graph/utils/graph_utils.h" | #include "graph/utils/graph_utils.h" | ||||
#include "graph/operator_factory.h" | |||||
#include "graph/operator_reg.h" | |||||
#include "graph_builder_utils.h" | #include "graph_builder_utils.h" | ||||
#include "inc/external/graph/operator_reg.h" | |||||
#include "inc/external/graph/operator.h" | |||||
#include "inc/external/graph/operator_factory.h" | |||||
#include "inc/graph/operator_factory_impl.h" | |||||
using namespace std; | using namespace std; | ||||
using namespace testing; | using namespace testing; | ||||
@@ -35,6 +39,113 @@ class UtestGraphInfershapePass : public testing::Test { | |||||
void TearDown() {} | void TearDown() {} | ||||
}; | }; | ||||
/* | |||||
* data1 const1 | |||||
* \ / | |||||
* case1 | |||||
* | | |||||
* relu10 | |||||
* | | |||||
* netoutput | |||||
*/ | |||||
ut::GraphBuilder ParentGraphBuilder() { | |||||
ut::GraphBuilder builder = ut::GraphBuilder("g1"); | |||||
auto data1 = builder.AddNode("data1", "Data", 0, 1); | |||||
std::vector<int64_t> const_shape = {1}; | |||||
auto const1 = builder.AddNode("const1", "Const", 0, 1, FORMAT_NCHW, DT_INT32, const_shape); | |||||
auto case1 = builder.AddNode("case1", CASE, 2, 1); | |||||
auto relu1 = builder.AddNode("relu10", "Relu", 1, 1); | |||||
auto netoutput = builder.AddNode("netoutput", NETOUTPUT, 1, 0); | |||||
int32_t weight[1] = {1}; | |||||
GeTensorDesc weight_desc(GeShape({1}), FORMAT_NHWC, DT_INT32); | |||||
GeTensorPtr tensor = std::make_shared<GeTensor>(weight_desc, (uint8_t *)weight, sizeof(weight)); | |||||
OpDescUtils::SetWeights(const1, {tensor}); | |||||
builder.AddDataEdge(data1, 0, case1, 0); | |||||
builder.AddDataEdge(const1, 0, case1, 1); | |||||
builder.AddDataEdge(case1, 0, relu1, 0); | |||||
builder.AddDataEdge(relu1, 0, netoutput, 0); | |||||
return builder; | |||||
} | |||||
/* | |||||
* data1 data2 | |||||
* \ / | |||||
* switch | |||||
* / \ | |||||
* relu1 relu2 | |||||
* \ / | |||||
* merge | |||||
* | | |||||
* netoutput | |||||
*/ | |||||
ut::GraphBuilder SwitchSubgraphBuilder(string graph_name, uint32_t num) { | |||||
ut::GraphBuilder builder = ut::GraphBuilder(graph_name); | |||||
std::vector<int64_t> shape1 = {2,2}; | |||||
string data1_name = "data1_" + std::to_string(num); | |||||
auto data1 = builder.AddNode(data1_name, "Data", 1, 1, FORMAT_NCHW, DT_INT32, shape1); | |||||
auto data1_desc = data1->GetOpDesc(); | |||||
EXPECT_NE(data1_desc, nullptr); | |||||
AttrUtils::SetInt(data1_desc, "_parent_node_index", 0); | |||||
std::vector<int64_t> shape2 = {3,3}; | |||||
string data2_name = "data2_" + std::to_string(num); | |||||
auto data2 = builder.AddNode(data2_name, "Data", 1, 1, FORMAT_NCHW, DT_INT32, shape2); | |||||
auto data2_desc = data2->GetOpDesc(); | |||||
EXPECT_NE(data2_desc, nullptr); | |||||
AttrUtils::SetInt(data2_desc, "_parent_node_index", 1); | |||||
string switch_name = "switch_" + std::to_string(num); | |||||
