Browse Source

Synchronize latest Ascend software suite 24 Dec 2020

Merry xmas by the way
tags/v1.1.0
yanghaoran 4 years ago
parent
commit
274dbb5dc9
71 changed files with 1238 additions and 1130 deletions
  1. +14
    -4
      ge/CMakeLists.txt
  2. +14
    -1
      ge/common/dump/dump_op.cc
  3. +10
    -3
      ge/common/ge/tbe_plugin_manager.cc
  4. +3
    -4
      ge/common/profiling/ge_profiling.cc
  5. +34
    -19
      ge/common/profiling/profiling_manager.cc
  6. +17
    -16
      ge/common/profiling/profiling_manager.h
  7. +2
    -0
      ge/common/proto/op_mapping_info.proto
  8. +0
    -82
      ge/executor/ge_executor.cc
  9. +2
    -0
      ge/executor/proto/op_mapping_info.proto
  10. +2
    -3
      ge/ge_local_engine/engine/host_cpu_engine.cc
  11. +13
    -0
      ge/generator/ge_generator.cc
  12. +1
    -1
      ge/graph/build/memory/graph_mem_assigner.cc
  13. +27
    -10
      ge/graph/build/stream_graph_optimizer.cc
  14. +1
    -1
      ge/graph/build/stream_graph_optimizer.h
  15. +1
    -1
      ge/graph/build/task_generator.cc
  16. +10
    -67
      ge/graph/load/graph_loader.cc
  17. +0
    -6
      ge/graph/load/graph_loader.h
  18. +6
    -0
      ge/graph/load/new_model_manager/data_dumper.cc
  19. +149
    -340
      ge/graph/load/new_model_manager/davinci_model.cc
  20. +33
    -53
      ge/graph/load/new_model_manager/davinci_model.h
  21. +40
    -35
      ge/graph/load/new_model_manager/model_manager.cc
  22. +1
    -2
      ge/graph/load/new_model_manager/model_manager.h
  23. +58
    -74
      ge/graph/load/new_model_manager/task_info/kernel_task_info.cc
  24. +2
    -0
      ge/graph/load/new_model_manager/task_info/kernel_task_info.h
  25. +3
    -7
      ge/graph/load/new_model_manager/zero_copy_offset.cc
  26. +1
    -1
      ge/graph/load/new_model_manager/zero_copy_offset.h
  27. +2
    -49
      ge/graph/load/new_model_manager/zero_copy_task.cc
  28. +1
    -7
      ge/graph/load/new_model_manager/zero_copy_task.h
  29. +9
    -22
      ge/graph/manager/graph_manager.cc
  30. +2
    -1
      ge/graph/manager/graph_manager.h
  31. +0
    -3
      ge/graph/manager/graph_mem_allocator.cc
  32. +1
    -1
      ge/graph/manager/memory_api.cc
  33. +1
    -5
      ge/graph/optimize/graph_optimize.cc
  34. +1
    -2
      ge/graph/optimize/graph_optimize.h
  35. +17
    -0
      ge/graph/passes/dynamic_single_op_reset_shape_pass.cc
  36. +2
    -0
      ge/graph/passes/dynamic_single_op_reset_shape_pass.h
  37. +4
    -8
      ge/graph/passes/switch_to_stream_switch_pass.cc
  38. +0
    -40
      ge/graph/preprocess/graph_preprocess.cc
  39. +7
    -5
      ge/graph/preprocess/multi_batch_copy_graph.cc
  40. +34
    -22
      ge/hybrid/executor/node_state.cc
  41. +2
    -1
      ge/hybrid/executor/node_state.h
  42. +1
    -8
      ge/hybrid/executor/subgraph_executor.cc
  43. +5
    -4
      ge/hybrid/executor/worker/execution_engine.cc
  44. +103
    -18
      ge/hybrid/executor/worker/shape_inference_engine.cc
  45. +4
    -0
      ge/hybrid/executor/worker/shape_inference_engine.h
  46. +57
    -34
      ge/hybrid/model/node_item.cc
  47. +5
    -0
      ge/hybrid/model/node_item.h
  48. +25
    -25
      ge/hybrid/node_executor/hccl/hccl_node_executor.cc
  49. +22
    -0
      ge/hybrid/node_executor/task_context.cc
  50. +2
    -0
      ge/hybrid/node_executor/task_context.h
  51. +13
    -0
      ge/ir_build/atc_ir_common.cc
  52. +1
    -0
      ge/ir_build/atc_ir_common.h
  53. +4
    -43
      ge/ir_build/ge_ir_build.cc
  54. +2
    -0
      ge/proto/op_mapping_info.proto
  55. +1
    -1
      ge/single_op/single_op.cc
  56. +10
    -6
      ge/single_op/task/op_task.cc
  57. +3
    -2
      ge/single_op/task/op_task.h
  58. +7
    -14
      inc/external/ge/ge_api_types.h
  59. +2
    -0
      inc/framework/common/ge_types.h
  60. +2
    -1
      inc/framework/common/profiling/ge_profiling.h
  61. +0
    -13
      inc/framework/executor/ge_executor.h
  62. +46
    -32
      inc/framework/omg/parser/model_parser.h
  63. +1
    -1
      inc/framework/omg/parser/parser_inner_ctx.h
  64. +1
    -0
      metadef/graph/ge_attr_define.cc
  65. +2
    -0
      metadef/graph/proto/op_mapping_info.proto
  66. +2
    -3
      metadef/graph/utils/type_utils.cc
  67. +2
    -0
      metadef/inc/common/proto/op_mapping_info.proto
  68. +102
    -29
      metadef/inc/common/util/platform_info.h
  69. +283
    -0
      metadef/inc/common/util/platform_infos_def.h
  70. +1
    -0
      metadef/inc/graph/debug/ge_attr_define.h
  71. +2
    -0
      metadef/inc/register/proto/op_mapping_info.proto

+ 14
- 4
ge/CMakeLists.txt View File

@@ -607,7 +607,7 @@ set(INFER_SRC_LIST

if (NOT ENABLE_D AND NOT ENABLE_ACL AND NOT ENABLE_MS_TESTCASES)
############ libge_runner.so ############
add_library(ge_runner SHARED ${TRAIN_SRC_LIST} ${PROTO_SRCS} ${PROTO_CLIENT_SRCS} $<TARGET_OBJECTS:msprofiler_fwk>)
add_library(ge_runner SHARED ${TRAIN_SRC_LIST} ${PROTO_SRCS} ${PROTO_CLIENT_SRCS})

target_compile_definitions(ge_runner PRIVATE
PROTOBUF_INLINE_NOT_IN_HEADERS=0
@@ -648,11 +648,14 @@ target_include_directories(ge_runner PRIVATE
${GE_CODE_DIR}/third_party/fwkacllib/inc/toolchain
)

target_link_libraries(ge_runner
target_link_libraries(ge_runner PRIVATE
$<BUILD_INTERFACE:intf_pub>
ge_memory
adump_server
static_mmpa
-Wl,--whole-archive
msprofiler_fwk
-Wl,--no-whole-archive
-Wl,--no-as-needed
graph
ge_common
@@ -712,7 +715,7 @@ target_include_directories(ge_compiler PRIVATE
${GE_CODE_DIR}/third_party/fwkacllib/inc/toolchain
)

target_link_libraries(ge_compiler
target_link_libraries(ge_compiler PRIVATE
$<BUILD_INTERFACE:intf_pub>
ge_memory
static_mmpa
@@ -766,7 +769,14 @@ target_link_options(opensrc_ascendcl PRIVATE
-Wl,--allow-multiple-definition
-Wl,-z,muldefs
-Wl,-Bsymbolic
-Wl,--exclude-libs,ALL
-Wl,--exclude-libs,libascend_protobuf.a
-Wl,--exclude-libs,libge_executor.a
-Wl,--exclude-libs,libge_common.a
-Wl,--exclude-libs,libgraph.a
-Wl,--exclude-libs,libmmpa.a
-Wl,--exclude-libs,libregister.a
-Wl,--exclude-libs,liberror_manager.a
-Wl,--exclude-libs,libadump_server.a
)
target_link_libraries(opensrc_ascendcl PRIVATE
-Wl,--whole-archive


+ 14
- 1
ge/common/dump/dump_op.cc View File

@@ -94,6 +94,9 @@ Status DumpOp::DumpOutput(aicpu::dump::Task &task) {
for (auto dim : output_descs.at(i).GetShape().GetDims()) {
output.mutable_shape()->add_dim(dim);
}
for (auto dim : output_descs.at(i).GetOriginShape().GetDims()) {
output.mutable_origin_shape()->add_dim(dim);
}
int64_t output_size = 0;
if (TensorUtils::GetTensorSizeInBytes(output_descs.at(i), output_size) != SUCCESS) {
GELOGE(PARAM_INVALID, "Get output size filed");
@@ -118,6 +121,9 @@ Status DumpOp::DumpInput(aicpu::dump::Task &task) {
for (auto dim : input_descs.at(i).GetShape().GetDims()) {
input.mutable_shape()->add_dim(dim);
}
for (auto dim : input_descs.at(i).GetOriginShape().GetDims()) {
input.mutable_origin_shape()->add_dim(dim);
}
int64_t input_size = 0;
if (TensorUtils::GetTensorSizeInBytes(input_descs.at(i), input_size) != SUCCESS) {
GELOGE(PARAM_INVALID, "Get output size filed");
@@ -214,8 +220,15 @@ Status DumpOp::LaunchDumpOp() {
SetOpMappingLoopAddr(global_step_, loop_per_iter_, loop_cond_, op_mapping_info);
GELOGI("Dump step is %s ,dump path is %s ,in Launch dump op", dump_properties_.GetDumpStep().c_str(),
dump_path.c_str());

uint32_t task_id = 0;
uint32_t stream_id = 0;
rt_ret = rtGetTaskIdAndStreamID(&task_id, &stream_id);
if (rt_ret != RT_ERROR_NONE) {
GELOGW("call rtGetTaskIdAndStreamID failed, ret = 0x%X", rt_ret);
}
aicpu::dump::Task task;
task.set_task_id(task_id);
task.set_stream_id(stream_id);
task.mutable_op()->set_op_name(op_desc_->GetName());
task.mutable_op()->set_op_type(op_desc_->GetType());
if (dump_properties_.GetDumpMode() == kDumpOutput) {


+ 10
- 3
ge/common/ge/tbe_plugin_manager.cc View File

@@ -181,12 +181,19 @@ void TBEPluginManager::GetCustomOpPath(std::string &customop_path) {
void TBEPluginManager::LoadCustomOpLib() {
LoadPluginSo(options_);

std::string fmk_type = std::to_string(domi::TENSORFLOW);
auto it = options_.find(ge::FRAMEWORK_TYPE);
if (it != options_.end()) {
fmk_type = it->second;
}
std::vector<OpRegistrationData> registration_datas = domi::OpRegistry::Instance()->registrationDatas;
GELOGI("The size of registration_datas is: %zu", registration_datas.size());
for (OpRegistrationData reg_data : registration_datas) {
GELOGD("Begin to register optype: %s, imply_type: %s", reg_data.GetOmOptype().c_str(),
TypeUtils::ImplyTypeToSerialString(reg_data.GetImplyType()).c_str());
domi::OpRegistry::Instance()->Register(reg_data);
if (std::to_string(reg_data.GetFrameworkType()) == fmk_type) {
GELOGD("Begin to register optype: %s, imply_type: %s", reg_data.GetOmOptype().c_str(),
TypeUtils::ImplyTypeToSerialString(reg_data.GetImplyType()).c_str());
(void)domi::OpRegistry::Instance()->Register(reg_data);
}
}
}



+ 3
- 4
ge/common/profiling/ge_profiling.cc View File

@@ -112,7 +112,6 @@ ge::Status RegProfCtrlCallback(MsprofCtrlCallback func) {
if (ge::ProfilingManager::Instance().GetMsprofCallback().msprofCtrlCallback != nullptr) {
GELOGW("Msprof ctrl callback is exist, just ignore it.");
} else {
GELOGI("GE register Msprof ctrl callback.");
ge::ProfilingManager::Instance().SetMsprofCtrlCallback(func);
}
return ge::SUCCESS;
@@ -124,7 +123,6 @@ ge::Status RegProfSetDeviceCallback(MsprofSetDeviceCallback func) {
return ge::PARAM_INVALID;
}
// Pass MsprofSetDeviceCallback to runtime
GELOGI("GE pass setdevice callback to runtime.");
ge::Status rt_ret = rtRegDeviceStateCallback(kRtSetDeviceRegName.c_str(), static_cast<rtDeviceStateCallback>(func));
if (rt_ret != ge::SUCCESS) {
GELOGE(rt_ret, "Pass MsprofSetDeviceCallback to runtime failed!");
@@ -158,7 +156,7 @@ ge::Status ProfCommandHandle(ProfCommandHandleType type, void *data, uint32_t le
if (type != kProfCommandhandleFinalize) {
GE_CHECK_NOTNULL(data);
}
ProfCommandHandleData *prof_config_param = (ProfCommandHandleData *)data;
ProfCommandHandleData *prof_config_param = reinterpret_cast<ProfCommandHandleData *>(data);
auto iter = kProfCommandTypeMap.find(type);
if (iter == kProfCommandTypeMap.end()) {
GELOGW("The prof comand type is invalid.");
@@ -183,7 +181,8 @@ ge::Status ProfCommandHandle(ProfCommandHandleType type, void *data, uint32_t le
if (type != kProfCommandhandleFinalize) {
command.module_index = prof_config_param->profSwitch;
}
GELOGI("GE commandhandle execute, Command Type: %d, data type config: 0x%llx", type, command.module_index);
GELOGI("GE commandhandle execute, Command Type: %s, data type config: 0x%llx", iter->second.c_str(),
command.module_index);
if (type == kProfCommandhandleStart || type == kProfCommandhandleStop) {
GELOGI("Profiling device nums:%s , deviceID:[%s]", prof_params[0].c_str(), prof_params[kDeviceListIndex].c_str());
}


+ 34
- 19
ge/common/profiling/profiling_manager.cc View File

@@ -38,10 +38,8 @@ const std::string kProfModelUnsubscribe = "prof_model_cancel_subscribe";
} // namespace

namespace ge {
ProfilingManager::ProfilingManager() : is_load_profiling_(false),
is_execute_profiling_(false),
is_training_trace_(false),
subscribe_count_(0) {
ProfilingManager::ProfilingManager()
: is_load_profiling_(false), is_execute_profiling_(false), is_training_trace_(false), subscribe_count_(0) {
prof_cb_.msprofCtrlCallback = nullptr;
prof_cb_.msprofReporterCallback = nullptr;
}
@@ -102,8 +100,8 @@ ge::Status ProfilingManager::InitFromOptions(const Options &options, MsprofGeOpt
return INTERNAL_ERROR;
}
is_execute_profiling_ = true;
GELOGI("The profiling in options is %s, %s. origin option: %s", options.profiling_mode.c_str(),
prof_conf.options, options.profiling_options.c_str());
GELOGI("The profiling in options is %s, %s. origin option: %s", options.profiling_mode.c_str(), prof_conf.options,
options.profiling_options.c_str());
} else {
(void)mmGetEnv("PROFILING_MODE", env_profiling_mode, MMPA_MAX_PATH);
(void)mmGetEnv("PROFILING_OPTIONS", prof_conf.options, MSPROF_OPTIONS_DEF_LEN_MAX);
@@ -143,6 +141,9 @@ ge::Status ProfilingManager::ParseOptions(const std::string &options) {
}
try {
Json prof_options = Json::parse(options);
if (options.find(kTrainingTrace) == std::string::npos) {
return ge::SUCCESS;
}
const std::string training_trace = prof_options[kTrainingTrace];
if (training_trace.empty()) {
GELOGI("Training trace will not take effect.");
@@ -802,32 +803,46 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY void ProfilingManager::GetFpBpP
if (!fp_point_.empty() && !bp_point_.empty()) {
fp_point = fp_point_;
bp_point = bp_point_;
GELOGI("Bp Fp have been initialized in env or options. bp_point: %s, fp_point: %s", bp_point.c_str(), fp_point.c_str());
GELOGI("Bp Fp have been initialized in env or options. bp_point: %s, fp_point: %s", bp_point.c_str(),
fp_point.c_str());
return;
}
// ProfApi mode and training trace is set
try {
char env_profiling_options[MSPROF_OPTIONS_DEF_LEN_MAX] = { 0x00 };
// Parse options first
char env_profiling_options[MSPROF_OPTIONS_DEF_LEN_MAX] = { 0x00 };
bool is_profiling_valid = false;
std::string profiling_options;
if (ge::GetContext().GetOption(OPTION_EXEC_PROFILING_OPTIONS, profiling_options) == SUCCESS &&
!profiling_options.empty()) {
is_profiling_valid = true;
} else {
INT32 ret = mmGetEnv("PROFILING_OPTIONS", env_profiling_options, MSPROF_OPTIONS_DEF_LEN_MAX);
if (ret != EN_OK) {
GELOGI("PROFILING_OPTIONS env is not exist.");
return;
}
GELOGI("Parse env PROFILING_OPTIONS:%s.", env_profiling_options);
Json prof_options = Json::parse(env_profiling_options);
profiling_options = env_profiling_options;
is_profiling_valid = true;
}
if (is_profiling_valid) {
try {
Json prof_options = Json::parse(profiling_options);

fp_point_ = prof_options[kFpPoint];
bp_point_ = prof_options[kBpPoint];
fp_point_ = prof_options[kFpPoint];
bp_point_ = prof_options[kBpPoint];

fp_point = fp_point_;
bp_point = bp_point_;
if (!fp_point_.empty() && !bp_point_.empty()) {
GELOGI("Training trace bp fp is set, bp_point:%s, fp_point:%s.", bp_point_.c_str(), fp_point_.c_str());
fp_point = fp_point_;
bp_point = bp_point_;
if (!fp_point_.empty() && !bp_point_.empty()) {
GELOGI("Training trace bp fp is set, bp_point:%s, fp_point:%s.", bp_point_.c_str(), fp_point_.c_str());
}
} catch (...) {
GELOGW("Json prof options is invalid.");
return;
}
} catch (...) {
GELOGE(FAILED, "Json prof options is invalid.");
return;
}
return;
}



+ 17
- 16
ge/common/profiling/profiling_manager.h View File

@@ -36,21 +36,21 @@ using Json = nlohmann::json;
namespace {
const std::string GE_PROFILING_MODULE = "Framework";
// DataTypeConfig MASK
#define PROF_ACL_API_MASK 0x0001
#define PROF_TASK_TIME_MASK 0x0002
#define PROF_AICORE_METRICS_MASK 0x0004
#define PROF_AICPU_TRACE_MASK 0x0008
#define PROF_MODEL_EXECUTE_MASK 0x0010
#define PROF_RUNTIME_API_MASK 0x0020
#define PROF_RUNTIME_TRACE_MASK 0x0040
#define PROF_SCHEDULE_TIMELINE_MASK 0x0080
#define PROF_SCHEDULE_TRACE_MASK 0x0100
#define PROF_AIVECTORCORE_METRICS_MASK 0x0200
#define PROF_SUBTASK_TIME_MASK 0x0400
#define PROF_TRAINING_TRACE_MASK 0x0800
#define PROF_HCCL_TRACE_MASK 0x1000
#define PROF_DATA_PROCESS_MASK 0x2000
#define PROF_MODEL_LOAD_MASK 0x8000000000000000
const uint64_t PROF_ACL_API_MASK = 0x0001;
const uint64_t PROF_TASK_TIME_MASK = 0x0002;
const uint64_t PROF_AICORE_METRICS_MASK = 0x0004;
const uint64_t PROF_AICPU_TRACE_MASK = 0x0008;
const uint64_t PROF_MODEL_EXECUTE_MASK = 0x0010;
const uint64_t PROF_RUNTIME_API_MASK = 0x0020;
const uint64_t PROF_RUNTIME_TRACE_MASK = 0x0040;
const uint64_t PROF_SCHEDULE_TIMELINE_MASK = 0x0080;
const uint64_t PROF_SCHEDULE_TRACE_MASK = 0x0100;
const uint64_t PROF_AIVECTORCORE_METRICS_MASK = 0x0200;
const uint64_t PROF_SUBTASK_TIME_MASK = 0x0400;
const uint64_t PROF_TRAINING_TRACE_MASK = 0x0800;
const uint64_t PROF_HCCL_TRACE_MASK = 0x1000;
const uint64_t PROF_DATA_PROCESS_MASK = 0x2000;
const uint64_t PROF_MODEL_LOAD_MASK = 0x8000000000000000;

} // namespace
namespace ge {
@@ -80,7 +80,8 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ProfilingManager {
bool ProfilingTrainingTraceOn() const { return is_training_trace_; }
bool ProfilingModelLoadOn() const { return is_load_profiling_; }
bool ProfilingModelExecuteOn() const;
bool ProfilingOn() const { return is_load_profiling_ && is_execute_profiling_; } // is_execute_profiling_ only used by ge option and env
// is_execute_profiling_ only used by ge option and env
bool ProfilingOn() const { return is_load_profiling_ && is_execute_profiling_; }
void ReportProfilingData(uint32_t model_id, const std::vector<TaskDescInfo> &task_desc_info,
const std::vector<ComputeGraphDescInfo> &compute_graph_desc_info);
void ProfilingTaskDescInfo(uint32_t model_id, const std::vector<TaskDescInfo> &task_desc_info,


+ 2
- 0
ge/common/proto/op_mapping_info.proto View File

@@ -15,6 +15,7 @@ message Output {
int32 original_output_data_type = 7;
int32 original_output_format = 8;
uint64 size = 9;
Shape origin_shape = 10;
}

message Input {
@@ -23,6 +24,7 @@ message Input {
Shape shape = 3;
uint64 address = 4;
uint64 size = 5;
Shape origin_shape = 6;
}

enum BufferType {


+ 0
- 82
ge/executor/ge_executor.cc View File

@@ -209,19 +209,6 @@ bool IsDynmaicDimsSizeMatchModel(const vector<uint64_t> cur_dynamic_dims,

namespace ge {
bool GeExecutor::isInit_ = false;
class ModelListenerAdapter : public ModelListener {
public:
domi::Status OnComputeDone(uint32_t model_id, uint32_t dataIndex, uint32_t resultCode,
std::vector<ge::OutputTensorInfo> &outputs) {
if (listener == nullptr) {
GELOGE(ge::FAILED, "listener is null.");
return FAILED;
}
return listener->OnComputeDone(model_id, dataIndex, resultCode, outputs);
}

std::shared_ptr<ge::ModelListener> listener;
};

static void InitOpsProtoManger() {
string opsproto_path;
@@ -573,60 +560,6 @@ Status GeExecutor::SetDynamicAippData(uint32_t model_id, void *dynamic_input_add
return SUCCESS;
}

// Load model
Status GeExecutor::LoadModelOffline(uint32_t &model_id, const std::string &path, const std::string &key,
int32_t priority, std::shared_ptr<ge::ModelListener> listener) {
GELOGI("load model offline begin.");
if (!isInit_) {
GELOGE(ACL_ERROR_GE_EXEC_NOT_INIT, "GeExecutor has not been initialized!");
return ACL_ERROR_GE_EXEC_NOT_INIT;
}

string filePath = RealPath(path.c_str());
if (filePath.empty()) {
GELOGE(ACL_ERROR_GE_EXEC_MODEL_PATH_INVALID,
"File path is invalid. please check your text file '%s'.", path.c_str());
return ACL_ERROR_GE_EXEC_MODEL_PATH_INVALID;
}

std::shared_ptr<ModelListenerAdapter> listener_adapter = MakeShared<ModelListenerAdapter>();
if (listener_adapter == nullptr) {
GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "ModelListenerAdapter make shared failed!");
return ACL_ERROR_GE_MEMORY_ALLOCATION;
}
listener_adapter->listener = listener;

Status ret = GraphLoader::LoadModelFromFile(path, key, priority, listener_adapter, model_id);
if (ret != SUCCESS) {
GELOGE(ret, "[GeExecutor] LoadModelFromFile failed");
return ACL_ERROR_GE_LOAD_MODEL;
}
return SUCCESS;
}

Status GeExecutor::LoadModel(uint32_t &model_id, const ModelData &model_data,
std::shared_ptr<ge::ModelListener> listener) {
GELOGI("Load model begin.");
if (!isInit_) {
GELOGE(ACL_ERROR_GE_EXEC_NOT_INIT, "GeExecutor has not been initialized!");
return ACL_ERROR_GE_EXEC_NOT_INIT;
}

std::shared_ptr<ModelListenerAdapter> listener_adapter = MakeShared<ModelListenerAdapter>();
if (listener_adapter == nullptr) {
GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "ModelListenerAdapter make shared failed!");
return ACL_ERROR_GE_MEMORY_ALLOCATION;
}
listener_adapter->listener = listener;

Status ret = GraphLoader::LoadModel(model_data, listener_adapter, model_id);
if (ret != SUCCESS) {
GELOGE(ret, "[GeExecutor] LoadModel failed.");
return ACL_ERROR_GE_LOAD_MODEL;
}
return ret;
}

Status GeExecutor::UnloadModel(uint32_t model_id) {
GELOGD("unload model %u begin.", model_id);
if (!isInit_) {
@@ -659,21 +592,6 @@ Status GeExecutor::UnloadModel(uint32_t model_id) {
return SUCCESS;
}

Status GeExecutor::RunModel(const ge::RunModelData &input_data, ge::RunModelData &output_data) {
GELOGI("run model begin.");
if (!isInit_) {
GELOGE(ACL_ERROR_GE_EXEC_NOT_INIT, "GeExecutor has not been initialized!");
return ACL_ERROR_GE_EXEC_NOT_INIT;
}

InputData inputs;
GetDomiInputData(input_data, inputs);
OutputData outputs;
GetDomiOutputData(output_data, outputs);

return GraphExecutor::DataInput(inputs, outputs);
}

// Get input and output descriptor
Status GeExecutor::GetModelDescInfo(uint32_t model_id, std::vector<ge::TensorDesc> &input_desc,
std::vector<ge::TensorDesc> &output_desc, bool new_model_desc) {


