@@ -26,9 +26,9 @@ extern "C" { | |||
#endif | |||
// Current version is 1.0.0 | |||
#define ACL_MAJOR_VERSION 1 | |||
#define ACL_MINOR_VERSION 0 | |||
#define ACL_PATCH_VERSION 0 | |||
#define ACL_MAJOR_VERSION 1 | |||
#define ACL_MINOR_VERSION 0 | |||
#define ACL_PATCH_VERSION 0 | |||
/** | |||
* @ingroup AscendCL | |||
@@ -66,8 +66,17 @@ ACL_FUNC_VISIBILITY aclError aclFinalize(); | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError aclrtGetVersion(int32_t *majorVersion, int32_t *minorVersion, int32_t *patchVersion); | |||
/** | |||
* @ingroup AscendCL | |||
* @brief get recent error message | |||
* | |||
* @retval null for failed | |||
* @retval OtherValues success | |||
*/ | |||
ACL_FUNC_VISIBILITY const char *aclGetRecentErrMsg(); | |||
#ifdef __cplusplus | |||
} | |||
#endif | |||
#endif // INC_EXTERNAL_ACL_ACL_H_ | |||
#endif // INC_EXTERNAL_ACL_ACL_H_ |
@@ -626,6 +626,15 @@ ACL_FUNC_VISIBILITY aclError aclSetTensorPlaceMent(aclTensorDesc *desc, aclMemTy | |||
ACL_FUNC_VISIBILITY void aclAppLog(aclLogLevel logLevel, const char *func, const char *file, uint32_t line, | |||
const char *fmt, ...); | |||
/** | |||
* @ingroup AscendCL | |||
* @brief get soc name | |||
* | |||
* @retval null for failed | |||
* @retval OtherValues success | |||
*/ | |||
ACL_FUNC_VISIBILITY const char *aclrtGetSocName(); | |||
#define ACL_APP_LOG(level, fmt, ...) \ | |||
aclAppLog(level, __FUNCTION__, __FILE__, __LINE__, fmt, ##__VA_ARGS__) | |||
@@ -282,6 +282,21 @@ ACL_FUNC_VISIBILITY aclError aclmdlAddDatasetBuffer(aclmdlDataset *dataset, aclD | |||
/** | |||
* @ingroup AscendCL | |||
* @brief Set aclTensorDesc to aclmdlDataset | |||
* | |||
* @param dataset [OUT] aclmdlDataset address of aclDataBuffer to be added | |||
* @param tensorDesc [IN] aclTensorDesc address to be added | |||
* @param index [IN] index of tensorDesc which to be added | |||
* | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError aclmdlSetDatasetTensorDesc(aclmdlDataset *dataset, | |||
aclTensorDesc *tensorDesc, | |||
size_t index); | |||
/** | |||
* @ingroup AscendCL | |||
* @brief Get the number of aclDataBuffer in aclmdlDataset | |||
* | |||
* @param dataset [IN] aclmdlDataset poiter | |||
@@ -38,9 +38,15 @@ typedef enum { | |||
ACL_OP_DEBUG_LEVEL, | |||
ACL_DEBUG_DIR, | |||
ACL_OP_COMPILER_CACHE_MODE, | |||
ACL_OP_COMPILER_CACHE_DIR | |||
ACL_OP_COMPILER_CACHE_DIR, | |||
ACL_OP_PERFORMANCE_MODE | |||
} aclCompileOpt; | |||
typedef enum aclCompileFlag { | |||
ACL_OP_COMPILE_DEFAULT, | |||
ACL_OP_COMPILE_FUZZ | |||
} aclOpCompileFlag; | |||
/** | |||
* @ingroup AscendCL | |||
* @brief compile op | |||
@@ -108,6 +114,18 @@ ACL_FUNC_VISIBILITY aclError aclopCompileAndExecute(const char *opType, | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError aclSetCompileopt(aclCompileOpt opt, const char *value); | |||
/** | |||
* @ingroup AscendCL | |||
* @brief set compile flag | |||
* | |||
* @param flag [IN] compile flag, ACL_OP_COMPILE_DEFAULT means compile with default mode | |||
* ACL_OP_COMPILE_FUZZ means compile with fuzz mode | |||
* | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError aclopSetCompileFlag(aclOpCompileFlag flag); | |||
#ifdef __cplusplus | |||
} | |||
#endif | |||
@@ -957,6 +957,17 @@ ACL_FUNC_VISIBILITY aclError aclrtDeviceDisablePeerAccess(int32_t peerDeviceId); | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError aclrtGetMemInfo(aclrtMemAttr attr, size_t *free, size_t *total); | |||
/** | |||
* @ingroup AscendCL | |||
* @brief Set the timeout interval for waitting of op | |||
* | |||
* @param timeout [IN] op wait timeout | |||
* | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError aclrtSetOpWaitTimeout(uint32_t timeout); | |||
#ifdef __cplusplus | |||
} | |||
#endif | |||
@@ -94,6 +94,7 @@ static const int32_t ACL_ERROR_RT_DEV_SETUP_ERROR = 507033; // device | |||
static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error | |||
static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error | |||
static const int32_t ACL_ERROR_RT_SOCKET_CLOSE = 507901; // hdc disconnect | |||
#ifdef __cplusplus | |||
} | |||
@@ -53,109 +53,123 @@ typedef void (*aclvencCallback)(acldvppPicDesc *input, acldvppStreamDesc *output | |||
// Supported Pixel Format | |||
enum acldvppPixelFormat { | |||
PIXEL_FORMAT_YUV_400 = 0, // 0 | |||
PIXEL_FORMAT_YUV_SEMIPLANAR_420 = 1, // 1 | |||
PIXEL_FORMAT_YVU_SEMIPLANAR_420 = 2, // 2 | |||
PIXEL_FORMAT_YUV_SEMIPLANAR_422 = 3, // 3 | |||
PIXEL_FORMAT_YVU_SEMIPLANAR_422 = 4, // 4 | |||
PIXEL_FORMAT_YUV_SEMIPLANAR_444 = 5, // 5 | |||
PIXEL_FORMAT_YVU_SEMIPLANAR_444 = 6, // 6 | |||
PIXEL_FORMAT_YUYV_PACKED_422 = 7, // 7 | |||
PIXEL_FORMAT_UYVY_PACKED_422 = 8, // 8 | |||
PIXEL_FORMAT_YVYU_PACKED_422 = 9, // 9 | |||
PIXEL_FORMAT_VYUY_PACKED_422 = 10, // 10 | |||
PIXEL_FORMAT_YUV_PACKED_444 = 11, // 11 | |||
PIXEL_FORMAT_RGB_888 = 12, // 12 | |||
PIXEL_FORMAT_BGR_888 = 13, // 13 | |||
PIXEL_FORMAT_ARGB_8888 = 14, // 14 | |||
PIXEL_FORMAT_ABGR_8888 = 15, // 15 | |||
PIXEL_FORMAT_RGBA_8888 = 16, // 16 | |||
PIXEL_FORMAT_BGRA_8888 = 17, // 17 | |||
PIXEL_FORMAT_YUV_SEMI_PLANNER_420_10BIT = 18, // 18 | |||
PIXEL_FORMAT_YVU_SEMI_PLANNER_420_10BIT = 19, // 19 | |||
PIXEL_FORMAT_YVU_PLANAR_420 = 20, // 20 | |||
PIXEL_FORMAT_YVU_PLANAR_422, | |||
PIXEL_FORMAT_YVU_PLANAR_444, | |||
PIXEL_FORMAT_RGB_444 = 23, | |||
PIXEL_FORMAT_BGR_444, | |||
PIXEL_FORMAT_ARGB_4444, | |||
PIXEL_FORMAT_ABGR_4444, | |||
PIXEL_FORMAT_RGBA_4444, | |||
PIXEL_FORMAT_BGRA_4444, | |||
PIXEL_FORMAT_RGB_555, | |||
PIXEL_FORMAT_BGR_555, | |||
PIXEL_FORMAT_RGB_565, | |||
PIXEL_FORMAT_BGR_565, | |||
PIXEL_FORMAT_ARGB_1555, | |||
PIXEL_FORMAT_ABGR_1555, | |||
PIXEL_FORMAT_RGBA_1555, | |||
PIXEL_FORMAT_BGRA_1555, | |||
PIXEL_FORMAT_ARGB_8565, | |||
PIXEL_FORMAT_ABGR_8565, | |||
PIXEL_FORMAT_RGBA_8565, | |||
PIXEL_FORMAT_BGRA_8565, | |||
PIXEL_FORMAT_RGB_BAYER_8BPP = 50, | |||
PIXEL_FORMAT_RGB_BAYER_10BPP, | |||
PIXEL_FORMAT_RGB_BAYER_12BPP, | |||
PIXEL_FORMAT_RGB_BAYER_14BPP, | |||
PIXEL_FORMAT_RGB_BAYER_16BPP, | |||
PIXEL_FORMAT_BGR_888_PLANAR = 70, | |||
PIXEL_FORMAT_HSV_888_PACKAGE, | |||
PIXEL_FORMAT_HSV_888_PLANAR, | |||
PIXEL_FORMAT_LAB_888_PACKAGE, | |||
PIXEL_FORMAT_LAB_888_PLANAR, | |||
PIXEL_FORMAT_S8C1, | |||
PIXEL_FORMAT_S8C2_PACKAGE, | |||
PIXEL_FORMAT_S8C2_PLANAR, | |||
PIXEL_FORMAT_S16C1, | |||
PIXEL_FORMAT_U8C1, | |||
PIXEL_FORMAT_U16C1, | |||
PIXEL_FORMAT_S32C1, | |||
PIXEL_FORMAT_U32C1, | |||
PIXEL_FORMAT_U64C1, | |||
PIXEL_FORMAT_S64C1, | |||
PIXEL_FORMAT_YUV_SEMIPLANAR_440 = 1000, | |||
PIXEL_FORMAT_YVU_SEMIPLANAR_440, | |||
PIXEL_FORMAT_FLOAT32, | |||
PIXEL_FORMAT_BUTT, | |||
PIXEL_FORMAT_UNKNOWN = 10000 | |||
PIXEL_FORMAT_YUV_400 = 0, // 0 | |||
PIXEL_FORMAT_YUV_SEMIPLANAR_420 = 1, // 1 | |||
PIXEL_FORMAT_YVU_SEMIPLANAR_420 = 2, // 2 | |||
PIXEL_FORMAT_YUV_SEMIPLANAR_422 = 3, // 3 | |||
PIXEL_FORMAT_YVU_SEMIPLANAR_422 = 4, // 4 | |||
PIXEL_FORMAT_YUV_SEMIPLANAR_444 = 5, // 5 | |||
PIXEL_FORMAT_YVU_SEMIPLANAR_444 = 6, // 6 | |||
PIXEL_FORMAT_YUYV_PACKED_422 = 7, // 7 | |||
PIXEL_FORMAT_UYVY_PACKED_422 = 8, // 8 | |||
PIXEL_FORMAT_YVYU_PACKED_422 = 9, // 9 | |||
PIXEL_FORMAT_VYUY_PACKED_422 = 10, // 10 | |||
PIXEL_FORMAT_YUV_PACKED_444 = 11, // 11 | |||
PIXEL_FORMAT_RGB_888 = 12, // 12 | |||
PIXEL_FORMAT_BGR_888 = 13, // 13 | |||
PIXEL_FORMAT_ARGB_8888 = 14, // 14 | |||
PIXEL_FORMAT_ABGR_8888 = 15, // 15 | |||
PIXEL_FORMAT_RGBA_8888 = 16, // 16 | |||
PIXEL_FORMAT_BGRA_8888 = 17, // 17 | |||
PIXEL_FORMAT_YUV_SEMI_PLANNER_420_10BIT = 18, // 18 | |||
PIXEL_FORMAT_YVU_SEMI_PLANNER_420_10BIT = 19, // 19 | |||
PIXEL_FORMAT_YVU_PLANAR_420 = 20, // 20 | |||
PIXEL_FORMAT_YVU_PLANAR_422, | |||
PIXEL_FORMAT_YVU_PLANAR_444, | |||
PIXEL_FORMAT_RGB_444 = 23, | |||
PIXEL_FORMAT_BGR_444, | |||
PIXEL_FORMAT_ARGB_4444, | |||
PIXEL_FORMAT_ABGR_4444, | |||
PIXEL_FORMAT_RGBA_4444, | |||
PIXEL_FORMAT_BGRA_4444, | |||
PIXEL_FORMAT_RGB_555, | |||
PIXEL_FORMAT_BGR_555, | |||
PIXEL_FORMAT_RGB_565, | |||
PIXEL_FORMAT_BGR_565, | |||
PIXEL_FORMAT_ARGB_1555, | |||
PIXEL_FORMAT_ABGR_1555, | |||
PIXEL_FORMAT_RGBA_1555, | |||
PIXEL_FORMAT_BGRA_1555, | |||
PIXEL_FORMAT_ARGB_8565, | |||
PIXEL_FORMAT_ABGR_8565, | |||
PIXEL_FORMAT_RGBA_8565, | |||
PIXEL_FORMAT_BGRA_8565, | |||
PIXEL_FORMAT_RGB_BAYER_8BPP = 50, | |||
PIXEL_FORMAT_RGB_BAYER_10BPP, | |||
PIXEL_FORMAT_RGB_BAYER_12BPP, | |||
PIXEL_FORMAT_RGB_BAYER_14BPP, | |||
PIXEL_FORMAT_RGB_BAYER_16BPP, | |||
PIXEL_FORMAT_BGR_888_PLANAR = 70, | |||
PIXEL_FORMAT_HSV_888_PACKAGE, | |||
PIXEL_FORMAT_HSV_888_PLANAR, | |||
PIXEL_FORMAT_LAB_888_PACKAGE, | |||
PIXEL_FORMAT_LAB_888_PLANAR, | |||
PIXEL_FORMAT_S8C1, | |||
PIXEL_FORMAT_S8C2_PACKAGE, | |||
PIXEL_FORMAT_S8C2_PLANAR, | |||
PIXEL_FORMAT_S16C1, | |||
PIXEL_FORMAT_U8C1, | |||
PIXEL_FORMAT_U16C1, | |||
PIXEL_FORMAT_S32C1, | |||
PIXEL_FORMAT_U32C1, | |||
PIXEL_FORMAT_U64C1, | |||
PIXEL_FORMAT_S64C1, | |||
PIXEL_FORMAT_YUV_SEMIPLANAR_440 = 1000, | |||
PIXEL_FORMAT_YVU_SEMIPLANAR_440, | |||
PIXEL_FORMAT_FLOAT32, | |||
PIXEL_FORMAT_BUTT, | |||
PIXEL_FORMAT_UNKNOWN = 10000 | |||
}; | |||
// Stream Format | |||
enum acldvppStreamFormat { H265_MAIN_LEVEL = 0, H264_BASELINE_LEVEL, H264_MAIN_LEVEL, H264_HIGH_LEVEL }; | |||
enum acldvppStreamFormat { | |||
H265_MAIN_LEVEL = 0, | |||
H264_BASELINE_LEVEL, | |||
H264_MAIN_LEVEL, | |||
H264_HIGH_LEVEL | |||
}; | |||
// Supported Channel Mode | |||
enum acldvppChannelMode { DVPP_CHNMODE_VPC = 1, DVPP_CHNMODE_JPEGD = 2, DVPP_CHNMODE_JPEGE = 4 }; | |||
enum acldvppChannelMode { | |||
DVPP_CHNMODE_VPC = 1, | |||
DVPP_CHNMODE_JPEGD = 2, | |||
DVPP_CHNMODE_JPEGE = 4 | |||
}; | |||
// Supported Border Type | |||
enum acldvppBorderType { BORDER_CONSTANT = 0, BORDER_REPLICATE, BORDER_REFLECT, BORDER_REFLECT_101 }; | |||
enum acldvppBorderType { | |||
BORDER_CONSTANT = 0, | |||
BORDER_REPLICATE, | |||
BORDER_REFLECT, | |||
BORDER_REFLECT_101 | |||
}; | |||
// Venc parameter type | |||
enum aclvencChannelDescParamType { | |||
ACL_VENC_THREAD_ID_UINT64 = 0, | |||
ACL_VENC_CALLBACK_PTR, | |||
ACL_VENC_PIXEL_FORMAT_UINT32, | |||
ACL_VENC_ENCODE_TYPE_UINT32, | |||
ACL_VENC_PIC_WIDTH_UINT32, | |||
ACL_VENC_PIC_HEIGHT_UINT32, | |||
ACL_VENC_KEY_FRAME_INTERVAL_UINT32, | |||
ACL_VENC_BUF_ADDR_PTR, | |||
ACL_VENC_BUF_SIZE_UINT32, | |||
ACL_VENC_RC_MODE_UINT32, | |||
ACL_VENC_SRC_RATE_UINT32, | |||
ACL_VENC_MAX_BITRATE_UINT32, | |||
ACL_VENC_MAX_IP_PROP_UINT32 | |||
ACL_VENC_THREAD_ID_UINT64 = 0, | |||
ACL_VENC_CALLBACK_PTR, | |||
ACL_VENC_PIXEL_FORMAT_UINT32, | |||
ACL_VENC_ENCODE_TYPE_UINT32, | |||
ACL_VENC_PIC_WIDTH_UINT32, | |||
ACL_VENC_PIC_HEIGHT_UINT32, | |||
ACL_VENC_KEY_FRAME_INTERVAL_UINT32, | |||
ACL_VENC_BUF_ADDR_PTR, | |||
ACL_VENC_BUF_SIZE_UINT32, | |||
ACL_VENC_RC_MODE_UINT32, | |||
ACL_VENC_SRC_RATE_UINT32, | |||
ACL_VENC_MAX_BITRATE_UINT32, | |||
ACL_VENC_MAX_IP_PROP_UINT32 | |||
}; | |||
// Jpeg picture format | |||
enum acldvppJpegFormat { | |||
ACL_JPEG_CSS_444 = 0, | |||
ACL_JPEG_CSS_422, | |||
ACL_JPEG_CSS_420, | |||
ACL_JPEG_CSS_GRAY, | |||
ACL_JPEG_CSS_440, | |||
ACL_JPEG_CSS_411, | |||
ACL_JPEG_CSS_UNKNOWN = 1000 | |||
ACL_JPEG_CSS_444 = 0, | |||
ACL_JPEG_CSS_422, | |||
ACL_JPEG_CSS_420, | |||
ACL_JPEG_CSS_GRAY, | |||
ACL_JPEG_CSS_440, | |||
ACL_JPEG_CSS_411, | |||
ACL_JPEG_CSS_UNKNOWN = 1000 | |||
}; | |||
/** | |||
@@ -509,7 +523,9 @@ ACL_FUNC_VISIBILITY uint32_t acldvppGetPicDescRetCode(const acldvppPicDesc *picD | |||
* @retval null for failed. | |||
* @retval other success | |||
*/ | |||
ACL_FUNC_VISIBILITY acldvppRoiConfig *acldvppCreateRoiConfig(uint32_t left, uint32_t right, uint32_t top, | |||
ACL_FUNC_VISIBILITY acldvppRoiConfig *acldvppCreateRoiConfig(uint32_t left, | |||
uint32_t right, | |||
uint32_t top, | |||
uint32_t bottom); | |||
/** | |||
@@ -588,7 +604,10 @@ ACL_FUNC_VISIBILITY aclError acldvppSetRoiConfigBottom(acldvppRoiConfig *config, | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppSetRoiConfig(acldvppRoiConfig *config, uint32_t left, uint32_t right, uint32_t top, | |||
ACL_FUNC_VISIBILITY aclError acldvppSetRoiConfig(acldvppRoiConfig *config, | |||
uint32_t left, | |||
uint32_t right, | |||
uint32_t top, | |||
uint32_t bottom); | |||
/** | |||
@@ -1077,8 +1096,7 @@ ACL_FUNC_VISIBILITY aclError aclvencSetChannelDescMaxBitRate(aclvencChannelDesc | |||
* @retval ACL_SUCCESS for success, other for failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError aclvencSetChannelDescParam(aclvencChannelDesc *channelDesc, | |||
aclvencChannelDescParamType paramType, size_t length, | |||
const void *param); | |||
aclvencChannelDescParamType paramType, size_t length, const void *param); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1227,8 +1245,7 @@ ACL_FUNC_VISIBILITY uint32_t aclvencGetChannelDescMaxBitRate(const aclvencChanne | |||
* @retval ACL_SUCCESS for success, other for failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError aclvencGetChannelDescParam(const aclvencChannelDesc *channelDesc, | |||
aclvencChannelDescParamType paramType, size_t length, | |||
size_t *paramRetSize, void *param); | |||
aclvencChannelDescParamType paramType, size_t length, size_t *paramRetSize, void *param); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1528,7 +1545,10 @@ ACL_FUNC_VISIBILITY aclError aclvdecDestroyFrameConfig(aclvdecFrameConfig *vdecF | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfo(const void *data, uint32_t size, uint32_t *width, uint32_t *height, | |||
ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfo(const void *data, | |||
uint32_t size, | |||
uint32_t *width, | |||
uint32_t *height, | |||
int32_t *components); | |||
/** | |||
@@ -1545,8 +1565,11 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfo(const void *data, uint32_t | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfoV2(const void *data, uint32_t size, uint32_t *width, | |||
uint32_t *height, int32_t *components, | |||
ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfoV2(const void *data, | |||
uint32_t size, | |||
uint32_t *width, | |||
uint32_t *height, | |||
int32_t *components, | |||
acldvppJpegFormat *format); | |||
/** | |||
@@ -1561,7 +1584,8 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfoV2(const void *data, uint32_ | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppJpegPredictEncSize(const acldvppPicDesc *inputDesc, | |||
const acldvppJpegeConfig *config, uint32_t *size); | |||
const acldvppJpegeConfig *config, | |||
