|
|
@@ -1444,8 +1444,7 @@ REG_OP(MaxPoolV3Grad) |
|
|
|
|
|
|
|
*@par Inputs: |
|
|
|
*x: A tensor of shape is 4d, format is support NHWC. |
|
|
|
*filter: A tensor of shape is 3d, the type is same with x, |
|
|
|
and the c dimension is same with x. \n |
|
|
|
*filter: A tensor of shape is 3d, the type is same with x, and the c dimension is same with x. \n |
|
|
|
|
|
|
|
*@par Attributes: |
|
|
|
*@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimensions are 1. |
|
|
@@ -1473,6 +1472,82 @@ REG_OP(Dilation2D) |
|
|
|
.ATTR(data_format, String, "NHWC") |
|
|
|
.OP_END_FACTORY_REG(Dilation2D) |
|
|
|
|
|
|
|
/* |
|
|
|
* @brief Performs Dilation2DBackpropFilter on the input. \n |
|
|
|
|
|
|
|
*@par Inputs: |
|
|
|
*x: A tensor of shape is 4d, format is support NHWC |
|
|
|
*filter: A tensor of shape is 3d the type is same with x, |
|
|
|
*out_backprop: Has the same type and format as input "x" and the c dimension is same with x. \n |
|
|
|
|
|
|
|
*@par Attributes |
|
|
|
*@li stride: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C |
|
|
|
dimension are 1 |
|
|
|
*@li rates: A required list of 4 ints, the rates of the N and C dimensions are 1 |
|
|
|
*@li padding_mode: A optional string. Defaults to "SAME", it support SAME and VALID |
|
|
|
*@li pads: A optional list of 4 ints. \n |
|
|
|
|
|
|
|
*@par Outputs: |
|
|
|
*y: The output tensor. Has the same type and format as input "filter" . \n |
|
|
|
|
|
|
|
*@par Third-party framework compatibility |
|
|
|
* Compatible with the TensorFlow operator Dilation2D |
|
|
|
*/ |
|
|
|
|
|
|
|
REG_OP(Dilation2DBackpropFilter) |
|
|
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) |
|
|
|
.INPUT(filter, |
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) |
|
|
|
.INPUT(out_backprop, |
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) |
|
|
|
.OUTPUT(y, |
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) |
|
|
|
.REQUIRED_ATTR(strides, ListInt) |
|
|
|
.REQUIRED_ATTR(rates, ListInt) |
|
|
|
.ATTR(padding_mode, String, "SAME") |
|
|
|
.ATTR(pads, ListInt, {0, 0, 0, 0}) |
|
|
|
.ATTR(ceil_mode, Bool, false) |
|
|
|
.ATTR(data_format, String, "NHWC") |
|
|
|
.OP_END_FACTORY_REG(Dilation2DBackpropFilter) |
|
|
|
|
|
|
|
/* |
|
|
|
* @brief Performs Dilation2DBackpropInput on the input. \n |
|
|
|
|
|
|
|
*@par Inputs: |
|
|
|
*x: A tensor of shape is 4d, format is support NHWC |
|
|
|
*filter: A tensor of shape is 3d the type is same with x, |
|
|
|
*out_backprop: Has the same type and format as input "x" and the c dimension is same with x. \n |
|
|
|
|
|
|
|
*@par Attributes |
|
|
|
*@li stride: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C |
|
|
|
dimension are 1 |
|
|
|
*@li rates: A required list of 4 ints, the rates of the N and C dimensions are 1 |
|
|
|
*@li padding_mode: A optional string. Defaults to "SAME", it support SAME and VALID |
|
|
|
*@li pads: A optional list of 4 ints. \n |
|
|
|
|
|
|
|
*@par Outputs: |
|
|
|
*y: The output tensor. Has the same type and format as input "filter" . \n |
|
|
|
|
|
|
|
*@par Third-party framework compatibility |
|
|
|
* Compatible with the TensorFlow operator Dilation2D |
|
|
|
*/ |
|
|
|
|
|
|
|
REG_OP(Dilation2DBackpropInput) |
|
|
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) |
|
|
|
.INPUT(filter, |
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) |
|
|
|
.INPUT(out_backprop, |
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) |
|
|
|
.OUTPUT(y, |
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) |
|
|
|
.REQUIRED_ATTR(strides, ListInt) |
|
|
|
.REQUIRED_ATTR(rates, ListInt) |
|
|
|
.ATTR(padding_mode, String, "SAME") |
|
|
|
.ATTR(pads, ListInt, {0, 0, 0, 0}) |
|
|
|
.ATTR(ceil_mode, Bool, false) |
|
|
|
.ATTR(data_format, String, "NHWC") |
|
|
|
.OP_END_FACTORY_REG(Dilation2DBackpropInput) |
|
|
|
|
|
|
|
/** |
|
|
|
* @brief Applies a 2D adaptive average pooling over |
|
|
|
* an input signal composed of several input planes. \n |
|
|
|