+ 2
- 0
ge/executor/proto/op_mapping_info.proto View File

@@ -15,6 +15,7 @@ message Output {
int32 original_output_data_type = 7;
int32 original_output_format = 8;
uint64 size = 9;
Shape origin_shape = 10;
}

message Input {
@@ -23,6 +24,7 @@ message Input {
Shape shape = 3;
uint64 address = 4;
uint64 size = 5;
Shape origin_shape = 6;
}

enum BufferType {


+ 2
- 3
ge/ge_local_engine/engine/host_cpu_engine.cc View File

@@ -39,7 +39,7 @@ namespace {
} \
ge_tensor = MakeShared<GeTensor>(out_desc); \
GE_CHECK_NOTNULL(ge_tensor); \
GELOGI("node:%s allocate output %zu success, size=%lld", op_desc->GetName().c_str(), i, data_num * sizeof(TYPE));\
GELOGD("node:%s allocate output %zu success, size=%lld", op_desc->GetName().c_str(), i, data_num * sizeof(TYPE));\
if (ge_tensor->SetData(reinterpret_cast<uint8_t *>(buf.get()), data_num * sizeof(TYPE)) != GRAPH_SUCCESS) { \
GELOGE(MEMALLOC_FAILED, "Set data for output %zu of node %s failed.", i, op_desc->GetName().c_str()); \
return MEMALLOC_FAILED; \
@@ -50,8 +50,7 @@ namespace {
} else { \
ge_tensor = outputs[i]; \
GE_CHECK_NOTNULL(ge_tensor); \
GELOGI("node:%s existed output %zu, addr=%p, size=%lld", op_desc->GetName().c_str(), i, \
reinterpret_cast<const uint8_t *>(ge_tensor->GetData().data()), ge_tensor->GetData().size()); \
GELOGD("node:%s existed output %zu", op_desc->GetName().c_str(), i); \
} \
auto tensor = TensorAdapter::AsTensor(*ge_tensor); \
auto tensor_name = op_desc->GetOutputNameByIndex(i); \


+ 13
- 0
ge/generator/ge_generator.cc View File

@@ -563,6 +563,19 @@ Status GeGenerator::GenerateModel(const Graph &graph, const string &file_name_pr

GE_CHECK_NOTNULL(ge_root_model);
GE_CHECK_NOTNULL(ge_root_model->GetRootGraph());
ModelHelper model_helper;
string model_name = "";
Status name_ret = model_helper.GetModelNameFromMergedGraphName(ge_root_model->GetRootGraph()->GetName(),
model_name);
if (name_ret != SUCCESS) {
ErrorManager::GetInstance().ATCReportErrMessage("E10000", {"parameter"}, {"output"});
GELOGE(FAILED, "Get model_name failed. Param --output is invalid.");
return PARAM_INVALID;
}
map<string, GeModelPtr> name_to_ge_model = ge_root_model->GetSubgraphInstanceNameToModel();
GeModelPtr &ge_model = name_to_ge_model[ge_root_model->GetRootGraph()->GetName()];
GE_RETURN_WITH_LOG_IF_FALSE(ge_model != nullptr, "ge_model cannot be null");
ge_model->SetName(model_name);
ret = impl_->SaveRootModel(file_name_prefix, ge_root_model, model);
if (ret != SUCCESS) {
GELOGE(ret, "Save model failed");


+ 1
- 1
ge/graph/build/memory/graph_mem_assigner.cc View File

@@ -99,7 +99,7 @@ Status GraphMemoryAssigner::AssignMemory() {
MemoryOffset memory_offset(RT_MEMORY_HBM, mem_assigner->GetMemOffset());
memory_offset_.emplace(RT_MEMORY_HBM, memory_offset);

if (mem_assigner->GetP2PMemOffset() > 0) {
if (mem_assigner->GetP2PMemOffset() >= 0) {
MemoryOffset p2p_memory_offset(RT_MEMORY_P2P_DDR, mem_assigner->GetP2PMemOffset());
memory_offset_.emplace(RT_MEMORY_P2P_DDR, p2p_memory_offset);
}


+ 27
- 10
ge/graph/build/stream_graph_optimizer.cc View File

@@ -48,26 +48,41 @@ void StreamGraphOptimizer::RefreshNodeId(const ComputeGraphPtr &comp_graph, Grap
}
}

bool StreamGraphOptimizer::IsSameStreamId(const ComputeGraphPtr &comp_graph) {
bool StreamGraphOptimizer::IsSameStreamIdOrBatchLabel(const ComputeGraphPtr &comp_graph) {
if (comp_graph == nullptr) {
return false;
}
std::set<int64_t> stream_set;
std::set<std::string> label_set;
for (const ge::NodePtr &cur_node : comp_graph->GetDirectNode()) {
GE_IF_BOOL_EXEC(cur_node->GetOpDesc() == nullptr, continue);
int64_t stream_id = cur_node->GetOpDesc()->GetStreamId();
if (stream_id == kInvalidStream) {
continue;
}
GELOGD("Node %s in subgraph %s stream id is: %ld, node num: %zu", cur_node->GetName().c_str(),
comp_graph->GetName().c_str(), stream_id, comp_graph->GetDirectNodesSize());
stream_set.insert(stream_id);

std::string batch_label;
if (AttrUtils::GetStr(cur_node->GetOpDesc(), ATTR_NAME_BATCH_LABEL, batch_label)) {
label_set.insert(batch_label);
} else {
GELOGD("Node %s[%s] has no batch label, subgraph %s, stream id: %ld", cur_node->GetName().c_str(),
cur_node->GetType().c_str(), comp_graph->GetName().c_str(), stream_id);
continue;
}

GELOGD("Node %s in subgraph %s stream id: %ld, node num: %zu", cur_node->GetName().c_str(),
comp_graph->GetName().c_str(), stream_id, comp_graph->GetDirectNodesSize());
}
if (stream_set.size() > 1) {
GELOGI("Nodes of graph: %s have different stream id, node num: %zu, different stream num: %zu.",
if (stream_set.size() > 1 || label_set.size() > 1) {
GELOGI("Nodes of graph: %s have different stream id or batch_label, node num: %zu, different stream num: %zu.",
comp_graph->GetName().c_str(), comp_graph->GetDirectNodesSize(), stream_set.size());
return false;
}

if (!label_set.empty()) {
(void)AttrUtils::SetStr(comp_graph, ATTR_NAME_BATCH_LABEL, *label_set.begin());
}
return true;
}

@@ -99,8 +114,8 @@ Status StreamGraphOptimizer::OptimizeStreamedSubGraph(const ComputeGraphPtr &com
continue;
}

if (!IsSameStreamId(subgraph)) {
GELOGI("There are more than one stream in subgraph %s", subgraph->GetName().c_str());
if (!IsSameStreamIdOrBatchLabel(subgraph)) {
GELOGI("There are more than one stream or batch_label in subgraph %s", subgraph->GetName().c_str());
continue;
}
OpDescPtr op_desc = nodes.at(0)->GetOpDesc();
@@ -112,9 +127,11 @@ Status StreamGraphOptimizer::OptimizeStreamedSubGraph(const ComputeGraphPtr &com
return FAILED;
}
run_context.stream = run_context.graphStreamList[stream_id];
GELOGD("Subgraph has same stream id, subgraph: %s, engine_name: %s, stream_id: %ld, rtstream: %lu.",
subgraph->GetName().c_str(), engine_name.c_str(), stream_id,
static_cast<uint64_t>(reinterpret_cast<uintptr_t>(run_context.stream)));
std::string batch_label;
(void)AttrUtils::GetStr(subgraph, ATTR_NAME_BATCH_LABEL, batch_label);
GELOGD("Subgraph has same stream id, subgraph: %s, engine_name: %s, stream_id: %ld, rtstream: %lu, "
"batch_label: %s", subgraph->GetName().c_str(), engine_name.c_str(), stream_id,
static_cast<uint64_t>(reinterpret_cast<uintptr_t>(run_context.stream)), batch_label.c_str());
for (auto iter = graph_optimizers.begin(); iter != graph_optimizers.end(); ++iter) {
GE_CHECK_NOTNULL(*iter);
Status ret = (*iter)->OptimizeStreamGraph(*subgraph, run_context);


+ 1
- 1
ge/graph/build/stream_graph_optimizer.h View File

@@ -41,7 +41,7 @@ class StreamGraphOptimizer {
private:
void RefreshNodeId(const ComputeGraphPtr &comp_graph, Graph2SubGraphInfoList &subgraph_map);

bool IsSameStreamId(const ComputeGraphPtr &comp_graph);
bool IsSameStreamIdOrBatchLabel(const ComputeGraphPtr &comp_graph);
};
} // namespace ge
#endif // GE_GRAPH_BUILD_OPTIMIZE_STREAM_GRAPH_H_

+ 1
- 1
ge/graph/build/task_generator.cc View File

@@ -567,7 +567,7 @@ Status TaskGenerator::MarkFirstAndLastOps(const vector<OpDescPtr> &ops, bool is_
continue;
}
string op_type = op_desc->GetType();
if (!is_single_stream && (!op_desc->GetSubgraphInstanceNames().empty() || separator_types.count(op_type) != 0)) {
if (!op_desc->GetSubgraphInstanceNames().empty() || separator_types.count(op_type) != 0) {
continuous_op_lists.emplace_back(vector<OpDescPtr>());
} else {
continuous_op_lists.back().emplace_back(op_desc);


+ 10
- 67
ge/graph/load/graph_loader.cc View File

@@ -122,14 +122,14 @@ Status GraphLoader::LoadDataFromFile(const std::string &path, const std::string
ModelData &model_data) {
Status ret;
if (!CheckInputPathValid(path)) {
GELOGE(GE_EXEC_MODEL_PATH_INVALID, "model path is invalid: %s", path.c_str());
return GE_EXEC_MODEL_PATH_INVALID;
GELOGE(ACL_ERROR_GE_EXEC_MODEL_PATH_INVALID, "model path is invalid: %s", path.c_str());
return ACL_ERROR_GE_EXEC_MODEL_PATH_INVALID;
}

GELOGI("Load model begin, model path is: %s", path.c_str());
if (!key_path.empty() && !CheckInputPathValid(key_path)) {
GELOGE(GE_EXEC_MODEL_KEY_PATH_INVALID, "decrypt_key path is invalid: %s", key_path.c_str());
return GE_EXEC_MODEL_KEY_PATH_INVALID;
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "decrypt_key path is invalid: %s", key_path.c_str());
return ACL_ERROR_GE_PARAM_INVALID;
}

ret = DavinciModelParser::LoadFromFile(path.c_str(), key_path.c_str(), priority, model_data);
@@ -144,63 +144,6 @@ Status GraphLoader::LoadDataFromFile(const std::string &path, const std::string
return SUCCESS;
}

Status GraphLoader::LoadModelFromFile(const std::string &path, const std::string &key_path, int32_t priority,
const std::shared_ptr<ModelListener> &listener, uint32_t &model_id) {
Status ret;
ModelData model_data;
ret = LoadDataFromFile(path, key_path, priority, model_data);
if (ret != SUCCESS) {
GELOGE(ret, "LoadModelFromFile: Load failed. ret = %u", ret);
if (model_data.model_data != nullptr) {
delete[] static_cast<char *>(model_data.model_data);
model_data.model_data = nullptr;
}
return ret;
}

ret = LoadModel(model_data, listener, model_id);
if (ret != SUCCESS) {
GELOGE(ret, "LoadModel: Load failed. ret = %u", ret);
if (model_data.model_data != nullptr) {
delete[] static_cast<char *>(model_data.model_data);
model_data.model_data = nullptr;
}
}

if (model_data.model_data != nullptr) {
delete[] static_cast<char *>(model_data.model_data);
model_data.model_data = nullptr;
}

return ret;
}

Status GraphLoader::LoadModel(const ModelData &model_data, const std::shared_ptr<ModelListener> &listener,
uint32_t &model_id) {
GELOGI("Load model begin, model_id:%u.", model_id);

// For GeOp, Open Device 0 here.
GE_CHK_RT_RET(rtSetDevice(0));
auto model_manager = ModelManager::GetInstance();
GE_CHECK_NOTNULL(model_manager);
Status ret = model_manager->LoadModelOffline(model_id, model_data, listener);
if (ret != SUCCESS) {
GE_CHK_RT(rtDeviceReset(0));
GELOGE(ret, "LoadModel: Load failed.");
return ret;
}
ret = model_manager->Start(model_id);
if (ret != SUCCESS) {
if (model_manager->Unload(model_id) != SUCCESS) {
GELOGE(FAILED, "LoadModel: Unload failed while trying to unload after a failed start.");
}
GELOGE(ret, "LoadModel: Start failed.");
return ret;
}
GELOGI("LoadModel: Start model success, model_id:%u.", model_id);
return SUCCESS;
}

Status GraphLoader::CommandHandle(const Command &command) {
try {
auto model_manager = ModelManager::GetInstance();
@@ -225,16 +168,16 @@ Status GraphLoader::CommandHandle(const Command &command) {
}

Status GraphLoader::LoadModelFromData(uint32_t &model_id, const ModelData &model_data, void *dev_ptr,
size_t memsize, void *weight_ptr, size_t weightsize) {
size_t mem_size, void *weight_ptr, size_t weight_size) {
GELOGI("Load model begin, model_id:%u.", model_id);
// For ACL, Open Device from App.
auto model_manager = ModelManager::GetInstance();
GE_CHECK_NOTNULL(model_manager);
Status ret = model_manager->LoadModelOffline(
model_id, model_data, nullptr, dev_ptr, memsize, weight_ptr, weightsize);
model_id, model_data, nullptr, dev_ptr, mem_size, weight_ptr, weight_size);
if (ret != SUCCESS) {
GELOGE(ret, "Load model failed, model_id:%u.", model_id);
return ret;
GELOGE(ACL_ERROR_GE_LOAD_MODEL, "Load model failed, model_id:%u.", model_id);
return ACL_ERROR_GE_LOAD_MODEL;
}
GELOGI("Load model success, model_id:%u.", model_id);
return SUCCESS;
@@ -259,8 +202,8 @@ Status GraphLoader::LoadModelWithQ(uint32_t &model_id, const ModelData &model_da
GE_CHECK_NOTNULL(model_manager);
Status ret = model_manager->LoadModelWithQ(model_id, model_data, input_queue_ids, output_queue_ids);
if (ret != SUCCESS) {
GELOGE(ret, "Load model with queue failed, model_id:%u.", model_id);
return ret;
GELOGE(ACL_ERROR_GE_LOAD_MODEL, "Load model with queue failed, model_id:%u.", model_id);
return ACL_ERROR_GE_LOAD_MODEL;
}

GELOGI("Load model with queue success, model_id:%u.", model_id);


+ 0
- 6
ge/graph/load/graph_loader.h View File

@@ -44,12 +44,6 @@ class GraphLoader {

static Status GetMaxUsedMemory(uint32_t model_id, uint64_t &max_size);

static Status LoadModel(const ModelData &model_data, const std::shared_ptr<ModelListener> &listener,
uint32_t &model_id);

static Status LoadModelFromFile(const std::string &path, const std::string &key_path, int32_t priority,
const std::shared_ptr<ModelListener> &listener, uint32_t &model_id);

static Status CommandHandle(const Command &command);

static Status GetMemoryInfo(int64_t &free);


+ 6
- 0
ge/graph/load/new_model_manager/data_dumper.cc View File

@@ -319,6 +319,9 @@ Status DataDumper::GenerateOutput(aicpu::dump::Output &output, const OpDesc::Vis
for (auto dim : tensor_descs.at(index).GetShape().GetDims()) {
output.mutable_shape()->add_dim(dim);
}
for (auto dim : tensor_descs.at(index).GetOriginShape().GetDims()) {
output.mutable_origin_shape()->add_dim(dim);
}
int64_t output_size = 0;
if (TensorUtils::GetTensorSizeInBytes(tensor_descs.at(index), output_size) != SUCCESS) {
GELOGE(PARAM_INVALID, "Get output size filed");
@@ -476,6 +479,9 @@ Status DataDumper::GenerateInput(aicpu::dump::Input &input, const OpDesc::Vistor
for (auto dim : tensor_descs.at(index).GetShape().GetDims()) {
input.mutable_shape()->add_dim(dim);
}
for (auto dim : tensor_descs.at(index).GetOriginShape().GetDims()) {
input.mutable_origin_shape()->add_dim(dim);
}
int64_t input_size = 0;
if (AttrUtils::GetInt(tensor_descs.at(index), ATTR_NAME_INPUT_ORIGIN_SIZE, input_size)) {
GELOGI("Get aipp input size according to attr is %ld", input_size);


+ 149
- 340
ge/graph/load/new_model_manager/davinci_model.cc View File

@@ -289,8 +289,8 @@ Status DavinciModel::InitWeightMem(void *dev_ptr, void *weight_ptr, size_t weigh
if (weight_ptr == nullptr) {
weights_mem_base_ = MallocWeightsMem(weights_size);
if (weights_mem_base_ == nullptr) {
GELOGE(GE_EXEC_ALLOC_WEIGHT_MEM_FAILED, "Alloc weight memory failed. size: %zu", weights_size);
return GE_EXEC_ALLOC_WEIGHT_MEM_FAILED;
GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "Alloc weight memory failed. size: %zu", weights_size);
return ACL_ERROR_GE_MEMORY_ALLOCATION;
}
is_inner_weight_base_ = true;
}
@@ -307,8 +307,8 @@ Status DavinciModel::InitWeightMem(void *dev_ptr, void *weight_ptr, size_t weigh

Status DavinciModel::InitFeatureMapAndP2PMem(void *dev_ptr, size_t mem_size) {
if (is_feature_map_mem_has_inited_) {
GELOGE(FAILED, "call InitFeatureMapMem more than once .");
return FAILED;
GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "call InitFeatureMapMem more than once .");
return ACL_ERROR_GE_MEMORY_ALLOCATION;
}
is_feature_map_mem_has_inited_ = true;

@@ -316,8 +316,8 @@ Status DavinciModel::InitFeatureMapAndP2PMem(void *dev_ptr, size_t mem_size) {
std::size_t p2p_data_size = P2PMemInfos().at(RT_MEMORY_P2P_DDR).memory_size;

if ((dev_ptr != nullptr) && (mem_size < TotalMemSize())) {
GELOGE(FAILED, "Invalid mem param: mem_size=%zu totalsize=%zu.", mem_size, TotalMemSize());
return FAILED;
GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "Invalid mem param: mem_size=%zu totalsize=%zu.", mem_size, TotalMemSize());
return ACL_ERROR_GE_MEMORY_ALLOCATION;
}

mem_base_ = static_cast<uint8_t *>(dev_ptr);
@@ -327,8 +327,8 @@ Status DavinciModel::InitFeatureMapAndP2PMem(void *dev_ptr, size_t mem_size) {
if (TotalMemSize() && mem_base_ == nullptr) {
mem_base_ = MallocFeatureMapMem(data_size);
if (mem_base_ == nullptr) {
GELOGE(GE_EXEC_ALLOC_FEATURE_MAP_MEM_FAILED, "Alloc feature map memory failed. size: %zu", data_size);
return GE_EXEC_ALLOC_FEATURE_MAP_MEM_FAILED;
GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "Alloc feature map memory failed. size: %zu", data_size);
return ACL_ERROR_GE_MEMORY_ALLOCATION;
}
GEEVENT("[IMAS]InitFeatureMapAndP2PMem graph_%u MallocMemory type[F] memaddr[%p] mem_size[%zu]",
runtime_param_.graph_id, mem_base_, data_size);
@@ -343,8 +343,8 @@ Status DavinciModel::InitFeatureMapAndP2PMem(void *dev_ptr, size_t mem_size) {
if (p2p_data_size != 0) {
p2p_mem_base_ = MallocP2PMem(p2p_data_size);
if (p2p_mem_base_ == nullptr) {
GELOGE(GE_EXEC_ALLOC_P2P_MEM_FAILED, "Alloc p2p memory failed,size: %zu", p2p_data_size);
return GE_EXEC_ALLOC_P2P_MEM_FAILED;
GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "Alloc p2p memory failed,size: %zu", p2p_data_size);
return ACL_ERROR_GE_MEMORY_ALLOCATION;
}
GELOGI("InitFeatureMapAndP2PMem graph_%u MallocMemory type[F] memaddr[%p] mem_size[%zu]", runtime_param_.graph_id,
p2p_mem_base_, p2p_data_size);
@@ -710,6 +710,7 @@ Status DavinciModel::Init(void *dev_ptr, size_t mem_size, void *weight_ptr, size
}

// collect profiling for ge
GE_CHK_STATUS_RET(InitModelProfile(), "Init model profile failed");
auto &profiling_manager = ProfilingManager::Instance();
if (profiling_manager.ProfilingModelLoadOn()) {
Status p_ret = ReportProfilingData();
@@ -970,7 +971,7 @@ Status DavinciModel::InitDataOp(const NodePtr &node, uint32_t &data_op_index, ma
uint32_t parent_index = 0; // Ignore subgraph Data Node.
if (AttrUtils::GetInt(op_desc, ATTR_NAME_PARENT_NODE_INDEX, parent_index)) {
GELOGI("Init zero copy by subgraph Data node: %s.", op_desc->GetName().c_str());
return InitInputBatchLabel(node);
return SUCCESS;
}

data_op_list_.push_back(op_desc);
@@ -1011,10 +1012,6 @@ Status DavinciModel::InitDataOp(const NodePtr &node, uint32_t &data_op_index, ma
}

data_op_index++;
if (InitInputZeroCopyNodes(node) != SUCCESS) {
GELOGE(PARAM_INVALID, "Input zero copy nodes init failed!");
return PARAM_INVALID;
}
return SUCCESS;
}

@@ -1036,39 +1033,6 @@ void DavinciModel::AdjustDataOpList(const map<uint32_t, OpDescPtr> &data_by_inde
}
}

///
/// @ingroup ge
/// @brief input zero copy node Initialize.
/// @param [in] NodePtr: Data Op.
/// @return Status
///
Status DavinciModel::InitInputZeroCopyNodes(const NodePtr &node) {
auto out_data_anchor = node->GetOutDataAnchor(kDataIndex);
if (out_data_anchor == nullptr) {
GELOGE(FAILED, "Out data anchor is nullptr");
return FAILED;
}
for (auto &peer_in_data_anchor : out_data_anchor->GetPeerInDataAnchors()) {
auto node = peer_in_data_anchor->GetOwnerNode();
auto op_desc = node->GetOpDesc();
if (op_desc == nullptr) {
GELOGE(FAILED, "Op desc is nullptr");
return FAILED;
}
string batch_label;
(void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
if (batch_label.empty()) {
batch_label = kDefaultBatchLable;
}
if (zero_copy_op_id_batch_label_.find(op_desc->GetId()) == zero_copy_op_id_batch_label_.end()) {
zero_copy_op_id_batch_label_.emplace(pair<int64_t, string>(op_desc->GetId(), batch_label));
GELOGD("Init input zero copy nodes success, op name:%s, op id: %ld, batch label: %s.", op_desc->GetName().c_str(),
op_desc->GetId(), batch_label.c_str());
}
}
return SUCCESS;
}

bool DavinciModel::IsGetNextSinkDynamic(const OpDescPtr &op_desc) {
bool getnext_sink_dynamic = false;
if (ge::AttrUtils::GetBool(op_desc, ATTR_GETNEXT_SINK_DYNMAIC, getnext_sink_dynamic) && getnext_sink_dynamic) {
@@ -1094,7 +1058,7 @@ Status DavinciModel::InitNetOutput(const NodePtr &node) {
if (owner_graph->GetParentGraph() != nullptr) {
GELOGI("Init zero copy by subgraph NetOutput node: %s.", op_desc->GetName().c_str());
op_list_.erase(op_desc->GetId());
return InitOutputBatchLabel(node);
return SUCCESS;
}

output_op_list_.push_back(op_desc);
@@ -1146,8 +1110,6 @@ Status DavinciModel::InitNetOutput(const NodePtr &node) {
}
}

GE_IF_BOOL_EXEC(InitOutputZeroCopyNodes(node) != SUCCESS,
GELOGE(PARAM_INVALID, "Output zero copy nodes init failed!"); return PARAM_INVALID;);
GetAllGearsInfo(node);
if (is_getnext_sink_dynamic_) {
GE_IF_BOOL_EXEC(GetGetDynamicDimsNodeInfo(node) != SUCCESS,
@@ -1343,121 +1305,6 @@ void DavinciModel::ParseDynamicOutShape(const std::vector<std::string> &str_info
}
}

///
/// @ingroup ge
/// @brief output zero copy node Initialize.
/// @param [in] NodePtr: netoutput Op.
/// @return Status
///
Status DavinciModel::InitOutputZeroCopyNodes(const NodePtr &node) {
set<NodePtr> nodes_need_record;
for (auto &in_data_anchor : node->GetAllInDataAnchors()) {
auto peer_out_data_anchor = in_data_anchor->GetPeerOutAnchor();
if (peer_out_data_anchor == nullptr) {
continue;
}
auto peer_node = peer_out_data_anchor->GetOwnerNode();
nodes_need_record.emplace(peer_node);

// Merge node output multiplexed input, upstream nodes need to be considered in multiple batch scenarios
if (peer_node->GetType() == MERGE) {
for (const auto &merge_peer_in_data_anchor : peer_node->GetAllInDataAnchors()) {
auto merge_peer_out_data_anchor = merge_peer_in_data_anchor->GetPeerOutAnchor();
if (merge_peer_out_data_anchor == nullptr) {
continue;
}
auto merge_peer_node = merge_peer_out_data_anchor->GetOwnerNode();
nodes_need_record.emplace(merge_peer_node);
}
} else {
for (const auto &other_in_data_anchor : peer_out_data_anchor->GetPeerInDataAnchors()) {
auto other_in_node = other_in_data_anchor->GetOwnerNode();
if (other_in_node->GetType() != NETOUTPUT) {
nodes_need_record.emplace(other_in_node);
}
}
}
}

for (const auto &node_need_record : nodes_need_record) {
auto op_desc = node_need_record->GetOpDesc();
GE_CHECK_NOTNULL(op_desc);
string batch_label;
(void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
if (batch_label.empty()) {
batch_label = kDefaultBatchLable;
}
if (zero_copy_op_id_batch_label_.find(op_desc->GetId()) == zero_copy_op_id_batch_label_.end()) {
zero_copy_op_id_batch_label_.emplace(pair<int64_t, string>(op_desc->GetId(), batch_label));
GELOGD("Init Output zero copy nodes success, op name:%s, op id: %ld, batch label: %s.",
op_desc->GetName().c_str(), op_desc->GetId(), batch_label.c_str());
}
}
return SUCCESS;
}