uint32_t *size); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1575,8 +1599,10 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegPredictEncSize(const acldvppPicDesc *inp | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppJpegPredictDecSize(const void *data, uint32_t dataSize, | |||
acldvppPixelFormat outputPixelFormat, uint32_t *decSize); | |||
ACL_FUNC_VISIBILITY aclError acldvppJpegPredictDecSize(const void *data, | |||
uint32_t dataSize, | |||
acldvppPixelFormat outputPixelFormat, | |||
uint32_t *decSize); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1591,8 +1617,11 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegPredictDecSize(const void *data, uint32_ | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppPngGetImageInfo(const void *data, uint32_t dataSize, uint32_t *width, | |||
uint32_t *height, int32_t *components); | |||
ACL_FUNC_VISIBILITY aclError acldvppPngGetImageInfo(const void *data, | |||
uint32_t dataSize, | |||
uint32_t *width, | |||
uint32_t *height, | |||
int32_t *components); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1606,8 +1635,10 @@ ACL_FUNC_VISIBILITY aclError acldvppPngGetImageInfo(const void *data, uint32_t d | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppPngPredictDecSize(const void *data, uint32_t dataSize, | |||
acldvppPixelFormat outputPixelFormat, uint32_t *decSize); | |||
ACL_FUNC_VISIBILITY aclError acldvppPngPredictDecSize(const void *data, | |||
uint32_t dataSize, | |||
acldvppPixelFormat outputPixelFormat, | |||
uint32_t *decSize); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1671,8 +1702,10 @@ ACL_FUNC_VISIBILITY aclError acldvppDestroyChannel(acldvppChannelDesc *channelDe | |||
* @see acldvppCreateChannel | acldvppCreatePicDesc | |||
* | acldvppCreateResizeConfig | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcResizeAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, acldvppResizeConfig *resizeConfig, | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcResizeAsync(acldvppChannelDesc *channelDesc, | |||
acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, | |||
acldvppResizeConfig *resizeConfig, | |||
aclrtStream stream); | |||
/** | |||
@@ -1708,8 +1741,10 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcResizeAsync(acldvppChannelDesc *channelDe | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, acldvppRoiConfig *cropArea, | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropAsync(acldvppChannelDesc *channelDesc, | |||
acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, | |||
acldvppRoiConfig *cropArea, | |||
aclrtStream stream); | |||
/** | |||
@@ -1746,9 +1781,13 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcCropAsync(acldvppChannelDesc *channelDesc | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizeAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, acldvppRoiConfig *cropArea, | |||
acldvppResizeConfig *resizeConfig, aclrtStream stream); | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizeAsync(acldvppChannelDesc *channelDesc, | |||
acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, | |||
acldvppRoiConfig *cropArea, | |||
acldvppResizeConfig *resizeConfig, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1772,9 +1811,12 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizeAsync(acldvppChannelDesc *chann | |||
* @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropAsync(acldvppChannelDesc *channelDesc, | |||
acldvppBatchPicDesc *srcBatchPicDescs, uint32_t *roiNums, | |||
uint32_t size, acldvppBatchPicDesc *dstBatchPicDescs, | |||
acldvppRoiConfig *cropAreas[], aclrtStream stream); | |||
acldvppBatchPicDesc *srcBatchPicDescs, | |||
uint32_t *roiNums, | |||
uint32_t size, | |||
acldvppBatchPicDesc *dstBatchPicDescs, | |||
acldvppRoiConfig *cropAreas[], | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1799,10 +1841,13 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropAsync(acldvppChannelDesc *channe | |||
* @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | acldvppCreateDvppConfig | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizeAsync(acldvppChannelDesc *channelDesc, | |||
acldvppBatchPicDesc *srcBatchPicDescs, uint32_t *roiNums, | |||
uint32_t size, acldvppBatchPicDesc *dstBatchPicDescs, | |||
acldvppBatchPicDesc *srcBatchPicDescs, | |||
uint32_t *roiNums, | |||
uint32_t size, | |||
acldvppBatchPicDesc *dstBatchPicDescs, | |||
acldvppRoiConfig *cropAreas[], | |||
acldvppResizeConfig *resizeConfig, aclrtStream stream); | |||
acldvppResizeConfig *resizeConfig, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1825,9 +1870,12 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizeAsync(acldvppChannelDesc * | |||
* | |||
* @see acldvppCreateChannel | acldvppCreatePicDesc | acldvppCreateRoiConfig | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropAndPasteAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, acldvppRoiConfig *cropArea, | |||
acldvppRoiConfig *pasteArea, aclrtStream stream); | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropAndPasteAsync(acldvppChannelDesc *channelDesc, | |||
acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, | |||
acldvppRoiConfig *cropArea, | |||
acldvppRoiConfig *pasteArea, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1851,10 +1899,13 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcCropAndPasteAsync(acldvppChannelDesc *cha | |||
* | |||
* @see acldvppCreateChannel | acldvppCreatePicDesc | acldvppCreateRoiConfig | acldvppCreateResizeConfig | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizePasteAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, acldvppRoiConfig *cropArea, | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizePasteAsync(acldvppChannelDesc *channelDesc, | |||
acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, | |||
acldvppRoiConfig *cropArea, | |||
acldvppRoiConfig *pasteArea, | |||
acldvppResizeConfig *resizeConfig, aclrtStream stream); | |||
acldvppResizeConfig *resizeConfig, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1879,11 +1930,14 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizePasteAsync(acldvppChannelDesc * | |||
* | |||
* @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropAndPasteAsync(acldvppChannelDesc *channelDesc, | |||
acldvppBatchPicDesc *srcBatchPicDescs, uint32_t *roiNums, | |||
uint32_t size, acldvppBatchPicDesc *dstBatchPicDescs, | |||
acldvppRoiConfig *cropAreas[], | |||
acldvppRoiConfig *pasteAreas[], aclrtStream stream); | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropAndPasteAsync(acldvppChannelDesc *channelDesc, | |||
acldvppBatchPicDesc *srcBatchPicDescs, | |||
uint32_t *roiNums, | |||
uint32_t size, | |||
acldvppBatchPicDesc *dstBatchPicDescs, | |||
acldvppRoiConfig *cropAreas[], | |||
acldvppRoiConfig *pasteAreas[], | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1909,10 +1963,16 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropAndPasteAsync(acldvppChannelDesc | |||
* | |||
* @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | acldvppCreateResizeConfig | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizePasteAsync( | |||
acldvppChannelDesc *channelDesc, acldvppBatchPicDesc *srcBatchPicDescs, uint32_t *roiNums, uint32_t size, | |||
acldvppBatchPicDesc *dstBatchPicDescs, acldvppRoiConfig *cropAreas[], acldvppRoiConfig *pasteAreas[], | |||
acldvppResizeConfig *resizeConfig, aclrtStream stream); | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizePasteAsync(acldvppChannelDesc *channelDesc, | |||
acldvppBatchPicDesc *srcBatchPicDescs, | |||
uint32_t *roiNums, | |||
uint32_t size, | |||
acldvppBatchPicDesc *dstBatchPicDescs, | |||
acldvppRoiConfig *cropAreas[], | |||
acldvppRoiConfig *pasteAreas[], | |||
acldvppResizeConfig *resizeConfig, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1940,8 +2000,11 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizePasteAsync( | |||
* | |||
* @see acldvppCreateChannel | acldvppCreatePicDesc | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppJpegDecodeAsync(acldvppChannelDesc *channelDesc, const void *data, uint32_t size, | |||
acldvppPicDesc *outputDesc, aclrtStream stream); | |||
ACL_FUNC_VISIBILITY aclError acldvppJpegDecodeAsync(acldvppChannelDesc *channelDesc, | |||
const void *data, | |||
uint32_t size, | |||
acldvppPicDesc *outputDesc, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -1959,8 +2022,11 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegDecodeAsync(acldvppChannelDesc *channelD | |||
* | |||
* @see acldvppCreateChannel | acldvppCreateJpegeConfig | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppJpegEncodeAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||
const void *data, uint32_t *size, acldvppJpegeConfig *config, | |||
ACL_FUNC_VISIBILITY aclError acldvppJpegEncodeAsync(acldvppChannelDesc *channelDesc, | |||
acldvppPicDesc *inputDesc, | |||
const void *data, | |||
uint32_t *size, | |||
acldvppJpegeConfig *config, | |||
aclrtStream stream); | |||
/** | |||
@@ -1978,8 +2044,11 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegEncodeAsync(acldvppChannelDesc *channelD | |||
* | |||
* @see acldvppCreateChannel | acldvppCreatePicDesc | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppPngDecodeAsync(acldvppChannelDesc *channelDesc, const void *data, uint32_t size, | |||
acldvppPicDesc *outputDesc, aclrtStream stream); | |||
ACL_FUNC_VISIBILITY aclError acldvppPngDecodeAsync(acldvppChannelDesc *channelDesc, | |||
const void *data, | |||
uint32_t size, | |||
acldvppPicDesc *outputDesc, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2034,8 +2103,11 @@ ACL_FUNC_VISIBILITY aclError aclvdecDestroyChannel(aclvdecChannelDesc *channelDe | |||
* | |||
* @see aclvdecCreateChannel | acldvppCreateStreamDesc | acldvppCreatePicDesc | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError aclvdecSendFrame(aclvdecChannelDesc *channelDesc, acldvppStreamDesc *input, | |||
acldvppPicDesc *output, aclvdecFrameConfig *config, void *userData); | |||
ACL_FUNC_VISIBILITY aclError aclvdecSendFrame(aclvdecChannelDesc *channelDesc, | |||
acldvppStreamDesc *input, | |||
acldvppPicDesc *output, | |||
aclvdecFrameConfig *config, | |||
void *userData); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2054,8 +2126,10 @@ ACL_FUNC_VISIBILITY aclError aclvdecSendFrame(aclvdecChannelDesc *channelDesc, a | |||
* | |||
* @see aclvdecCreateChannel | acldvppCreateStreamDesc | acldvppCreatePicDesc | aclvdecSendFrame | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError aclvdecSendSkippedFrame(aclvdecChannelDesc *channelDesc, acldvppStreamDesc *input, | |||
aclvdecFrameConfig *config, void *userData); | |||
ACL_FUNC_VISIBILITY aclError aclvdecSendSkippedFrame(aclvdecChannelDesc *channelDesc, | |||
acldvppStreamDesc *input, | |||
aclvdecFrameConfig *config, | |||
void *userData); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2076,8 +2150,10 @@ ACL_FUNC_VISIBILITY aclError aclvdecSendSkippedFrame(aclvdecChannelDesc *channel | |||
* | |||
* @see acldvppCreateChannel | acldvppCreatePicDesc | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcConvertColorAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, aclrtStream stream); | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcConvertColorAsync(acldvppChannelDesc *channelDesc, | |||
acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2099,8 +2175,11 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcConvertColorAsync(acldvppChannelDesc *cha | |||
* | |||
* @see acldvppCreateChannel | acldvppCreatePicDesc | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcPyrDownAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, void *reserve, aclrtStream stream); | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcPyrDownAsync(acldvppChannelDesc *channelDesc, | |||
acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, | |||
void *reserve, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2112,7 +2191,8 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcPyrDownAsync(acldvppChannelDesc *channelD | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppSetChannelDescMode(acldvppChannelDesc *channelDesc, uint32_t mode); | |||
ACL_FUNC_VISIBILITY aclError acldvppSetChannelDescMode(acldvppChannelDesc *channelDesc, | |||
uint32_t mode); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2147,7 +2227,8 @@ ACL_FUNC_VISIBILITY uint32_t acldvppGetResizeConfigInterpolation(const acldvppRe | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError aclvdecSetChannelDescOutMode(aclvdecChannelDesc *channelDesc, uint32_t outMode); | |||
ACL_FUNC_VISIBILITY aclError aclvdecSetChannelDescOutMode(aclvdecChannelDesc *channelDesc, | |||
uint32_t outMode); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2244,7 +2325,9 @@ ACL_FUNC_VISIBILITY uint32_t acldvppGetLutMapDims(const acldvppLutMap *lutMap); | |||
* @retval ACL_SUCCESS The function is successfully executed. | |||
* @retval OtherValues Failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppGetLutMapData(const acldvppLutMap *lutMap, uint32_t dim, uint8_t **data, | |||
ACL_FUNC_VISIBILITY aclError acldvppGetLutMapData(const acldvppLutMap *lutMap, | |||
uint32_t dim, | |||
uint8_t **data, | |||
uint32_t *len); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2262,8 +2345,10 @@ ACL_FUNC_VISIBILITY aclError acldvppGetLutMapData(const acldvppLutMap *lutMap, u | |||
* @see acldvppCreateChannel|acldvppCreatePicDesc|acldvppCreateLutMap | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcEqualizeHistAsync(const acldvppChannelDesc *channelDesc, | |||
const acldvppPicDesc *inputDesc, acldvppPicDesc *outputDesc, | |||
const acldvppLutMap *lutMap, aclrtStream stream); | |||
const acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, | |||
const acldvppLutMap *lutMap, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2284,7 +2369,8 @@ ACL_FUNC_VISIBILITY acldvppBorderConfig *acldvppCreateBorderConfig(); | |||
* | |||
* @retval ACL_SUCCESS for success, other for failure | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppSetBorderConfigValue(acldvppBorderConfig *borderConfig, uint32_t index, | |||
ACL_FUNC_VISIBILITY aclError acldvppSetBorderConfigValue(acldvppBorderConfig *borderConfig, | |||
uint32_t index, | |||
double value); | |||
/** | |||
@@ -2429,8 +2515,10 @@ ACL_FUNC_VISIBILITY aclError acldvppDestroyBorderConfig(acldvppBorderConfig *bor | |||
* @see acldvppCreateChannel|acldvppCreatePicDesc|acldvppCreateBorderConfig | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcMakeBorderAsync(const acldvppChannelDesc *channelDesc, | |||
const acldvppPicDesc *inputDesc, acldvppPicDesc *outputDesc, | |||