auto switch1 = builder.AddNode(switch_name, "Switch", 2, 2); | |||||
string relu1_name = "relu1_" + std::to_string(num); | |||||
auto relu1 = builder.AddNode(relu1_name, "Relu", 1, 1); | |||||
string relu2_name = "relu2_" + std::to_string(num); | |||||
auto relu2 = builder.AddNode(relu2_name, "Relu", 1, 1); | |||||
string merge_name = "merge_" + std::to_string(num); | |||||
auto merge = builder.AddNode(merge_name, "Merge", 2, 1); | |||||
std::vector<int64_t> shape7 = {8,8}; | |||||
string output_name = "output_" + std::to_string(num); | |||||
auto netoutput = builder.AddNode(output_name, NETOUTPUT, 1, 0, FORMAT_NCHW, DT_INT32, shape7); | |||||
auto input0_desc = netoutput->GetOpDesc()->MutableInputDesc(0); | |||||
EXPECT_NE(input0_desc, nullptr); | |||||
AttrUtils::SetInt(input0_desc, "_parent_node_index", 0); | |||||
builder.AddDataEdge(data1, 0, switch1, 0); | |||||
builder.AddDataEdge(data2, 0, switch1, 1); | |||||
builder.AddDataEdge(switch1, 0, relu1, 0); | |||||
builder.AddDataEdge(switch1, 1, relu2, 0); | |||||
builder.AddDataEdge(relu1, 0, merge, 0); | |||||
builder.AddDataEdge(relu2, 0, merge, 1); | |||||
builder.AddDataEdge(merge, 0, netoutput, 0); | |||||
return builder; | |||||
} | |||||
void AddCaseSubgraph(ComputeGraphPtr &parent_graph, uint32_t branch_num) { | |||||
auto case_node = parent_graph->FindNode("case1"); | |||||
EXPECT_NE(case_node, nullptr); | |||||
for (uint32_t i = 0; i < branch_num; ++i) { | |||||
string name = "Branch_Graph_" + std::to_string(i); | |||||
auto builder_subgraph = SwitchSubgraphBuilder(name, i); | |||||
auto switch_subgraph = builder_subgraph.GetGraph(); | |||||
case_node->GetOpDesc()->AddSubgraphName(switch_subgraph->GetName()); | |||||
case_node->GetOpDesc()->SetSubgraphInstanceName(i, switch_subgraph->GetName()); | |||||
switch_subgraph->SetParentNode(case_node); | |||||
switch_subgraph->SetParentGraph(parent_graph); | |||||
EXPECT_EQ(parent_graph->AddSubgraph(switch_subgraph->GetName(), switch_subgraph), GRAPH_SUCCESS); | |||||
} | |||||
} | |||||
static NodePtr CreateNode(ComputeGraph &graph, const string &name, const string &type, int in_num, int out_num) { | static NodePtr CreateNode(ComputeGraph &graph, const string &name, const string &type, int in_num, int out_num) { | ||||
OpDescPtr op_desc = std::make_shared<OpDesc>(name, type); | OpDescPtr op_desc = std::make_shared<OpDesc>(name, type); | ||||
op_desc->SetStreamId(0); | op_desc->SetStreamId(0); | ||||
@@ -158,4 +269,218 @@ TEST_F(UtestGraphInfershapePass, stop_node_for_while_loop) { | |||||
EXPECT_EQ(ge_passes.Run(names_to_passes), SUCCESS); | EXPECT_EQ(ge_passes.Run(names_to_passes), SUCCESS); | ||||
} | } | ||||
TEST_F(UtestGraphInfershapePass, infer_with_case_subgraph) { | |||||
auto builder = ParentGraphBuilder(); | |||||
auto parent_graph = builder.GetGraph(); | |||||
AddCaseSubgraph(parent_graph, 2); | |||||