///
/// @ingroup ge
/// @brief input zero copy node Initialize.
/// @param [in] NodePtr: Data Op.
/// @return Status
///
Status DavinciModel::InitInputBatchLabel(const NodePtr &node) {
string batch_label;
if (!AttrUtils::GetStr(node->GetOpDesc(), ATTR_NAME_BATCH_LABEL, batch_label)) {
return SUCCESS; // Not Multi-batch.
}

const auto &out_data_anchor = node->GetOutDataAnchor(kDataIndex);
GE_CHECK_NOTNULL(out_data_anchor);

for (const auto &peer_in_data_anchor : out_data_anchor->GetPeerInDataAnchors()) {
const auto &node = peer_in_data_anchor->GetOwnerNode();
const auto &op_desc = node->GetOpDesc();
GE_CHECK_NOTNULL(op_desc);

if (zero_copy_op_id_batch_label_.find(op_desc->GetId()) == zero_copy_op_id_batch_label_.end()) {
zero_copy_op_id_batch_label_[op_desc->GetId()] = batch_label;
GELOGD("Init input zero copy nodes success, op name: %s, op id: %ld, batch label: %s", op_desc->GetName().c_str(),
op_desc->GetId(), batch_label.c_str());
}
}

return SUCCESS;
}

///
/// @ingroup ge
/// @brief output zero copy node Initialize for Case.
/// @param [in] NodePtr: netoutput Op.
/// @return Status
///
Status DavinciModel::InitOutputBatchLabel(const NodePtr &node) {
string batch_label;
if (!AttrUtils::GetStr(node->GetOpDesc(), ATTR_NAME_BATCH_LABEL, batch_label)) {
return SUCCESS; // Not Multi-batch.
}

for (const auto &in_data_anchor : node->GetAllInDataAnchors()) {
const auto &peer_out_data_anchor = in_data_anchor->GetPeerOutAnchor();
if (peer_out_data_anchor == nullptr) {
continue;
}

const auto &peer_node = peer_out_data_anchor->GetOwnerNode();
const auto &op_desc = peer_node->GetOpDesc();
GE_CHECK_NOTNULL(op_desc);

if (zero_copy_op_id_batch_label_.find(op_desc->GetId()) == zero_copy_op_id_batch_label_.end()) {
zero_copy_op_id_batch_label_[op_desc->GetId()] = batch_label;
GELOGD("Init Output zero copy nodes success, op name: %s, op id: %ld, batch label: %s",
op_desc->GetName().c_str(), op_desc->GetId(), batch_label.c_str());
}
}

return SUCCESS;
}

/// @ingroup ge
/// @brief LabelSet Op Initialize.
/// @param [in] op_desc: LabelSet Op descriptor.
@@ -2240,12 +2087,61 @@ Status DavinciModel::SyncVarData() {
return ret;
}

inline int64_t SumSize(const vector<int64_t> &size_list) {
int64_t sum_size = 0;
for (const int64_t &size : size_list) {
sum_size += size;
Status DavinciModel::InitModelProfile() {
for (const auto &task : task_list_) {
GE_CHECK_NOTNULL(task);
const FusionOpInfo *fusion_op_info = task->GetFusionOpInfo();
// when type is RT_MODEL_TASK_KERNEL, ctx is not null
if ((fusion_op_info == nullptr) || fusion_op_info->original_op_names.empty()) {
continue;
}

GELOGI("task.id = %u, opNum = %zu", task->GetTaskID(), fusion_op_info->original_op_names.size());
op_id_map_.insert(std::make_pair(fusion_op_info->op_index, task->GetTaskID()));
}

std::set<uint32_t> task_id_set;
using CIT = std::multimap<uint32_t, uint32_t>::const_iterator;
using Range = std::pair<CIT, CIT>;
for (const auto &task : task_list_) {
GE_CHECK_NOTNULL(task);
const FusionOpInfo *fusion_op_info = task->GetFusionOpInfo();
if ((fusion_op_info == nullptr) || fusion_op_info->original_op_names.empty()) {
continue;
}

if (task_id_set.count(task->GetTaskID()) > 0) {
continue;
}

const auto &op_desc = GetOpByIndex(fusion_op_info->op_index);
GE_CHK_BOOL_EXEC(op_desc != nullptr, return FAILED, "index: %u out of range", fusion_op_info->op_index);

ProfileInfo profile;
profile.fusion_info = *fusion_op_info;
Range range = op_id_map_.equal_range(fusion_op_info->op_index);
for (CIT range_idx = range.first; range_idx != range.second; ++range_idx) {
profile.task_count++;
task_id_set.insert(range_idx->second);
}

// memory info
TaskMemInfo &mem_info = profile.memory_info;
const auto input_size = ModelUtils::GetInputSize(op_desc);
const auto output_size = ModelUtils::GetOutputSize(op_desc);
const auto workspace_size = ModelUtils::GetWorkspaceSize(op_desc);
const auto weight_size = ModelUtils::GetWeightSize(op_desc);
mem_info.input_size = std::accumulate(input_size.begin(), input_size.end(), 0);
mem_info.output_size = std::accumulate(output_size.begin(), output_size.end(), 0);
mem_info.workspace_size = std::accumulate(workspace_size.begin(), workspace_size.end(), 0);
mem_info.weight_size = std::accumulate(weight_size.begin(), weight_size.end(), 0);
mem_info.total_size = mem_info.weight_size + mem_info.input_size + mem_info.output_size + mem_info.workspace_size;

profile_list_.emplace_back(profile);
}
return sum_size;

GELOGI("fusion task size: %zu, profile info size: %zu", op_id_map_.size(), profile_list_.size());
return SUCCESS;
}

Status DavinciModel::SinkModelProfile() {
@@ -2253,18 +2149,12 @@ Status DavinciModel::SinkModelProfile() {
auto &prof_mgr = ProfilingManager::Instance();
ReporterData reporter_data{};
// report model data tag name
std::string tag_name;
tag_name.append("model_load_info_").append(std::to_string(this->Id()));
std::string tag_name("model_load_info_" + std::to_string(this->Id()));
GE_CHK_BOOL_EXEC(memcpy_s(reporter_data.tag, MSPROF_ENGINE_MAX_TAG_LEN, tag_name.c_str(), tag_name.size()) == EOK,
return FAILED, "Sink model tag memcpy error.");

// Model Header
string name;
if (!om_name_.empty()) {
name = om_name_;
} else {
name = name_;
}
std::string name = om_name_.empty() ? name_ : om_name_;
size_t name_len = name.size();
reporter_data.deviceId = device_id_;
reporter_data.data = (unsigned char *)&name_len;
@@ -2296,128 +2186,71 @@ Status DavinciModel::SinkModelProfile() {
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

int32_t task_num = task_list_.size();
std::multimap<uint32_t, uint32_t> op_id_map;
std::set<uint32_t> task_id_set;
for (int32_t i = 0; i < task_num; i++) {
auto task = task_list_[i];
GE_CHECK_NOTNULL(task);
auto fusion_op_info = task->GetFusionOpInfo();
// when type is RT_MODEL_TASK_KERNEL, ctx is not null
if (fusion_op_info != nullptr) {
uint32_t op_num = fusion_op_info->original_op_names.size();
uint32_t task_id = task->GetTaskID();
if (op_num > 0) {
GELOGI("task.id = %u, opNum = %u", task_id, op_num);
op_id_map.insert(std::make_pair(fusion_op_info->op_index, task_id));
}
}
}

struct memoryInfo {
int64_t input_size;
int64_t output_size;
int64_t weight_size;
int64_t workspace_size;
int64_t total_size;

memoryInfo() : input_size(0), output_size(0), weight_size(0), workspace_size(0), total_size(0) {}
};

using CIT = std::multimap<uint32_t, uint32_t>::const_iterator;
using Range = std::pair<CIT, CIT>;
for (int32_t i = 0; i < task_num; i++) {
auto task = task_list_[i];
GE_CHECK_NOTNULL(task);
auto fusion_op_info = task->GetFusionOpInfo();
if (fusion_op_info != nullptr && fusion_op_info->original_op_names.size() > 0) {
uint32_t task_id = task->GetTaskID();
uint32_t op_num = fusion_op_info->original_op_names.size();
uint32_t task_count = 0;
if (task_id_set.count(task_id) != 0) {
continue;
}

uint32_t op_id = fusion_op_info->op_index;
Range range = op_id_map.equal_range(op_id);
for (CIT range_idx = range.first; range_idx != range.second; ++range_idx) {
task_count++;
uint32_t task_id = range_idx->second;
task_id_set.insert(task_id);
}

// op name after fusion
string fusion_op_name = fusion_op_info->op_name;
int32_t fusion_op_name_len = fusion_op_name.size() == 0 ? 1 : fusion_op_name.size();
reporter_data.data = (unsigned char *)&fusion_op_name_len;
for (const ProfileInfo &profile : profile_list_) {
// op name after fusion
string fusion_op_name = profile.fusion_info.op_name;
int32_t fusion_op_name_len = fusion_op_name.size() == 0 ? 1 : fusion_op_name.size();
reporter_data.data = (unsigned char *)&fusion_op_name_len;
reporter_data.dataLen = sizeof(int32_t);
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

reporter_data.data = (unsigned char *)fusion_op_name.c_str();
reporter_data.dataLen = fusion_op_name_len;
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

// original op name before fusion
uint32_t op_num = profile.fusion_info.original_op_names.size();
reporter_data.data = (unsigned char *)&op_num;
reporter_data.dataLen = sizeof(int32_t);
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

for (uint32_t k = 0; k < op_num; k++) {
std::string op_name = profile.fusion_info.original_op_names[k];
int32_t op_name_len = op_name.size() == 0 ? 1 : op_name.size();
reporter_data.data = (unsigned char *)&op_name_len;
reporter_data.dataLen = sizeof(int32_t);
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

reporter_data.data = (unsigned char *)fusion_op_name.c_str();
reporter_data.dataLen = fusion_op_name_len;
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

// original op name before fusion
reporter_data.data = (unsigned char *)&op_num;
reporter_data.dataLen = sizeof(int32_t);
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

for (uint32_t k = 0; k < op_num; k++) {
std::string op_name = fusion_op_info->original_op_names[k];
int32_t op_name_len = op_name.size() == 0 ? 1 : op_name.size();
reporter_data.data = (unsigned char *)&op_name_len;
reporter_data.dataLen = sizeof(int32_t);
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());
reporter_data.data = (unsigned char *)op_name.c_str();
reporter_data.dataLen = op_name_len;
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());
}

// stream id info
uint32_t streamId = task->GetStreamId();
reporter_data.data = (unsigned char *)&streamId;
reporter_data.dataLen = sizeof(int32_t);
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

// memory info
struct memoryInfo memory_info;
uint32_t op_index = fusion_op_info->op_index;
auto iter = op_list_.find(op_index);
GE_CHK_BOOL_EXEC(iter != op_list_.end(), return FAILED, "index is out of range, index: %u", op_index);
auto op_desc = iter->second;
memory_info.input_size = SumSize(ModelUtils::GetInputSize(op_desc));
memory_info.output_size = SumSize(ModelUtils::GetOutputSize(op_desc));
memory_info.workspace_size = SumSize(ModelUtils::GetWorkspaceSize(op_desc));
memory_info.weight_size = SumSize(ModelUtils::GetWeightSize(op_desc));
memory_info.total_size =
memory_info.weight_size + memory_info.input_size + memory_info.output_size + memory_info.workspace_size;
reporter_data.data = (unsigned char *)&memory_info;
reporter_data.dataLen = sizeof(struct memoryInfo);
reporter_data.data = (unsigned char *)op_name.c_str();
reporter_data.dataLen = op_name_len;
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());
}

// task info
reporter_data.data = (unsigned char *)&task_count;
// stream id info
uint32_t streamId = profile.fusion_info.stream_id;
reporter_data.data = (unsigned char *)&streamId;
reporter_data.dataLen = sizeof(int32_t);
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

// memory info
reporter_data.data = (unsigned char *)&profile.memory_info;
reporter_data.dataLen = sizeof(profile.memory_info);
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

// task info
reporter_data.data = (unsigned char *)&profile.task_count;
reporter_data.dataLen = sizeof(uint32_t);
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

Range task_range = op_id_map_.equal_range(profile.fusion_info.op_index);
for (CIT idx = task_range.first; idx != task_range.second; ++idx) {
uint32_t task_id = idx->second;
reporter_data.data = (unsigned char *)&task_id;
reporter_data.dataLen = sizeof(uint32_t);
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());

Range task_range = op_id_map.equal_range(op_id);
for (CIT idx = task_range.first; idx != task_range.second; ++idx) {
uint32_t task_id = idx->second;
reporter_data.data = (unsigned char *)&task_id;
reporter_data.dataLen = sizeof(uint32_t);
GE_CHK_BOOL_EXEC(prof_mgr.CallMsprofReport(reporter_data) == 0, return FAILED,
"Reporter data fail, model id:%u.", this->Id());
}
}
}

return SUCCESS;
}

@@ -2991,19 +2824,19 @@ Status DavinciModel::CreateKnownZeroCopyMap(const vector<void *> &inputs, const
return SUCCESS;
}

Status DavinciModel::UpdateKnownZeroCopyAddr() {
for (size_t i = 0; i < total_io_addrs_.size(); ++i) {
auto it_in = knonw_input_data_info_.find(total_io_addrs_[i]);
Status DavinciModel::UpdateKnownZeroCopyAddr(vector<void *> &total_io_addrs) {
for (size_t i = 0; i < total_io_addrs.size(); ++i) {
auto it_in = knonw_input_data_info_.find(total_io_addrs[i]);
if (it_in != knonw_input_data_info_.end()) {
GELOGI("DavinciModel::UpdateKnownZeroCopyAddr input %zu,v addr %p,p addr %p .", i, total_io_addrs_[i],
knonw_input_data_info_.at(total_io_addrs_[i]));
total_io_addrs_[i] = knonw_input_data_info_.at(total_io_addrs_[i]);
GELOGI("DavinciModel::UpdateKnownZeroCopyAddr input %zu,v addr %p,p addr %p .", i, total_io_addrs[i],
knonw_input_data_info_.at(total_io_addrs[i]));
total_io_addrs[i] = knonw_input_data_info_.at(total_io_addrs[i]);
}
auto it_out = knonw_output_data_info_.find(total_io_addrs_[i]);
auto it_out = knonw_output_data_info_.find(total_io_addrs[i]);
if (it_out != knonw_output_data_info_.end()) {
GELOGI("DavinciModel::UpdateKnownZeroCopyAddr output %zu,v addr %p,p addr %p .", i, total_io_addrs_[i],
knonw_output_data_info_.at(total_io_addrs_[i]));
total_io_addrs_[i] = knonw_output_data_info_.at(total_io_addrs_[i]);
GELOGI("DavinciModel::UpdateKnownZeroCopyAddr output %zu,v addr %p,p addr %p .", i, total_io_addrs[i],
knonw_output_data_info_.at(total_io_addrs[i]));
total_io_addrs[i] = knonw_output_data_info_.at(total_io_addrs[i]);
}
}
GELOGI("DavinciModel::UpdateKnownZeroCopyAddr success.");
@@ -3032,7 +2865,7 @@ Status DavinciModel::UpdateKnownNodeArgs(const vector<void *> &inputs, const vec
} else {
total_io_addrs_ = orig_total_io_addrs_;
}
GE_CHK_STATUS_RET(UpdateKnownZeroCopyAddr(), "DavinciModel::UpdateKnownZeroCopyAddr failed.");
GE_CHK_STATUS_RET(UpdateKnownZeroCopyAddr(total_io_addrs_), "DavinciModel::UpdateKnownZeroCopyAddr failed.");

if (total_args_size_ == 0) {
GELOGW("DavinciModel::UpdateKnownNodeArgs device args %p, dst size %u, pass rtMemcpy.", args_, total_args_size_);
@@ -3099,7 +2932,14 @@ Status DavinciModel::MallocKnownArgs() {
GELOGE(RT_FAILED, "Call rtMalloc failed, ret: 0x%X", rt_ret);
return RT_ERROR_TO_GE_STATUS(rt_ret);
}

// malloc dynamic and static hybrid memory
if (total_hybrid_args_size_ != 0) {
rt_ret = rtMalloc(&hybrid_addrs_, total_hybrid_args_size_, RT_MEMORY_HBM);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rtMalloc failed, ret: 0x%X", rt_ret);
return RT_ERROR_TO_GE_STATUS(rt_ret);
}
}
// malloc fixed addr memory, eg: rts op
if (total_fixed_addr_size_ != 0) {
GELOGI("Begin to allocate fixed addr.");
@@ -3257,27 +3097,20 @@ void DavinciModel::SetZeroCopyAddr(const OpDescPtr &op_desc, const std::vector<v

for (auto &input_outside_addrs : new_input_outside_addrs_) {
ZeroCopyOffset &input_outside = input_outside_addrs.second;
bool ret = input_outside.SetOutsideAddrsValue(zero_copy_task, outside_addrs[i], args, offset + i * kAddrLen);
if (ret) {
void *args_val = static_cast<uint8_t *>(args) + offset + i * kAddrLen;
SetBatchLabelAddr(op_desc, reinterpret_cast<uintptr_t>(args_val));
}
input_outside.SetOutsideAddrsValue(zero_copy_task, outside_addrs[i], args, offset + i * kAddrLen);
}

for (auto &output_outside_addrs : new_output_outside_addrs_) {
ZeroCopyOffset &output_outside = output_outside_addrs.second;
bool ret = output_outside.SetOutsideAddrsValue(zero_copy_task, outside_addrs[i], args, offset + i * kAddrLen);
if (ret) {
void *args_val = static_cast<uint8_t *>(args) + offset + i * kAddrLen;
SetBatchLabelAddr(op_desc, reinterpret_cast<uintptr_t>(args_val));
}
output_outside.SetOutsideAddrsValue(zero_copy_task, outside_addrs[i], args, offset + i * kAddrLen);
}
}
auto it = zero_copy_op_id_batch_label_.find(op_desc->GetId());
if (it == zero_copy_op_id_batch_label_.end()) {

string batch_label;
if (!AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label) || batch_label.empty()) {
zero_copy_task.SetBatchLabel(kDefaultBatchLable);
} else {
zero_copy_task.SetBatchLabel(it->second);
zero_copy_task.SetBatchLabel(batch_label);
}

std::lock_guard<std::mutex> lock(outside_addrs_mutex_);
@@ -3287,27 +3120,6 @@ void DavinciModel::SetZeroCopyAddr(const OpDescPtr &op_desc, const std::vector<v
}
}

void DavinciModel::SetBatchLabelAddr(const OpDescPtr &op_desc, uintptr_t addr) {
// Establish a mapping between batch label and zero copy address for multi-batch scenes
auto it = zero_copy_op_id_batch_label_.find(op_desc->GetId());
if (it == zero_copy_op_id_batch_label_.end()) {
return;
}

const string &batch_label = it->second;
auto iter = zero_copy_batch_label_addrs_.find(batch_label);
if (iter != zero_copy_batch_label_addrs_.end()) {
iter->second.insert(addr);
GELOGD("[ZCPY] Set zero copy batch label and addrs success, batch label: %s, op name:%s.", batch_label.c_str(),
op_desc->GetName().c_str());
} else {
set<uintptr_t> addrs = {addr};
zero_copy_batch_label_addrs_.emplace(pair<string, set<uintptr_t>>(batch_label, addrs));
GELOGD("[ZCPY] New added zero copy batch label and addrs success, batch label: %s, op name:%s.",
batch_label.c_str(), op_desc->GetName().c_str());
}
}

///
/// @ingroup ge
/// @brief Copy Check input size and model op size.
@@ -3441,15 +3253,15 @@ Status DavinciModel::UpdateIoTaskArgs(const std::map<uint32_t, ZeroCopyOffset> &
void *addr = data.second.GetDataInfo().at(count).second;
void *buffer_addr = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(buffer.data) +
data.second.GetRelativeOffset().at(count));
GELOGI("[ZCPY] Copy %s blobs_index %u, virtual_addr: %p, size: %ld, user_data_addr: %p", input_or_output.c_str(),
data.first, addr, size, buffer_addr);
GELOGI("[ZCPY] Copy %s blobs_index %u, virtual_addr: %p, size: %ld, user_data_addr: %p, batch_label: %s",
input_or_output.c_str(), data.first, addr, size, buffer_addr, batch_label.c_str());
// For input data, just copy for rts task.
for (ZeroCopyTask &task : zero_copy_tasks_) {
if (task.GetBatchLabel() != kDefaultBatchLable && task.GetBatchLabel() != batch_label) {
continue;
}
uintptr_t addr_val = reinterpret_cast<uintptr_t>(addr);
if (task.UpdateTaskParam(addr_val, buffer_addr, zero_copy_batch_label_addrs_, batch_label) != SUCCESS) {
if (task.UpdateTaskParam(addr_val, buffer_addr) != SUCCESS) {
return FAILED;
}
}
@@ -3811,9 +3623,6 @@ Status DavinciModel::NnExecute(rtStream_t stream, bool async_mode, const InputDa
GELOGD("Model Run begin, model id:%u, data index:%u, flag:%d.", model_id_, input_data.index, is_async_mode_);
GE_CHK_STATUS_RET(InitModelStream(stream), "Init model stream failed.");
is_dynamic_ = input_data.is_dynamic_batch;
if (!is_dynamic_) {
zero_copy_batch_label_addrs_.clear();
}

GE_IF_BOOL_EXEC(ProfilingManager::Instance().ProfilingModelExecuteOn(), SetProfileTime(MODEL_PRE_PROC_START));
Status ret = CopyModelData(input_data, output_data, is_dynamic_);


+ 33
- 53
ge/graph/load/new_model_manager/davinci_model.h View File

@@ -76,6 +76,20 @@ struct timeInfo {
int64_t dumpEndTime;
};

struct TaskMemInfo {
int64_t input_size{0};
int64_t output_size{0};
int64_t weight_size{0};
int64_t workspace_size{0};
int64_t total_size{0};
};

struct ProfileInfo {
FusionOpInfo fusion_info;
TaskMemInfo memory_info;
uint32_t task_count{0};
};

enum ExecuteMode {
INITIALIZATION,
SYNCHRONIZATION,
@@ -226,8 +240,6 @@ class DavinciModel {
const vector<OpDescPtr> &GetDataList() const { return data_op_list_; }

// get Op
const map<uint32_t, OpDescPtr> &GetOpList() const { return op_list_; }

OpDescPtr GetOpByIndex(uint32_t index) const {
if (op_list_.find(index) == op_list_.end()) {
return nullptr;
@@ -436,10 +448,6 @@ class DavinciModel {

int64_t GetLoadEndTime() { return load_end_time_; }

Status SinkModelProfile();

Status SinkTimeProfile(const InputData &current_data);

Status ReportProfilingData();

void SaveDumpOpInfo(const RuntimeParam &model_param, const OpDescPtr &op, uint32_t task_id, uint32_t stream_id) {
@@ -476,6 +484,14 @@ class DavinciModel {
void SetTotalIOAddrs(vector<void *> &io_addrs) {
total_io_addrs_.insert(total_io_addrs_.end(), io_addrs.begin(), io_addrs.end());
}
void SetHybridArgsSize(uint32_t args_size) { total_hybrid_args_size_ += args_size; }
uint32_t GetHybridArgsSize() {
return total_hybrid_args_size_;
}
void *GetCurrentHybridArgsAddr(uint32_t offset) {
void *cur_args = static_cast<char *>(hybrid_addrs_) + offset;
return cur_args;
}
void SetTotalFixedAddrsSize(string tensor_name, int64_t fix_addr_size);
int64_t GetFixedAddrsSize(string tensor_name);
void *GetCurrentFixedAddr(int64_t offset) const {
@@ -494,7 +510,7 @@ class DavinciModel {
Status MallocKnownArgs();
Status UpdateKnownNodeArgs(const vector<void *> &inputs, const vector<void *> &outputs);
Status CreateKnownZeroCopyMap(const vector<void *> &inputs, const vector<void *> &outputs);
Status UpdateKnownZeroCopyAddr();
Status UpdateKnownZeroCopyAddr(vector<void *> &total_io_addrs);
void SetKnownNodeAddrNotChanged(bool base_addr_not_changed) { base_addr_not_changed_ = base_addr_not_changed; }

Status GetOrigInputInfo(uint32_t index, OriginInputInfo &orig_input_info);
@@ -531,15 +547,6 @@ class DavinciModel {

///
/// @ingroup ge
/// @brief Save Batch label Info.
/// @param [in] const OpDescPtr &op_desc
/// @param [in] uintptr_t addr: address value in args block.
/// @return None.
///
void SetBatchLabelAddr(const OpDescPtr &op_desc, uintptr_t addr);

///
/// @ingroup ge
/// @brief Copy Check input size and model op size.
/// @param [in] const int64_t &input_size: input size.
/// @param [in] const int64_t &op_size: model op size.
@@ -651,14 +658,6 @@ class DavinciModel {

///
/// @ingroup ge
/// @brief input zero copy node Initialize.
/// @param [in] NodePtr: Data Op.
/// @return Status
///
Status InitInputZeroCopyNodes(const NodePtr &node);

///
/// @ingroup ge
/// @brief NetOutput Op Initialize.
/// @param [in] NodePtr: NetOutput Op.
/// @return Status
@@ -667,30 +666,6 @@ class DavinciModel {

///
/// @ingroup ge
/// @brief output zero copy node Initialize.
/// @param [in] NodePtr: Data Op.
/// @return Status
///
Status InitOutputZeroCopyNodes(const NodePtr &node);

///
/// @ingroup ge
/// @brief input zero copy node Initialize for Case.
/// @param [in] NodePtr: Data Op.
/// @return Status
///
Status InitInputBatchLabel(const NodePtr &node);

///
/// @ingroup ge
/// @brief output zero copy node Initialize for Case.
/// @param [in] NodePtr: netoutput Op.
/// @return Status
///
Status InitOutputBatchLabel(const NodePtr &node);

///
/// @ingroup ge
/// @brief Constant Op Init.
/// @return Status
///
@@ -837,6 +812,11 @@ class DavinciModel {

void SetDataDumperArgs(const ComputeGraphPtr &compute_graph);

Status InitModelProfile();
Status SinkModelProfile();

Status SinkTimeProfile(const InputData &current_data);

Status GenOutputTensorInfo(const OpDescPtr &op_desc, uint32_t data_index, OutputData *output_data,
std::vector<ge::OutputTensorInfo> &outputs);

@@ -914,11 +894,6 @@ class DavinciModel {
std::vector<ZeroCopyTask> zero_copy_tasks_; // Task used Data or NetOutput addr.
std::set<const void *> copy_only_addrs_; // Address need copy to original place.