const acldvppBorderConfig *borderConfig, aclrtStream stream); | |||
const acldvppPicDesc *inputDesc, | |||
acldvppPicDesc *outputDesc, | |||
const acldvppBorderConfig *borderConfig, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2447,8 +2535,11 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcMakeBorderAsync(const acldvppChannelDesc | |||
* | |||
* @see acldvppCreateChannel | acldvppCreatePicDesc | acldvppCreateHist | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcCalcHistAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *srcPicDesc, | |||
acldvppHist *hist, void *reserve, aclrtStream stream); | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcCalcHistAsync(acldvppChannelDesc *channelDesc, | |||
acldvppPicDesc *srcPicDesc, | |||
acldvppHist *hist, | |||
void *reserve, | |||
aclrtStream stream); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2457,7 +2548,7 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcCalcHistAsync(acldvppChannelDesc *channel | |||
* @retval null for failed. | |||
* @retval OtherValues success. | |||
*/ | |||
ACL_FUNC_VISIBILITY acldvppHist *acldvppCreateHist(); | |||
ACL_FUNC_VISIBILITY acldvppHist* acldvppCreateHist(); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2514,7 +2605,7 @@ ACL_FUNC_VISIBILITY aclError acldvppGetHistData(acldvppHist *hist, uint32_t dim, | |||
* | |||
* @see acldvppCreateHist | acldvppVpcCalcHistAsync | |||
*/ | |||
ACL_FUNC_VISIBILITY uint32_t acldvppGetHistRetCode(acldvppHist *hist); | |||
ACL_FUNC_VISIBILITY uint32_t acldvppGetHistRetCode(acldvppHist* hist); | |||
/** | |||
* @ingroup AscendCL | |||
@@ -2533,6 +2624,7 @@ ACL_FUNC_VISIBILITY uint32_t acldvppGetHistRetCode(acldvppHist *hist); | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppClearHist(acldvppHist *hist); | |||
/** | |||
* @ingroup AscendCL | |||
* @brief dvpp vpc batch crop, resize config and make border. | |||
@@ -2556,13 +2648,18 @@ ACL_FUNC_VISIBILITY aclError acldvppClearHist(acldvppHist *hist); | |||
* | |||
* @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | acldvppCreateResizeConfig | |||
*/ | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizeMakeBorderAsync( | |||
acldvppChannelDesc *channelDesc, acldvppBatchPicDesc *srcBatchPicDescs, uint32_t *roiNums, uint32_t size, | |||
acldvppBatchPicDesc *dstBatchPicDescs, acldvppRoiConfig *cropAreas[], acldvppBorderConfig *borderCfgs[], | |||
acldvppResizeConfig *resizeConfig, aclrtStream stream); | |||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizeMakeBorderAsync(acldvppChannelDesc *channelDesc, | |||
acldvppBatchPicDesc *srcBatchPicDescs, | |||
uint32_t *roiNums, | |||
uint32_t size, | |||
acldvppBatchPicDesc *dstBatchPicDescs, | |||
acldvppRoiConfig *cropAreas[], | |||
acldvppBorderConfig *borderCfgs[], | |||
acldvppResizeConfig *resizeConfig, | |||
aclrtStream stream); | |||
#ifdef __cplusplus | |||
} | |||
#endif | |||
#endif // INC_EXTERNAL_ACL_OPS_ACL_DVPP_H_ | |||
#endif // INC_EXTERNAL_ACL_OPS_ACL_DVPP_H_ |
@@ -119,6 +119,15 @@ extern HcclResult HcclAllGather(void *sendBuf, void *recvBuf, uint64_t sendCount | |||
HcclComm comm, aclrtStream stream); | |||
/** | |||
* @brief Barrier operator. | |||
* | |||
* @param comm A pointer identifying the communication resource based on. | |||
* @param stream A pointer identifying the stream information. | |||
* @return HcclResult | |||
*/ | |||
extern HcclResult HcclBarrier(HcclComm comm, aclrtStream stream); | |||
/** | |||
* @brief Destroy HCCL comm | |||
* | |||
* @param comm A pointer identifying the communication resource targetting | |||
@@ -94,6 +94,7 @@ static const int32_t ACL_ERROR_RT_DEV_SETUP_ERROR = 507033; // device | |||
static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error | |||
static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error | |||
static const int32_t ACL_ERROR_RT_SOCKET_CLOSE = 507901; // hdc disconnect | |||
#ifdef __cplusplus | |||
} | |||
@@ -56,6 +56,7 @@ | |||
#include <dirent.h> | |||
#include <getopt.h> | |||
#include <libgen.h> | |||
#include <malloc.h> | |||
#include <linux/types.h> | |||
#include <linux/hdreg.h> | |||
@@ -550,6 +550,10 @@ MMPA_FUNC_VISIBILITY mmFileHandle mmShmOpen(const CHAR *name, INT32 oflag, mmMod | |||
MMPA_FUNC_VISIBILITY INT32 mmShmUnlink(const CHAR *name); | |||
MMPA_FUNC_VISIBILITY VOID *mmMmap(mmFd_t fd, mmSize_t size, mmOfft_t offset, mmFd_t *extra, INT32 prot, INT32 flags); | |||
MMPA_FUNC_VISIBILITY INT32 mmMunMap(VOID *data, mmSize_t size, mmFd_t *extra); | |||
MMPA_FUNC_VISIBILITY mmSize mmGetPageSize(); | |||
MMPA_FUNC_VISIBILITY VOID *mmAlignMalloc(mmSize mallocSize, mmSize alignSize); | |||
MMPA_FUNC_VISIBILITY VOID mmAlignFree(VOID *addr); | |||
#define MMPA_DLL_API | |||
#ifdef __cplusplus | |||
@@ -557,6 +557,10 @@ MMPA_FUNC_VISIBILITY mmFileHandle mmShmOpen(const CHAR *name, INT32 oflag, mmMod | |||
MMPA_FUNC_VISIBILITY INT32 mmShmUnlink(const CHAR *name); | |||
MMPA_FUNC_VISIBILITY VOID *mmMmap(mmFd_t fd, mmSize_t size, mmOfft_t offset, mmFd_t *extra, INT32 prot, INT32 flags); | |||
MMPA_FUNC_VISIBILITY INT32 mmMunMap(VOID *data, mmSize_t size, mmFd_t *extra); | |||
MMPA_FUNC_VISIBILITY mmSize mmGetPageSize(); | |||
MMPA_FUNC_VISIBILITY VOID *mmAlignMalloc(mmSize mallocSize, mmSize alignSize); | |||
MMPA_FUNC_VISIBILITY VOID mmAlignFree(VOID *addr); | |||
#ifdef __cplusplus | |||
#if __cplusplus | |||
} | |||
@@ -146,6 +146,8 @@ REG_OP(Cast) | |||
/** | |||
*@brief Returns the truth value of (x1 >= x2) element-wise. \n | |||
*when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||
*aicore accuracy is not guaranteed \n | |||
*@par Inputs: | |||
*Two inputs, including: | |||
@@ -167,6 +169,8 @@ REG_OP(GreaterEqual) | |||
/** | |||
*@brief Returns the truth value of (x1 < x2) element-wise. \n | |||
*when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||
*aicore accuracy is not guaranteed \n | |||
*@par Inputs: | |||
*Two inputs, including: | |||
@@ -567,6 +571,8 @@ REG_OP(InvGrad) | |||
/** | |||
*@brief: Returns the truth value of (x <= y) element-wise. \n | |||
*when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||
*aicore accuracy is not guaranteed \n | |||
*@par Inputs: | |||
* Two inputs, including: | |||
@@ -1464,6 +1470,8 @@ REG_OP(ReciprocalGrad) | |||
/** | |||
*@brief Returns the truth value of (x1 > x2) element-wise. \n | |||
*when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||
*aicore accuracy is not guaranteed \n | |||
*@par Inputs: | |||
*@li x1: A Tensor of type float16, float32, double, int64, int32, int16, int8, | |||
@@ -3801,6 +3809,34 @@ REG_OP(ArgMaxGradD) | |||
.OP_END_FACTORY_REG(ArgMaxGradD) | |||
/** | |||
*@brief Calculates the reversed outputs of the function "AddMatMatElements" | |||
* c = c * beta + alpha * a * b | |||
*@par Inputs: | |||
*Three inputs, including: | |||
* @li c: A mutable Tensor. Must be one of the following types: | |||
* float16, float32. | |||
* @li a: A mutable Tensor of the same type as "c". | |||
* @li b: A mutable Tensor of the same type as "c". | |||
* @li beta: A mutable scalar of the same type as "c". | |||
* @li alpha: A mutable scalar of the same type as "c". \n | |||
*@par Outputs: | |||
* @li c: A mutable Tensor. Has the same type as "c". \n | |||
*@par Third-party framework compatibility | |||
* Compatible with the TensorFlow operator AddMatMatElements. | |||
*/ | |||
REG_OP(AddMatMatElements) | |||
.INPUT(c, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.INPUT(a, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.INPUT(b, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.INPUT(beta, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.INPUT(alpha, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.OUTPUT(c, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.OP_END_FACTORY_REG(AddMatMatElements) | |||
/** | |||
*@brief Returns cosine similarity between x1 and x2,computed along dim. \n | |||
*@par Inputs: | |||
@@ -24,6 +24,22 @@ | |||
#include "graph/operator_reg.h" | |||
namespace ge { | |||
/** | |||
*@brief Decode the frame(s) of a GIF-encoded image to a uint8 tensor . \n | |||
*@par Inputs: | |||
*@li contents:A Tensor of type string. 0-D. The GIF-encoded image. \n | |||
*@par Outputs: | |||
*image:A Tensor of type uint8. \n | |||
*@par Third-party framework compatibility | |||
*Compatible with tensorflow DecodeGif operator. | |||
*/ | |||
REG_OP(DecodeGif) | |||
.INPUT(contents, TensorType({DT_STRING})) | |||
.OUTPUT(image, TensorType({DT_UINT8})) | |||
.OP_END_FACTORY_REG(DecodeGif) | |||
/** | |||
*@brief Adjust the hue of one or more images . \n | |||
@@ -1071,6 +1087,88 @@ REG_OP(EncodePng) | |||
.ATTR(compression, Int, -1) | |||
.OP_END_FACTORY_REG(EncodePng) | |||
/** | |||
*@brief PNG-decode an image. | |||
*@par Inputs: | |||
*contents: 0-D. PNG-decoded image . | |||
*@par Attributes: | |||
*channels: graph channels \n | |||
*dtype: type of image | |||
*@par Outputs: | |||
*image: is a 3-D uint8 or uint16 Tensor of shape [height, width, channels] | |||
where channels is: 1: for grayscale; 2: for grayscale + alpha; 3: for RGB; | |||
4: for RGBA . \n | |||
*@par Third-party framework compatibility | |||
*Compatible with tensorflow DecodePng operator. | |||
*/ | |||
REG_OP(DecodePng) | |||
.INPUT(contents, TensorType({DT_STRING})) | |||
.OUTPUT(image, TensorType({DT_UINT8, DT_UINT16})) | |||
.ATTR(dtype, Type, DT_UINT8) | |||
.ATTR(channels, Int, 0) | |||
.OP_END_FACTORY_REG(DecodePng) | |||
/** | |||
*@brief Bmp-decode an image. \n | |||
*@par Inputs: | |||
*@li contents: A Tensor of type string. 0-D. The BMP-encoded image. \n | |||
*@par Attributes: | |||
*@li channels: Decode the desired number of color channels of the image. \n | |||
*@par Outputs: | |||
*image: A Tensor dtype of uint8. | |||
* @par Third-party framework compatibility | |||
* Compatible with tensorflow DecodeBmp operator. | |||
*/ | |||
REG_OP(DecodeBmp) | |||
.INPUT(contents, TensorType({DT_STRING})) | |||
.OUTPUT(image, TensorType({DT_UINT8})) | |||
.ATTR(channels, Int, 0) | |||
.OP_END_FACTORY_REG(DecodeBmp) | |||
/* | |||
*@brief Function parse image from string to int. \n | |||
*@par Inputs: | |||
*@li contents: A Tensor of type string. 0-D. The JPEG-encoded image. \n | |||
*@li crop_window: 1-D. The crop window: [crop_y, crop_x, crop_height, crop_width]. \n | |||
*@par Attributes: | |||
*@li channels: An optional int. Defaults to 0. Number of color channels for the | |||
*decoded image. | |||
*@li ratio: An optional int. Defaults to 1. Downscaling ratio. | |||
*@li fancy_upscaling: An optional bool. Defaults to True. If true use a slower | |||
*but nicer upscaling of the chroma planes | |||
*@li try_recover_truncated: An optional bool. Defaults to False. If true try to | |||
*recover an image from truncated input. | |||
*@li acceptable_fraction: An optional float. Defaults to 1. The minimum required | |||
fraction of lines before a truncated input is accepted. | |||
*@li dct_method: An optional string. Defaults to "". string specifying a hint | |||
*about the algorithm used for decompression. \n | |||
*@par Outputs: | |||
*image: A Tensor dtype of uint8. | |||
*/ | |||
REG_OP(DecodeAndCropJpeg) | |||
.INPUT(contents, TensorType({DT_STRING})) | |||
.INPUT(crop_window, TensorType({DT_INT32})) | |||
.OUTPUT(image, TensorType({DT_UINT8})) | |||
.ATTR(channels, Int, 0) | |||
.ATTR(ratio, Int, 1) | |||
.ATTR(fancy_upscaling, Bool, true) | |||
.ATTR(try_recover_truncated, Bool, false) | |||
.ATTR(acceptable_fraction, Float, 1.0) | |||
.ATTR(dct_method, String, "") | |||
.OP_END_FACTORY_REG(DecodeAndCropJpeg) | |||
/** | |||
*@brief Resizes "images" to "size" using bilinear interpolation . \n | |||
@@ -83,6 +83,25 @@ REG_OP(Cholesky) | |||
.OP_END_FACTORY_REG(Cholesky) | |||
/** | |||
*@brief Computes the outer product of two 1D vectors . \n | |||
*@par Inputs: | |||
*The input x1 and x2 has to be a 1D vector.Inputs include: | |||
*@li x1:A Tensor. Must be one of the following types: float16, float32. | |||
Shape is [N] . \n | |||
*@li x2:A Tensor. Must have the same type as x. Shape is [M] . \n | |||
*@par Outputs: | |||
*y:A Tensor. Has the same type as x . \n | |||
*/ | |||
REG_OP(Ger) | |||
.INPUT(x1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(x2, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OP_END_FACTORY_REG(Ger) | |||
/** | |||
*@brief Computes the sign and the log of the absolute value of the determinant | |||
of one or more square matrices . \n | |||
@@ -328,6 +347,34 @@ REG_OP(SelfAdjointEig) | |||
.OP_END_FACTORY_REG(SelfAdjointEig) | |||
/** | |||
*@brief Computes the sign and the log of the absolute value of the determinant | |||
of one or more square matrices . \n | |||
*@par Inputs: | |||
*The input x is a tensor of shape [N, M, M] whose inner-most 2 dimensions | |||
form square matrices. Inputs include: | |||
*x:A Tensor. Must be one of the following types: double, float32, float16 | |||
Shape is [..., M, M] . \n | |||
*@par Outputs: | |||
*@li y:A Tensor. Has the same type as x. | |||
*@li sign:A Tensor. Has the same type as x . \n | |||
*@attention Constraints: | |||
*The input x is a tensor of shape [N, M, M] whose inner-most 2 dimensions | |||
form square matrices. \n | |||
*@par Third-party framework compatibility | |||
*Compatible with tensorflow LogMatrixDeterminant operator. | |||
*/ | |||
REG_OP(Slogdet) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
.OUTPUT(sign, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
.OP_END_FACTORY_REG(Slogdet) | |||
/** | |||
*@brief Computes the singular value decompositions of one or more matrices . \n | |||
*@par Inputs: | |||
@@ -534,6 +534,29 @@ REG_OP(NextAfter) | |||
.OP_END_FACTORY_REG(NextAfter) | |||
/** | |||
*@brief Calculate the P-norm distance between vectors function. \n | |||
*@par Inputs: | |||
*One inputs, including: | |||
* @li input_x: A tensor. Must be one of the following types: | |||
* float16, float32. \n | |||
*@par Attributes: | |||
*@li p: An optional float.Defaults to 2. \n | |||
*@par Outputs: | |||
*y: A Tensor with the same type and shape of input_x's. \n | |||
*@par Third-party framework compatibility | |||
*Compatible with the Pytorch operator Pdist. \n | |||
*/ | |||
REG_OP(Pdist) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.ATTR(p, Float, 2.0) | |||
.OP_END_FACTORY_REG(Pdist) | |||
/** | |||
*@brief Compute element-wise finiteness, return a boolean tensor. | |||
*@par Inputs: | |||
@@ -91,6 +91,36 @@ REG_OP(MatMulV2) | |||