auto subgraphs = parent_graph->GetAllSubgraphs(); | |||||
EXPECT_EQ(subgraphs.size(), 2); | |||||
auto case_node = parent_graph->FindNode("case1"); | |||||
EXPECT_NE(case_node, nullptr); | |||||
InferShapePass infershape_pass; | |||||
EXPECT_EQ(infershape_pass.Run(case_node), SUCCESS); | |||||
std::vector<int64_t> target_dims_0 = {1, 1, 224, 224}; | |||||
std::vector<int64_t> target_dims_1 = {1}; | |||||
{ | |||||
auto data_node = subgraphs[0]->FindNode("data1_0"); | |||||
auto dims = data_node->GetOpDesc()->GetInputDescPtr(0)->GetShape().GetDims(); | |||||
EXPECT_EQ(dims, target_dims_0); | |||||
data_node = subgraphs[0]->FindNode("data2_0"); | |||||
dims = data_node->GetOpDesc()->GetInputDescPtr(0)->GetShape().GetDims(); | |||||
EXPECT_EQ(dims, target_dims_1); | |||||
} | |||||
infershape_pass.options_[kOptimizeAfterSubGraph] = "yes"; | |||||
EXPECT_EQ(infershape_pass.Run(case_node), SUCCESS); | |||||
{ | |||||
auto dims = case_node->GetOpDesc()->GetOutputDescPtr(0)->GetShape().GetDims(); | |||||
std::vector<int64_t> out_target_dims = {8, 8}; | |||||
EXPECT_EQ(out_target_dims, dims); | |||||
} | |||||
} | |||||
/* | |||||
* data1 const1 | |||||
* \ / | |||||
* while | |||||
* / \ | |||||
* relu1 netoutput | |||||
*/ | |||||
ut::GraphBuilder ParentWhileGraphBuilder() { | |||||
ut::GraphBuilder builder = ut::GraphBuilder("g1"); | |||||
auto data1 = builder.AddNode("data1", "Data", 0, 1); | |||||
std::vector<int64_t> const_shape = {1}; | |||||
auto const1 = builder.AddNode("const1", "Const", 0, 1, FORMAT_NCHW, DT_FLOAT, const_shape); | |||||
auto case1 = builder.AddNode("case1", WHILE, 2, 2); | |||||
auto relu1 = builder.AddNode("relu1", "Relu", 1, 1); | |||||
auto netoutput = builder.AddNode("netoutput", NETOUTPUT, 1, 0); | |||||
int32_t weight[1] = {1}; | |||||
GeTensorDesc weight_desc(GeShape({1}), FORMAT_NHWC, DT_FLOAT); | |||||
GeTensorPtr tensor = std::make_shared<GeTensor>(weight_desc, (uint8_t *)weight, sizeof(weight)); | |||||
OpDescUtils::SetWeights(const1, {tensor}); | |||||
builder.AddDataEdge(data1, 0, case1, 0); | |||||
builder.AddDataEdge(const1, 0, case1, 1); | |||||
builder.AddDataEdge(case1, 0, relu1, 0); | |||||
builder.AddDataEdge(case1, 1, netoutput, 0); | |||||
return builder; | |||||
} | |||||
/* | |||||
* data1 data2 | |||||
* \ / | |||||
* switch | |||||
* | | | |||||
* \ / | |||||
* netoutput | |||||
*/ | |||||
ut::GraphBuilder WhileSubgraphBuilder(string graph_name, uint32_t num) { | |||||
ut::GraphBuilder builder = ut::GraphBuilder(graph_name); | |||||
std::vector<int64_t> shape1 = {2,2}; | |||||
string data1_name = "data1_" + std::to_string(num); | |||||
auto data1 = builder.AddNode(data1_name, "Data", 1, 1, FORMAT_NCHW, DT_FLOAT, shape1); | |||||
auto data1_desc = data1->GetOpDesc(); | |||||
EXPECT_NE(data1_desc, nullptr); | |||||
AttrUtils::SetInt(data1_desc, "_parent_node_index", 0); | |||||
std::vector<int64_t> shape2 = {3,3}; | |||||