// {op_id, batch_label}
std::map<int64_t, std::string> zero_copy_op_id_batch_label_;
// {batch_label, addrs}
std::map<std::string, std::set<uintptr_t>> zero_copy_batch_label_addrs_;

std::vector<TaskInfoPtr> task_list_;
// rt_moodel_handle
rtModel_t rt_model_handle_;
@@ -977,6 +952,8 @@ class DavinciModel {
void *args_ = nullptr;
void *args_host_ = nullptr;
void *fixed_addrs_ = nullptr;
void *hybrid_addrs_ = nullptr;
uint32_t total_hybrid_args_size_ = 0;
int64_t total_fixed_addr_size_ = 0;
std::map<const void *, void *> knonw_input_data_info_;
std::map<const void *, void *> knonw_output_data_info_;
@@ -1016,6 +993,9 @@ class DavinciModel {
// key: input_index: input is merge node; value: each gear info and each output shape
std::map<size_t, std::map<vector<int64_t>, vector<int64_t>>> merge_nodes_gear_and_real_out_shape_info_;
std::vector<std::vector<int64_t>> all_gears_info_;

std::multimap<uint32_t, uint32_t> op_id_map_;
std::vector<ProfileInfo> profile_list_;
};
} // namespace ge
#endif // GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_

+ 40
- 35
ge/graph/load/new_model_manager/model_manager.cc View File

@@ -89,6 +89,7 @@ Status ModelManager::KernelLaunchEx(aicpu::FWKAdapter::FWKOperateType op_type, u
if (op_type == aicpu::FWKAdapter::FWKOperateType::FWK_ADPT_KERNEL_DESTROY) {
std::vector<uint64_t> v_aicpu_kernel;
std::string model_key = std::to_string(session_id) + "_" + std::to_string(model_id);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);
auto iter = model_aicpu_kernel_.find(model_key);
if (iter != model_aicpu_kernel_.end()) {
GELOGD("kernel destroy session_id %lu, model_id %u.", session_id, model_id);
@@ -176,7 +177,7 @@ Status ModelManager::KernelLaunchEx(aicpu::FWKAdapter::FWKOperateType op_type, u
}

void ModelManager::DestroyAicpuSession(uint64_t session_id) {
std::lock_guard<std::mutex> lock(sess_ids_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);
auto it = sess_ids_.find(session_id);
if (it == sess_ids_.end()) {
GELOGI("The session: %lu not created.", session_id);
@@ -205,7 +206,7 @@ void ModelManager::DestroyAicpuSession(uint64_t session_id) {
}

ge::Status ModelManager::DestroyAicpuSessionForInfer(uint32_t model_id) {
std::lock_guard<std::mutex> lock(map_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);
auto hybrid_davinci_model = hybrid_model_map_.find(model_id);
if (hybrid_davinci_model != hybrid_model_map_.end()) {
uint64_t session_id = hybrid_davinci_model->second->GetSessionId();
@@ -215,8 +216,8 @@ ge::Status ModelManager::DestroyAicpuSessionForInfer(uint32_t model_id) {

auto it = model_map_.find(model_id);
if (it == model_map_.end()) {
GELOGE(GE_EXEC_MODEL_ID_INVALID, "model id %u does not exists.", model_id);
return GE_EXEC_MODEL_ID_INVALID;
GELOGE(ACL_ERROR_GE_EXEC_MODEL_ID_INVALID, "model id %u does not exists.", model_id);
return ACL_ERROR_GE_EXEC_MODEL_ID_INVALID;
}
uint64_t session_id = it->second->GetSessionId();
DestroyAicpuSession(session_id);
@@ -225,7 +226,7 @@ ge::Status ModelManager::DestroyAicpuSessionForInfer(uint32_t model_id) {

ge::Status ModelManager::DestroyAicpuKernel(uint64_t session_id, uint32_t model_id) {
GELOGD("destroy aicpu kernel in session_id %lu, model_id %u.", session_id, model_id);
std::lock_guard<std::mutex> lock(map_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);
std::string model_key = std::to_string(session_id) + "_" + std::to_string(model_id);
if (model_aicpu_kernel_.find(model_key) != model_aicpu_kernel_.end()) {
Status ret = KernelLaunchEx(aicpu::FWKAdapter::FWKOperateType::FWK_ADPT_KERNEL_DESTROY, session_id, model_id);
@@ -238,7 +239,7 @@ ge::Status ModelManager::DestroyAicpuKernel(uint64_t session_id, uint32_t model_
}

ge::Status ModelManager::CreateAicpuKernel(uint64_t session_id, uint32_t model_id, uint64_t kernel_id) {
std::lock_guard<std::mutex> lock(map_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);
std::vector<uint64_t> v_aicpu_kernel;
std::string model_key = std::to_string(session_id) + "_" + std::to_string(model_id);
if (model_aicpu_kernel_.find(model_key) != model_aicpu_kernel_.end()) {
@@ -250,7 +251,7 @@ ge::Status ModelManager::CreateAicpuKernel(uint64_t session_id, uint32_t model_i
}

ModelManager::~ModelManager() {
std::lock_guard<std::mutex> lock(map_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);
model_map_.clear();
model_aicpu_kernel_.clear();
cust_aicpu_so_.clear();
@@ -358,18 +359,18 @@ Status ModelManager::LoadModelOnline(uint32_t &model_id, const shared_ptr<ge::Ge

void ModelManager::InsertModel(uint32_t id, std::shared_ptr<DavinciModel> &davinci_model) {
GE_CHK_BOOL_EXEC(davinci_model != nullptr, return, "davinci_model ptr is null, id: %u", id);
std::lock_guard<std::mutex> lock(map_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);
model_map_[id] = davinci_model;
}

void ModelManager::InsertModel(uint32_t id, shared_ptr<hybrid::HybridDavinciModel> &hybrid_model) {
GE_CHK_BOOL_EXEC(hybrid_model != nullptr, return, "hybrid_model ptr is null, id: %u", id);
std::lock_guard<std::mutex> lock(map_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);
hybrid_model_map_[id] = hybrid_model;
}

Status ModelManager::DeleteModel(uint32_t id) {
std::lock_guard<std::mutex> lock(map_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);

auto it = model_map_.find(id);
auto hybrid_model_it = hybrid_model_map_.find(id);
@@ -384,22 +385,22 @@ Status ModelManager::DeleteModel(uint32_t id) {
} else if (hybrid_model_it != hybrid_model_map_.end()) {
(void)hybrid_model_map_.erase(hybrid_model_it);
} else {
GELOGE(GE_EXEC_MODEL_ID_INVALID, "model id %u does not exists.", id);
return GE_EXEC_MODEL_ID_INVALID;
GELOGE(ACL_ERROR_GE_EXEC_MODEL_ID_INVALID, "model id %u does not exists.", id);
return ACL_ERROR_GE_EXEC_MODEL_ID_INVALID;
}

return SUCCESS;
}

std::shared_ptr<DavinciModel> ModelManager::GetModel(uint32_t id) {
std::lock_guard<std::mutex> lock(map_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);

auto it = model_map_.find(id);
return (it == model_map_.end()) ? nullptr : it->second;
}

std::shared_ptr<hybrid::HybridDavinciModel> ModelManager::GetHybridModel(uint32_t id) {
std::lock_guard<std::mutex> lock(map_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);

auto it = hybrid_model_map_.find(id);
return (it == hybrid_model_map_.end()) ? nullptr : it->second;
@@ -902,7 +903,7 @@ Status ModelManager::GetInputOutputDescInfo(const uint32_t model_id, vector<Inpu
}

std::shared_ptr<DavinciModel> davinci_model = GetModel(model_id);
GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, GE_EXEC_MODEL_ID_INVALID,
GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, ACL_ERROR_GE_EXEC_MODEL_ID_INVALID,
"GetInputOutputDescInfo Failed, Invalid model id %u!", model_id);

davinci_model->SetModelDescVersion(new_model_desc);
@@ -970,8 +971,9 @@ Status ModelManager::GetUserDesignateShapeOrder(const uint32_t model_id,
}

Status ModelManager::GetCurShape(const uint32_t model_id, std::vector<int64_t> &batch_info, int32_t &dynamic_type) {
std::shared_ptr<DavinciModel> davinci_model = GetModel(model_id);
GE_CHECK_NOTNULL(davinci_model);
auto davinci_model = GetModel(model_id);
GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, ACL_ERROR_GE_EXEC_MODEL_ID_INVALID,
"GetCurShape Failed, Invalid Model ID %u!", model_id);
davinci_model->GetCurShape(batch_info, dynamic_type);
return SUCCESS;
}
@@ -984,7 +986,8 @@ Status ModelManager::GetModelAttr(uint32_t model_id, std::vector<string> &dynami
}

std::shared_ptr<DavinciModel> davinci_model = GetModel(model_id);
GE_CHECK_NOTNULL(davinci_model);
GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, ACL_ERROR_GE_EXEC_MODEL_ID_INVALID,
"GetModelAttr Failed, Invalid Model ID %u!", model_id);
davinci_model->GetModelAttr(dynamic_output_shape_info);
return SUCCESS;
}
@@ -994,9 +997,8 @@ Status ModelManager::GetInputOutputDescInfoForZeroCopy(const uint32_t model_id,
std::vector<uint32_t> &inputFormats,
std::vector<uint32_t> &outputFormats) {
std::shared_ptr<DavinciModel> davinci_model = GetModel(model_id);
GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, PARAM_INVALID, "GetInputOutputDescInfo Failed, Invalid model id %u!",
model_id);

GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, ACL_ERROR_GE_EXEC_MODEL_ID_INVALID,
"GetInputOutputDescInfo Failed, Invalid model id %u!", model_id);
return davinci_model->GetInputOutputDescInfoForZeroCopy(input_desc, output_desc, inputFormats, outputFormats);
}

@@ -1011,18 +1013,14 @@ Status ModelManager::GetInputOutputDescInfoForZeroCopy(const uint32_t model_id,
Status ModelManager::GetAIPPInfo(const uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info) {
std::shared_ptr<DavinciModel> davinci_model = GetModel(model_id);
GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, ACL_ERROR_GE_EXEC_MODEL_ID_INVALID,
"GetAIPPInfo failed, invalid model_id is %u.",
model_id);

"GetAIPPInfo failed, invalid model_id is %u.", model_id);
return davinci_model->GetAIPPInfo(index, aipp_info);
}

Status ModelManager::GetAippType(uint32_t model_id, uint32_t index, InputAippType &type, size_t &aipp_index) {
std::shared_ptr<DavinciModel> davinci_model = GetModel(model_id);
GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, ACL_ERROR_GE_EXEC_MODEL_ID_INVALID,
"GetAIPPInfo failed, invalid model_id is %u.",
model_id);

"GetAIPPInfo failed, invalid model_id is %u.", model_id);
return davinci_model->GetAippType(index, type, aipp_index);
}

@@ -1055,7 +1053,15 @@ Status ModelManager::LoadModelOffline(uint32_t &model_id, const ModelData &model
mmTimespec timespec = mmGetTickCount();

ModelHelper model_helper;
Status ret = model_helper.LoadModel(model);
Status ret = model_helper.LoadRootModel(model);
if (model_helper.GetModelType()) {
bool is_shape_unknown = false;
GE_CHK_STATUS_RET(model_helper.GetGeRootModel()->CheckIsUnknownShape(is_shape_unknown),
"CheckIsUnknownShape failed, model id:%u", model_id);
if (is_shape_unknown || GetContext().GetHostExecFlag()) {
return DoLoadHybridModelOnline(model_id, model_helper.GetGeRootModel(), listener);
}
}
if (ret != SUCCESS) {
GELOGE(ret, "load model failed.");
return ret;
@@ -1069,8 +1075,8 @@ Status ModelManager::LoadModelOffline(uint32_t &model_id, const ModelData &model
GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "Make shared failed");
return ACL_ERROR_GE_MEMORY_ALLOCATION;
} catch (...) {
GELOGE(INTERNAL_ERROR, "Make shared failed since other exception raise");
return INTERNAL_ERROR;
GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "Make shared failed since other exception raise");
return ACL_ERROR_GE_MEMORY_ALLOCATION;
}
ret = davinci_model->Assign(ge_model);
if (ret != SUCCESS) {
@@ -1082,7 +1088,7 @@ Status ModelManager::LoadModelOffline(uint32_t &model_id, const ModelData &model
int32_t device_id = 0;
rtError_t rt_ret = rtGetDevice(&device_id);
if (rt_ret != RT_ERROR_NONE || device_id < 0) {
GELOGE(RT_FAILED, "Call rtGetDevice failed, ret = 0x%X, device_id = %d.", rt_ret, device_id);
GELOGE(rt_ret, "Call rtGetDevice failed, ret = 0x%X, device_id = %d.", rt_ret, device_id);
return RT_ERROR_TO_GE_STATUS(rt_ret);
}
davinci_model->SetDeviceId(device_id);
@@ -1214,7 +1220,7 @@ Status ModelManager::ExecuteModel(uint32_t model_id, rtStream_t stream, bool asy

std::shared_ptr<DavinciModel> davinci_model = GetModel(model_id);
GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, ACL_ERROR_GE_EXEC_MODEL_ID_INVALID,
"Invalid model id %u, check weather model has been loaded or not.", model_id);
"Invalid model id %u, check whether model has been loaded or not.", model_id);

if (davinci_model->NeedDestroyAicpuKernel()) {
GELOGI("Start to destroy specified aicpu kernel.");
@@ -1237,7 +1243,7 @@ Status ModelManager::ExecuteModel(uint32_t model_id, rtStream_t stream, bool asy
}

Status ModelManager::CreateAicpuSession(uint64_t session_id) {
std::lock_guard<std::mutex> lock(sess_ids_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);
auto it = sess_ids_.find(session_id);
// never been created by any model
if (it == sess_ids_.end()) {
@@ -1456,8 +1462,7 @@ void ModelManager::GenModelId(uint32_t *id) {
if (id == nullptr) {
return;
}

std::lock_guard<std::mutex> lock(map_mutex_);
std::lock_guard<std::recursive_mutex> lock(map_mutex_);
*id = ++max_model_id_;
}



+ 1
- 2
ge/graph/load/new_model_manager/model_manager.h View File

@@ -353,8 +353,7 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ModelManager {
std::map<uint32_t, std::shared_ptr<hybrid::HybridDavinciModel>> hybrid_model_map_;
std::map<std::string, std::vector<uint64_t>> model_aicpu_kernel_;
uint32_t max_model_id_;
std::mutex map_mutex_;
std::mutex sess_ids_mutex_;
std::recursive_mutex map_mutex_;
std::mutex session_id_create_mutex_;
static::std::mutex exeception_infos_mutex_;
uint64_t session_id_bias_;


+ 58
- 74
ge/graph/load/new_model_manager/task_info/kernel_task_info.cc View File

@@ -90,20 +90,18 @@ Status KernelTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davinci
fusion_op_info_.op_index = context.op_index(); fusion_op_info_.original_op_names = original_op_names;
fusion_op_info_.op_name = op_desc_->GetName());

string session_graph_model_id;
davinci_model_->GetUniqueId(op_desc_, session_graph_model_id);
// get bin_file_key
const char *bin_file_key = davinci_model_->GetRegisterStub(op_desc_->GetName(), session_graph_model_id);
// new aicpu kernel(rtCpuKernelLaunch) no need to check function
if (kernel_type_ == ccKernelType::CCE_AI_CORE) {
rtError_t rt_ret;
rt_ret = rtGetFunctionByName(const_cast<char *>(kernel_def.stub_func().c_str()), &stub_func_);
rtError_t rt_ret = rtGetFunctionByName(const_cast<char *>(kernel_def.stub_func().c_str()), &stub_func_);
GE_IF_BOOL_EXEC(rt_ret != RT_ERROR_NONE, GELOGE(RT_FAILED, "execute rtGetFunctionByName failed. stub_func: %s",
kernel_def.stub_func().c_str());
return RT_ERROR_TO_GE_STATUS(rt_ret););
} else if (kernel_type_ == ccKernelType::TE) {
rtError_t rt_ret;
rt_ret = rtGetFunctionByName(bin_file_key, &stub_func_);
// get bin_file_key
string session_graph_model_id;
davinci_model_->GetUniqueId(op_desc_, session_graph_model_id);
const char *bin_file_key = davinci_model_->GetRegisterStub(op_desc_->GetName(), session_graph_model_id);
rtError_t rt_ret = rtGetFunctionByName(bin_file_key, &stub_func_);
GE_IF_BOOL_EXEC(rt_ret != RT_ERROR_NONE,
GELOGE(RT_FAILED, "execute rtGetFunctionByName failed. bin_file_key: %s", bin_file_key);
return RT_ERROR_TO_GE_STATUS(rt_ret););
@@ -372,7 +370,11 @@ Status KernelTaskInfo::SuperKernelDistribute() {
Status KernelTaskInfo::Distribute() {
GELOGD("KernelTaskInfo Distribute Start.");
if (davinci_model_->IsKnownNode()) {
args_ = davinci_model_->GetCurrentArgsAddr(args_offset_);
if (kernel_type_ == ccKernelType::TE) {
args_ = davinci_model_->GetCurrentArgsAddr(args_offset_);
} else if (kernel_type_ == ccKernelType::AI_CPU || kernel_type_ == ccKernelType::CUST_AI_CPU) {
args_ = davinci_model_->GetCurrentHybridArgsAddr(hybrid_args_offset_);
}
GELOGI("Known node %s args addr %p, offset %u.", op_desc_->GetName().c_str(), args_, args_offset_);
}
rtError_t rt_ret = RT_ERROR_NONE;
@@ -428,36 +430,31 @@ Status KernelTaskInfo::UpdateArgs() {
const RuntimeParam &rts_param = davinci_model_->GetRuntimeParam();
vector<void *> input_data_addrs = ModelUtils::GetInputDataAddrs(rts_param, op_desc_);
vector<void *> output_data_addrs = ModelUtils::GetOutputDataAddrs(rts_param, op_desc_);
vector<void *> workspace_data_addrs = ModelUtils::GetWorkspaceDataAddrs(rts_param, op_desc_);

vector<void *> io_addrs;
if (!op_desc_->HasAttr(ATTR_DYNAMIC_SHAPE_FIXED_ADDR)) {
io_addrs.insert(io_addrs.end(), input_data_addrs.begin(), input_data_addrs.end());
io_addrs.insert(io_addrs.end(), output_data_addrs.begin(), output_data_addrs.end());
io_addrs.insert(io_addrs.end(), input_data_addrs.begin(), input_data_addrs.end());
io_addrs.insert(io_addrs.end(), output_data_addrs.begin(), output_data_addrs.end());
if (kernel_type_ == ccKernelType::TE) {
vector<void *> workspace_data_addrs = ModelUtils::GetWorkspaceDataAddrs(rts_param, op_desc_);
io_addrs.insert(io_addrs.end(), workspace_data_addrs.begin(), workspace_data_addrs.end());
} else {
string peer_input_name;
if (AttrUtils::GetStr(op_desc_, ATTR_DYNAMIC_SHAPE_FIXED_ADDR, peer_input_name)) {
uint32_t output_index = davinci_model_->GetFixedAddrOutputIndex(peer_input_name);
if (output_index > output_data_addrs.size()) {
GELOGE(FAILED, "The output data addr size[%zu] and output index[%u] are inconsistent.",
output_data_addrs.size(), output_index);
return FAILED;
}
io_addrs.insert(io_addrs.end(), input_data_addrs.begin(), input_data_addrs.end());
for (size_t i = 0; i < output_data_addrs.size(); ++i) {
if (i == output_index) {
void *fixed_addr = davinci_model_->GetCurrentFixedAddr(fixed_addr_offset_);
io_addrs.emplace_back(fixed_addr);
continue;
}
io_addrs.emplace_back(output_data_addrs[i]);
}
io_addrs.insert(io_addrs.end(), workspace_data_addrs.begin(), workspace_data_addrs.end());
davinci_model_->SetTotalIOAddrs(io_addrs);
} else if (kernel_type_ == ccKernelType::AI_CPU || kernel_type_ == ccKernelType::CUST_AI_CPU) {
davinci_model_->UpdateKnownZeroCopyAddr(io_addrs);
uintptr_t io_addr = reinterpret_cast<uintptr_t>(args_addr.get()) + sizeof(aicpu::AicpuParamHead);
auto addrs_size = sizeof(uint64_t) * io_addrs.size();
errno_t sec_ret = memcpy_s(reinterpret_cast<void *>(io_addr), addrs_size, io_addrs.data(), addrs_size);
if (sec_ret != EOK) {
GELOGE(FAILED, "memcpy failed, ret: %d", sec_ret);
return FAILED;
}
// copy args to device
rtError_t rt_ret = rtMemcpy(args_, args_size_, args_addr.get(), args_size_, RT_MEMCPY_HOST_TO_DEVICE);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rt api(rtMemcpy) failed, ret: 0x%X", rt_ret);
return RT_ERROR_TO_GE_STATUS(rt_ret);
}
}

davinci_model_->SetTotalIOAddrs(io_addrs);
GELOGI("KernelTaskInfo::UpdateArgs success.");
return SUCCESS;
}
@@ -533,33 +530,18 @@ Status KernelTaskInfo::UpdateL2Data(const domi::KernelDef &kernel_def) {
}

Status KernelTaskInfo::CalculateArgs(const domi::TaskDef &task_def, DavinciModel *davinci_model) {
domi::KernelDef kernel_def = task_def.kernel();
uint32_t args_size = kernel_def.args_size();
args_offset_ = davinci_model->GetTotalArgsSize();
davinci_model->SetTotalArgsSize(args_size);
GELOGI("kernel task name , args_size %u, args_offset %u", args_size, args_offset_);

// get opcontext stored in model
const domi::KernelDef &kernel_def = task_def.kernel();
const domi::KernelContext &context = kernel_def.context();
// get opdesc
op_desc_ = davinci_model->GetOpByIndex(context.op_index());
GE_CHECK_NOTNULL(op_desc_);
// alloc fixed addr
string peer_input_name;
if (AttrUtils::GetStr(op_desc_, ATTR_DYNAMIC_SHAPE_FIXED_ADDR, peer_input_name) && !peer_input_name.empty()) {
uint32_t output_index = davinci_model->GetFixedAddrOutputIndex(peer_input_name);
if (output_index > op_desc_->GetOutputsSize()) {
GELOGE(FAILED, "The output size[%zu] and output index[%u] are inconsistent.", op_desc_->GetOutputsSize(),
output_index);
return FAILED;
}
fixed_addr_offset_ = davinci_model->GetFixedAddrsSize(peer_input_name);
auto tensor_desc = op_desc_->GetOutputDesc(output_index);
int64_t tensor_size = 0;
GE_CHK_STATUS(TensorUtils::GetSize(tensor_desc, tensor_size));
davinci_model->SetTotalFixedAddrsSize(peer_input_name, tensor_size);
GELOGI("Calculate stream switch task args , tensor size is %ld, fixed addr offset %ld", tensor_size,
fixed_addr_offset_);
kernel_type_ = static_cast<ccKernelType>(context.kernel_type());
if (kernel_type_ == ccKernelType::TE) {
uint32_t args_size = kernel_def.args_size();
args_offset_ = davinci_model->GetTotalArgsSize();
davinci_model->SetTotalArgsSize(args_size);
GELOGI("kernel task name , args_size %u, args_offset %u", args_size, args_offset_);
} else if (kernel_type_ == ccKernelType::AI_CPU || kernel_type_ == ccKernelType::CUST_AI_CPU) {
hybrid_args_offset_ = davinci_model->GetHybridArgsSize();
davinci_model->SetHybridArgsSize(kernel_def.args_size());
GELOGI("aicpu kernel task name , args_size %u, args_offset %u", kernel_def.args_size(), hybrid_args_offset_);
}
return SUCCESS;
}
@@ -888,7 +870,7 @@ Status KernelTaskInfo::InitAicpuTask(uint32_t op_index, const domi::KernelDef &k
}