.ATTR(offset_x, Int, 0) | |||
.OP_END_FACTORY_REG(MatMulV2) | |||
/** | |||
*@brief Multiplies matrix "a" by matrix "b", producing "a * b" . \n | |||
*@par Inputs: | |||
*Two inputs, including: | |||
* @li x1: A matrix Tensor. 2D. Must be one of the following types: int8. | |||
* @li x2: A matrix Tensor. 2D. Must be one of the following types: int8. | |||
* @li compress_index: A compress index matrix of type int8. | |||
* @li bias: A 1D Tensor. Must be one of the following types: int32, float16. | |||
*@par Attributes: | |||
*@li transpose_x1: A bool. If True, changes the shape of "x1" from [M, K] to [K, M]. | |||
*@li transpose_x2: A bool. If True, changes the shape of "x2" from [M, K] to [K, M] . \n | |||
*@par Outputs: | |||
*y: The result matrix Tensor. 2D. Must be one of the following types: float16, | |||
* int32. \n | |||
*/ | |||
REG_OP(MatMulV2Compress) | |||
.INPUT(x1, TensorType({DT_INT8})) | |||
.INPUT(x2, TensorType({DT_INT8})) | |||
.INPUT(compress_index, TensorType({DT_INT8})) | |||
.OPTIONAL_INPUT(bias, TensorType({DT_INT32, DT_FLOAT16})) | |||
.OUTPUT(y, TensorType({DT_INT32, DT_FLOAT16})) | |||
.OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | |||
.ATTR(transpose_x1, Bool, false) | |||
.ATTR(transpose_x2, Bool, false) | |||
.ATTR(offset_x, Int, 0) | |||
.OP_END_FACTORY_REG(MatMulV2Compress) | |||
/** | |||
*@brief Performs Matrix-to-matrix Multiply, producing c=alpha[0]*a*b+beta[0]*c . \n | |||
@@ -189,8 +219,8 @@ REG_OP(BatchMatMul) | |||
* float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ] . \n | |||
* @par Attributes: | |||
* @li adj_x: A bool. If True, changes the shape of "x1" from [B, M, K] to [B, K, M]. | |||
* @li adj_y: A bool. If True, changes the shape of "x2" from [B, M, K] to [B, K, M] . \n | |||
* @li adj_x1: A bool. If True, changes the shape of "x1" from [B, M, K] to [B, K, M]. | |||
* @li adj_x2: A bool. If True, changes the shape of "x2" from [B, M, K] to [B, K, M] . \n | |||
* @par Outputs: | |||
* y: The result matrix Tensor. 2D or higher. Must be one of the following types: float16, | |||
@@ -201,15 +231,16 @@ REG_OP(BatchMatMul) | |||
*/ | |||
REG_OP(BatchMatMulV2) | |||
.INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||
.INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||
.INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||
.INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||
.OPTIONAL_INPUT(bias, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||
.OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | |||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||
.ATTR(adj_x1, Bool, false) | |||
.ATTR(adj_x2, Bool, false) | |||
.ATTR(offset_x, Int, 0) | |||
.OP_END_FACTORY_REG(BatchMatMulV2) | |||
/** | |||
*@brief Computes half the L2 norm of a tensor without the sqrt . \n | |||
@@ -369,7 +400,7 @@ REG_OP(MatrixSetDiagD) | |||
* int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, | |||
* uint64 | |||
*@li indices: An ND Tensor. | |||
*Must be one of the following types: int32, int64 | |||
*Must be one of the following types: int32 or int64 | |||
*@li updates: An ND Tensor. | |||
*Must be one of the following types: float16, float32, int8, uint8, double, | |||
* int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, | |||
@@ -429,7 +460,7 @@ REG_OP(TensorScatterUpdate) | |||
*@li var: An ND Tensor . \n | |||
*Must be one of the following types: float16, float32, int32, int8, uint8 | |||
*@li indices: An ND Tensor of type int32 or int64. | |||
*@li indices: An ND Tensor of type int32 or int64 | |||
*@li updates: An Tensor. format:NCHW, NHWC . \n | |||
@@ -447,10 +478,10 @@ REG_OP(TensorScatterUpdate) | |||
* Compatible with the TensorFlow operator ScatterAdd. | |||
*/ | |||
REG_OP(ScatterAdd) | |||
.INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(indices, TensorType::IndexNumberType()) | |||
.INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.ATTR(use_locking, Bool, false) | |||
.OP_END_FACTORY_REG(ScatterAdd) | |||
@@ -463,7 +494,7 @@ REG_OP(ScatterAdd) | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@li indices: An ND Tensor. | |||
*Must be one of the following types: int32 | |||
*Must be one of the following types: int32 or int64 | |||
*@li updates: An ND Tensor. | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
@@ -478,10 +509,10 @@ REG_OP(ScatterAdd) | |||
* Compatible with the TensorFlow operator ScatterDiv. | |||
*/ | |||
REG_OP(ScatterDiv) | |||
.INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(indices, TensorType({DT_INT32})) | |||
.INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(indices, TensorType::IndexNumberType()) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.ATTR(use_locking, Bool, false) | |||
.OP_END_FACTORY_REG(ScatterDiv) | |||
@@ -493,7 +524,7 @@ REG_OP(ScatterDiv) | |||
*@li var: An ND Tensor. | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@li indices: An ND Tensor. | |||
*Must be one of the following types: int32 | |||
*Must be one of the following types: int32 or int64 | |||
*@li updates: An ND Tensor. | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@par Attributes: | |||
@@ -507,10 +538,10 @@ REG_OP(ScatterDiv) | |||
* Compatible with the TensorFlow operator ScatterNdAdd. | |||
*/ | |||
REG_OP(ScatterNdAdd) | |||
.INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(indices, TensorType::IndexNumberType()) | |||
.INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.ATTR(use_locking, Bool, false) | |||
.OP_END_FACTORY_REG(ScatterNdAdd) | |||
@@ -550,7 +581,7 @@ REG_OP(TensorScatterAdd) | |||
*@li var: An ND Tensor. | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@li indices: An ND Tensor. | |||
*Must be one of the following types: int32, int64 | |||
*Must be one of the following types: int32 or int64 | |||
*@li updates: An ND Tensor. | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
@@ -565,10 +596,10 @@ REG_OP(TensorScatterAdd) | |||
* Compatible with the TensorFlow operator ScatterNdSub. | |||
*/ | |||
REG_OP(ScatterNdSub) | |||
.INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(indices, TensorType::IndexNumberType()) | |||
.INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.ATTR(use_locking, Bool, false) | |||
.OP_END_FACTORY_REG(ScatterNdSub) | |||
@@ -608,7 +639,7 @@ REG_OP(TensorScatterSub) | |||
*@li var: An ND Tensor. | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@li indices: An ND Tensor. | |||
*Must be one of the following types: int32, int64 | |||
*Must be one of the following types: int32 or int64 | |||
*@li updates: An ND Tensor. | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@par Attributes: | |||
@@ -622,10 +653,10 @@ REG_OP(TensorScatterSub) | |||
* Compatible with the TensorFlow operator ScatterSub. | |||
*/ | |||
REG_OP(ScatterSub) | |||
.INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(indices, TensorType::IndexNumberType()) | |||
.INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.ATTR(use_locking, Bool, false) | |||
.OP_END_FACTORY_REG(ScatterSub) | |||
@@ -796,7 +827,7 @@ REG_OP(ConfusionMatrix) | |||
*@li var: An ND Tensor. | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@li indices: An ND Tensor. | |||
*Must be one of the following types: int32 | |||
*Must be one of the following types: int32 or int64 | |||
*@li updates: An ND Tensor . \n | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
@@ -813,7 +844,7 @@ REG_OP(ConfusionMatrix) | |||
*/ | |||
REG_OP(ScatterMul) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(indices, TensorType({DT_INT32})) | |||
.INPUT(indices, TensorType::IndexNumberType()) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.ATTR(use_locking, Bool, false) | |||
@@ -826,13 +857,13 @@ REG_OP(ScatterMul) | |||
*@par Inputs: | |||
* Three inputs, including: | |||
*@li var: An ND Tensor. | |||
*Must be one of the following types: float16, float, int32 | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@li indices: An ND Tensor. | |||
*Must be one of the following types: int32 | |||
*Must be one of the following types: int32 or int64 | |||
*@li updates: An ND Tensor. | |||
*Must be one of the following types: float16, float, int32 | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@par Attributes: | |||
*use_locking: An optional bool. Defaults to "False". If "True", the operation | |||
@@ -845,10 +876,10 @@ REG_OP(ScatterMul) | |||
* Compatible with the TensorFlow operator ScatterMin. | |||
*/ | |||
REG_OP(ScatterMin) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||
.INPUT(indices, TensorType({DT_INT32})) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(indices, TensorType::IndexNumberType()) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.ATTR(use_locking, Bool, false) | |||
.OP_END_FACTORY_REG(ScatterMin) | |||
@@ -859,13 +890,13 @@ REG_OP(ScatterMin) | |||
* Three inputs, including: | |||
*@li var: An ND Tensor . \n | |||
*Must be one of the following types: float16, float, int32 | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@li indices: An NCHW, NHWC, or ND Tensor . \n | |||
*Must be one of the following types: int32 | |||
*Must be one of the following types: int32 or int64 | |||
*@li updates: An NCHW, NHWC, or ND Tensor . \n | |||
*Must be one of the following types: float16, float, int32 | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@par Attributes: | |||
*use_locking: An optional bool. Defaults to "False". | |||
@@ -878,10 +909,10 @@ REG_OP(ScatterMin) | |||
* Compatible with the TensorFlow operator ScatterMax. | |||
*/ | |||
REG_OP(ScatterMax) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||
.INPUT(indices, TensorType({DT_INT32})) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(indices, TensorType::IndexNumberType()) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.ATTR(use_locking, Bool, false) | |||
.OP_END_FACTORY_REG(ScatterMax) | |||
@@ -895,7 +926,7 @@ REG_OP(ScatterMax) | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
*@li indices: An ND Tensor . \n | |||
*Must be one of the following types: int32 | |||
*Must be one of the following types: int32 or int64 | |||
*@li updates: An ND Tensor . \n | |||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||
@@ -911,10 +942,10 @@ REG_OP(ScatterMax) | |||
* Compatible with the TensorFlow operator ScatterUpdate. | |||
*/ | |||
REG_OP(ScatterUpdate) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) | |||
.INPUT(indices, TensorType({DT_INT32})) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) | |||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.INPUT(indices, TensorType::IndexNumberType()) | |||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||
.ATTR(use_locking, Bool, false) | |||
.OP_END_FACTORY_REG(ScatterUpdate) | |||
@@ -1096,6 +1127,33 @@ REG_OP(EinSum) | |||
.REQUIRED_ATTR(equation, String) | |||
.REQUIRED_ATTR(tensor_size, Int) | |||
.OP_END_FACTORY_REG(EinSum) | |||
/** | |||
*@brief Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. \n | |||
*@par Inputs: | |||
*No inputs | |||
*@par Attributes: | |||
*@li num_rows: An required int. \n | |||
*@li num_columns: An optional int.Defaults to 0. \n | |||
*@li batch_shape: An optional ListInt.Defaults to []. \n | |||
*@li dtype: An optional int.Defaults to 0. \n | |||
*@par Outputs: | |||
*y: A Tensor with targeted type and shape. \n | |||
*@par Third-party framework compatibility | |||
*Compatible with the Pytorch operator Eye. \n | |||
*/ | |||
REG_OP(Eye) | |||
.OUTPUT(y, TensorType::BasicType()) /* "Result, has targeted element type" */ | |||
.REQUIRED_ATTR(num_rows, Int) | |||
.ATTR(num_columns, Int, 0) | |||
.ATTR(batch_shape, ListInt, {}) | |||
.ATTR(dtype, Int, 0) | |||
.OP_END_FACTORY_REG(Eye) | |||
} // namespace ge | |||
#endif // OPS_BUILT_IN_OP_PROTO_INC_MATRIX_CALCULATION_OPS_H_ |
@@ -254,22 +254,22 @@ is min_size/sqrt(aspect_ratio), the width is min_size*sqrt(aspect_ratio). Defaul | |||
*@par Third-party framework compatibility | |||
* It is a custom operator. It has no corresponding operator in Caffe. | |||
*/ | |||
REG_OP(PriorBox) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(min_size, ListFloat) | |||
.REQUIRED_ATTR(max_size, ListFloat) | |||
.REQUIRED_ATTR(aspect_ratio, ListFloat) | |||
.ATTR(img_h, Int, 0) | |||
.ATTR(img_w, Int, 0) | |||
.ATTR(step_h, Float, 0.0) | |||
.ATTR(step_w, Float, 0.0) | |||
.ATTR(flip, Bool, true) | |||
.ATTR(clip, Bool, false) | |||
.ATTR(offset, Float, 0.5) | |||
.ATTR(variance, ListFloat, {0.1}) | |||
.OP_END_FACTORY_REG(PriorBox); | |||
REG_OP(PriorBox) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(min_size, ListFloat) | |||
.REQUIRED_ATTR(max_size, ListFloat) | |||
.REQUIRED_ATTR(aspect_ratio, ListFloat) | |||
.ATTR(img_h, Int, 0) | |||
.ATTR(img_w, Int, 0) | |||
.ATTR(step_h, Float, 0.0) | |||
.ATTR(step_w, Float, 0.0) | |||
.ATTR(flip, Bool, true) | |||
.ATTR(clip, Bool, false) | |||
.ATTR(offset, Float, 0.5) | |||
.ATTR(variance, ListFloat, {0.1}) | |||
.OP_END_FACTORY_REG(PriorBox); | |||
/** | |||
*@brief Performs SSD prior box detection, with four additional matrices and the "aspect_ratio" attribute deleted compared to PriorBox . \n | |||
@@ -306,25 +306,25 @@ is min_size/sqrt(aspect_ratio), the width is min_size*sqrt(aspect_ratio). Defaul | |||
*@par Restrictions: | |||
*Warning: THIS FUNCTION IS DEPRECATED. Please use PriorBox instead. | |||
*/ | |||
REG_OP(PriorBoxD) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(data_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(data_w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(box_height, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(box_width, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(min_size, ListFloat) | |||
.REQUIRED_ATTR(max_size, ListFloat) | |||
.ATTR(img_h, Int, 0) | |||
.ATTR(img_w, Int, 0) | |||
.ATTR(step_h, Float, 0.0) | |||
.ATTR(step_w, Float, 0.0) | |||
.ATTR(flip, Bool, true) | |||
.ATTR(clip, Bool, false) | |||
.ATTR(offset, Float, 0.5) | |||
.ATTR(variance, ListFloat, {0.1}) | |||
.OP_END_FACTORY_REG(PriorBoxD); | |||
REG_OP(PriorBoxD) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(data_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(data_w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(box_height, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(box_width, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(min_size, ListFloat) | |||
.REQUIRED_ATTR(max_size, ListFloat) | |||
.ATTR(img_h, Int, 0) | |||
.ATTR(img_w, Int, 0) | |||
.ATTR(step_h, Float, 0.0) | |||
