|
|
@@ -84,6 +84,10 @@ REG_OP(MatMul) |
|
|
|
*y: The result matrix Tensor. 2D. Must be one of the following types: float32, |
|
|
|
float16, int32. Has format [ND, NHWC]. \n |
|
|
|
|
|
|
|
*@attention Constraints: |
|
|
|
* if performances better in format NZ, please close |
|
|
|
"MatmulTransdataFusionPass" in fusion configuration. \n |
|
|
|
|
|
|
|
*@par Third-party framework compatibility |
|
|
|
* Compatible with the TensorFlow operator BatchMatmul. |
|
|
|
*/ |
|
|
@@ -124,6 +128,10 @@ REG_OP(MatMulV2) |
|
|
|
*y: The result matrix Tensor. 2D. Must be one of the following types: int32, |
|
|
|
* float16. \n |
|
|
|
|
|
|
|
*@attention Constraints: |
|
|
|
* if performances better in format NZ, please close |
|
|
|
"MatmulTransdataFusionPass" in fusion configuration. |
|
|
|
|
|
|
|
*/ |
|
|
|
REG_OP(MatMulV2Compress) |
|
|
|
.INPUT(x1, TensorType({DT_INT8})) |
|
|
@@ -240,6 +248,10 @@ REG_OP(BatchMatMul) |
|
|
|
* y: The result matrix Tensor. 2D or higher. Must be one of the following types: float16, |
|
|
|
* float32, int32. 2D or higher. Has format [ND, NHWC]. Has the same shape length as "x1" and "x2" . \n |
|
|
|
|
|
|
|
*@attention Constraints: |
|
|
|
* if performances better in format NZ, please close |
|
|
|
"MatmulTransdataFusionPass" in fusion configuration. \n |
|
|
|
|
|
|
|
* @par Third-party framework compatibility |
|
|
|
* Compatible with the TensorFlow operator BatchMatmul. |
|
|
|
*/ |
|
|
@@ -264,7 +276,12 @@ REG_OP(BatchMatMulV2) |
|
|
|
* TensorType::FloatingDataType() . \n |
|
|
|
|
|
|
|
*@par Outputs: |
|
|
|
*y: A Tensor. Has the same type as "x". |
|
|
|
*y: A Tensor. Has the same type as "x". \n |
|
|
|
|
|
|
|
*@attention Constraints: |
|
|
|
* if performances better in format NZ, please close |
|
|
|
"MatmulTransdataFusionPass" in fusion configuration. \n |
|
|
|
|
|
|
|
*@par Third-party framework compatibility |
|
|
|
*Compatible with the TensorFlow operator L2Loss. |
|
|
|
*/ |
|
|
@@ -1210,7 +1227,7 @@ REG_OP(IndexAdd) |
|
|
|
*qint8, quint8, qint32, uint16, complex128, uint32, uint64. \n |
|
|
|
|
|
|
|
* @li x2: A Tensor of the same type as "x1". |
|
|
|
* @li indices: A Tensor of the indices, |
|
|
|
* @li indices: A Tensor of the indices, |
|
|
|
|
|
|
|
* @par Attributes: |
|
|
|
* @li accumulate: Does it support self accumulation.Defaults to 0. |
|
|
@@ -1393,8 +1410,8 @@ REG_OP(Trace) |
|
|
|
|
|
|
|
*/ |
|
|
|
REG_OP(Pinverse) |
|
|
|
.INPUT(x, TensorType({ DT_FLOAT, DT_DOUBLE })) |
|
|
|
.OUTPUT(y, TensorType({ DT_FLOAT, DT_DOUBLE })) |
|
|
|
.INPUT(x, TensorType({ DT_FLOAT, DT_DOUBLE })) |
|
|
|
.OUTPUT(y, TensorType({ DT_FLOAT, DT_DOUBLE })) |
|
|
|
.ATTR(rcond, Float, 1e-15) |
|
|
|
.OP_END_FACTORY_REG(Pinverse) |
|
|
|
|
|
|
|