// copy args to new host memory
std::unique_ptr<uint8_t[]> args_addr(new (std::nothrow) uint8_t[args_size_]);
args_addr = std::unique_ptr<uint8_t[]>(new (std::nothrow) uint8_t[args_size_]);
GE_PRINT_DYNAMIC_MEMORY(new, "cce task physical memory.", sizeof(uint8_t) * args_size_)
errno_t sec_ret = memcpy_s(args_addr.get(), args_size_, kernel_def.args().data(), args_size_);
if (sec_ret != EOK) {
@@ -896,8 +878,23 @@ Status KernelTaskInfo::InitAicpuTask(uint32_t op_index, const domi::KernelDef &k
return FAILED;
}

const RuntimeParam &rts_param = davinci_model_->GetRuntimeParam();
auto aicpu_param_head = reinterpret_cast<aicpu::AicpuParamHead *>(args_addr.get());
const auto &ext_info = kernel_def.kernel_ext_info();
auto init_ret = InitAicpuTaskExtInfo(ext_info);
if (init_ret != SUCCESS) {
GELOGE(init_ret, "Init aicpu task ext info failed, ext_info size=%zu", ext_info.size());
return init_ret;
}
GELOGI("Node[%s] type[%s] kernel_ext_info size=%zu, aicpu_ext_info_addr_=%p", op_desc_->GetName().c_str(),
op_desc_->GetType().c_str(), ext_info.size(), aicpu_ext_info_addr_);

aicpu_param_head->extInfoAddr = reinterpret_cast<uintptr_t>(aicpu_ext_info_addr_);
aicpu_param_head->extInfoLength = static_cast<uintptr_t>(ext_info.size());

if (davinci_model_->IsKnownNode()) {
return SUCCESS;
}
const RuntimeParam &rts_param = davinci_model_->GetRuntimeParam();
vector<void *> input_addrs = ModelUtils::GetInputDataAddrs(rts_param, op_desc);
vector<void *> output_addrs = ModelUtils::GetOutputDataAddrs(rts_param, op_desc);
vector<void *> io_addrs;
@@ -914,19 +911,6 @@ Status KernelTaskInfo::InitAicpuTask(uint32_t op_index, const domi::KernelDef &k
}
}

auto aicpu_param_head = reinterpret_cast<aicpu::AicpuParamHead *>(args_addr.get());
const auto &ext_info = kernel_def.kernel_ext_info();
auto init_ret = InitAicpuTaskExtInfo(ext_info);
if (init_ret != SUCCESS) {
GELOGE(init_ret, "Init aicpu task ext info failed, ext_info size=%zu", ext_info.size());
return init_ret;
}
GELOGI("Node[%s] type[%s] kernel_ext_info size=%zu, aicpu_ext_info_addr_=%p", op_desc_->GetName().c_str(),
op_desc_->GetType().c_str(), ext_info.size(), aicpu_ext_info_addr_);

aicpu_param_head->extInfoAddr = reinterpret_cast<uintptr_t>(aicpu_ext_info_addr_);
aicpu_param_head->extInfoLength = static_cast<uintptr_t>(ext_info.size());

// malloc device memory for args
rtError_t rt_ret = rtMalloc(static_cast<void **>(&args_), args_size_, RT_MEMORY_HBM);
if (rt_ret != RT_ERROR_NONE) {


+ 2
- 0
ge/graph/load/new_model_manager/task_info/kernel_task_info.h View File

@@ -159,7 +159,9 @@ class KernelTaskInfo : public TaskInfo {
OpDescPtr op_desc_;
DavinciModel *davinci_model_;
uint32_t args_offset_ = 0;
uint32_t hybrid_args_offset_ = 0;
int64_t fixed_addr_offset_ = 0;
std::unique_ptr<uint8_t[]> args_addr = nullptr;
bool call_save_dump_ = false;

// aicpu ext_info device mem


+ 3
- 7
ge/graph/load/new_model_manager/zero_copy_offset.cc View File

@@ -183,22 +183,18 @@ void ZeroCopyOffset::SetOutputOutsideAddrs(const int64_t &input_offset, const bo
addr_count_ = out_count;
}

bool ZeroCopyOffset::SetOutsideAddrsValue(ZeroCopyTask &zero_copy_task, void *outside_addr, void *args, size_t offset) {
void ZeroCopyOffset::SetOutsideAddrsValue(ZeroCopyTask &zero_copy_task, void *outside_addr, void *args, size_t offset) {
const auto addr_val = reinterpret_cast<uintptr_t>(outside_addr);
bool set_batch_label_flag = false;
for (uint32_t out_count = 0; out_count < GetAddrCount(); ++out_count) {
auto &addrs_mapping_list = GetOutsideAddrs();
auto args_addrs = addrs_mapping_list[out_count].find(outside_addr);
if (args_addrs != addrs_mapping_list[out_count].end()) {
auto args_addrs = outside_addrs_[out_count].find(outside_addr);
if (args_addrs != outside_addrs_[out_count].end()) {
GE_CHK_STATUS(zero_copy_task.SetTaskArgsOffset(addr_val, offset), "Input args invalid.");
void *args_val = static_cast<uint8_t *>(args) + offset;
args_addrs->second.push_back(args_val);
GELOGD("[ZCPY] set copy input: virtual_addr: 0x%lx, task_addr: %p, args: %p, offset: %zu.", addr_val, args_val,
args, offset);
set_batch_label_flag = true;
}
}
return set_batch_label_flag;
}

} // namespace ge

+ 1
- 1
ge/graph/load/new_model_manager/zero_copy_offset.h View File

@@ -51,7 +51,7 @@ class ZeroCopyOffset {
const OpDescPtr &op_desc, const size_t &idx, bool &fusion_flag);
void SetOutputOutsideAddrs(const int64_t &input_offset, const bool &fusion_flag, void *addr,
std::vector<void *> &tensor_addrs);
bool SetOutsideAddrsValue(ZeroCopyTask &zero_copy_task, void *outside_addr, void *args, size_t offset);
void SetOutsideAddrsValue(ZeroCopyTask &zero_copy_task, void *outside_addr, void *args, size_t offset);

// basic_addr of l2-fusion
void *GetBasicAddr() const { return basic_addr_; }


+ 2
- 49
ge/graph/load/new_model_manager/zero_copy_task.cc View File

@@ -22,8 +22,6 @@
#include "common/ge_compiler_options.h"

namespace ge {
const char *const kDefaultBatchLable = "Batch_default";

ZeroCopyTask::ZeroCopyTask(const string &name, uint8_t *args, size_t size)
: name_(name), args_addr_(args), args_size_(size), is_updated_(false) {}

@@ -66,68 +64,23 @@ void ZeroCopyTask::SetOriginalArgs(const void *info, size_t size) {
const uint8_t *data = static_cast<const uint8_t *>(info);
args_info_.assign(data, data + size);

GELOGI("[ZCPY] %s set info from virtual_addr: %p, args_addr: %p, args size: %zu, info size: %zu", name_.c_str(), info,
GELOGI("[ZCPY] %s set original args info: %p, args_addr: %p, args size: %zu, info size: %zu", name_.c_str(), info,
args_addr_, args_size_, size);
}

/**
* @ingroup ge
* @brief Check is dynamic batch node.
* @param [in] addr: virtual address value from Op.
* @param [in] data: data buffer from user.
* @param [in] batch_addrs: dynamic batch addr info.
* @param [in] batch_label: batch label.
* @return: true / false
*/
bool ZeroCopyTask::CheckDynamicBatch(const map<string, set<uintptr_t>> &batch_addrs, const string &batch_label,
uintptr_t addr) {
// Used for dynamic batch / resolution scene
set<uintptr_t> dynamic_input_addrs;
auto dynamic_input_iter = batch_addrs.find(batch_label);
if (dynamic_input_iter != batch_addrs.end()) {
dynamic_input_addrs = dynamic_input_iter->second;
}

set<uintptr_t> fix_input_addrs;
auto fix_input_iter = batch_addrs.find(kDefaultBatchLable);
if (fix_input_iter != batch_addrs.end()) {
fix_input_addrs = fix_input_iter->second;
}

if (fix_input_addrs.empty()) {
if (!dynamic_input_addrs.empty() && dynamic_input_addrs.find(addr) == dynamic_input_addrs.end()) {
return false;
}
} else {
if (!dynamic_input_addrs.empty() && dynamic_input_addrs.find(addr) == dynamic_input_addrs.end() &&
fix_input_addrs.find(addr) == fix_input_addrs.end()) {
return false;
}
}

return true;
}

/**
* @ingroup ge
* @brief Set user data addr to Task param.
* @param [in] addr: virtual address value from Op.
* @param [in] buffer_addr: real_data_buffer_addr from user.
* @param [in] batch_addrs: dynamic batch addr info.
* @param [in] batch_label: batch label.
* @return: void
*/
Status ZeroCopyTask::UpdateTaskParam(uintptr_t addr, void *buffer_addr, const map<string, set<uintptr_t>> &batch_addrs,
const string &batch_label) {
Status ZeroCopyTask::UpdateTaskParam(uintptr_t addr, void *buffer_addr) {
auto iter = task_addr_offset_.find(addr);
if (iter != task_addr_offset_.end()) {
auto &cur_pair = *iter;
uint8_t *args_info = args_info_.data();
for (auto offset : cur_pair.second) {
if (!CheckDynamicBatch(batch_addrs, batch_label, reinterpret_cast<uintptr_t>(args_addr_ + offset))) {
continue;
}

auto dst_addr = static_cast<uint8_t *>(buffer_addr);
GELOGI("[ZCPY] %s update task, args_addr: %p, size: %zu, offset: %zu, virtual_addr: 0x%lx, user_data_addr: %p",
name_.c_str(), args_addr_, args_size_, offset, addr, buffer_addr);


+ 1
- 7
ge/graph/load/new_model_manager/zero_copy_task.h View File

@@ -67,12 +67,9 @@ class ZeroCopyTask {
* @brief Set user data addr to Task param.
* @param [in] addr: virtual address value from Op.
* @param [in] buffer_addr: data buffer_addr from user.
* @param [in] batch_addrs: dynamic batch addr info.
* @param [in] batch_label: batch label.
* @return: 0 SUCCESS / others FAILED
*/
ge::Status UpdateTaskParam(uintptr_t addr, void *buffer_addr, const map<string, set<uintptr_t>> &batch_addrs,
const string &batch_label);
ge::Status UpdateTaskParam(uintptr_t addr, void *buffer_addr);

/**
* @ingroup ge
@@ -91,9 +88,6 @@ class ZeroCopyTask {
return batch_label_;
}

protected:
bool CheckDynamicBatch(const map<string, set<uintptr_t>> &batch_addrs, const string &batch_label, uintptr_t addr);

private:
const string name_;



+ 9
- 22
ge/graph/manager/graph_manager.cc View File

@@ -23,25 +23,15 @@
#include <sstream>
#include <string>
#include <thread>
#include <utility>

#include "common/ge/ge_util.h"
#include "common/math/math_util.h"
#include "common/thread_pool.h"
#include "common/util.h"
#include "external/graph/types.h"
#include "framework/common/debug/ge_log.h"
#include "framework/common/ge_inner_error_codes.h"
#include "framework/common/ge_types.h"
#include "analyzer/analyzer.h"
#include "graph/common/ge_call_wrapper.h"
#include "graph/common/local_context.h"
#include "graph/common/transop_util.h"
#include "graph/debug/ge_attr_define.h"
#include "graph/ge_context.h"
#include "graph/ge_global_options.h"
#include "graph/ge_local_context.h"
#include "graph/manager/graph_mem_allocator.h"
#include "graph/manager/util/rt_context_util.h"
#include "graph/partition/dynamic_shape_partition.h"
#include "graph/passes/enter_pass.h"
@@ -61,8 +51,6 @@
#include "graph/passes/dimension_adjust_pass.h"
#include "graph/passes/dimension_compute_pass.h"
#include "graph/passes/flow_ctrl_pass.h"
#include "graph/passes/hccl_group_pass.h"
#include "graph/passes/hccl_memcpy_pass.h"
#include "graph/passes/identity_pass.h"
#include "graph/passes/input_output_connection_identify_pass.h"
#include "graph/passes/iterator_op_pass.h"
@@ -77,7 +65,6 @@
#include "graph/passes/permute_pass.h"
#include "graph/passes/prune_pass.h"
#include "graph/passes/ref_identity_delete_op_pass.h"
#include "graph/passes/replace_with_empty_const_pass.h"
#include "graph/passes/reshape_recovery_pass.h"
#include "graph/passes/reshape_remove_pass.h"
#include "graph/passes/same_transdata_breadth_fusion_pass.h"
@@ -87,13 +74,11 @@
#include "graph/passes/switch_logic_remove_pass.h"
#include "graph/passes/switch_to_stream_switch_pass.h"
#include "graph/passes/transop_breadth_fusion_pass.h"
#include "graph/passes/transop_depth_fusion_pass.h"
#include "graph/passes/transop_nearby_allreduce_fusion_pass.h"
#include "graph/passes/transop_symmetry_elimination_pass.h"
#include "graph/passes/transop_without_reshape_fusion_pass.h"
#include "graph/passes/transpose_transdata_pass.h"
#include "graph/passes/variable_op_pass.h"
#include "graph/passes/variable_prepare_op_pass.h"
#include "graph/passes/variable_ref_delete_op_pass.h"
#include "graph/passes/variable_ref_useless_control_out_delete_pass.h"
#include "graph/passes/end_of_sequence_add_control_pass.h"
@@ -104,9 +89,6 @@
#include "graph/passes/memcpy_addr_async_pass.h"
#include "graph/build/label_allocator.h"
#include "graph/utils/tensor_adapter.h"
#include "graph/utils/type_utils.h"
#include "graph/graph_util.h"
#include "graph/types.h"
#include "inc/pass_manager.h"
#include "init/gelib.h"
#include "ir_build/atc_ir_common.h"
@@ -550,7 +532,7 @@ Status GraphManager::OptimizeSubGraphWithMultiThreads(ComputeGraphPtr compute_gr
(void) AttrUtils::SetStr(subgraph->GetSubGraph(), ATTR_NAME_OP_COMPILE_STRATEGY, op_compile_strategy);
}
std::future<Status> f = executor.commit(GraphManager::ProcessSubGraphWithMultiThreads, this,
compute_graph->GetGraphID(), subgraph, compute_graph, session_id,
compute_graph->GetGraphID(), subgraph, compute_graph->GetName(), session_id,
GetThreadLocalContext());
if (!f.valid()) {
GELOGE(FAILED, "Future is invalid");
@@ -565,7 +547,7 @@ Status GraphManager::OptimizeSubGraphWithMultiThreads(ComputeGraphPtr compute_gr
(void) AttrUtils::SetStr(subgraph->GetSubGraph(), ATTR_NAME_OP_COMPILE_STRATEGY, op_compile_strategy);
}
std::future<Status> f = executor.commit(GraphManager::ProcessSubGraphWithMultiThreads, this,
compute_graph->GetGraphID(), subgraph, compute_graph, session_id,
compute_graph->GetGraphID(), subgraph, compute_graph->GetName(), session_id,
GetThreadLocalContext());
if (!f.valid()) {
GELOGE(FAILED, "Future is invalid");
@@ -2471,7 +2453,8 @@ Status GraphManager::CheckAndReleaseMemory(const GeModelPtr &ge_model, const Gra

Status GraphManager::ProcessSubGraphWithMultiThreads(GraphManager *graph_manager, GraphId root_graph_id,
const SubGraphInfoPtr &sub_graph_info_ptr,
const ComputeGraphPtr &compute_graph, uint64_t session_id,
const std::string &root_graph_name,
uint64_t session_id,
const GEThreadLocalContext &ge_context) {
if (sub_graph_info_ptr != nullptr && graph_manager != nullptr) {
GetContext().SetSessionId(session_id);
@@ -2488,9 +2471,13 @@ Status GraphManager::ProcessSubGraphWithMultiThreads(GraphManager *graph_manager
GELOGE(FAILED, "Failed to set attr ATTR_NAME_ROOT_GRAPH_ID for subgraph, graph_id: %u.", root_graph_id);
return FAILED;
}
if (!AttrUtils::SetStr(*compute_graph_tmp, ATTR_NAME_ROOT_GRAPH_NAME, root_graph_name)) {
GELOGE(FAILED, "Failed to set attr ATTR_NAME_ROOT_GRAPH_NAME for subgraph, \
root_graph_name: %s.", root_graph_name.c_str());
return FAILED;
}
compute_graph_tmp->SetSessionID(session_id);
Status ret = graph_manager->GetCompilerStages(root_graph_id).optimizer.OptimizeSubGraph(compute_graph_tmp,
compute_graph,
engine_name);
if (ret != SUCCESS) {
GELOGE(ret, "SubGraph optimize Failed %s", engine_name.c_str());


+ 2
- 1
ge/graph/manager/graph_manager.h View File

@@ -219,7 +219,8 @@ class GraphManager {

static Status ProcessSubGraphWithMultiThreads(GraphManager *graph_manager, GraphId root_graph_id,
const SubGraphInfoPtr &sub_graph_info_ptr,
const ComputeGraphPtr &compute_graph, uint64_t session_id,
const std::string &root_graph_name,
uint64_t session_id,
const GEThreadLocalContext &ge_context);
Status ParseInputsDims(const std::vector<InputTensorInfo> &input_tensor);
void ParseInputsDimsForData(const std::vector<InputTensorInfo> &input_tensor);


+ 0
- 3
ge/graph/manager/graph_mem_allocator.cc View File

@@ -16,10 +16,7 @@

#include "graph/manager/graph_mem_allocator.h"

#include <set>
#include <string>

#include "framework/common/debug/ge_log.h"
#include "graph/manager/graph_caching_allocator.h"
#include "graph/manager/rdma_pool_allocator.h"



+ 1
- 1
ge/graph/manager/memory_api.cc View File

@@ -63,7 +63,7 @@ Status RdmaRemoteRegister(const std::vector<HostVarInfo> &var_info, rtMemType_t
});

auto hcom_remote_mem_register =
(HcclResult(*)(const MemRegisterAddr *, uint32_t))dlsym(handle, "hcom_remote_access_mem_register");
(HcclResult(*)(const MemRegisterAddr *, uint32_t))dlsym(handle, "HcomRegRemoteAccessMem");
if (hcom_remote_mem_register == nullptr) {
GELOGE(FAILED, "Failed to invoke hcom_remote_mem_register function.");
return FAILED;


+ 1
- 5
ge/graph/optimize/graph_optimize.cc View File

@@ -76,7 +76,7 @@ void AddNodeInputProperty(ComputeGraphPtr &compute_graph) {
}
}

Status GraphOptimize::OptimizeSubGraph(ComputeGraphPtr &compute_graph, const ComputeGraphPtr &parent_graph,
Status GraphOptimize::OptimizeSubGraph(ComputeGraphPtr &compute_graph,
const std::string &engine_name) {
if (compute_graph == nullptr) {
GELOGE(GE_GRAPH_OPTIMIZE_COMPUTE_GRAPH_NULL, "[OptimizeSubGraph]: compute_graph is nullptr.");
@@ -106,10 +106,6 @@ Status GraphOptimize::OptimizeSubGraph(ComputeGraphPtr &compute_graph, const Com
for (auto iter = graph_optimizer.begin(); iter != graph_optimizer.end(); ++iter) {
Status ret = (*iter)->OptimizeFusedGraphAfterGraphSlice(*(compute_graph));
if (ret != SUCCESS) {
auto root_graph = ge::GraphUtils::FindRootGraph(parent_graph);
if (root_graph != nullptr) {
ErrorManager::GetInstance().SaveMstuneCompileFailedMsg(root_graph->GetName());
}
GELOGE(ret, "[OptimizeSubGraph][OptimizeFusedGraphAfterGraphSlice]: graph optimize failed, ret:%d", ret);
return ret;
}


+ 1
- 2
ge/graph/optimize/graph_optimize.h View File

@@ -42,8 +42,7 @@ class GraphOptimize {
~GraphOptimize() = default;

// subgraph optimize
Status OptimizeSubGraph(ComputeGraphPtr &compute_graph, const ComputeGraphPtr &parent_graph,
const std::string &engine_name);
Status OptimizeSubGraph(ComputeGraphPtr &compute_graph, const std::string &engine_name);

// original graph optimize
Status OptimizeOriginalGraph(ComputeGraphPtr &compute_graph);


+ 17
- 0
ge/graph/passes/dynamic_single_op_reset_shape_pass.cc View File

@@ -113,6 +113,17 @@ Status DynamicSingleOpResetShapePass::ResetOpShape(OpDescPtr &op_desc) {
GE_CHECK_NOTNULL(op_desc);
std::vector<int64_t> dynamic_shape_dims = {kDynamicShapeDim};
GeShape dynamic_shape(dynamic_shape_dims);
bool reset_shape_flag = false;
if (ResetInputTensorShape(op_desc, dynamic_shape, reset_shape_flag) == SUCCESS && reset_shape_flag) {
(void)ResetOutputTensorShape(op_desc, dynamic_shape);
}
return SUCCESS;
}

Status DynamicSingleOpResetShapePass::ResetInputTensorShape(OpDescPtr &op_desc, const GeShape &dynamic_shape,
bool &reset_shape_flag) {
reset_shape_flag = false;
GE_CHECK_NOTNULL(op_desc);
for (size_t i = 0; i < op_desc->GetAllInputsDesc().size(); i++) {
auto input_desc = op_desc->MutableInputDesc(static_cast<uint32_t>(i));
GE_CHECK_NOTNULL(input_desc);
@@ -125,8 +136,14 @@ Status DynamicSingleOpResetShapePass::ResetOpShape(OpDescPtr &op_desc) {
if (CheckIfConstInput(input_desc)) {
continue;
}
reset_shape_flag = true;
input_desc->SetShape(dynamic_shape);
}
return SUCCESS;
}

Status DynamicSingleOpResetShapePass::ResetOutputTensorShape(OpDescPtr &op_desc, const GeShape &dynamic_shape) {
GE_CHECK_NOTNULL(op_desc);
for (size_t i = 0; i < op_desc->GetAllOutputsDesc().size(); i++) {
auto output_desc = op_desc->MutableOutputDesc(static_cast<uint32_t>(i));
GE_CHECK_NOTNULL(output_desc);


+ 2
- 0
ge/graph/passes/dynamic_single_op_reset_shape_pass.h View File

@@ -27,6 +27,8 @@ class DynamicSingleOpResetShapePass : public GraphPass {

private:
Status ResetOpShape(OpDescPtr &op_desc);
Status ResetInputTensorShape(OpDescPtr &op_desc, const GeShape &dynamic_shape, bool &reset_shape_flag);
Status ResetOutputTensorShape(OpDescPtr &op_desc, const GeShape &dynamic_shape);
Status CheckAllAicpuNodes(const ComputeGraphPtr &graph, bool &is_not_aicpu);
bool CheckIfConstInput(const GeTensorDescPtr &input_tensor_desc);
};


+ 4
- 8
ge/graph/passes/switch_to_stream_switch_pass.cc View File

@@ -17,13 +17,8 @@
#include "graph/passes/switch_to_stream_switch_pass.h"
#include <stack>
#include "common/ge/ge_util.h"
#include "framework/common/debug/ge_log.h"
#include "framework/common/debug/log.h"
#include "framework/common/ge_inner_error_codes.h"
#include "framework/common/types.h"
#include "ge/ge_api_types.h"
#include "graph/common/omg_util.h"
#include "graph/debug/ge_attr_define.h"
#include "graph/ge_context.h"
#include "graph/utils/type_utils.h"

@@ -125,12 +120,13 @@ void SwitchToStreamSwitchPass::MarkCycleDependence(
if (visited.count(tmp_node) > 0) {
continue;
}
GELOGD("MarkCycleDependence: tmp_node=%s.", tmp_node->GetName().c_str());
for (const NodePtr &out_node : tmp_node->GetOutAllNodes()) {
if (switch_nodes.find(out_node) == switch_nodes.end()) {
out_nodes.push(out_node);
continue;
}
GELOGD("MarkCycleDependence: tmp_node=%s, switch_node=%s.",
tmp_node->GetName().c_str(), out_node->GetName().c_str());
GE_IF_BOOL_EXEC(SetCyclicDependenceFlag(out_node) != SUCCESS,
GELOGW("set cyclic dependence attr failed."); return );
auto map_iter = switch_cyclic_map_.find(out_node);
@@ -602,7 +598,7 @@ Status SwitchToStreamSwitchPass::AddConstNode(const ComputeGraphPtr &graph, cons
///
Status SwitchToStreamSwitchPass::ModifySwitchInCtlEdges(const NodePtr &switch_node, const NodePtr &cast_node,
const std::set<NodePtr> &same_cond_switch) {
GELOGI("ModifySwitchInCtlEdges: switch_node=%s, active_node=%s", switch_node->GetName().c_str(),
GELOGD("ModifySwitchInCtlEdges: switch_node=%s, active_node=%s", switch_node->GetName().c_str(),
cast_node->GetName().c_str());
std::string orig_switch_name = switch_node->GetName();
OpDescPtr switch_desc = switch_node->GetOpDesc();
@@ -653,7 +649,7 @@ Status SwitchToStreamSwitchPass::ModifySwitchInCtlEdges(const NodePtr &switch_no
///
Status SwitchToStreamSwitchPass::ModifySwitchOutCtlEdges(const NodePtr &switch_node, const NodePtr &stream_switch,
const NodePtr &active_node) {
GELOGI("ModifySwitchOutCtlEdges: switch_node=%s, stream_switch=%s, active_node=%s", switch_node->GetName().c_str(),
GELOGD("ModifySwitchOutCtlEdges: switch_node=%s, stream_switch=%s, active_node=%s", switch_node->GetName().c_str(),
stream_switch->GetName().c_str(), active_node->GetName().c_str());
auto find_res = switch_node_map_.find(switch_node);
GE_IF_BOOL_EXEC(find_res == switch_node_map_.end(), {