.ATTR(step_w, Float, 0.0) | |||
.ATTR(flip, Bool, true) | |||
.ATTR(clip, Bool, false) | |||
.ATTR(offset, Float, 0.5) | |||
.ATTR(variance, ListFloat, {0.1}) | |||
.OP_END_FACTORY_REG(PriorBoxD); | |||
/** | |||
*@brief Performs SSD prior box detection, with four additional matrices and the "aspect_ratio" attribute deleted compared to PriorBox . \n | |||
@@ -358,22 +358,22 @@ is min_size/sqrt(aspect_ratio), the width is min_size*sqrt(aspect_ratio). Defaul | |||
*@par Restrictions: | |||
*Warning: THIS FUNCTION IS DEPRECATED. Please use PriorBox instead. | |||
*/ | |||
REG_OP(PriorBoxDV2) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(min_size, ListFloat) | |||
.REQUIRED_ATTR(max_size, ListFloat) | |||
.ATTR(img_h, Int, 0) | |||
.ATTR(img_w, Int, 0) | |||
.ATTR(step_h, Float, 0.0) | |||
.ATTR(step_w, Float, 0.0) | |||
.ATTR(flip, Bool, true) | |||
.ATTR(clip, Bool, false) | |||
.ATTR(offset, Float, 0.5) | |||
.ATTR(variance, ListFloat, {0.1}) | |||
.OP_END_FACTORY_REG(PriorBoxDV2); | |||
REG_OP(PriorBoxDV2) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(min_size, ListFloat) | |||
.REQUIRED_ATTR(max_size, ListFloat) | |||
.ATTR(img_h, Int, 0) | |||
.ATTR(img_w, Int, 0) | |||
.ATTR(step_h, Float, 0.0) | |||
.ATTR(step_w, Float, 0.0) | |||
.ATTR(flip, Bool, true) | |||
.ATTR(clip, Bool, false) | |||
.ATTR(offset, Float, 0.5) | |||
.ATTR(variance, ListFloat, {0.1}) | |||
.OP_END_FACTORY_REG(PriorBoxDV2); | |||
/** | |||
*@brief Performs Position Sensitive ROI Pooling . \n | |||
@@ -531,10 +531,10 @@ as xx...xyy...yww...whh...hbb...bc0c0..c0c1c1...c1......cncn...cn . \n | |||
* It is a custom operator. It has no corresponding operator in Caffe. | |||
*/ | |||
REG_OP(Yolo) | |||
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.OUTPUT(coord_data, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.OUTPUT(obj_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.OUTPUT(classes_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(coord_data, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(obj_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(classes_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.ATTR(boxes, Int, 3) | |||
.ATTR(coords, Int, 4) | |||
.ATTR(classes, Int, 80) | |||
@@ -584,10 +584,10 @@ REG_OP(Yolo) | |||
* It is a custom operator. It has no corresponding operator in Caffe. | |||
*/ | |||
REG_OP(YoloV2DetectionOutput) | |||
.INPUT(coord_data, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(obj_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(classes_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(coord_data, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(obj_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(classes_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(biases, ListFloat) | |||
.ATTR(boxes, Int, 5) | |||
.ATTR(coords, Int, 4) | |||
@@ -598,7 +598,7 @@ REG_OP(YoloV2DetectionOutput) | |||
.ATTR(score_threshold, Float, 0.5) | |||
.ATTR(iou_threshold, Float, 0.45) | |||
.ATTR(pre_nms_topn, Int, 512) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | |||
.OP_END_FACTORY_REG(YoloV2DetectionOutput) | |||
@@ -647,12 +647,12 @@ REG_OP(YoloV2DetectionOutput) | |||
*Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV2DetectionOutput instead. | |||
*/ | |||
REG_OP(YoloV2DetectionOutputD) | |||
.INPUT(coord_data, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(obj_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(classes_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(windex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(hindex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(coord_data, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(obj_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(classes_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(windex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(hindex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(biases, ListFloat) | |||
.ATTR(boxes, Int, 5) | |||
.ATTR(coords, Int, 4) | |||
@@ -663,7 +663,7 @@ REG_OP(YoloV2DetectionOutputD) | |||
.ATTR(score_threshold, Float, 0.5) | |||
.ATTR(iou_threshold, Float, 0.45) | |||
.ATTR(pre_nms_topn, Int, 512) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | |||
.OP_END_FACTORY_REG(YoloV2DetectionOutputD) | |||
@@ -707,16 +707,16 @@ REG_OP(YoloV2DetectionOutputD) | |||
* It is a custom operator. It has no corresponding operator in Caffe. | |||
*/ | |||
REG_OP(YoloV3DetectionOutput) | |||
.INPUT(coord_data_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(coord_data_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(coord_data_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(obj_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(obj_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(obj_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(classes_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(classes_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(classes_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(coord_data_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(coord_data_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(coord_data_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(obj_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(obj_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(obj_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(classes_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(classes_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(classes_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(biases_low, ListFloat) | |||
.REQUIRED_ATTR(biases_mid, ListFloat) | |||
.REQUIRED_ATTR(biases_high, ListFloat) | |||
@@ -729,7 +729,7 @@ REG_OP(YoloV3DetectionOutput) | |||
.ATTR(score_threshold, Float, 0.5) | |||
.ATTR(iou_threshold, Float, 0.45) | |||
.ATTR(pre_nms_topn, Int, 512) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | |||
.OP_END_FACTORY_REG(YoloV3DetectionOutput) | |||
@@ -776,22 +776,22 @@ s | |||
*Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV3DetectionOutput instead. | |||
*/ | |||
REG_OP(YoloV3DetectionOutputD) | |||
.INPUT(coord_data_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(coord_data_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(coord_data_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(obj_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(obj_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(obj_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(classes_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(classes_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(classes_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(windex1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(windex2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(windex3, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(hindex1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(hindex2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(hindex3, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(coord_data_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(coord_data_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(coord_data_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(obj_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(obj_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(obj_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(classes_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(classes_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(classes_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(windex1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(windex2, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(windex3, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(hindex1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(hindex2, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(hindex3, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(biases_low, ListFloat) | |||
.REQUIRED_ATTR(biases_mid, ListFloat) | |||
.REQUIRED_ATTR(biases_high, ListFloat) | |||
@@ -804,7 +804,7 @@ REG_OP(YoloV3DetectionOutputD) | |||
.ATTR(score_threshold, Float, 0.5) | |||
.ATTR(iou_threshold, Float, 0.45) | |||
.ATTR(pre_nms_topn, Int, 512) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | |||
.OP_END_FACTORY_REG(YoloV3DetectionOutputD) | |||
@@ -848,7 +848,7 @@ There are three Yolo operators at Yolov3DetectionOutput's preceding layer on Yol | |||
* It is a custom operator. It has no corresponding operator in Caffe. | |||
*/ | |||
REG_OP(YoloV3DetectionOutputV2) | |||
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(biases, ListFloat) | |||
.ATTR(boxes, Int, 3) | |||
.ATTR(coords, Int, 4) | |||
@@ -862,7 +862,7 @@ REG_OP(YoloV3DetectionOutputV2) | |||
.ATTR(N, Int, 10) | |||
.ATTR(resize_origin_img_to_net, Bool, false) | |||
.ATTR(out_box_dim, Int, 3) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | |||
.OP_END_FACTORY_REG(YoloV3DetectionOutputV2) | |||
@@ -910,9 +910,9 @@ REG_OP(YoloV3DetectionOutputV2) | |||
* Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV3DetectionOutputV2 instead. | |||
*/ | |||
REG_OP(YoloV3DetectionOutputV2D) | |||
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.DYNAMIC_INPUT(windex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.DYNAMIC_INPUT(hindex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.DYNAMIC_INPUT(windex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.DYNAMIC_INPUT(hindex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(biases, ListFloat) | |||
.ATTR(boxes, Int, 3) | |||
.ATTR(coords, Int, 4) | |||
@@ -926,7 +926,7 @@ REG_OP(YoloV3DetectionOutputV2D) | |||
.ATTR(N, Int, 10) | |||
.ATTR(resize_origin_img_to_net, Bool, false) | |||
.ATTR(out_box_dim, Int, 3) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | |||
.OP_END_FACTORY_REG(YoloV3DetectionOutputV2D) | |||
@@ -1466,9 +1466,9 @@ REG_OP(NormalizeBBox) | |||
* y: A Tensor. Must have the same type as box_predictions. | |||
*/ | |||
REG_OP(DecodeBboxV2) | |||
.INPUT(boxes, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(anchors, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(anchors, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.ATTR(scales, ListFloat, {1.0, 1.0, 1.0, 1.0}) | |||
.ATTR(decode_clip, Float, 0.0) | |||
.ATTR(reversed_box, Bool, false) | |||
@@ -1592,7 +1592,6 @@ selected indices from the boxes tensor, where M <= max_output_size. \n | |||
*Compatible with onnx NonMaxSuppression operator. | |||
*/ | |||
REG_OP(NonMaxSuppressionV7) | |||
.INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(scores, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
@@ -1641,7 +1640,7 @@ REG_OP(RoiExtractor) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.ATTR(finest_scale, Int, 56) | |||
.ATTR(roi_scale_factor, Float, 0) | |||
.ATTR(spatial_scale, ListFloat, { 1.f/4, 1.f/8, 1.f/16, 1.f/32 }) | |||
.ATTR(spatial_scale, ListFloat, {1.f / 4, 1.f / 8, 1.f / 16, 1.f / 32}) | |||
.ATTR(pooled_height, Int, 7) | |||
.ATTR(pooled_width, Int, 7) | |||
.ATTR(sample_num, Int, 0) | |||
@@ -1649,6 +1648,84 @@ REG_OP(RoiExtractor) | |||
.ATTR(aligned, Bool, true) | |||
.OP_END_FACTORY_REG(RoiExtractor) | |||
/** | |||
*@brief Performs Position Sensitive PS ROI Pooling . \n | |||
*@par Inputs: | |||
* Two inputs, including: | |||
*@li x: An NC1HWC0 tensor of type float16 or float32, describing the feature | |||
* map, dimension C1 must be equal to | |||
* (int(output_dim+15)/C0))*group_size*group_size. | |||
*@li rois: A tensor of type float16 or float32, with shape | |||
* [batch, 5, rois_num], describing the ROIs, each ROI consists of five | |||
* elements: "batch_id", "x1", "y1", "x2", and "y2", which "batch_id" indicates | |||
* the index of the input feature map, "x1", "y1", "x2", or "y2" must be | |||
* greater than or equal to "0.0" . \n | |||
*@par Attributes: | |||
*@li output_dim: A required int32, specifying the number of output channels, | |||
* must be greater than 0. | |||
*@li group_size: A required int32, specifying the number of groups to encode | |||
* position-sensitive score maps, must be within the range (0, 128). | |||
*@li spatial_scale: A required float32, scaling factor for mapping the input | |||
* coordinates to the ROI coordinates . \n | |||
*@par Outputs: | |||
*y: An NC1HWC0 tensor of type float16 or float32, describing the result | |||
* feature map . \n | |||
*@attention Constraints: | |||
* HC1HWC0: channel must be Group_size squared, rois_num is a multiple of 16 | |||
*/ | |||
REG_OP(PSROIPoolingV2) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(rois, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(spatial_scale, Float) | |||
.REQUIRED_ATTR(output_dim, Int) | |||
.REQUIRED_ATTR(group_size, Int) | |||
.OP_END_FACTORY_REG(PSROIPoolingV2) | |||
/** | |||
*@brief Performs Position Sensitive PS ROI Pooling Grad . \n | |||
*@par Inputs: | |||
* Two inputs, including: | |||
*@li x: An NC1HWC0 tensor of type float16 or float32, describing the result | |||
* feature map . \n | |||
*@li rois: A tensor of type float16 or float32, with shape | |||
* [batch, 5, rois_num], describing the ROIs, each ROI consists of five | |||
* elements: "batch_id", "x1", "y1", "x2", and "y2", which "batch_id" indicates | |||
* the index of the input feature map, "x1", "y1", "x2", or "y2" must be | |||
* greater than or equal to "0.0" . \n | |||
*@par Attributes: | |||
*@li output_dim: A required int32, specifying the number of output channels, | |||
* must be greater than 0. | |||
*@li group_size: A required int32, specifying the number of groups to encode | |||
* position-sensitive score maps, must be within the range (0, 128). | |||
*@li spatial_scale: A required float32, scaling factor for mapping the input | |||
* coordinates to the ROI coordinates . \n | |||
*@li input_size: A required listInt, mapping the gradinput size: (H, W) | |||
*@par Outputs: | |||
*y: An NC1HWC0 tensor of type float16 or float32, describing the feature | |||
* map, dimension C1 must be equal to | |||
* (int(output_dim+15)/C0))*group_size*group_size. | |||
*@attention Constraints: | |||
* HC1HWC0: channel must be Group_size squared, rois_num is a multiple of 16 | |||
*/ | |||
REG_OP(PSROIPoolingGradV2D) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(rois, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.REQUIRED_ATTR(spatial_scale, Float) | |||
.REQUIRED_ATTR(output_dim, Int) | |||