string data2_name = "data2_" + std::to_string(num); | |||||
auto data2 = builder.AddNode(data2_name, "Data", 1, 1, FORMAT_NCHW, DT_FLOAT, shape2); | |||||
auto data2_desc = data2->GetOpDesc(); | |||||
EXPECT_NE(data2_desc, nullptr); | |||||
AttrUtils::SetInt(data2_desc, "_parent_node_index", 1); | |||||
string switch_name = "switch_" + std::to_string(num); | |||||
auto switch1 = builder.AddNode(switch_name, "Switch", 2, 2); | |||||
std::vector<int64_t> shape7 = {8,8,8,8}; | |||||
string output_name = "output_" + std::to_string(num); | |||||
auto netoutput = builder.AddNode(output_name, NETOUTPUT, 2, 0, FORMAT_NCHW, DT_FLOAT, shape7); | |||||
auto input0_desc = netoutput->GetOpDesc()->MutableInputDesc(0); | |||||
EXPECT_NE(input0_desc, nullptr); | |||||
AttrUtils::SetInt(input0_desc, "_parent_node_index", 0); | |||||
auto input1_desc = netoutput->GetOpDesc()->MutableInputDesc(1); | |||||
EXPECT_NE(input1_desc, nullptr); | |||||
AttrUtils::SetInt(input1_desc, "_parent_node_index", 1); | |||||
builder.AddDataEdge(data1, 0, switch1, 0); | |||||
builder.AddDataEdge(data2, 0, switch1, 1); | |||||
builder.AddDataEdge(switch1, 0, netoutput, 0); | |||||
builder.AddDataEdge(switch1, 1, netoutput, 1); | |||||
return builder; | |||||
} | |||||
void AddWhileSubgraph(ComputeGraphPtr &parent_graph, uint32_t branch_num) { | |||||
auto case_node = parent_graph->FindNode("case1"); | |||||
EXPECT_NE(case_node, nullptr); | |||||
for (uint32_t i = 0; i < branch_num; ++i) { | |||||
string name = "Branch_Graph_" + std::to_string(i); | |||||
auto builder_subgraph = WhileSubgraphBuilder(name, i); | |||||
auto switch_subgraph = builder_subgraph.GetGraph(); | |||||
case_node->GetOpDesc()->AddSubgraphName(switch_subgraph->GetName()); | |||||
case_node->GetOpDesc()->SetSubgraphInstanceName(i, switch_subgraph->GetName()); | |||||
switch_subgraph->SetParentNode(case_node); | |||||
switch_subgraph->SetParentGraph(parent_graph); | |||||
EXPECT_EQ(parent_graph->AddSubgraph(switch_subgraph->GetName(), switch_subgraph), GRAPH_SUCCESS); | |||||
} | |||||
} | |||||
TEST_F(UtestGraphInfershapePass, infer_with_while_subgraph) { | |||||
auto builder = ParentWhileGraphBuilder(); | |||||
auto parent_graph = builder.GetGraph(); | |||||
AddWhileSubgraph(parent_graph, 1); | |||||
auto subgraphs = parent_graph->GetAllSubgraphs(); | |||||
EXPECT_EQ(subgraphs.size(), 1); | |||||
auto case_node = parent_graph->FindNode("case1"); | |||||
EXPECT_NE(case_node, nullptr); | |||||
InferShapePass infershape_pass; | |||||
EXPECT_EQ(infershape_pass.Run(case_node), SUCCESS); | |||||
std::vector<int64_t> target_dims_0 = {1, 1, 224, 224}; | |||||
std::vector<int64_t> target_dims_1 = {1}; | |||||
{ | |||||
auto data_node = subgraphs[0]->FindNode("data1_0"); | |||||
auto dims = data_node->GetOpDesc()->GetInputDescPtr(0)->GetShape().GetDims(); | |||||
EXPECT_EQ(dims, target_dims_0); | |||||
data_node = subgraphs[0]->FindNode("data2_0"); | |||||