+ 0
- 40
ge/graph/preprocess/graph_preprocess.cc View File

@@ -18,7 +18,6 @@
#include <map>
#include <set>
#include <string>
#include <utility>
#include "common/formats/format_transfers/format_transfer_fractal_nz.h"
#include "common/formats/format_transfers/format_transfer_fractal_z.h"
#include "common/formats/format_transfers/format_transfer_nchw_nc1hwc0.h"
@@ -28,13 +27,9 @@
#include "common/helper/model_helper.h"
#include "common/math/math_util.h"
#include "common/op/ge_op_utils.h"
#include "common/util/error_manager/error_manager.h"
#include "common/formats/utils/formats_trans_utils.h"
#include "framework/common/debug/ge_log.h"
#include "graph/common/ge_call_wrapper.h"
#include "graph/common/local_context.h"
#include "graph/common/transop_util.h"
#include "graph/debug/ge_attr_define.h"
#include "graph/ge_context.h"
#include "graph/shape_refiner.h"
#include "graph/manager/graph_var_manager.h"
@@ -44,29 +39,21 @@
#include "graph/passes/aicpu_constant_folding_pass.h"
#include "graph/passes/assert_pass.h"
#include "graph/passes/assign_pass.h"
#include "graph/passes/base_pass.h"
#include "graph/passes/common_subexpression_elimination_pass.h"
#include "graph/passes/cond_pass.h"
#include "graph/passes/cond_remove_pass.h"
#include "graph/passes/constant_folding_pass.h"
#include "graph/passes/constant_fuse_same_pass.h"
#include "graph/passes/control_trigger_pass.h"
#include "graph/passes/dimension_adjust_pass.h"
#include "graph/passes/dimension_compute_pass.h"
#include "graph/passes/dropout_pass.h"
#include "graph/passes/enter_pass.h"
#include "graph/passes/flow_ctrl_pass.h"
#include "graph/passes/for_pass.h"
#include "graph/passes/get_original_format_pass.h"
#include "graph/passes/guarantee_const_pass.h"
#include "graph/passes/hccl_group_pass.h"
#include "graph/passes/hccl_memcpy_pass.h"
#include "graph/passes/identity_pass.h"
#include "graph/passes/infershape_pass.h"
#include "graph/passes/iterator_op_pass.h"
#include "graph/passes/merge_pass.h"
#include "graph/passes/net_output_pass.h"
#include "graph/passes/next_iteration_pass.h"
#include "graph/passes/no_use_reshape_remove_pass.h"
#include "graph/passes/parallel_concat_start_op_pass.h"
#include "graph/passes/placeholder_with_default_pass.h"
@@ -81,45 +68,18 @@
#include "graph/passes/shape_operate_op_remove_pass.h"
#include "graph/passes/snapshot_pass.h"
#include "graph/passes/stop_gradient_pass.h"
#include "graph/passes/subgraph_pass.h"
#include "graph/passes/switch_data_edges_bypass.h"
#include "graph/passes/switch_dead_branch_elimination.h"
#include "graph/passes/switch_logic_remove_pass.h"
#include "graph/passes/merge_to_stream_merge_pass.h"
#include "graph/passes/switch_to_stream_switch_pass.h"
#include "graph/passes/attach_stream_label_pass.h"
#include "graph/passes/unused_const_pass.h"
#include "graph/passes/unused_op_remove_pass.h"
#include "graph/passes/var_is_initialized_op_pass.h"
#include "graph/passes/variable_prepare_op_pass.h"
#include "graph/preprocess/insert_op/util_insert_aipp_op.h"
#include "graph/types.h"
#include "graph/utils/tensor_utils.h"
#include "graph/utils/type_utils.h"
#include "inc/pass_manager.h"
#include "init/gelib.h"
#include "multi_batch_copy_graph.h"
#include "runtime/dev.h"

#include "graph/passes/dimension_adjust_pass.h"
#include "graph/passes/link_gen_mask_nodes_pass.h"
#include "graph/passes/permute_pass.h"
#include "graph/passes/reshape_remove_pass.h"
#include "graph/passes/same_transdata_breadth_fusion_pass.h"
#include "graph/passes/transop_breadth_fusion_pass.h"
#include "graph/passes/transop_depth_fusion_pass.h"
#include "graph/passes/transop_nearby_allreduce_fusion_pass.h"

#include "graph/passes/cast_remove_pass.h"
#include "graph/passes/data_pass.h"
#include "graph/passes/transop_without_reshape_fusion_pass.h"
#include "graph/passes/transpose_transdata_pass.h"
#include "graph/passes/variable_op_pass.h"
#include "graph/passes/variable_prepare_op_pass.h"
#include "graph/passes/variable_ref_delete_op_pass.h"
#include "graph/passes/mark_agnostic_pass.h"


namespace ge {
namespace {
static std::map<std::string, ge::DataType> output_type_str_to_datatype = {


+ 7
- 5
ge/graph/preprocess/multi_batch_copy_graph.cc View File

@@ -1407,11 +1407,13 @@ Status MultiBatchGraphCopyer::InsertIdentityAfterSwitchN() {
}

Status ProcessMultiBatch(ComputeGraphPtr &graph) {
const char *multi_batch_with_case = std::getenv("MULTI_BATCH_WITH_CASE");
if (multi_batch_with_case != nullptr) {
PassManager pass_manager;
GE_CHK_STATUS_RET(pass_manager.AddPass("MultiBatchClonePass", new (std::nothrow) MultiBatchClonePass));
return pass_manager.Run(graph);
if (GetLocalOmgContext().dynamic_node_type.empty()) {
const char *multi_batch_with_switchn = std::getenv("MULTI_BATCH_WITH_SWITCHN");
if (multi_batch_with_switchn == nullptr) {
PassManager pass_manager;
GE_CHK_STATUS_RET(pass_manager.AddPass("MultiBatchClonePass", new (std::nothrow) MultiBatchClonePass));
return pass_manager.Run(graph);
}
}
if (!GetLocalOmgContext().need_multi_batch) {
GELOGI("No need to process_multi for no_train graph.");


+ 34
- 22
ge/hybrid/executor/node_state.cc View File

@@ -18,6 +18,7 @@
#include <chrono>
#include "framework/common/debug/log.h"
#include "graph/compute_graph.h"
#include "graph/utils/tensor_utils.h"
#include "hybrid_execution_context.h"
#include "subgraph_context.h"

@@ -35,29 +36,31 @@ ShapeInferenceState::ShapeInferenceState(const NodeItem &node_item) : node_item(
this->num_pending_shapes_);
}

Status ShapeInferenceState::UpdateInputShape(int idx,
const GeShape &ori_shape,
const GeShape &shape) {
Status ShapeInferenceState::UpdateInputShape(int idx, const GeTensorDesc &target) {
if (node_item.IsInputShapeStatic(idx)) {
GELOGD("[%s] Trying to update static shape, idx = %d. old shape = [%s], new shape = [%s]",
node_item.NodeName().c_str(),
idx,
node_item.MutableInputDesc(idx)->GetShape().ToString().c_str(),
shape.ToString().c_str());
target.GetShape().ToString().c_str());
return SUCCESS;
}

GELOGD("[%s] Update input shape [%d] with Shape: [%s] and OriginalShape: [%s]",
int64_t tensor_size = -1;
(void) TensorUtils::GetSize(target, tensor_size);
GELOGD("[%s] Update input shape [%d] with Shape: [%s] and OriginalShape: [%s], size = %ld",
node_item.NodeName().c_str(),
idx,
shape.ToString().c_str(),
ori_shape.ToString().c_str());
target.GetShape().ToString().c_str(),
target.GetOriginShape().ToString().c_str(),
tensor_size);

std::lock_guard<std::mutex> lk(mu_);
auto tensor_desc = node_item.MutableInputDesc(idx);
GE_CHECK_NOTNULL(tensor_desc);
tensor_desc->SetShape(shape);
tensor_desc->SetOriginShape(ori_shape);
tensor_desc->SetShape(target.GetShape());
tensor_desc->SetOriginShape(target.GetOriginShape());
(void) TensorUtils::SetSize(*tensor_desc, tensor_size);
if (--num_pending_shapes_ == 0) {
ready_cv_.notify_all();
}
@@ -110,24 +113,24 @@ Status ShapeInferenceState::AwaitShapesReady(const GraphExecutionContext &contex
for (auto &p : shape_futures) {
auto idx = p.first;
auto &future = p.second;
GeShape shape;
GeShape ori_shape;
RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] Start", idx);
GE_CHK_STATUS_RET(future.Get(ori_shape, shape),
"[%s] Get shape failed. index = %u",
node_item.NodeName().c_str(),
idx);
auto src_tensor_desc = future.GetTensorDesc();
GE_CHECK_NOTNULL(src_tensor_desc);
RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] End", idx);

GELOGD("[%s] Update input shape [%u] with shape: [%s] and ori_shape: [%s]",
node_item.NodeName().c_str(),
idx,
shape.ToString().c_str(),
ori_shape.ToString().c_str());
auto input_desc = node_item.MutableInputDesc(idx);
GE_CHECK_NOTNULL(input_desc);
input_desc->SetShape(std::move(shape));
input_desc->SetOriginShape(ori_shape);
int64_t tensor_size = -1;
(void) TensorUtils::GetSize(*src_tensor_desc, tensor_size);
GELOGD("[%s] Update input shape [%u] with shape: [%s] and ori_shape: [%s], index = %zu",
node_item.NodeName().c_str(),
idx,
src_tensor_desc->GetShape().ToString().c_str(),
src_tensor_desc->GetOriginShape().ToString().c_str(),
tensor_size);
input_desc->SetShape(src_tensor_desc->GetShape());
input_desc->SetOriginShape(src_tensor_desc->GetOriginShape());
(void) TensorUtils::SetSize(*input_desc, tensor_size);
}

return SUCCESS;
@@ -190,5 +193,14 @@ Status ShapeFuture::Get(GeShape &ori_shape, GeShape &shape) {
GELOGD("Get shape from %s:%u. shape = [%s]", src_node_->GetName().c_str(), src_index_, shape.ToString().c_str());
return SUCCESS;
}

GeTensorDescPtr ShapeFuture::GetTensorDesc() {
GELOGD("Start to wait node: %s for getting shape", src_node_->GetName().c_str());
if (!subgraph_context_->Await(src_node_)) {
GELOGE(INTERNAL_ERROR, "cancelled");
return nullptr;
}
return src_node_->GetOpDesc()->MutableOutputDesc(src_index_);
}
} // namespace hybrid
} // namespace ge

+ 2
- 1
ge/hybrid/executor/node_state.h View File

@@ -35,6 +35,7 @@ class ShapeFuture {
ShapeFuture(NodePtr src_node, uint32_t src_index, SubgraphContext *subgraph_context);
~ShapeFuture() = default;
Status Get(GeShape &ori_shape, GeShape &shape);
GeTensorDescPtr GetTensorDesc();

private:
NodePtr src_node_;
@@ -45,7 +46,7 @@ class ShapeFuture {
struct ShapeInferenceState {
explicit ShapeInferenceState(const NodeItem &node_item);

Status UpdateInputShape(int idx, const GeShape &ori_shape, const GeShape &shape);
Status UpdateInputShape(int idx, const GeTensorDesc &tensor_desc);

void UpdateInputShapeFuture(int idx, ShapeFuture &&future);



+ 1
- 8
ge/hybrid/executor/subgraph_executor.cc View File

@@ -96,7 +96,7 @@ Status SubgraphExecutor::InitInputsForUnknownShape(const std::vector<TensorValue
GE_CHECK_NOTNULL(tensor_desc);
auto node_state = subgraph_context_->GetOrCreateNodeState(input_node);
GE_CHECK_NOTNULL(node_state);
node_state->GetShapeInferenceState().UpdateInputShape(0, tensor_desc->GetOriginShape(), tensor_desc->GetShape());
node_state->GetShapeInferenceState().UpdateInputShape(0, *tensor_desc);
}
}

@@ -268,13 +268,6 @@ Status SubgraphExecutor::PrepareForExecution(GraphExecutionContext *ctx, NodeSta
} else {
node_state.SetKernelTask(node_item.kernel_task);
}

GELOGD("[%s] Start to invoke CalcOpRunningParam.", node_item.NodeName().c_str());
RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[CalcOpRunningParam] Start");
GE_CHK_STATUS_RET(NodeExecutorManager::GetInstance().CalcOpRunningParam(*node_item.node),
"[%s] Failed to invoke CalcOpRunningParam.", node_item.NodeName().c_str());
RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[CalcOpRunningParam] End");
GELOGD("[%s] Done invoking CalcOpRunningParam successfully.", node_item.NodeName().c_str());
return SUCCESS;
}



+ 5
- 4
ge/hybrid/executor/worker/execution_engine.cc View File

@@ -20,12 +20,9 @@
#include "graph/utils/tensor_adapter.h"
#include "graph/debug/ge_attr_define.h"
#include "hybrid/node_executor/node_executor.h"
#include "common/dump/dump_manager.h"
#include "hybrid/executor//worker//shape_inference_engine.h"
#include "common/dump/dump_op.h"
#include "common/types.h"
#include "common/ge_types.h"
#include "common/profiling/profiling_manager.h"
#include "runtime/base.h"

namespace ge {
namespace hybrid {
@@ -348,6 +345,10 @@ Status NodeDoneCallback::OnNodeDone() {
}

GE_CHK_STATUS_RET_NOLOG(PrepareConstInputs(node_item));
if (node_item.shape_inference_type == DEPEND_SHAPE_RANGE || node_item.shape_inference_type == DEPEND_COMPUTE) {
// update output tensor sizes
GE_CHK_STATUS_RET_NOLOG(ShapeInferenceEngine::CalcOutputTensorSizes(node_item));
}
// PropagateOutputs for type == DEPEND_COMPUTE
if (node_item.shape_inference_type == DEPEND_COMPUTE) {
if (graph_context_->trace_enabled) {


+ 103
- 18
ge/hybrid/executor/worker/shape_inference_engine.cc View File

@@ -17,9 +17,15 @@
#include "hybrid/executor/worker/shape_inference_engine.h"
#include "graph/shape_refiner.h"
#include "graph/utils/node_utils.h"
#include "graph/utils/tensor_utils.h"
#include "graph/utils/type_utils.h"
#include "common/math/math_util.h"
#include "hybrid/node_executor/node_executor.h"

namespace ge {
namespace {
const int kAlignment = 32;
}
namespace hybrid {
ShapeInferenceEngine::ShapeInferenceEngine(GraphExecutionContext *execution_context, SubgraphContext *subgraph_context)
: execution_context_(execution_context),
@@ -40,7 +46,9 @@ Status ShapeInferenceEngine::InferShape(NodeState &node_state) {
}

if (node_item.fused_subgraph != nullptr) {
return InferShapeForSubgraph(node_item, *node_item.fused_subgraph);
GE_CHK_STATUS_RET_NOLOG(InferShapeForSubgraph(node_item, *node_item.fused_subgraph));
GE_CHK_STATUS_RET_NOLOG(CalcOutputTensorSizes(node_item));
return SUCCESS;
}

// Skip shape inference for node of type DEPEND_COMPUTE
@@ -63,21 +71,15 @@ Status ShapeInferenceEngine::InferShape(NodeState &node_state) {
std::lock_guard<std::mutex> lk(mu_);
RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] Start");
GE_CHK_STATUS_RET(ShapeRefiner::InferShapeAndTypeForRunning(node_item.node, true),
"Invoke InferShapeAndType failed.");
"Invoke InferShapeAndType failed.");
RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] End");
}
// Check again to make sure shape is valid after shape inference
if (node_item.shape_inference_type != DEPEND_SHAPE_RANGE) {
bool is_unknown_shape = false;
GE_CHK_STATUS_RET(NodeUtils::GetNodeUnknownShapeStatus(*node_item.node, is_unknown_shape),
"Failed to get shape status. node = %s",
node_item.NodeName().c_str());

GE_CHK_BOOL_RET_STATUS(!is_unknown_shape,
INTERNAL_ERROR,
"[%s] Shape is still unknown after shape inference.",
node_item.NodeName().c_str());
}
// update output tensor sizes after shape inference
// error if shape is still unknown and not of type DEPEND_SHAPE_RANGE
RECORD_COMPILE_EVENT(execution_context_, node_item.NodeName().c_str(), "[CalcOpRunningParam] Start");
GE_CHK_STATUS_RET_NOLOG(CalcOutputTensorSizes(node_item, node_item.shape_inference_type == DEPEND_SHAPE_RANGE));
RECORD_COMPILE_EVENT(execution_context_, node_item.NodeName().c_str(), "[CalcOpRunningParam] End");

GELOGD("[%s] [HybridTrace] After shape inference. Node = %s",
node_item.NodeName().c_str(),
@@ -127,8 +129,6 @@ Status ShapeInferenceEngine::PropagateOutputShapes(const NodeItem &node_item) {
// propagate each output
for (int i = 0; i < node_item.num_outputs; ++i) {
auto output_desc = node_item.op_desc->MutableOutputDesc(i);
const auto &shape = output_desc->MutableShape();
const auto &ori_shape = output_desc->GetOriginShape();
auto &output_nodes = node_item.outputs[i];

// propagate output to all sub-inputs
@@ -149,9 +149,7 @@ Status ShapeInferenceEngine::PropagateOutputShapes(const NodeItem &node_item) {
infer_state.UpdateInputShapeFuture(dst_input_index_and_node.first,
std::move(future));
} else {
GE_CHK_STATUS_RET_NOLOG(infer_state.UpdateInputShape(dst_input_index_and_node.first,
ori_shape,
shape));
GE_CHK_STATUS_RET_NOLOG(infer_state.UpdateInputShape(dst_input_index_and_node.first, *output_desc));
}
}
}
@@ -230,5 +228,92 @@ Status ShapeInferenceEngine::UpdatePeerNodeShape(const Node &node) {
}
return SUCCESS;
}

Status ShapeInferenceEngine::CanonicalizeShape(GeTensorDesc &tensor_desc,
std::vector<int64_t> &shape,
bool fallback_with_range) {
const auto &tensor_shape = tensor_desc.MutableShape();
if (tensor_shape.IsUnknownShape()) {
if (!fallback_with_range) {
GELOGE(INTERNAL_ERROR, "Output shape is still unknown after shape inference. shape = [%s]",
tensor_shape.ToString().c_str());
return INTERNAL_ERROR;
}

GELOGD("Calc output size by range");
std::vector<std::pair<int64_t, int64_t>> shape_range;
GE_CHK_GRAPH_STATUS_RET(tensor_desc.GetShapeRange(shape_range), "Failed to get shape range");
if (shape_range.size() != shape.size()) {
GELOGE(INTERNAL_ERROR, "Number of shape ranges (%zu) mismatches that of dims (%zu)",
shape_range.size(),
shape.size());
return INTERNAL_ERROR;
}

for (size_t dim_index = 0; dim_index < shape.size(); ++dim_index) {
if (shape[dim_index] == ge::UNKNOWN_DIM) {
shape[dim_index] = shape_range[dim_index].second;
}
}

GELOGD("After canonicalization, shape = [%s], before = [%s]",
GeShape(shape).ToString().c_str(),
tensor_shape.ToString().c_str());
}

return SUCCESS;
}

Status ShapeInferenceEngine::CalcTensorSize(DataType data_type,
const std::vector<int64_t> &shape,
int64_t &tensor_size) {
GELOGD("To calc tensor size by shape = [%s]", GeShape(shape).ToString().c_str());
uint32_t type_size;
if (!TypeUtils::GetDataTypeLength(data_type, type_size)) {
GELOGE(INTERNAL_ERROR, "Failed to get data type size");
return INTERNAL_ERROR;
}

tensor_size = type_size;
for (const auto &dim : shape) {
GE_CHECK_GE(dim, 0);
GE_CHK_STATUS_RET(Int64MulCheckOverflow(tensor_size, dim),
"Shape size overflow, shape = [%s]",
GeShape(shape).ToString().c_str());
tensor_size *= dim;
}

GE_CHK_STATUS_RET(CheckInt64AddOverflow(tensor_size, kAlignment - 1),
"Tensor size is too large: %ld, shape = [%s]",
tensor_size,
GeShape(shape).ToString().c_str());
tensor_size = (tensor_size + kAlignment - 1) / kAlignment * kAlignment;
return SUCCESS;
}

Status ShapeInferenceEngine::CalcOutputTensorSizes(const NodeItem &node_item, bool fallback_with_range) {
auto op_desc = node_item.GetOpDesc();
for (size_t output_index = 0; output_index < op_desc->GetOutputsSize(); ++output_index) {
auto tensor_desc = op_desc->MutableOutputDesc(output_index);
GE_CHECK_NOTNULL(tensor_desc);
const auto &shape = tensor_desc->MutableShape();
// modify on copy
auto dims = shape.GetDims();
GE_CHK_STATUS_RET(CanonicalizeShape(*tensor_desc, dims, fallback_with_range),
"[%s] Failed to canonicalize shape for output %zu",
node_item.NodeName().c_str(),
output_index);

int64_t tensor_size;
GE_CHK_STATUS_RET(CalcTensorSize(tensor_desc->GetDataType(), dims, tensor_size),
"[%s] Failed to calc tensor size for output %zu",
node_item.NodeName().c_str(),
output_index);
GELOGD("[%s] Tensor size of output %zu = %ld", node_item.NodeName().c_str(), output_index, tensor_size);
(void) TensorUtils::SetSize(*tensor_desc, tensor_size);
}

return SUCCESS;
}
} // namespace hybrid
} // namespace ge

+ 4
- 0
ge/hybrid/executor/worker/shape_inference_engine.h View File

@@ -34,7 +34,11 @@ class ShapeInferenceEngine {

Status PropagateOutputShapes(const NodeItem &node_item);

static Status CalcOutputTensorSizes(const NodeItem &node_item, bool fallback_with_range = false);

private:
static Status CanonicalizeShape(GeTensorDesc &tensor_desc, std::vector<int64_t> &shape, bool fallback_with_range);
static Status CalcTensorSize(DataType data_type, const std::vector<int64_t> &shape, int64_t &tensor_size);
static Status UpdatePeerNodeShape(const Node &node);
Status AwaitDependentNodes(NodeState &node_state);



+ 57
- 34
ge/hybrid/model/node_item.cc View File

@@ -22,6 +22,7 @@
#include "graph/debug/ge_attr_define.h"
#include "graph/utils/node_utils.h"
#include "hybrid/node_executor/node_executor.h"
#include "hybrid/executor/worker/shape_inference_engine.h"

namespace ge {
namespace hybrid {
@@ -47,7 +48,7 @@ Status ParseInputMapping(Node &node, OpDesc &op_desc, FusedSubgraph &fused_subgr
GE_CHECK_NOTNULL(dst_op_desc);
auto in_idx = node_and_anchor.second->GetIdx();
auto tensor_desc = dst_op_desc->MutableInputDesc(in_idx);
fused_subgraph.input_mapping[parent_index].emplace_back(tensor_desc);
fused_subgraph.input_mapping[static_cast<int>(parent_index)].emplace_back(tensor_desc);
GELOGD("Input[%u] mapped to [%s:%u]", parent_index, dst_op_desc->GetName().c_str(), in_idx);
}

@@ -64,7 +65,7 @@ Status ParseOutputMapping(const OpDescPtr &op_desc, FusedSubgraph &fused_subgrap
return FAILED;
}

fused_subgraph.output_mapping.emplace(parent_index, op_desc);
fused_subgraph.output_mapping.emplace(static_cast<int>(parent_index), op_desc);
return SUCCESS;
}

@@ -126,12 +127,7 @@ Status NodeItem::Create(const NodePtr &node, std::unique_ptr<NodeItem> &node_ite
return SUCCESS;
}

Status NodeItem::Init() {
GE_CHECK_LE(op_desc->GetInputsSize(), INT32_MAX);
GE_CHECK_LE(op_desc->GetOutputsSize(), INT32_MAX);
num_inputs = static_cast<int>(op_desc->GetInputsSize());
num_outputs = static_cast<int>(op_desc->GetOutputsSize());

void NodeItem::ResolveOptionalInputs() {
if (op_desc->GetAllInputsSize() != op_desc->GetInputsSize()) {
has_optional_inputs = true;
for (size_t i = 0; i < op_desc->GetAllInputsSize(); ++i) {
@@ -143,7 +139,18 @@ Status NodeItem::Init() {
}
}
}
}

Status NodeItem::InitInputsAndOutputs() {
GE_CHECK_LE(op_desc->GetInputsSize(), INT32_MAX);
GE_CHECK_LE(op_desc->GetOutputsSize(), INT32_MAX);
num_inputs = static_cast<int>(op_desc->GetInputsSize());
num_outputs = static_cast<int>(op_desc->GetOutputsSize());
ResolveOptionalInputs();
return SUCCESS;
}

Status NodeItem::ResolveDynamicState() {
(void) AttrUtils::GetBool(op_desc, ATTR_NAME_FORCE_UNKNOWN_SHAPE, is_dynamic);
GELOGD("node name = %s, is_dynamic = %d.", this->node_name.c_str(), is_dynamic);
if (!is_dynamic) {
@@ -151,38 +158,54 @@ Status NodeItem::Init() {
"[%s] Failed to get shape status.",
node->GetName().c_str());
}
return SUCCESS;
}

if (is_dynamic) {
for (int i = 0; i < num_inputs; ++i) {
const auto &input_desc = MutableInputDesc(i);
GE_CHECK_NOTNULL(input_desc);
if (input_desc->MutableShape().IsUnknownShape()) {
is_input_shape_static_.push_back(false);
} else {
num_static_input_shapes++;
is_input_shape_static_.push_back(true);
GELOGD("[%s] The shape of input[%d] is static. shape = [%s]",
NodeName().c_str(), i, input_desc->MutableShape().ToString().c_str());
}
Status NodeItem::ResolveStaticInputsAndOutputs() {
for (int i = 0; i < num_inputs; ++i) {
const auto &input_desc = MutableInputDesc(i);
GE_CHECK_NOTNULL(input_desc);
if (input_desc->MutableShape().IsUnknownShape()) {
is_input_shape_static_.push_back(false);
} else {
num_static_input_shapes++;
is_input_shape_static_.push_back(true);
GELOGD("[%s] The shape of input[%d] is static. shape = [%s]",
NodeName().c_str(), i, input_desc->MutableShape().ToString().c_str());
}
}

for (int i = 0; i < num_outputs; ++i) {
const auto &output_desc = op_desc->MutableOutputDesc(i);
GE_CHECK_NOTNULL(output_desc);
if (output_desc->MutableShape().IsUnknownShape()) {
is_output_shape_static = false;
break;
}
for (int i = 0; i < num_outputs; ++i) {
const auto &output_desc = op_desc->MutableOutputDesc(i);
GE_CHECK_NOTNULL(output_desc);
if (output_desc->MutableShape().IsUnknownShape()) {
is_output_shape_static = false;
break;
}
}

if (IsControlOp() || node_type == PARTITIONEDCALL) {
shape_inference_type = DEPEND_COMPUTE;
} else {
int32_t unknown_shape_type_val = 0;
(void) AttrUtils::GetInt(op_desc, ::ge::ATTR_NAME_UNKNOWN_SHAPE_TYPE, unknown_shape_type_val);
shape_inference_type = static_cast<UnknowShapeOpType>(unknown_shape_type_val);
}
if (is_output_shape_static) {
GE_CHK_STATUS_RET_NOLOG(ShapeInferenceEngine::CalcOutputTensorSizes(*this));
}
return SUCCESS;
}

void NodeItem::ResolveUnknownShapeType() {
if (IsControlOp() || node_type == PARTITIONEDCALL) {
shape_inference_type = DEPEND_COMPUTE;
} else {
int32_t unknown_shape_type_val = 0;
(void) AttrUtils::GetInt(op_desc, ::ge::ATTR_NAME_UNKNOWN_SHAPE_TYPE, unknown_shape_type_val);
shape_inference_type = static_cast<UnknowShapeOpType>(unknown_shape_type_val);
}
}