.REQUIRED_ATTR(group_size, Int) | |||
.REQUIRED_ATTR(input_size, ListInt) | |||
.OP_END_FACTORY_REG(PSROIPoolingGradV2D) | |||
} // namespace ge | |||
#endif // OPS_BUILT_IN_OP_PROTO_INC_NN_DETECT_OPS_H_ |
@@ -526,6 +526,31 @@ REG_OP(LayerNorm) | |||
.OP_END_FACTORY_REG(LayerNorm) | |||
/** | |||
*@brief Returns a tensor where each sub-tensor of input along dimension | |||
* dim is normalized such that the p-norm of the sub-tensor is lower than the value maxnorm. \n | |||
*@par Inputs: | |||
*One input, including: | |||
* @li x: A Tensor. Must be one of the following types: float16, float32 . \n | |||
*@par Attributes: | |||
* @li p: Specify L_p norm, the type is float. | |||
* @li dim: The processed dim, the type is int. | |||
* @li maxnorm: Threshold for comparison, the type is float. \n | |||
*@par Outputs: | |||
*One outputs, including: | |||
* @li y: shape and dtype of output, should be same shape and type as input. | |||
*/ | |||
REG_OP(Renorm) | |||
.INPUT(x, TensorType::BasicType()) | |||
.OUTPUT(y, TensorType::BasicType()) | |||
.REQUIRED_ATTR(p, Float) | |||
.REQUIRED_ATTR(dim, Int) | |||
.REQUIRED_ATTR(maxnorm, Float) | |||
.OP_END_FACTORY_REG(Renorm) | |||
/** | |||
*@brief LayerNormGrad operator interface implementation | |||
* calculating: dy, x, variance, mean, gamma | |||
* pd_xl = data_dy*data_gamma | |||
@@ -683,7 +708,68 @@ REG_OP(DropOutDoMask) | |||
.INPUT(keep_prob, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.OP_END_FACTORY_REG(DropOutDoMask) | |||
/** | |||
*@brief Return "output" according to the algorithm of dropout_do_mask: | |||
* scale_x = x *(1 / keep_prob) | |||
* output = select(mask == 1, scale_x, 0) | |||
*@par Inputs: | |||
*Three inputs, including: | |||
* @li x: A mutable Tensor. Must be one of the following types: | |||
* float16, float32 | |||
* @li mask: A mutable Tensor. Must met all of the following rules: | |||
* shape of mask should be 1D. | |||
* dtype of mask should be uint8. | |||
* value of shape should met the following algorithm: | |||
* value = (size(x) + 128 - 1) // 128 * 128 | |||
* @li keep_prob: A mutable Tensor. Must met all of the following rules: | |||
* shape of "keep_prob" should be (1,) or [1,]. | |||
* Has the same type as "x" . \n | |||
*@par Output: | |||
*y: A mutable Tensor. Has the same type as "x". | |||
*@par Restrictions: | |||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||
*/ | |||
REG_OP(DropOutDoMaskV3) | |||
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.INPUT(mask, TensorType({DT_UINT8})) | |||
.INPUT(keep_prob, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.OP_END_FACTORY_REG(DropOutDoMaskV3) | |||
/** | |||
*@brief Return "output" according to the algorithm of dropout_do_mask: | |||
* scale_x = x *(1 / keep_prob) | |||
* output = select(mask == 1, scale_x, 0) | |||
*@par Inputs: | |||
*Two inputs, including: | |||
* @li x: A mutable Tensor. Must be one of the following types: | |||
* float16, float32 | |||
* @li mask: A mutable Tensor. Must met all of the following rules: | |||
* shape of mask should be 1D. | |||
* dtype of mask should be uint8. | |||
* value of shape should met the following algorithm: | |||
* value = (size(x) + 128 - 1) // 128 * 128 | |||
*@par Attributes: | |||
* @li keep_prob: A mutable Tensor. Must met all of the following rules: | |||
* shape of "keep_prob" should be (1,) or [1,]. | |||
* Has the same type as "x" . \n | |||
*@par Output: | |||
*y: A mutable Tensor. Has the same type as "x". | |||
*@par Restrictions: | |||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||
*/ | |||
REG_OP(DropOutDoMaskV3D) | |||
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.INPUT(mask, TensorType({DT_UINT8})) | |||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.REQUIRED_ATTR(keep_prob, Float) | |||
.OP_END_FACTORY_REG(DropOutDoMaskV3D) | |||
/** | |||
*@brief Scales the input . \n | |||
@@ -1356,6 +1442,58 @@ REG_OP(PoissonNllLoss) | |||
.ATTR(eps, Float, 1e-8) | |||
.ATTR(reduction, String, "mean") | |||
.OP_END_FACTORY_REG(PoissonNllLoss) | |||
/** | |||
*@brief rnn_gen_mask | |||
* @par Inputs: | |||
* @li seq_length: A ND Tensor of type int32. Recoed the current length of each batch.\n | |||
* | |||
* @par Attributes: | |||
* @li num_step: A required int.\n | |||
* @li hidden_size: A required int. \n | |||
* | |||
* | |||
* @par Output: | |||
* y: A mutable Tensor of type int32, with the shape of [num_step, batch_size, hidden_size]. \n | |||
* | |||
*/ | |||
REG_OP(RnnGenMask) | |||
.INPUT(seq_length, TensorType({DT_INT32})) | |||
.OUTPUT(seq_mask, TensorType({DT_INT32})) | |||
.REQUIRED_ATTR(num_step, Int) | |||
.REQUIRED_ATTR(hidden_size, Int) | |||
.OP_END_FACTORY_REG(RnnGenMask) | |||
/** | |||
* @brief Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) | |||
* between input x (a 2D mini-batch Tensor) and output y (which is a 2D Tensor of target class indices) \n | |||
* @par Inputs: | |||
* Two inputs, including: | |||
* @li x: A tensor. Must be one of the following types: | |||
* float16, float32. \n | |||
* | |||
* @par Inputs: | |||
* @li target: A tensor. Must be the following types: | |||
* int32. \n | |||
* @par Attributes: | |||
* @li reduction: An optional string. Defaults to "mean" \n | |||
* @par Outputs: | |||
* y: A Tensor has same element type as input x. \n | |||
* is_target: A Tensor has same element type as input target. \n | |||
* @par Third-party framework compatibility | |||
* Compatible with the Pytorch operator MultiLabelMarginLoss. \n | |||
*/ | |||
REG_OP(MultilabelMarginLoss) | |||
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.INPUT(target, TensorType({DT_INT32})) | |||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||
.OUTPUT(is_target, TensorType({DT_INT32})) | |||
.ATTR(reduction, String, "mean") | |||
.OP_END_FACTORY_REG(MultilabelMarginLoss) | |||
} // namespace ge | |||
#endif // OPS_BUILT_IN_OP_PROTO_INC_NN_NORM_OPS_H_ |
@@ -397,8 +397,8 @@ No default value. | |||
specifying the stride of the sliding window for each dimension of | |||
the input tensor. No default value. | |||
*@li padding: A required string type of float16. | |||
*@li pads: A list type of int32. Default value {0, 0, 0}. | |||
*@li dilation: A list type of int32. Default value {1, 1, 1}. | |||
*@li pads: A list type of int32. Default value {0,0,0,0,0,0}. | |||
*@li dilation: A list type of int32. Default value {1,1,1,1,1,1}. | |||
*@li ceil_mode: A ceil mode number of int32 . Default value 0. | |||
*@li data_format: An optional string. Defaults to "NDHWC" . \n | |||
@@ -421,8 +421,8 @@ REG_OP(MaxPool3D) | |||
.REQUIRED_ATTR(ksize, ListInt) | |||
.REQUIRED_ATTR(strides, ListInt) | |||
.REQUIRED_ATTR(padding, String) | |||
.ATTR(pads, ListInt, {0,0,0}) | |||
.ATTR(dilation, ListInt, {1,1,1}) | |||
.ATTR(pads, ListInt, {0,0,0,0,0,0}) | |||
.ATTR(dilation, ListInt, {1,1,1,1,1,1}) | |||
.ATTR(ceil_mode, Int, 0) | |||
.ATTR(data_format, String, "NDHWC") | |||
.OP_END_FACTORY_REG(MaxPool3D) | |||
@@ -1184,6 +1184,7 @@ REG_OP(MaxPool3DGrad) | |||
.OUTPUT(y, TensorType::RealNumberType()) | |||
.REQUIRED_ATTR(ksize, ListInt) | |||
.REQUIRED_ATTR(strides, ListInt) | |||
.ATTR(padding, String, "SAME") | |||
.REQUIRED_ATTR(pads, ListInt) | |||
.ATTR(data_format, String, "NDHWC") | |||
.OP_END_FACTORY_REG(MaxPool3DGrad) | |||
@@ -1440,12 +1441,11 @@ REG_OP(MaxPoolV3Grad) | |||
.OP_END_FACTORY_REG(MaxPoolV3Grad) | |||
/** | |||
*@brief Performs dilation2d on the input . \n | |||
*@brief Performs Dilation2D on the input . \n | |||
*@par Inputs: | |||
*x: A tensor of shape is 4d, format is support NHWC. | |||
*filter: A tensor of shape is 3d, the type is same with x, | |||
and the c dimension is same with x. \n | |||
*filter: A tensor of shape is 3d, the type is same with x, and the c dimension is same with x. \n | |||
*@par Attributes: | |||
*@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimensions are 1. | |||
@@ -1474,6 +1474,84 @@ REG_OP(Dilation2D) | |||
.OP_END_FACTORY_REG(Dilation2D) | |||
/** | |||
*@brief Performs Dilation2DBackpropFilter on the input. \n | |||
*@par Inputs: | |||
*x: A tensor of shape is 4d, format is support NHWC. | |||
*filter: A tensor of shape is 3d, the type is same with x, and the c dimension is same with x. | |||
*out_backprop: Has the same type and format as input x and the c dimension is same with x. \n | |||
*@par Attributes | |||
*@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimension are 1. | |||
*@li rates: A required list of 4 ints, the rates of the N and C dimensions are 1. | |||
*@li padding_mode: A optional string. Defaults to "SAME", it support SAME and VALID. | |||
*@li pads: A optional list of 4 ints. | |||
*@li ceil_mode: An optional bool. Defaults to "false". Use ceil or floor to calculate the output size when padding_mode is "CALCULATED". | |||
*@li data_format: An optional string, specifying the data format of "rates" and "strides", either "NCHW" or "NHWC" (default). \n | |||
*@par Outputs: | |||
*y: The output tensor. Has the same type and format as input "filter" . \n | |||
*@par Third-party framework compatibility | |||
* Compatible with the TensorFlow operator Dilation2DBackpropFilter. | |||
*/ | |||
REG_OP(Dilation2DBackpropFilter) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||
.INPUT(filter, | |||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||
.INPUT(out_backprop, | |||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||
.OUTPUT(y, | |||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||
.REQUIRED_ATTR(strides, ListInt) | |||
.REQUIRED_ATTR(rates, ListInt) | |||
.ATTR(padding_mode, String, "SAME") | |||
.ATTR(pads, ListInt, {0, 0, 0, 0}) | |||
.ATTR(ceil_mode, Bool, false) | |||
.ATTR(data_format, String, "NHWC") | |||
.OP_END_FACTORY_REG(Dilation2DBackpropFilter) | |||
/** | |||
*@brief Performs Dilation2DBackpropInput on the input. \n | |||
*@par Inputs: | |||
*x: A tensor of shape is 4d, format is support NHWC. | |||
*filter: A tensor of shape is 3d, the type is same with x, and the c dimension is same with x. | |||
*out_backprop: Has the same type and format as input x and the c dimension is same with x. \n | |||
*@par Attributes | |||
*@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimension are 1. | |||
*@li rates: A required list of 4 ints, the rates of the N and C dimensions are 1. | |||
*@li padding_mode: A optional string. Defaults to "SAME", it support SAME and VALID. | |||
*@li pads: A optional list of 4 ints. | |||
*@li ceil_mode: An optional bool. Defaults to "false". Use ceil or floor to calculate the output size when padding_mode is "CALCULATED". | |||
*@li data_format: An optional string, specifying the data format of "rates" and "strides", either "NCHW" or "NHWC" (default). \n | |||
*@par Outputs: | |||
*y: The output tensor. Has the same type and format as input "x" . \n | |||
*@par Third-party framework compatibility | |||
* Compatible with the TensorFlow operator Dilation2DBackpropInput. | |||
*/ | |||
REG_OP(Dilation2DBackpropInput) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||
.INPUT(filter, | |||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||
.INPUT(out_backprop, | |||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||
.OUTPUT(y, | |||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||
.REQUIRED_ATTR(strides, ListInt) | |||
.REQUIRED_ATTR(rates, ListInt) | |||
.ATTR(padding_mode, String, "SAME") | |||
.ATTR(pads, ListInt, {0, 0, 0, 0}) | |||
.ATTR(ceil_mode, Bool, false) | |||
.ATTR(data_format, String, "NHWC") | |||
.OP_END_FACTORY_REG(Dilation2DBackpropInput) | |||
/** | |||
* @brief Applies a 2D adaptive average pooling over | |||
* an input signal composed of several input planes. \n | |||
@@ -1604,5 +1682,22 @@ REG_OP(MaxPoolWithArgmaxV1) | |||
.ATTR(ceil_mode, Bool, false) | |||
.OP_END_FACTORY_REG(MaxPoolWithArgmaxV1) | |||
// SubSample | |||
REG_OP(SubSample) | |||
.INPUT(labels, TensorType({DT_INT32})) | |||
.OUTPUT(y, TensorType({DT_INT32})) | |||
.REQUIRED_ATTR(batch_size_per_images, Int) | |||
.REQUIRED_ATTR(positive_fraction, Float) | |||
.OP_END_FACTORY_REG(SubSample) | |||
// SubSampleLabels | |||
REG_OP(SubSampleLabels) | |||
.INPUT(labels, TensorType({DT_INT32})) | |||
.INPUT(shuffle_matrix, TensorType({DT_INT32})) | |||
.OUTPUT(y, TensorType({DT_INT32})) | |||
.REQUIRED_ATTR(batch_size_per_images, Int) | |||
.REQUIRED_ATTR(positive_fraction, Float) | |||
.OP_END_FACTORY_REG(SubSampleLabels) | |||
} // namespace ge | |||
#endif // OPS_BUILT_IN_OP_PROTO_INC_NN_POOLING_OPS_H |
@@ -836,7 +836,7 @@ REG_OP(HardShrink) | |||
*backprops: A Tensor with the same type and shape of features's. \n | |||
* | |||
*@par Attributes: | |||
*@li lambda: An optional float.Defaults to 0.5. \n | |||
*@li lambd: An optional float.Defaults to 0.5. \n | |||
* | |||
*@par Third-party framework compatibility | |||
*Compatible with the Pytorch operator Hardshrink_backward. \n | |||
@@ -845,7 +845,7 @@ REG_OP(HardShrink) | |||
.INPUT(gradients, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(features, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(backprops, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.ATTR(lambda, Float, 0.5) | |||
.ATTR(lambd, Float, 0.5) | |||
.OP_END_FACTORY_REG(HardShrinkGrad) | |||
/** | |||
@@ -920,7 +920,30 @@ REG_OP(SoftShrinkGrad) | |||
.OUTPUT(output_y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.ATTR(lambd, Float, 0.5) | |||
.OP_END_FACTORY_REG(SoftShrinkGrad) | |||
/** | |||
*@brief Calculate the gradient of log simoid. \n | |||
*@par Inputs: | |||
*Two inputs, including: | |||
* @li grads: A tensor, gradient of previous layer. Must be one of the following types: | |||
* float16, float32. \n | |||
* @li features: A tensor, input of log sigmoid. Must be one of the following types: | |||
* float16, float32. \n | |||
*@par Outputs: | |||
*One outputs, including: | |||
* @li backprops: A tensor with the same type of and shape of grads. \n | |||
*@par Third-party framework compatibility | |||
*Compatible with the Pytorch operator LogSigmoidBackward. \n | |||
*/ | |||
REG_OP(LogSigmoidGrad) | |||
.INPUT(grads, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(features, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(backprops, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OP_END_FACTORY_REG(LogSigmoidGrad) | |||
/** | |||
*@brief Calculate -ln(1+e^(-x)). \n | |||
@@ -418,7 +418,7 @@ REG_OP(EmbeddingRankId) | |||
*/ | |||
REG_OP(FillV2) | |||