dims = data_node->GetOpDesc()->GetInputDescPtr(0)->GetShape().GetDims(); | |||||
EXPECT_EQ(dims, target_dims_1); | |||||
} | |||||
infershape_pass.options_[kOptimizeAfterSubGraph] = "yes"; | |||||
EXPECT_EQ(infershape_pass.Run(case_node), SUCCESS); | |||||
{ | |||||
auto dims = case_node->GetOpDesc()->GetOutputDescPtr(0)->GetShape().GetDims(); | |||||
std::vector<int64_t> out_target_dims = {-1, -1, -1, -1}; | |||||
EXPECT_EQ(out_target_dims, dims); | |||||
} | |||||
} | |||||
TEST_F(UtestGraphInfershapePass, infer_with_while_subgraph_failed) { | |||||
auto builder = ParentWhileGraphBuilder(); | |||||
auto parent_graph = builder.GetGraph(); | |||||
AddWhileSubgraph(parent_graph, 2); | |||||
auto subgraphs = parent_graph->GetAllSubgraphs(); | |||||
EXPECT_EQ(subgraphs.size(), 2); | |||||
auto case_node = parent_graph->FindNode("case1"); | |||||
EXPECT_NE(case_node, nullptr); | |||||
InferShapePass infershape_pass; | |||||
infershape_pass.options_[kOptimizeAfterSubGraph] = "yes"; | |||||
EXPECT_EQ(infershape_pass.Run(case_node), GE_GRAPH_INFERSHAPE_FAILED); | |||||
} | |||||
auto InferFunc = [&](Operator &op) { | |||||
return GRAPH_SUCCESS; | |||||
}; | |||||
TEST_F(UtestGraphInfershapePass, infer_forrunning_with_while_subgraph) { | |||||
auto builder = ParentWhileGraphBuilder(); | |||||
auto parent_graph = builder.GetGraph(); | |||||
AddWhileSubgraph(parent_graph, 1); | |||||
auto subgraphs = parent_graph->GetAllSubgraphs(); | |||||
EXPECT_EQ(subgraphs.size(), 1); | |||||
OperatorFactoryImpl::RegisterInferShapeFunc("Relu", InferFunc); | |||||
auto relu_node = parent_graph->FindNode("relu1"); | |||||
EXPECT_NE(relu_node, nullptr); | |||||
InferShapeForRunning infershape_for_running; | |||||
EXPECT_EQ(infershape_for_running.Run(relu_node), SUCCESS); | |||||
} | |||||
TEST_F(UtestGraphInfershapePass, infer_static_func) { | |||||
auto builder = ut::GraphBuilder("test_graph"); | |||||
auto data_1 = builder.AddNode("data_1", DATA, 0, 1); | |||||
auto data_2 = builder.AddNode("data_2", DATA, 0, 1); | |||||
auto add = builder.AddNode("Add", "Add", 2, 1); | |||||
builder.AddDataEdge(data_1, 0, add, 0); | |||||
builder.AddDataEdge(data_2, 0, add, 1); | |||||
auto test_graph = builder.GetGraph(); | |||||
// OperatorFactoryImpl::CreateOperator("Add", "Flatten"); | |||||
auto test_node = test_graph->FindNode("Add"); | |||||
auto ret = InferShapePass::InferShapeAndType(test_node); | |||||
EXPECT_EQ(ret, GRAPH_SUCCESS); | |||||
OperatorFactoryImpl::RegisterInferShapeFunc("Add", InferFunc); | |||||
ret = InferShapePass::InferShapeAndType(test_node); | |||||
EXPECT_EQ(ret, GRAPH_SUCCESS); | |||||
ret = InferShapePass::InferShapeAndType(test_node, true); | |||||
EXPECT_EQ(ret, GRAPH_SUCCESS); | |||||
ret = InferShapeForRunning::InferShapeAndTypeForRunning(test_node, true); | |||||
EXPECT_EQ(ret, GRAPH_SUCCESS); | |||||
} | |||||
} // namespace ge | } // namespace ge |