Status NodeItem::Init() {
GE_CHK_STATUS_RET_NOLOG(InitInputsAndOutputs());
GE_CHK_STATUS_RET_NOLOG(ResolveDynamicState());
if (is_dynamic) {
ResolveUnknownShapeType();
GE_CHK_STATUS_RET_NOLOG(ResolveStaticInputsAndOutputs());
GE_CHK_STATUS_RET(ParseFusedSubgraph(*this), "[%s] Failed to parse fused subgraph", node_name.c_str());
}



+ 5
- 0
ge/hybrid/model/node_item.h View File

@@ -103,6 +103,11 @@ struct NodeItem {
private:
explicit NodeItem(NodePtr node);
Status Init();
Status InitInputsAndOutputs();
void ResolveOptionalInputs();
Status ResolveDynamicState();
Status ResolveStaticInputsAndOutputs();
void ResolveUnknownShapeType();

std::vector<bool> is_input_shape_static_;
std::vector<uint32_t> input_desc_indices_;


+ 25
- 25
ge/hybrid/node_executor/hccl/hccl_node_executor.cc View File

@@ -42,10 +42,10 @@ Status HcclNodeTask::ExecuteAsync(TaskContext &context, std::function<void()> do
GELOGE(FAILED, "hccl handle is nullptr! ");
return FAILED;
}
auto EnqueueHcomOpertion = (HcclResult(*)(HcomOpertion, std::function<void(HcclResult status)>))dlsym(
context.handle_, "EnqueueHcomOpertion");
if (EnqueueHcomOpertion == nullptr) {
GELOGE(FAILED, "Failed to invoke EnqueueHcomOpertion hcom unknown node function.");
auto HcomExecEnqueueOperation = (HcclResult(*)(HcomOperation, std::function<void(HcclResult status)>))dlsym(
context.handle_, "HcomExecEnqueueOperation");
if (HcomExecEnqueueOperation == nullptr) {
GELOGE(FAILED, "Failed to invoke HcomExecEnqueueOperation hcom unknown node function.");
if (dlclose(context.handle_) != 0) {
GELOGW("Failed to close handle %s", dlerror());
}
@@ -70,7 +70,7 @@ Status HcclNodeTask::ExecuteAsync(TaskContext &context, std::function<void()> do
const OpDescPtr op_desc = node_item.GetOpDesc();
GE_CHECK_NOTNULL(op_desc);

HcomOpertion op_info;
HcomOperation op_info;
op_info.hcclType = op_desc->GetType();
op_info.inputPtr = inputs.empty() ? nullptr : inputs[0];
op_info.outputPtr = outputs.empty() ? nullptr : outputs[0];
@@ -96,7 +96,7 @@ Status HcclNodeTask::ExecuteAsync(TaskContext &context, std::function<void()> do
op_info.root = root_id;
auto callback = [this, op_desc](HcclResult status) {
if (status != HCCL_SUCCESS) {
GELOGE(HCCL_E_INTERNAL, "node %s call EnqueueHcomOpertion failed, ret: 0x%X", op_desc->GetName().c_str(), status);
GELOGE(HCCL_E_INTERNAL, "node %s call HcomExecEnqueueOperation failed, ret: 0x%X", op_desc->GetName().c_str(), status);
}
std::lock_guard<std::mutex> lock(this->hccl_mutex_);
this->cond_.notify_all();
@@ -110,9 +110,9 @@ Status HcclNodeTask::ExecuteAsync(TaskContext &context, std::function<void()> do
context.GetNodeName(), op_info.hcclType.c_str(), count, op_info.dataType, op_info.opType, op_info.root);
op_info.count = count;

HcclResult hccl_ret = EnqueueHcomOpertion(op_info, callback);
HcclResult hccl_ret = HcomExecEnqueueOperation(op_info, callback);
if (hccl_ret != HCCL_SUCCESS) {
GELOGE(HCCL_E_INTERNAL, "Call HcomExcutorInitialize failed, ret: 0x%X", hccl_ret);
GELOGE(HCCL_E_INTERNAL, "Call HcomExecInitialize failed, ret: 0x%X", hccl_ret);
return HCCL_E_INTERNAL;
}

@@ -213,11 +213,11 @@ Status RdmaNodeTask::ExtractTensor(TaskContext &context, vector<HcomRemoteAccess

Status RdmaNodeTask::ExecuteAsync(TaskContext &context, std::function<void()> done_callback) {
GELOGI("[%s] RdmaNodeTask::ExecuteAsync in.", context.GetNodeName());
auto EnqueueRemoteAccess =
auto HcomExecEnqueueRemoteAccess =
(HcclResult(*)(const string &, const vector<HcomRemoteAccessAddrInfo> &,
std::function<void(HcclResult status)>))dlsym(context.handle_, "EnqueueRemoteAccess");
if (EnqueueRemoteAccess == nullptr) {
GELOGE(FAILED, "Failed to invoke EnqueueRemoteAccess hcom unknown node function.");
std::function<void(HcclResult status)>))dlsym(context.handle_, "HcomExecEnqueueRemoteAccess");
if (HcomExecEnqueueRemoteAccess == nullptr) {
GELOGE(FAILED, "Failed to invoke HcomExecEnqueueRemoteAccess hcom unknown node function.");
if (dlclose(context.handle_) != 0) {
GELOGW("Failed to close handle %s", dlerror());
}
@@ -228,15 +228,15 @@ Status RdmaNodeTask::ExecuteAsync(TaskContext &context, std::function<void()> do

auto callback = [this](HcclResult status) {
if (status != HCCL_SUCCESS) {
GELOGE(HCCL_E_INTERNAL, "Call HcomExcutorInitialize failed, ret: 0x%X", status);
GELOGE(HCCL_E_INTERNAL, "Call HcomExecInitialize failed, ret: 0x%X", status);
}
std::lock_guard<std::mutex> lock(this->hccl_mutex_);
this->cond_.notify_all();
GELOGI("rdma callback success.");
};
HcclResult hccl_ret = EnqueueRemoteAccess(context.GetNodeItem().NodeType(), addr_infos, callback);
HcclResult hccl_ret = HcomExecEnqueueRemoteAccess(context.GetNodeItem().NodeType(), addr_infos, callback);
if (hccl_ret != HCCL_SUCCESS) {
GELOGE(HCCL_E_INTERNAL, "Call HcomExcutorInitialize failed, ret: 0x%X", hccl_ret);
GELOGE(HCCL_E_INTERNAL, "Call HcomExecInitialize failed, ret: 0x%X", hccl_ret);
return HCCL_E_INTERNAL;
}

@@ -307,32 +307,32 @@ Status HcclNodeExecutor::Initialize() {
GELOGE(GE_PLGMGR_SO_NOT_EXIST, "Failed in dlopen %s! ", dlerror());
return FAILED;
}
auto HcomExcutorInitialize = (HcclResult(*)())dlsym(handle_, "HcomExcutorInitialize");
if (HcomExcutorInitialize == nullptr) {
GELOGE(FAILED, "Failed to invoke HcomExcutorInitialize hcom unknown node function.");
auto HcomExecInitialize = (HcclResult(*)())dlsym(handle_, "HcomExecInitialize");
if (HcomExecInitialize == nullptr) {
GELOGE(FAILED, "Failed to invoke HcomExecInitialize hcom unknown node function.");
return FAILED;
}
HcclResult hccl_ret = HcomExcutorInitialize();
HcclResult hccl_ret = HcomExecInitialize();
if (hccl_ret == HCCL_E_PTR) {
GELOGI("Hccl comm is null, hcom executor initialize is not required.");
} else if (hccl_ret == HCCL_SUCCESS) {
GELOGI("Hcom executor initialize success.");
} else {
GELOGE(FAILED, "Call HcomExcutorInitialize failed, ret: 0x%X", hccl_ret);
GELOGE(FAILED, "Call HcomExecInitialize failed, ret: 0x%X", hccl_ret);
return FAILED;
}
return SUCCESS;
}

Status HcclNodeExecutor::Finalize() {
auto HcomExcutorFinalize = (HcclResult(*)())dlsym(handle_, "HcomExcutorFinalize");
if (HcomExcutorFinalize == nullptr) {
GELOGE(FAILED, "Failed to invoke HcomExcutorFinalize hcom unknown node function.");
auto HcomExecFinalize = (HcclResult(*)())dlsym(handle_, "HcomExecFinalize");
if (HcomExecFinalize == nullptr) {
GELOGE(FAILED, "Failed to invoke HcomExecFinalize hcom unknown node function.");
return FAILED;
}
HcclResult hccl_ret = HcomExcutorFinalize();
HcclResult hccl_ret = HcomExecFinalize();
if (hccl_ret != HCCL_SUCCESS) {
GELOGE(FAILED, "Call HcomExcutorFinalize failed, ret: 0x%X", hccl_ret);
GELOGE(FAILED, "Call HcomExecFinalize failed, ret: 0x%X", hccl_ret);
return FAILED;
}
// dlclose file handle


+ 22
- 0
ge/hybrid/node_executor/task_context.cc View File

@@ -148,6 +148,10 @@ Status TaskContext::AllocateWorkspaces() {
}

Status TaskContext::RegisterCallback(const std::function<void()> &callback_fun) const {
if (callback_fun == nullptr) {
GELOGW("[%s] Callback is NULL", GetNodeName());
return SUCCESS;
}
auto ret = execution_context_->callback_manager->RegisterCallback(callback_fun);
if (ret != SUCCESS) {
GELOGE(ret, "[%s] Failed to register callback", GetNodeName());
@@ -384,6 +388,20 @@ const char *TaskContext::GetNodeName() const {
return node_item_->NodeName().c_str();
}

void TaskContext::ReleaseInputsAndOutputs() {
for (int i = 0; i < node_item_->num_inputs; ++i) {
auto tensor = inputs_start_ + i;
tensor->Destroy();
GELOGD("[%s] Tensor of input[%d] released", GetNodeName(), i);
}

for (int i = 0; i < node_item_->num_outputs; ++i) {
auto tensor = outputs_start_ + i;
tensor->Destroy();
GELOGD("[%s] Tensor of output[%d] released", GetNodeName(), i);
}
}

void TaskContext::ReleaseInput(int index) {
auto input_tensor = MutableInput(index);
if (input_tensor != nullptr) {
@@ -456,5 +474,9 @@ Status TaskContext::TryExecuteCallback(const function<void()> &callback_fun) con
const DumpProperties &TaskContext::GetDumpProperties() const {
return execution_context_->dump_properties;
}

bool TaskContext::NeedCallback() {
return node_item_->has_observer || IsDumpEnabled() || execution_context_->profiling_level > 0;
}
} // namespace hybrid
} // namespace ge

+ 2
- 0
ge/hybrid/node_executor/task_context.h View File

@@ -50,6 +50,8 @@ class TaskContext {
ConstGeTensorDescPtr GetOutputDesc(int index) const;
GeTensorDescPtr MutableInputDesc(int index) const;
GeTensorDescPtr MutableOutputDesc(int index) const;
void ReleaseInputsAndOutputs();
bool NeedCallback();
void ReleaseInput(int index);
const TensorValue *GetInput(int index) const;
const TensorValue *GetOutput(int index) const;


+ 13
- 0
ge/ir_build/atc_ir_common.cc View File

@@ -63,6 +63,19 @@ vector<string> SplitInputShape(const std::string &input_shape) {
}
} // namespace

Status CheckInputFormat(const string &input_format) {
if (input_format.empty()) {
return ge::SUCCESS;
}
if (!ge::TypeUtils::IsFormatValid(input_format.c_str())) {
ErrorManager::GetInstance().ATCReportErrMessage(
"E10001", {"parameter", "value", "reason"}, {"--input_format", input_format, "input format is invalid!"});
GELOGE(ge::PARAM_INVALID, "input format [%s] is invalid!", input_format.c_str());
return ge::PARAM_INVALID;
}
return ge::SUCCESS;
}

bool CheckDynamicBatchSizeInputShapeValid(unordered_map<string, vector<int64_t>> shape_map,
std::string &dynamic_batch_size) {
int32_t size = 0;


+ 1
- 0
ge/ir_build/atc_ir_common.h View File

@@ -75,6 +75,7 @@ Status CheckInsertOpConfParamValid(const std::string insert_op_conf);
Status CheckDisableReuseMemoryParamValid(const std::string disable_reuse_memory);
Status CheckEnableSingleStreamParamValid(const std::string enable_single_stream);
Status CheckImplmodeParamValid(const std::string &optypelist_for_implmode, std::string &op_select_implmode);
Status CheckInputFormat(const string &input_format);
void PrintOptionMap(std::map<std::string, std::string> &options, std::string tips);
void EraseEndSemicolon(std::string &param);
}


+ 4
- 43
ge/ir_build/ge_ir_build.cc View File

@@ -227,7 +227,6 @@ class Impl {
~Impl() { (void)generator_.Finalize(); };
graphStatus CheckOptions(const std::map<std::string, std::string> &options);
graphStatus CreateInputsForIRBuild(const ge::Graph &graph, vector<ge::GeTensor> &inputs);
graphStatus GetDefaultInputShape(const Graph &graph, string &default_shape);
graphStatus UpdateDataOpAttr(const Graph &graph);
graphStatus Init(const Graph &graph, const std::map<std::string, std::string> &options);
graphStatus BuildModel(const Graph &graph, const std::map<std::string, std::string> &options,
@@ -318,42 +317,10 @@ graphStatus Impl::CheckOptions(const std::map<std::string, std::string> &options
if (it != options_.end() && (CheckDisableReuseMemoryParamValid(it->second) != GRAPH_SUCCESS)) {
return GRAPH_PARAM_INVALID;
}
return GRAPH_SUCCESS;
}

graphStatus Impl::GetDefaultInputShape(const Graph &graph, string &default_shape) {
auto compute_graph = ge::GraphUtils::GetComputeGraph(graph);
GE_CHECK_NOTNULL(compute_graph);
for (ge::NodePtr &input_node : compute_graph->GetDirectNode()) {
GE_CHECK_NOTNULL(input_node);
ge::OpDescPtr op = input_node->GetOpDesc();
GE_CHECK_NOTNULL(op);
if (op->GetType() == DATA) {
string data_op_name = op->GetName();
GELOGD("Data op name: %s, data op inputDesc size: %zu", data_op_name.c_str(), op->GetAllInputsDesc().size());
ge::GeTensorDesc tensor = op->GetInputDesc(0);
ge::GeShape data_shape = tensor.GetShape();
GELOGD("Data op get shape from InputDesc in ge ir graph.");

string tmp_shape_str;
const std::vector<int64_t> &tmp_shape = data_shape.GetDims();
if (tmp_shape.empty()) {
GELOGW("Data op: %s has zero shape dims!", data_op_name.c_str());
} else {
tmp_shape_str += data_op_name + ":";
for (auto tmp_dim : tmp_shape) {
tmp_shape_str += to_string((long)tmp_dim) + ",";
}
tmp_shape_str = tmp_shape_str.substr(0, tmp_shape_str.size() - 1);
tmp_shape_str += ";";
default_shape += tmp_shape_str;
}

GELOGD("Data op name: %s, data shape: %s.", data_op_name.c_str(), tmp_shape_str.c_str());
}
// Check Input Format
if (options_.find(kInputFormat) != options_.end()) {
return CheckInputFormat(options_[kInputFormat]);
}
default_shape = (default_shape.empty() ? default_shape : default_shape.substr(0, default_shape.size() - 1));
GELOGI("Get default data op shape: %s from ge ir graph.", default_shape.c_str());
return GRAPH_SUCCESS;
}

@@ -378,13 +345,7 @@ graphStatus Impl::Init(const Graph &graph, const std::map<std::string, std::stri
GE_CHK_BOOL_RET_STATUS_NOLOG(ge::CheckLogParamValidAndSetLogLevel(log) == 0, GRAPH_PARAM_INVALID);
options_[ge::ir_option::LOG_LEVEL] = log;

string input_shape;
if (options_.find("input_shape") == options_.end()) {
GE_CHK_BOOL_EXEC(GetDefaultInputShape(graph, input_shape) == ge::SUCCESS,
return ge::GRAPH_PARAM_INVALID, "Get default data op shape from graph failed!");
} else {
input_shape = options_["input_shape"];
}
string input_shape = options_.find("input_shape") == options_.end() ? "" : options_["input_shape"];
string input_format = options_.find("input_format") == options_.end() ? "" : options_["input_format"];
string net_format = options_.find("net_format") == options_.end() ? "" : options_["net_format"];
string dynamic_batch_size = options_.find(ge::ir_option::DYNAMIC_BATCH_SIZE) == options_.end()


+ 2
- 0
ge/proto/op_mapping_info.proto View File

@@ -15,6 +15,7 @@ message Output {
int32 original_output_data_type = 7;
int32 original_output_format = 8;
uint64 size = 9;
Shape origin_shape = 10;
}

message Input {
@@ -23,6 +24,7 @@ message Input {
Shape shape = 3;
uint64 address = 4;
uint64 size = 5;
Shape origin_shape = 6;
}

enum BufferType {


+ 1
- 1
ge/single_op/single_op.cc View File

@@ -39,7 +39,7 @@ size_t GetAlignedSize(size_t size) {
}

Status ProfilingTaskInfo(OpTask *op_task) {
if (!ProfilingManager::Instance().ProfilingModelExecuteOn()) {
if (!ProfilingManager::Instance().ProfilingModelLoadOn()) {
return SUCCESS;
}



+ 10
- 6
ge/single_op/task/op_task.cc View File

@@ -112,8 +112,9 @@ Status OpTask::GetProfilingArgs(std::string &model_name, std::string &op_name, u
Status OpTask::UpdateRunInfo(const vector<GeTensorDesc> &input_desc, const vector<GeTensorDesc> &output_desc) {
return UNSUPPORTED;
}
Status OpTask::UpdateArgTable(const SingleOpModelParam &param) {
auto addresses = BuildTaskUtils::GetAddresses(op_desc_, param);

Status OpTask::DoUpdateArgTable(const SingleOpModelParam &param, bool keep_workspace) {
auto addresses = BuildTaskUtils::GetAddresses(op_desc_, param, keep_workspace);
auto all_addresses = BuildTaskUtils::JoinAddresses(addresses);
uintptr_t *arg_base = nullptr;
size_t arg_num = 0;
@@ -132,6 +133,10 @@ Status OpTask::UpdateArgTable(const SingleOpModelParam &param) {
return SUCCESS;
}

Status OpTask::UpdateArgTable(const SingleOpModelParam &param) {
return DoUpdateArgTable(param, true);
}

Status OpTask::LaunchKernel(const vector<GeTensorDesc> &input_desc,
const vector<DataBuffer> &input_buffers,
vector<GeTensorDesc> &output_desc,
@@ -792,10 +797,9 @@ Status AiCpuTask::LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
return SUCCESS;
}

Status AiCpuTask::UpdateArgTable(const SingleOpModelParam &param) {
auto addresses = BuildTaskUtils::GetAddresses(op_desc_, param, false);
io_addr_host_ = BuildTaskUtils::JoinAddresses(addresses);
return SUCCESS;
Status AiCpuBaseTask::UpdateArgTable(const SingleOpModelParam &param) {
// aicpu do not have workspace, for now
return DoUpdateArgTable(param, false);
}

void AiCpuTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {


+ 3
- 2
ge/single_op/task/op_task.h View File

@@ -54,6 +54,8 @@ class OpTask {
rtStream_t stream);

protected:
Status DoUpdateArgTable(const SingleOpModelParam &param, bool keep_workspace);

DumpProperties dump_properties_;
DumpOp dump_op_;
OpDescPtr op_desc_;
@@ -110,7 +112,7 @@ class AiCpuBaseTask : public OpTask {
AiCpuBaseTask() = default;
~AiCpuBaseTask() override;
UnknowShapeOpType GetUnknownType() const { return unknown_type_; }
Status UpdateArgTable(const SingleOpModelParam &param) override;
protected:
Status UpdateIoAddr(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs);
Status SetInputConst();
@@ -137,7 +139,6 @@ class AiCpuTask : public AiCpuBaseTask {
~AiCpuTask() override;

Status LaunchKernel(rtStream_t stream) override;
Status UpdateArgTable(const SingleOpModelParam &param) override;
void GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) override;

Status LaunchKernel(const std::vector<GeTensorDesc> &input_desc,


+ 7
- 14
inc/external/ge/ge_api_types.h View File

@@ -293,6 +293,7 @@ const std::string MDL_BANK_PATH_FLAG = "ge.mdl_bank_path";

// Configure op bank path
const std::string OP_BANK_PATH_FLAG = "ge.op_bank_path";
const std::string OP_BANK_UPDATE_FLAG = "ge.op_bank_update";

// Graph run mode
enum GraphRunMode { PREDICTION = 0, TRAIN };
@@ -366,6 +367,7 @@ static const char *const OP_COMPILER_CACHE_DIR = ge::OP_COMPILER_CACHE_DIR;
static const char *const OP_COMPILER_CACHE_MODE = ge::OP_COMPILER_CACHE_MODE;
static const char *const MDL_BANK_PATH = ge::MDL_BANK_PATH_FLAG.c_str();
static const char *const OP_BANK_PATH = ge::OP_BANK_PATH_FLAG.c_str();
static const char *const OP_BANK_UPDATE = ge::OP_BANK_UPDATE_FLAG.c_str();
static const char *const OP_DEBUG_LEVEL = ge::OP_DEBUG_LEVEL.c_str();

// for interface: aclgrphBuildModel
@@ -389,22 +391,13 @@ const std::set<std::string> ir_builder_suppported_options = {INPUT_FORMAT,
OP_COMPILER_CACHE_DIR,
OP_COMPILER_CACHE_MODE,
MDL_BANK_PATH,
OP_BANK_PATH};
OP_BANK_PATH,
OP_BANK_UPDATE};

// for interface: aclgrphParse
const std::set<std::string> ir_parser_suppported_options = {INPUT_FORMAT,
INPUT_SHAPE,
OP_NAME_MAP,
IS_DYNAMIC_INPUT,
INPUT_FP16_NODES,
IS_INPUT_ADJUST_HW_LAYOUT,
IS_OUTPUT_ADJUST_HW_LAYOUT,
OUTPUT,
OUTPUT_TYPE,
OUT_NODES,
COMPRESS_WEIGHT_CONF,
ENABLE_SCOPE_FUSION_PASSES,
LOG_LEVEL};
const std::set<std::string> ir_parser_suppported_options = {
INPUT_FP16_NODES, IS_INPUT_ADJUST_HW_LAYOUT, IS_OUTPUT_ADJUST_HW_LAYOUT, OUTPUT,
OUT_NODES, COMPRESS_WEIGHT_CONF, ENABLE_SCOPE_FUSION_PASSES};

// for interface: aclgrphBuildInitialize
const std::set<std::string> global_options = {CORE_TYPE,


+ 2
- 0
inc/framework/common/ge_types.h View File

@@ -37,7 +37,9 @@ enum FrameworkType {
MINDSPORE = 1,
TENSORFLOW = 3,
ANDROID_NN,
#ifndef ONLY_COMPILE_OPEN_SRC
ONNX,
#endif
FRAMEWORK_RESERVED,
};



+ 2
- 1
inc/framework/common/profiling/ge_profiling.h View File

@@ -20,7 +20,8 @@
#include "ge/ge_api_error_codes.h"
#include "toolchain/prof_callback.h"

#define MAX_DEV_NUM (64)
const int MAX_DEV_NUM = 64;

enum ProfCommandHandleType {
kProfCommandhandleInit = 0,
kProfCommandhandleStart,


+ 0
- 13
inc/framework/executor/ge_executor.h View File

@@ -30,8 +30,6 @@
#include "runtime/base.h"

namespace ge {
class ModelListenerAdapter;

class SingleOp;
class DynamicSingleOp;

@@ -55,14 +53,8 @@ class GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY GeExecutor {
ge::Status Initialize();
ge::Status Finalize();

// Load model
ge::Status LoadModelOffline(uint32_t &model_id, const std::string &path, const std::string &key, int32_t priority,
std::shared_ptr<ge::ModelListener> listener);

ge::Status UnloadModel(uint32_t modelId);

ge::Status RunModel(const ge::RunModelData &input_data, ge::RunModelData &output_data);

// Get input and output descriptor
ge::Status GetModelDescInfo(uint32_t model_id, std::vector<ge::TensorDesc> &input_desc,
std::vector<ge::TensorDesc> &output_desc, bool new_model_desc = false);
@@ -168,9 +160,6 @@ class GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY GeExecutor {
ge::Status GetModelDescInfoForZeroCopy(uint32_t model_id, std::vector<ge::TensorDesc> &input_desc,
std::vector<ge::TensorDesc> &output_desc);

ge::Status LoadModel(uint32_t &model_id, const ge::ModelData &model_data,
std::shared_ptr<ge::ModelListener> listener);

ge::Status CommandHandle(const ge::Command &command);

ge::Status SetDump(const DumpConfig &dump_config);
@@ -297,8 +286,6 @@ class GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY GeExecutor {
private:
static bool isInit_;
};

ge::Status ModelInfoParser(const ge::ModelData &model, ge::ModelInfo &model_info);
} // namespace ge

#endif // INC_FRAMEWORK_EXECUTOR_GE_EXECUTOR_H_

+ 46
- 32
inc/framework/omg/parser/model_parser.h View File

@@ -36,7 +36,7 @@ using Status = domi::Status;

namespace domi {
using GetGraphCallback = std::function<std::unique_ptr<google::protobuf::Message>(
const google::protobuf::Message *root_proto, const std::string &graph)>;
const google::protobuf::Message *root_proto, const std::string &graph)>;
class ModelParser {
public:
ModelParser() {}
@@ -44,19 +44,20 @@ class ModelParser {
virtual ~ModelParser() {}

/**
* @ingroup domi_omg
* @brief Analyze network model data
* @param [in] file Network model file path
* @param [in|out] graph Save the network information after analysis
* @return SUCCESS
* @return Others failed
*/
* @ingroup domi_omg
* @brief Analyze network model data
* @param [in] file Network model file path
* @param [in|out] graph Save the network information after analysis
* @return SUCCESS
* @return Others failed
*/
virtual Status Parse(const char *file, ge::Graph &graph) = 0;