.INPUT(dims, TensorType({DT_INT16, DT_INT32, DT_INT64})) | |||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64})) | |||
.ATTR(value, Float, 0) | |||
.OP_END_FACTORY_REG(FillV2) | |||
@@ -437,7 +437,7 @@ REG_OP(FillV2) | |||
* Compatible with the ONNX operator ConstantOfShape. | |||
*/ | |||
REG_OP(FillV2D) | |||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64})) | |||
.ATTR(value, Float, 0) | |||
.REQUIRED_ATTR(dims, ListInt) | |||
.OP_END_FACTORY_REG(FillV2D) | |||
@@ -51,6 +51,246 @@ REG_OP(StringToNumber) | |||
.ATTR(out_type, Type, DT_FLOAT) | |||
.OP_END_FACTORY_REG(StringToNumber) | |||
/** | |||
*@brief Convert serialized tensorflow.TensorProto prototype to Tensor. | |||
*@brief Parse an Example prototype. | |||
*@par Input: | |||
*serialized: A Tensor of type string. | |||
*dense_defaults: DYNAMIC INPUT Tensor type as string, float, int64. \n | |||
*@par Attributes: | |||
*num_sparse: type int num of inputs sparse_indices , sparse_values, sparse_shapes | |||
*out_type: output type | |||
*sparse_keys: ListString | |||
*sparse_types: types of sparse_values | |||
*dense_keys: ListString | |||
*dense_shapes: output of dense_defaults shape | |||
*dense_types: output of dense_defaults type \n | |||
*@par Outputs: | |||
*sparse_indices: A Tensor of type string. | |||
*sparse_values: Has the same type as sparse_types. | |||
*sparse_shapes: A Tensor of type int64 | |||
*dense_values: Has the same type as dense_defaults. | |||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||
**/ | |||
REG_OP(ParseSingleExample) | |||
.INPUT(serialized, TensorType({DT_STRING})) | |||
.DYNAMIC_INPUT(dense_defaults, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) | |||
.DYNAMIC_OUTPUT(sparse_indices, TensorType({DT_INT64})) | |||
.DYNAMIC_OUTPUT(sparse_values, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) | |||
.DYNAMIC_OUTPUT(sparse_shapes, TensorType({DT_INT64})) | |||
.DYNAMIC_OUTPUT(dense_values, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) | |||
.ATTR(num_sparse, Int, 0) | |||
.ATTR(sparse_keys, ListString, {}) | |||
.ATTR(dense_keys, ListString, {}) | |||
.ATTR(sparse_types, ListType, {}) | |||
.ATTR(dense_types, ListType, {}) | |||
.ATTR(dense_shapes, ListListInt, {}) | |||
.OP_END_FACTORY_REG(ParseSingleExample) | |||
/** | |||
*@brief Decodes raw file into tensor . \n | |||
*@par Input: | |||
*bytes: A Tensor of type string. | |||
*@par Attributes: | |||
*little_endian: bool ture | |||
*out_type: output type | |||
*@par Outputs: | |||
*Output: A Tensor | |||
**/ | |||
REG_OP(DecodeRaw) | |||
.INPUT(bytes, TensorType({DT_STRING})) | |||
.OUTPUT(output, TensorType({DT_BOOL,DT_FLOAT16,DT_DOUBLE,DT_FLOAT, | |||
DT_INT64,DT_INT32,DT_INT8,DT_UINT8,DT_INT16, | |||
DT_UINT16,DT_COMPLEX64,DT_COMPLEX128})) | |||
.ATTR(out_type, Type, DT_FLOAT) | |||
.ATTR(little_endian, Bool, true) | |||
.OP_END_FACTORY_REG(DecodeRaw) | |||
/** | |||
*@brief Convert serialized tensorflow.TensorProto prototype to Tensor. \n | |||
*@par Inputs: | |||
*serialized: A Tensor of string type. Scalar string containing serialized | |||
*TensorProto prototype. \n | |||
*@par Attributes: | |||
*out_type: The type of the serialized tensor. The provided type must match the | |||
*type of the serialized tensor and no implicit conversion will take place. \n | |||
*@par Outputs: | |||
*output: A Tensor of type out_type. \n | |||
*@attention Constraints: | |||
*The implementation for StringToNumber on Ascend uses AICPU, | |||
*with badperformance. \n | |||
*@par Third-party framework compatibility | |||
*@li compatible with tensorflow ParseTensor operator. | |||
*/ | |||
REG_OP(ParseTensor) | |||
.INPUT(serialized, TensorType({DT_STRING})) | |||
.OUTPUT(output, TensorType(DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, | |||
DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, | |||
DT_UINT64, DT_BOOL, DT_DOUBLE, DT_STRING, | |||
DT_COMPLEX64, DT_COMPLEX128})) | |||
.ATTR(out_type, Type, DT_FLOAT) | |||
.OP_END_FACTORY_REG(ParseTensor) | |||
/** | |||
*@brief Converts each string in the input Tensor to the specified numeric | |||
*type . \n | |||
*@par Inputs: | |||
*Inputs include: | |||
*records: Each string is a record/row in the csv and all records should have the | |||
*same format. \n | |||
*record_defaults: One tensor per column of the input record, with either a | |||
*scalar default value for that column or an empty vector if the column is | |||
*required. \n | |||
*@par Attributes: | |||
*OUT_TYPE: The numeric type to interpret each string in string_tensor as . \n | |||
*field_delim: char delimiter to separate fields in a record. \n | |||
*use_quote_delim: If false, treats double quotation marks as regular characters | |||
*inside of the string fields (ignoring RFC 4180, Section 2, Bullet 5). \n | |||
*na_value: Additional string to recognize as NA/NaN. \n | |||
*@par Outputs: | |||
*output: A Tensor. Has the same type as x . \n | |||
*@attention Constraints: | |||
*The implementation for StringToNumber on Ascend uses AICPU, with bad | |||
*performance. \n | |||
*@par Third-party framework compatibility | |||
*@li compatible with tensorflow StringToNumber operator. | |||
*/ | |||
REG_OP(DecodeCSV) | |||
.INPUT(records, TensorType({DT_STRING})) | |||
.DYNAMIC_INPUT(record_defaults, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, | |||
DT_INT64, DT_STRING, DT_RESOURCE})) | |||
.DYNAMIC_OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, | |||
DT_INT64, DT_STRING, DT_RESOURCE})) | |||
.ATTR(OUT_TYPE, ListType, {}) | |||
.ATTR(field_delim, String, ",") | |||
.ATTR(use_quote_delim, Bool, true) | |||
.ATTR(na_value, String, ",") | |||
.ATTR(select_cols, ListInt, {}) | |||
.OP_END_FACTORY_REG(DecodeCSV) | |||
/** | |||
*@brief Convert serialized tensorflow.TensorProto prototype to Tensor. | |||
*@brief Parse an Example prototype. | |||
*@par Input: | |||
*serialized: A Tensor of type string. \n | |||
*name:A Tensor of type string. \n | |||
*sparse_keys: Dynamic input tensor of string. \n | |||
*dense_keys: Dynamic input tensor of string \n | |||
*dense_defaults: Dynamic input tensor type as string, float, int64. \n | |||
*@par Attributes: | |||
*Nsparse: Number of sparse_keys, sparse_indices and sparse_shapes \n | |||
*Ndense: Number of dense_keys \n | |||
*sparse_types: types of sparse_values \n | |||
*Tdense: Type of dense_defaults dense_defaults and dense_values \n | |||
*dense_shapes: output of dense_defaults shape \n | |||
*@par Outputs: | |||
*sparse_indices: A Tensor of type string. \n | |||
*sparse_values: Has the same type as sparse_types. \n | |||
*sparse_shapes: A Tensor of type int64 \n | |||
*dense_values: Has the same type as dense_defaults. \n | |||
*@par Third-party framework compatibility \n | |||
*@li compatible with tensorflow StringToNumber operator. \n | |||
*/ | |||
REG_OP(ParseExample) | |||
.INPUT(serialized, TensorType({DT_STRING})) | |||
.INPUT(name, TensorType({DT_STRING})) | |||
.DYNAMIC_INPUT(sparse_keys, TensorType({DT_STRING})) | |||
.DYNAMIC_INPUT(dense_keys, TensorType({DT_STRING})) | |||
.DYNAMIC_INPUT(dense_defaults, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||
.DYNAMIC_OUTPUT(sparse_indices, TensorType({DT_INT64})) | |||
.DYNAMIC_OUTPUT(sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||
.DYNAMIC_OUTPUT(sparse_shapes, TensorType({DT_INT64})) | |||
.DYNAMIC_OUTPUT(dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||
.ATTR(Nsparse, Int, 0) | |||
.ATTR(Ndense, Int, 0) | |||
.ATTR(sparse_types, ListType, {}) | |||
.ATTR(Tdense, ListType, {}) | |||
.ATTR(dense_shapes, ListListInt, {}) | |||
.OP_END_FACTORY_REG(ParseExample) | |||
/** | |||
*@brief Transforms a scalar brain.SequenceExample proto (as strings) into typed | |||
*tensors. | |||
*@par Input: | |||
*serialized: A Tensor of type string. \n | |||
*feature_list_dense_missing_assumed_empty:A Tensor of type string. \n | |||
*context_sparse_keys: Dynamic input tensor of string. \n | |||
*context_dense_keys: Dynamic input tensor of string \n | |||
*feature_list_sparse_keys: Dynamic input tensor of string \n | |||
*feature_list_dense_keys: Dynamic input tensor of string \n | |||
*context_dense_defaults: Dynamic input tensor of string, float, int64 \n | |||
*debug_name: A Tensor of type string. \n | |||
*@par Attributes: | |||
*Ncontext_sparse: Number of context_sparse_keys, context_sparse_indices and context_sparse_shapes \n | |||
*Ncontext_dense: Number of context_dense_keys \n | |||
*Nfeature_list_sparse: Number of feature_list_sparse_keys \n | |||
*Nfeature_list_dense: Number of feature_list_dense_keys \n | |||
*context_sparse_types: Types of context_sparse_values \n | |||
*Tcontext_dense: Number of dense_keys \n | |||
*feature_list_dense_types: Types of feature_list_dense_values \n | |||
*context_dense_shapes: Shape of context_dense \n | |||
*feature_list_sparse_types: Type of feature_list_sparse_values \n | |||
*feature_list_dense_shapes: Shape of feature_list_dense \n | |||
*@par Outputs: | |||
*context_sparse_indices: Dynamic output tensor of type int64. \n | |||
*context_sparse_values: Dynamic output tensor of type string, float, int64. \n | |||
*context_sparse_shapes: Dynamic output tensor of type int64 \n | |||
*context_dense_values: Dynamic output tensor of type string, float, int64. \n | |||
*feature_list_sparse_indices: Dynamic output tensor of type int64. \n | |||
*feature_list_sparse_values: Dynamic output tensor of type string, float, int64. \n | |||
*feature_list_sparse_shapes: Dynamic output tensor of type int64 \n | |||
*feature_list_dense_values: Dynamic output tensor of type string, float, int64. \n | |||
*@par Third-party framework compatibility \n | |||
*@li compatible with tensorflow StringToNumber operator. \n | |||
*/ | |||
REG_OP(ParseSingleSequenceExample) | |||
.INPUT(serialized, TensorType({DT_STRING})) | |||
.INPUT(feature_list_dense_missing_assumed_empty, TensorType({DT_STRING})) | |||
.DYNAMIC_INPUT(context_sparse_keys, TensorType({DT_STRING})) | |||
.DYNAMIC_INPUT(context_dense_keys, TensorType({DT_STRING})) | |||
.DYNAMIC_INPUT(feature_list_sparse_keys, TensorType({DT_STRING})) | |||
.DYNAMIC_INPUT(feature_list_dense_keys, TensorType({DT_STRING})) | |||
.DYNAMIC_INPUT(context_dense_defaults, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||
.INPUT(debug_name, TensorType({DT_STRING})) | |||
.DYNAMIC_OUTPUT(context_sparse_indices, TensorType({DT_INT64})) | |||
.DYNAMIC_OUTPUT(context_sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||
.DYNAMIC_OUTPUT(context_sparse_shapes, TensorType({DT_INT64})) | |||
.DYNAMIC_OUTPUT(context_dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||
.DYNAMIC_OUTPUT(feature_list_sparse_indices, TensorType({DT_INT64})) | |||
.DYNAMIC_OUTPUT(feature_list_sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||
.DYNAMIC_OUTPUT(feature_list_sparse_shapes, TensorType({DT_INT64})) | |||
.DYNAMIC_OUTPUT(feature_list_dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||
.ATTR(Ncontext_sparse, Int, 0) | |||
.ATTR(Ncontext_dense, Int, 0) | |||
.ATTR(Nfeature_list_sparse, Int, 0) | |||
.ATTR(Nfeature_list_dense, Int, 0) | |||
.REQUIRED_ATTR(context_sparse_types, ListType) | |||
.REQUIRED_ATTR(Tcontext_dense, ListType) | |||
.REQUIRED_ATTR(feature_list_dense_types, ListType) | |||
.REQUIRED_ATTR(context_dense_shapes, ListListInt) | |||
.REQUIRED_ATTR(feature_list_sparse_types, ListType) | |||
.REQUIRED_ATTR(feature_list_dense_shapes, ListListInt) | |||
.OP_END_FACTORY_REG(ParseSingleSequenceExample) | |||
} // namespace ge | |||
#endif // OPS_BUILT_IN_OP_PROTO_INC_PARSING_OPS_H_ |
@@ -62,6 +62,26 @@ REG_OP(Dequantize) | |||
/** | |||
*@brief Quantizes the input . \n | |||
*@par Inputs: | |||
*x: shape and dtype of input_x. \n | |||
*scales: shape and dtype of input_scales. \n | |||
*zero_points: shape and dtype of input_zero_points \n | |||
*@par Attributes: | |||
*@li axis: the processed dim. \n | |||
*@par Outputs: | |||
*y: shape and dtype of output_y, should be same shape as input, dtype is same as the quantified type . \n | |||
*/ | |||
REG_OP(Quantize) | |||
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
.INPUT(scales, TensorType({DT_FLOAT})) | |||
.INPUT(zero_points, TensorType({DT_INT8,DT_UINT8,DT_INT32})) | |||
.OUTPUT(y, TensorType({DT_INT8,DT_UINT8,DT_INT32})) | |||
.REQUIRED_ATTR(dtype, String) | |||
.ATTR(axis, Int, 1) | |||
.OP_END_FACTORY_REG(Quantize) | |||
/** | |||
*@brief Quantizes the input . \n | |||
*@par Inputs: | |||
*x: An NC1HWC0 tensor of type float16 or float32, specifying the input . \n | |||
@@ -356,6 +356,39 @@ REG_OP(DropOutGenMask) | |||
.ATTR(seed2, Int, 0) | |||
.OP_END_FACTORY_REG(DropOutGenMask) | |||
/** | |||
*@brief Generate random uint8 mask for dropout v3 . \n | |||
*@par Inputs: | |||
include: | |||
*@li shape:The shape of the output tensor. | |||
*@li prob:0-D. Prob of 1 . \n | |||
*@par Attributes: | |||
*@li seed:If either seed or seed2 are set to be non-zero, the random number | |||
*generator is seeded by the given seed. Otherwise, it is seeded by a random seed. | |||
*@li seed2:A second seed to avoid seed collision . \n | |||
*@par Outputs: | |||
*y:Output (1-D) random number using uint8 data format . \n | |||
*@attention Constraints: | |||
*The output is aligned with 16 | |||
*@par Restrictions: | |||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||
*@see DropOutGenMaskV3() | |||
*/ | |||
REG_OP(DropOutGenMaskV3) | |||
.INPUT(shape, TensorType({ DT_INT32, DT_INT64 })) | |||
.INPUT(prob, TensorType({ DT_FLOAT16, DT_FLOAT })) | |||
.OUTPUT(y, TensorType({ DT_UINT8 })) | |||
.ATTR(seed, Int, 0) | |||
.ATTR(seed2, Int, 0) | |||
.OP_END_FACTORY_REG(DropOutGenMaskV3) | |||
/** | |||
*@brief Generates values in an interval . \n | |||
@@ -898,14 +898,14 @@ REG_OP(Reduction) | |||
*@brief Computes the euclidean norm of elements across dimensions of a tensor . \n | |||
*@par Inputs: | |||
*@li input_tensor: A Tensor. Must be one of the following types: float16, float32, int32. | |||
*@li x: A Tensor. Must be one of the following types: float16, float32, int32. | |||
*@li axes: A Tensor of type int8 or int32. Specifies the dimensions to reduce. Defaults to "None" . \n | |||
*@par Attributes: | |||
*keep_dims: An optional bool. If "True", reduced dimensions will be retained. Defaults to "False" . \n | |||
*@par Outputs: | |||
*output_tensor: A Tensor. Must be one of the following types: float16, float32, int32 . \n | |||
*y: A Tensor. Must be one of the following types: float16, float32, int32 . \n | |||