/**
* @ingroup domi_omg
* @brief Parse relevant data from memory and save it to graph
* @param [in] input Model file memory data
* @param [in] input Model file memory size
* @param [in|out] graph A graph for saving the model information after analysis
* @return SUCCESS
* @return FAILED
@@ -64,36 +65,49 @@ class ModelParser {
*/
virtual Status ParseFromMemory(const char *data, uint32_t size, ge::ComputeGraphPtr &graph) = 0;

#ifndef ONLY_COMPILE_OPEN_SRC
/**
* @ingroup domi_omg
* @brief Parse relevant data from memory and save it to graph
* @param [in] input Model file memory data
* @param [in] input Model file memory size
* @param [in|out] graph A graph for saving the model information after analysis
* @return SUCCESS
* @return FAILED
* @author
*/
virtual Status ParseFromMemory(const char *data, uint32_t size, ge::Graph &graph) = 0;
#endif

/**
* @ingroup domi_omg
* @brief Analyze network model data
* @param [in] proto network model
* @param [in|out] graph Save the network information after analysis
* @return SUCCESS
* @return Others failed
*/
* @ingroup domi_omg
* @brief Analyze network model data
* @param [in] proto network model
* @param [in|out] graph Save the network information after analysis
* @return SUCCESS
* @return Others failed
*/
virtual Status ParseProto(const google::protobuf::Message *proto, ge::ComputeGraphPtr &graph) = 0;

/**
* @ingroup domi_omg
* @brief Analyze callback model data in subgraph
* @param [in] proto network model
* @param [in] callback callback of subgraph
* @param [in|out] graph Save the network information after analysis
* @return SUCCESS
* @return Others failed
*/
virtual Status ParseProtoWithSubgraph(const google::protobuf::Message *proto,
GetGraphCallback callback,
* @ingroup domi_omg
* @brief Analyze callback model data in subgraph
* @param [in] proto network model
* @param [in] callback callback of subgraph
* @param [in|out] graph Save the network information after analysis
* @return SUCCESS
* @return Others failed
*/
virtual Status ParseProtoWithSubgraph(const google::protobuf::Message *proto, GetGraphCallback callback,
ge::ComputeGraphPtr &graph) = 0;
/**
* @ingroup domi_omg
* @brief Convert model files to JSON format
* @param [in] model_file Model file path to be converted
* @param [out] json_file Converted JSON file path
* @return SUCCESS
* @return Others failed
*/
* @ingroup domi_omg
* @brief Convert model files to JSON format
* @param [in] model_file Model file path to be converted
* @param [out] json_file Converted JSON file path
* @return SUCCESS
* @return Others failed
*/
virtual Status ToJson(const char *model_file, const char *json_file) { return domi::SUCCESS; }

/*


+ 1
- 1
inc/framework/omg/parser/parser_inner_ctx.h View File

@@ -59,7 +59,7 @@ struct ParserContext {
bool train_flag = false;
domi::domiTensorFormat_t format = domi::DOMI_TENSOR_ND;
domi::FrameworkType type = domi::FRAMEWORK_RESERVED;
RunMode run_mode = ONLY_PRE_CHECK;
RunMode run_mode = GEN_OM_MODEL;
// save caffe custom proto path, used by caffe parse
std::string custom_proto_path;
// save caffe proto path, used by caffe parse


+ 1
- 0
metadef/graph/ge_attr_define.cc View File

@@ -167,6 +167,7 @@ const std::string ATTR_NAME_DYNAMIC_OUTPUT_DIMS = "_dynamic_output_dims";
const std::string ATTR_NAME_INPUT_ORIGIN_SIZE = "input_origin_size";

const std::string ATTR_NAME_ROOT_GRAPH_ID = "_root_graph_id";
const std::string ATTR_NAME_ROOT_GRAPH_NAME = "_root_graph_name";

// Identify node connecting to input and output
const std::string ATTR_NAME_NODE_CONNECT_INPUT = "_is_connected_to_data";


+ 2
- 0
metadef/graph/proto/op_mapping_info.proto View File

@@ -15,6 +15,7 @@ message Output {
int32 original_output_data_type = 7;
int32 original_output_format = 8;
uint64 size = 9;
Shape origin_shape = 10;
}

message Input {
@@ -23,6 +24,7 @@ message Input {
Shape shape = 3;
uint64 address = 4;
uint64 size = 5;
Shape origin_shape = 6;
}

enum BufferType {


+ 2
- 3
metadef/graph/utils/type_utils.cc View File

@@ -118,8 +118,7 @@ const std::map<std::string, Format> kDataFormatMap = {
{"NCDHW", FORMAT_NCDHW},
{"ND", FORMAT_ND}};

const std::map<std::string, Format> kStringToFormatMap =
{
const std::map<std::string, Format> kStringToFormatMap = {
{"NCHW", FORMAT_NCHW},
{"NHWC", FORMAT_NHWC},
{"ND", FORMAT_ND},
@@ -164,7 +163,7 @@ const std::map<std::string, Format> kStringToFormatMap =
{"NULL", FORMAT_NULL},
// add for json input
{"RESERVED", FORMAT_RESERVED},
{"UNDEFINED", FORMAT_RESERVED},
{"UNDEFINED", FORMAT_RESERVED}
};

const std::map<DataType, std::string> kDataTypeToStringMap = {


+ 2
- 0
metadef/inc/common/proto/op_mapping_info.proto View File

@@ -15,6 +15,7 @@ message Output {
int32 original_output_data_type = 7;
int32 original_output_format = 8;
uint64 size = 9;
Shape origin_shape = 10;
}

message Input {
@@ -23,6 +24,7 @@ message Input {
Shape shape = 3;
uint64 address = 4;
uint64 size = 5;
Shape origin_shape = 6;
}

enum BufferType {


+ 102
- 29
metadef/inc/common/util/platform_info.h View File

@@ -19,12 +19,8 @@

#include <map>
#include <string>
#include <vector>
#include "platform_info_def.h"

using std::map;
using std::vector;
using std::string;
#include "platform_infos_def.h"

namespace fe {
class PlatformInfoManager {
@@ -36,66 +32,143 @@ class PlatformInfoManager {
uint32_t InitializePlatformInfo();
uint32_t Finalize();

uint32_t GetPlatformInfo(const string SoCVersion, PlatformInfo &platform_info, OptionalInfo &opti_compilation_info);
uint32_t GetPlatformInfo(const std::string SoCVersion,
PlatformInfo &platform_info,
OptionalInfo &opti_compilation_info);

uint32_t GetPlatformInfoWithOutSocVersion(PlatformInfo &platform_info, OptionalInfo &opti_compilation_info);

void SetOptionalCompilationInfo(OptionalInfo &opti_compilation_info);

uint32_t GetPlatformInfos(const std::string SoCVersion,
PlatFormInfos &platform_info,
OptionalInfos &opti_compilation_info);

uint32_t GetPlatformInfoWithOutSocVersion(PlatFormInfos &platform_info, OptionalInfos &opti_compilation_info);

void SetOptionalCompilationInfo(OptionalInfos &opti_compilation_info);

private:
PlatformInfoManager();
~PlatformInfoManager();

uint32_t LoadIniFile(string ini_file_real_path);
uint32_t LoadIniFile(std::string ini_file_real_path);

void Trim(string &str);
void Trim(std::string &str);

uint32_t LoadConfigFile(string real_path);
uint32_t LoadConfigFile(std::string real_path);

string RealPath(const std::string &path);
std::string RealPath(const std::string &path);

string GetSoFilePath();
std::string GetSoFilePath();

void ParseVersion(map<string, string> &version_map, string &soc_version, PlatformInfo &platform_info_temp);
void ParseVersion(std::map<std::string, std::string> &version_map,
std::string &soc_version,
PlatformInfo &platform_info_temp);

void ParseSocInfo(map<string, string> &soc_info_map, PlatformInfo &platform_info_temp);
void ParseSocInfo(std::map<std::string, std::string> &soc_info_map,
PlatformInfo &platform_info_temp);

void ParseCubeOfAICoreSpec(map<string, string> &ai_core_spec_map, PlatformInfo &platform_info_temp);
void ParseCubeOfAICoreSpec(std::map<std::string, std::string> &ai_core_spec_map,
PlatformInfo &platform_info_temp);

void ParseBufferOfAICoreSpec(map<string, string> &ai_core_spec_map, PlatformInfo &platform_info_temp);
void ParseBufferOfAICoreSpec(std::map<std::string, std::string> &ai_core_spec_map,
PlatformInfo &platform_info_temp);

void ParseUBOfAICoreSpec(map<string, string> &ai_core_spec_map, PlatformInfo &platform_info_temp);
void ParseUBOfAICoreSpec(std::map<std::string, std::string> &ai_core_spec_map,
PlatformInfo &platform_info_temp);

void ParseUnzipOfAICoreSpec(map<string, string> &ai_core_spec_map, PlatformInfo &platform_info_temp);
void ParseUnzipOfAICoreSpec(std::map<std::string, std::string> &ai_core_spec_map,
PlatformInfo &platform_info_temp);

void ParseAICoreSpec(map<string, string> &ai_core_spec_map, PlatformInfo &platform_info_temp);
void ParseAICoreSpec(std::map<std::string, std::string> &ai_core_spec_map,
PlatformInfo &platform_info_temp);

void ParseBufferOfAICoreMemoryRates(map<string, string> &ai_core_memory_rates_map, PlatformInfo &platform_info_temp);
void ParseBufferOfAICoreMemoryRates(std::map<std::string, std::string> &ai_core_memory_rates_map,
PlatformInfo &platform_info_temp);

void ParseAICoreMemoryRates(map<string, string> &ai_core_memory_rates_map, PlatformInfo &platform_info_temp);
void ParseAICoreMemoryRates(std::map<std::string, std::string> &ai_core_memory_rates_map,
PlatformInfo &platform_info_temp);

void ParseUBOfAICoreMemoryRates(map<string, string> &ai_core_memory_rates_map, PlatformInfo &platform_info_temp);
void ParseUBOfAICoreMemoryRates(std::map<std::string, std::string> &ai_core_memory_rates_map,
PlatformInfo &platform_info_temp);

void ParseAICoreintrinsicDtypeMap(map<string, string> &ai_coreintrinsic_dtype_map, PlatformInfo &platform_info_temp);
void ParseAICoreintrinsicDtypeMap(std::map<std::string, std::string> &ai_coreintrinsic_dtype_map,
PlatformInfo &platform_info_temp);

void ParseVectorCoreSpec(map<string, string> &vector_core_spec_map, PlatformInfo &platform_info_temp);
void ParseVectorCoreSpec(std::map<std::string, std::string> &vector_core_spec_map,
PlatformInfo &platform_info_temp);

void ParseVectorCoreMemoryRates(map<string, string> &vector_core_memory_rates_map, PlatformInfo &platform_info_temp);
void ParseVectorCoreMemoryRates(std::map<std::string, std::string> &vector_core_memory_rates_map,
PlatformInfo &platform_info_temp);

void ParseCPUCache(map<string, string> &CPUCacheMap, PlatformInfo &platform_info_temp);
void ParseCPUCache(std::map<std::string, std::string> &CPUCacheMap,
PlatformInfo &platform_info_temp);

void ParseVectorCoreintrinsicDtypeMap(map<string, string> &vector_coreintrinsic_dtype_map,
void ParseVectorCoreintrinsicDtypeMap(std::map<std::string, std::string> &vector_coreintrinsic_dtype_map,
PlatformInfo &platform_info_temp);

uint32_t ParsePlatformInfoFromStrToStruct(map<string, map<string, string>> &content_info_map, string &soc_version,
uint32_t ParsePlatformInfoFromStrToStruct(std::map<std::string, std::map<std::string, std::string>> &content_info_map,
std::string &soc_version,
PlatformInfo &platform_info_temp);

uint32_t AssemblePlatformInfoVector(map<string, map<string, string>> &content_info_map);
void ParseVersion(std::map<std::string, std::string> &version_map,
std::string &soc_version,
PlatFormInfos &platform_info_temp);

void ParseSocInfo(std::map<std::string, std::string> &soc_info_map, PlatFormInfos &platform_info_temp);

void ParseCubeOfAICoreSpec(std::map<std::string, std::string> &ai_core_spec_map,
PlatFormInfos &platform_info_temp);

void ParseBufferOfAICoreSpec(std::map<std::string, std::string> &ai_core_spec_map,
PlatFormInfos &platform_info_temp);

void ParseUBOfAICoreSpec(std::map<std::string, std::string> &ai_core_spec_map,
PlatFormInfos &platform_info_temp);

void ParseUnzipOfAICoreSpec(std::map<std::string, std::string> &ai_core_spec_map,
PlatFormInfos &platform_info_temp);

void ParseAICoreSpec(std::map<std::string, std::string> &ai_core_spec_map,
PlatFormInfos &platform_info_temp);

void ParseBufferOfAICoreMemoryRates(std::map<std::string, std::string> &ai_core_memory_rates_map,
PlatFormInfos &platform_info_temp);

void ParseAICoreMemoryRates(std::map<std::string, std::string> &ai_core_memory_rates_map,
PlatFormInfos &platform_info_temp);

void ParseUBOfAICoreMemoryRates(std::map<std::string, std::string> &ai_core_memory_rates_map,
PlatFormInfos &platform_info_temp);

void ParseAICoreintrinsicDtypeMap(std::map<std::string, std::string> &ai_coreintrinsic_dtype_map,
PlatFormInfos &platform_info_temp);

void ParseVectorCoreSpec(std::map<std::string, std::string> &vector_core_spec_map,
PlatFormInfos &platform_info_temp);

void ParseVectorCoreMemoryRates(std::map<std::string, std::string> &vector_core_memory_rates_map,
PlatFormInfos &platform_info_temp);

void ParseCPUCache(std::map<std::string, std::string> &CPUCacheMap,
PlatFormInfos &platform_info_temp);

void ParseVectorCoreintrinsicDtypeMap(std::map<std::string, std::string> &vector_coreintrinsic_dtype_map,
PlatFormInfos &platform_info_temp);

uint32_t ParsePlatformInfo(std::map<std::string, std::map<std::string, std::string>> &content_info_map,
std::string &soc_version,
PlatFormInfos &platform_info_temp);

uint32_t AssemblePlatformInfoVector(std::map<std::string, std::map<std::string, std::string>> &content_info_map);

private:
bool init_flag_;
map<string, PlatformInfo> platform_info_map_;
std::map<std::string, PlatformInfo> platform_info_map_;
OptionalInfo opti_compilation_info_;
std::map<std::string, PlatFormInfos> platform_infos_map_;
OptionalInfos opti_compilation_infos_;
};
} // namespace fe
#endif

+ 283
- 0
metadef/inc/common/util/platform_infos_def.h View File

@@ -0,0 +1,283 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef PLATFORM_INFOS_DEF_H
#define PLATFORM_INFOS_DEF_H

#include <map>
#include <string>
#include <vector>
#include <memory>
#include "platform_info_def.h"

namespace fe {
class StrInfoImpl;
using StrInfoImplPtr = std::shared_ptr<StrInfoImpl>;
class StrInfos {
public:
bool Init();
std::string GetAIcVersion();
std::string GetCcecAIcVersion();
std::string GetCcecAIvVersion();
std::string IsSupportAICpuCompiler();

void SetAIcVersion(std::string &aic_version);
void SetCcecAIcVersion(std::string &ccec_aic_version);
void SetCcecAIvVersion(std::string &ccec_aiv_version);
void SetIsSupportAICpuCompiler(std::string &is_support_ai_cpu_compiler);
private:
StrInfoImplPtr str_info_impl_{nullptr};
};

class SoCInfoImpl;
using SoCInfoImplPtr = std::shared_ptr<SoCInfoImpl>;
class SoCInfos {
public:
bool Init();
uint32_t GetAICoreCnt();
uint32_t GetVectorCoreCnt();
uint32_t GetAICpuCnt();
MemoryType GetMemType();
uint64_t GetMemSize();
L2Type GetL2Type();
uint64_t GetL2Size();
uint32_t GetL2PageNum();

void SetAICoreCnt(uint32_t ai_core_cnt);
void SetVectorCoreCnt(uint32_t vector_core_cnt);
void SetAICpuCnt(uint32_t ai_cpu_cnt);
void SetMemType(MemoryType memory_type);
void SetMemSize(uint64_t memory_size);
void SetL2Type(L2Type l2_type);
void SetL2Size(uint64_t l2_size);
void SetL2PageNum(uint32_t l2_page_num);
private:
SoCInfoImplPtr soc_info_impl_{nullptr};
};

class AICoreSpecImpl;
using AICoreSpecImplPtr = std::shared_ptr<AICoreSpecImpl>;
class AICoreSpecs {
public:
bool Init();
double GetCubeFreq();
uint64_t GetCubeMSize();
uint64_t GetCubeNSize();
uint64_t GetCubeKSize();
uint64_t GetVecCalcSize();
uint64_t GetL0aSize();
uint64_t GetL0bSize();
uint64_t GetL0cSize();
uint64_t GetL1Size();
uint64_t GetSmaskBuffer();
uint64_t GetUBSize();
uint64_t GetUBBlockSize();
uint64_t GetUBBankSize();
uint64_t GetUBBankNum();
uint64_t GetUBBurstInOneBlock();
uint64_t GetUBBankGroupNum();
uint32_t GetUnzipEngines();
uint32_t GetUnzipMaxRatios();
uint32_t GetUnzipChannels();
uint8_t GetUnzipIsTight();
uint8_t GetCubeVectorSplit();

void SetCubeFreq(double cube_freq);
void SetCubeMSize(uint64_t cube_m_size);
void SetCubeNSize(uint64_t cube_n_size);
void SetCubeKSize(uint64_t cube_k_size);
void SetVecCalcSize(uint64_t vec_calc_size);
void SetL0aSize(uint64_t l0_a_size);
void SetL0bSize(uint64_t l0_b_size);
void SetL0cSize(uint64_t l0_c_size);
void SetL1Size(uint64_t l1_size);
void SetSmaskBuffer(uint64_t smask_buffer);
void SetUBSize(uint64_t ub_size);
void SetUBBlockSize(uint64_t ubblock_size);
void SetUBBankSize(uint64_t ubbank_size);
void SetUBBankNum(uint64_t ubbank_num);
void SetUBBurstInOneBlock(uint64_t ubburst_in_one_block);
void SetUBBankGroupNum(uint64_t ubbank_group_num);
void SetUnzipEngines(uint32_t unzip_engines);
void SetUnzipMaxRatios(uint32_t unzip_max_ratios);
void SetUnzipChannels(uint32_t unzip_channels);
void SetUnzipIsTight(uint8_t unzip_is_tight);
void SetCubeVectorSplit(uint8_t cube_vector_split);
private:
AICoreSpecImplPtr aicore_spec_impl_{nullptr};
};

class AICoreMemRateImpl;
using AICoreMemRateImplPtr = std::shared_ptr<AICoreMemRateImpl>;
class AICoreMemRates {
public:
bool Init();
double GetDdrRate();
double GetDdrReadRate();
double GetDdrWriteRate();
double GetL2Rate();
double GetL2ReadRate();
double GetL2WriteRate();
double GetL1ToL0aRate();
double GetL1ToL0bRate();
double GetL1ToUBRate();
double GetL0cToUBRate();
double GetUBToL2Rate();
double GetUBToDdrRate();
double GetUBToL1Rate();

void SetDdrRate(double ddr_rate);
void SetDdrReadRate(double ddr_read_rate);
void SetDdrWriteRate(double ddr_write_rate);
void SetL2Rate(double l2_rate);
void SetL2ReadRate(double l2_read_rate);
void SetL2WriteRate(double l2_write_rate);
void SetL1ToL0aRate(double l1_to_l0_a_rate);
void SetL1ToL0bRate(double l1_to_l0_b_rate);
void SetL1ToUBRate(double l1_to_ub_rate);
void SetL0cToUBRate(double l0_c_to_ub_rate);
void SetUBToL2Rate(double ub_to_l2_rate);
void SetUBToDdrRate(double ub_to_ddr_rate);
void SetUBToL1Rate(double ub_to_l1_rate);
private:
AICoreMemRateImplPtr aicore_mem_rate_impl_{nullptr};
};

class VectorCoreSpecImpl;
using VectorCoreSpecImplPtr = std::shared_ptr<VectorCoreSpecImpl>;
class VectorCoreSpecs {
public:
bool Init();
double GetVecFreq();
uint64_t GetVecCalcSize();
uint64_t GetSmaskBuffer();
uint64_t GetUBSize();
uint64_t GetUBBlockSize();
uint64_t GetUBBankSize();
uint64_t GetUBBankNum();
uint64_t GetUBBurstInOneBlock();
uint64_t GetUBBankGroupNum();
uint64_t GetVectorRegSize();
uint64_t GetPredicateRegSize();
uint64_t GetAddressRegSize();
uint64_t GetAlignmentRegSize();

void SetVecFreq(double vec_freq);
void SetVecCalcSize(uint64_t vec_calc_size);
void SetSmaskBuffer(uint64_t smask_buffer);
void SetUBSize(uint64_t ub_size);
void SetUBBlockSize(uint64_t ubblock_size);
void SetUBBankSize(uint64_t ubbank_size);
void SetUBBankNum(uint64_t ubbank_num);
void SetUBBurstInOneBlock(uint64_t ubburst_in_one_block);
void SetUBBankGroupNum(uint64_t ubbank_group_num);
void SetVectorRegSize(uint64_t vector_reg_size);
void SetPredicateRegSize(uint64_t predicate_reg_size);
void SetAddressRegSize(uint64_t address_reg_size);
void SetAlignmentRegSize(uint64_t alignment_reg_size);
private:
VectorCoreSpecImplPtr vector_core_spec_impl_{nullptr};
};

class VectorCoreMemRateImpl;
using VectorCoreMemRateImplPtr = std::shared_ptr<VectorCoreMemRateImpl>;
class VectorCoreMemRates {
public:
bool Init();
double GetDdrRate();
double GetDdrReadRate();
double GetDdrWriteRate();
double GetL2Rate();
double GetL2ReadRate();
double GetL2WriteRate();
double GetUBToL2Rate();
double GetUBToDdrRate();

void SetDdrRate(double ddr_rate);
void SetDdrReadRate(double ddr_read_rate);
void SetDdrWriteRate(double ddr_write_rate);
void SetL2Rate(double l2_rate);
void SetL2ReadRate(double l2_read_rate);
void SetL2WriteRate(double l2_write_rate);
void SetUBToL2Rate(double ub_to_l2_rate);
void SetUBToDdrRate(double ub_to_ddr_rate);
private:
VectorCoreMemRateImplPtr vector_core_mem_rate_impl_{nullptr};
};

class CPUCacheImpl;
using CPUCacheImplPtr = std::shared_ptr<CPUCacheImpl>;
class CPUCaches {
public:
bool Init();
uint32_t GetAICPUSyncBySW();
uint32_t GetTSCPUSyncBySW();

void SetAICPUSyncBySW(uint32_t AICPUSyncBySW);
void SetTSCPUSyncBySW(uint32_t TSCPUSyncBySW);
private:
CPUCacheImplPtr cpu_cache_impl_{nullptr};
};

class PlatFormInfosImpl;
using PlatFormInfosImplPtr = std::shared_ptr<PlatFormInfosImpl>;
class PlatFormInfos {
public:
bool Init();
StrInfos GetStrInfo();
SoCInfos GetSocInfo();
AICoreSpecs GetAICoreSpec();
AICoreMemRates GetAICoreMemRates();
std::map<std::string, std::vector<std::string>> GetAICoreIntrinsicDtype();
VectorCoreSpecs GetVectorCoreSpec();
VectorCoreMemRates GetVectorCoreMemRates();
CPUCaches GetCPUCache();
std::map<std::string, std::vector<std::string>> GetVectorCoreIntrinsicDtype();

void SetStrInfo(StrInfos &str_infos);
void SetSocInfo(SoCInfos &SoC_infos);
void SetAICoreSpec(AICoreSpecs &AICore_specs);
void SetAICoreMemRates(AICoreMemRates &AICore_mem_rates);
void SetAICoreIntrinsicDtype(std::map<std::string, std::vector<std::string>> &intrinsic_dtypes);
void SetVectorCoreSpec(VectorCoreSpecs &vector_core_specs);
void SetVectorCoreMemRates(VectorCoreMemRates &vectorcore_mem_rates);
void SetCPUCache(CPUCaches &CPU_caches);
void SetVectorCoreIntrinsicDtype(std::map<std::string, std::vector<std::string>> &intrinsic_dtypes);

private:
PlatFormInfosImplPtr platform_infos_impl_{nullptr};
};

class OptionalInfosImpl;
using OptionalInfosImplPtr = std::shared_ptr<OptionalInfosImpl>;
class OptionalInfos {
public:
bool Init();
std::string GetSocVersion();
std::string GetCoreType();
uint32_t GetAICoreNum();
std::string GetL1FusionFlag();

void SetSocVersion(std::string soc_version);
void SetCoreType(std::string core_type);
void SetAICoreNum(uint32_t ai_core_num);
void SetL1FusionFlag(std::string l1_fusion_flag);
private:
OptionalInfosImplPtr optional_infos_impl_{nullptr};
};

}
#endif

+ 1
- 0
metadef/inc/graph/debug/ge_attr_define.h View File

@@ -188,6 +188,7 @@ GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAM
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_INPUT_ORIGIN_SIZE;

GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_ROOT_GRAPH_ID;
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_ROOT_GRAPH_NAME;

GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_NODE_CONNECT_INPUT;
GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY extern const std::string ATTR_NAME_NODE_CONNECT_OUTPUT;


+ 2
- 0
metadef/inc/register/proto/op_mapping_info.proto View File

@@ -15,6 +15,7 @@ message Output {
int32 original_output_data_type = 7;
int32 original_output_format = 8;
uint64 size = 9;
Shape origin_shape = 10;
}

message Input {
@@ -23,6 +24,7 @@ message Input {
Shape shape = 3;
uint64 address = 4;
uint64 size = 5;
Shape origin_shape = 6;
}

enum BufferType {


Loading…
Cancel
Save