*@attention Constraints: | |||
* If "axes = None", all dimensions will be reduced. "axes" must be in the range [-rank(input_shape), rank(input_shape)) . \n | |||
@@ -1134,6 +1134,29 @@ REG_OP(GNTrainingUpdate) | |||
.OP_END_FACTORY_REG(GNTrainingUpdate) | |||
/** | |||
*@brief Joins a string Tensor across the given dimensions. \n | |||
*@par Inputs: | |||
include: | |||
*@li input:A Tensor of type string. The text to be processed. | |||
*@li reduction_indices:A Tensor of type int. The text to be processed. | |||
*@par Attributes: | |||
*@li keep_dims:A bool, An optional bool. Defaults to False. If True, retain reduced dimensions with length 1.. | |||
*@li separator:string. | |||
*@par output: | |||
*@li output::A Tensor of type string.. | |||
*/ | |||
REG_OP(ReduceJoin) | |||
.INPUT(input, TensorType({DT_STRING})) | |||
.INPUT(reduction_indices, TensorType({DT_INT32})) | |||
.OUTPUT(output, TensorType({DT_STRING})) | |||
.ATTR(keep_dims, Bool, true) | |||
.ATTR(separator, String, "") | |||
.OP_END_FACTORY_REG(ReduceJoin) | |||
/** | |||
* @brief Calculates the standard deviation and average value of Tensors. | |||
* @par Inputs: | |||
@@ -257,6 +257,83 @@ REG_OP(DynamicRNN) | |||
.OP_END_FACTORY_REG(DynamicRNN) | |||
/** | |||
*@brief: DynamicRNNV3 calculation. | |||
*@par Inputs: | |||
*ten inputs: | |||
*@li x:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li w:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li b:A required 1D Tensor. Must be one of the following types: float16, float32. The format must be ND. | |||
*@li seq_length:A optional 1D Tensor. Must be one of the following types: int32. The format must be ND. | |||
*@li init_h:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li init_c:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li wci:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li wcf:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li wco:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li mask:A 1D optional Tensor. Must be one of the following types: uint8. The format must be ND . \n | |||
*@li real_mask:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li project:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@par Attributes: | |||
*@li cell_type:An string identifying the cell type in the op. Default to "LSTM". Only LSTM is currently supported. | |||
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported. | |||
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1. | |||
*@li use_peephole:An bool identifying if use peephole in the op. Default to false. | |||
*@li keep_prob:An float identifying the keep prob in the op. Default to 1. | |||
*@li cell_clip:An float identifying the cell clip in the op. Default to -1. | |||
*@li num_proj:An integer identifying the num projection in the op. Default to 0. | |||
*@li time_major:An bool identifying the time major in the op. Default to true. | |||
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported. | |||
*@li forget_bias:An float identifying the forget bias in the op. Default to 0. | |||
*@li is_training:An bool identifying is training in the op. Default to true . \n | |||
*@par Outputs: | |||
*eight outputs: | |||
*@li y:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li output_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li output_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li i:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li j:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||
*@par Third-party framework compatibility: | |||
* Compatible with the TF operator LSTM. | |||
*/ | |||
REG_OP(DynamicRNNV3) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32})) | |||
.OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OPTIONAL_INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OPTIONAL_INPUT(wcf, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OPTIONAL_INPUT(wco, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OPTIONAL_INPUT(mask, TensorType({DT_UINT8})) | |||
.OPTIONAL_INPUT(real_mask, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OPTIONAL_INPUT(project, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(output_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(i, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(j, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(f, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(o, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.OUTPUT(tanhc, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
.ATTR(cell_type, String, "LSTM") | |||
.ATTR(direction, String, "UNIDIRECTIONAL") | |||
.ATTR(cell_depth, Int, 1) | |||
.ATTR(use_peephole, Bool, false) | |||
.ATTR(keep_prob, Float, 1.0) | |||
.ATTR(cell_clip, Float, -1.0) | |||
.ATTR(num_proj, Int, 0) | |||
.ATTR(time_major, Bool, true) | |||
.ATTR(activation, String, "tanh") | |||
.ATTR(forget_bias, Float, 0.0) | |||
.ATTR(is_training, Bool, true) | |||
.OP_END_FACTORY_REG(DynamicRNNV3) | |||
/** | |||
*@brief: DynamicLSTMV2 calculation. | |||
*@par Inputs: | |||
*ten inputs: | |||
@@ -960,6 +1037,47 @@ REG_OP(CommonGRU) | |||
.REQUIRED_ATTR(hidden_size, Int) | |||
.ATTR(linear_before_reset , Int, 0) | |||
.OP_END_FACTORY_REG(CommonGRU) | |||
/** | |||
* @brief Calculates the reversed outputs of the function "embedding". \n | |||
* @par Inputs: | |||
* Four inputs, including: | |||
* @li weight: A mutable Tensor of word grad. Must be one of the following types: | |||
* float32. | |||
* @li indices: A mutable word index Tensor of the int32 type.\n | |||
* @li offsets: A mutable word index Tensor of the int32 type.\n | |||
* @li per_sample_weights: to indicate all weights should be taken to be 1. | |||
* If specified, per_sample_weights must have exactly the same shape as input | |||
* and is treated as having the same offsets, if those are not None. | |||
* Only supported for mode='sum'..\n | |||
* @par Attributes: | |||
* @li mode: An string attr which use "sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.. \n | |||
* @li scale_grad_by_freq: An optional bool. Defaults to "False". | |||
* If "True", "grad_weight" will be scale by word_frequency. | |||
* If "False", "grad_weight" will not be scale by word_frequency. \n | |||
* @li sparse: if True, gradient w.r.t.attr weight matrix will be a sparse tensor. \n | |||
* @li include_last_offset: if True, attr offsets has one additional element, where the last element | |||
* is equivalent to the size of indices. This matches the CSR format.. \n | |||
* @par Outputs: | |||
* @li grad_weight: A mutable output Tensor of new word grad has the same type as "grads". \n | |||
* @par Third-party framework compatibility | |||
* Compatible with the Pytorch operator EmbeddingBag. | |||
*/ | |||
REG_OP(EmbeddingBag) | |||
.INPUT(weight, TensorType({ DT_FLOAT32 })) | |||
.INPUT(indices, TensorType({ DT_INT32 })) | |||
.OPTIONAL_INPUT(offsets, TensorType({DT_INT32})) | |||
.OPTIONAL_INPUT(per_sample_weights, TensorType({DT_FLOAT32})) | |||
.OUTPUT(y, TensorType({ DT_FLOAT32 })) | |||
.ATTR(mode, String, "mean") | |||
.ATTR(scale_grad_by_freq, Bool, false) | |||
.ATTR(sparse, Bool, false) | |||
.ATTR(include_last_offset, Bool, false) | |||
.OP_END_FACTORY_REG(EmbeddingBag) | |||
} // namespace ge | |||
#endif // OPS_BUILT_IN_OP_PROTO_INC_RNN_H_ |
@@ -1006,9 +1006,9 @@ REG_OP(TopK) | |||
*@par Inputs: | |||
*Inputs including: | |||
* @li indices: A required index tensor. Must be one of the following types: float32, float16, int32, int8, uint8. | |||
* @li x: A required slice tensor. Must be one of the following types: float32, float16, int32, int8, uint8. | |||
* @li shape: A required list of int32, specifying the output shape. | |||
* @li indices: A required index tensor. Must be one of the following types: int32 or int64. | |||
* @li x: A required slice tensor. Must be one of the following types: float32, float16, int32, int8, uint8... | |||
* @li shape: A required list of int32 or int64, specifying the output shape. | |||
*@par Outputs: | |||
*y:A output Tensor with same datatype as "updates" . \n | |||
@@ -1019,7 +1019,7 @@ REG_OP(TopK) | |||
* Compatible with the TensorFlow operator ScatterNd. | |||
*/ | |||
REG_OP(ScatterNd) | |||
.INPUT(indices, TensorType::BasicType()) | |||
.INPUT(indices, TensorType::IndexNumberType()) | |||
.INPUT(x, TensorType::BasicType()) | |||
.INPUT(shape, TensorType::IndexNumberType()) | |||
.OUTPUT(y, TensorType::BasicType()) | |||
@@ -1032,11 +1032,11 @@ REG_OP(ScatterNd) | |||
*@par Inputs: | |||
*Inputs including: | |||
* @li indices: A required index tensor. Must be one of the following types: | |||
* float, float16, int32, int16. format:ND. | |||
* int32 or int64. format:ND. | |||
* @li x: A required slice tensor. Must be one of the following types: | |||
* float, float16, int32, int16. format:ND. | |||
* float16, float, int32, int8, uint8. format:ND. | |||
*@par Attributes: | |||
* @li shape: A required list of int32, specifying the output shape. | |||
* @li shape: A required list of int32 or int64, specifying the output shape. | |||
*@par Outputs: | |||
*y: A Tensor. Has the same type as "x". format:ND . \n | |||
@@ -1051,8 +1051,8 @@ REG_OP(ScatterNd) | |||
*/ | |||
REG_OP(ScatterNdD) | |||
.INPUT(indices, TensorType::IndexNumberType()) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16})) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||
.REQUIRED_ATTR(shape, ListInt) | |||
.OP_END_FACTORY_REG(ScatterNdD) | |||
@@ -1877,6 +1877,33 @@ REG_OP(Crop) | |||
.OP_END_FACTORY_REG(Crop) | |||
/** | |||
*@brief Returns a namedtuple (values, indices) where values is the cumulative | |||
* the cumulative minimum of elements of input in the dimension dim. | |||
* And indices is the index location of each maximum value found in the dimension dim. \n | |||
*@par Inputs: | |||
*One inputs, including: | |||
* @li x: A tensor . Must be one of the following types: | |||
* float16, float32, int32, uint32, int8, uint8. \n | |||
*@par Attributes: | |||
* @li axis: Axis along which to cummin. \n | |||
*@par Outputs: | |||
* y: A Tensor with the same type and shape of x's. \n | |||
* indices: A Tensor with the int32 type and the same shape of x's. \n | |||
*@par Third-party framework compatibility | |||
*Compatible with the Pytorch operator Cummin. \n | |||
*/ | |||
REG_OP(Cummin) | |||
.INPUT(x, TensorType::BasicType()) | |||
.OUTPUT(y, TensorType::BasicType()) | |||
.OUTPUT(indices, TensorType::BasicType()) | |||
.REQUIRED_ATTR(axis, Int) | |||
.OP_END_FACTORY_REG(Cummin) | |||
/** | |||
*@brief Extends the input with copies of data along a specified dimension. For example: | |||
*(1) If x = [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]], with shape (2, 3, 2); | |||
*(2) axis = 1; | |||
@@ -25,6 +25,233 @@ | |||
#include "graph/operator_reg.h" | |||
namespace ge { | |||
/** | |||
*@brief Creates ngrams from ragged string data . \n | |||
*@par Inputs: | |||
include: | |||
*@li data:1-D.The values tensor of the ragged string tensor to make ngrams out of. | |||
*@li data_splits:The splits tensor of the ragged string tensor to make ngrams out of . \n | |||
*@par Attributes: | |||
* separator:The string to append between elements of the token. Use "" for no separator. | |||
* ngram_widths:The sizes of the ngrams to create. | |||
* left_pad:The string to use to pad the left side of the ngram sequence. Only used if pad_width != 0. | |||
* right_pad:The string to use to pad the right side of the ngram sequence. Only used if pad_width != 0. | |||
* pad_width:The number of padding elements to add to each side of each sequence. | |||
* preserve_short_sequences: Preserve short sequences. \n | |||
*@par Outputs: | |||
*@li ngrams:The values tensor of the output ngrams ragged tensor. | |||
*@li ngrams_splits:The splits tensor of the output ngrams ragged tensor. \n | |||
*@see StringNGrams() | |||
*@par Third-party framework compatibility | |||
*compatible with StringNGrams op of tensorflow | |||
*@par Restrictions: | |||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||
*/ | |||
REG_OP(StringNGrams) | |||
.INPUT(data, TensorType({DT_STRING})) | |||
.INPUT(data_splits, TensorType({DT_INT32, DT_INT64})) | |||
.OUTPUT(ngrams, TensorType({DT_STRING})) | |||
.OUTPUT(ngrams_splits, TensorType({DT_INT32, DT_INT64})) | |||
.REQUIRED_ATTR(separator, String) | |||
.ATTR(ngram_widths, ListInt, {}) | |||
.REQUIRED_ATTR(left_pad, String) | |||
.REQUIRED_ATTR(right_pad, String) | |||
.REQUIRED_ATTR(pad_width, Int) | |||
.REQUIRED_ATTR(preserve_short_sequences, Bool) | |||
.OP_END_FACTORY_REG(StringNGrams) | |||
/** | |||
*@brief Decodes each string in `input` into a sequence of Unicode code points . \n | |||
*@par Inputs: | |||
include: | |||
*@li input:The text to be decoded. Can have any shape. Note that the output is flattened | |||
to a vector of char values. \n | |||
*@par Attributes: | |||
* input_encoding:Text encoding of the input strings. This is any of the encodings supported | |||
by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. | |||
* errors:Error handling policy when there is invalid formatting found in the input. | |||
The value of 'strict' will cause the operation to produce a InvalidArgument | |||
error on any invalid input formatting. A value of 'replace' (the default) will | |||
cause the operation to replace any invalid formatting in the input with the | |||
`replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||
skip any invalid formatting in the input and produce no corresponding output | |||
character. | |||
* replacement_char:The replacement character codepoint to be used in place of any invalid | |||
formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||
be used. The default value is the default unicode replacement character is | |||
0xFFFD or U+65533. | |||
* replace_control_characters:Whether to replace the C0 control characters (00-1F) with the | |||
`replacement_char`. Default is false. \n | |||
*@par Outputs: | |||
*@li row_splits:A 1D tensor containing the row splits. | |||
*@li char_values:A 1D tensor containing the decoded codepoints. | |||
*@li char_to_byte_starts:A 1D int32 Tensor containing the byte index in the input string where each | |||
character in `char_values` starts. \n | |||
*@see UnicodeDecodeWithOffsets() | |||
*@par Third-party framework compatibility | |||
*compatible with UnicodeDecodeWithOffsets op of tensorflow | |||
*@par Restrictions: | |||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||
*/ | |||
REG_OP(UnicodeDecodeWithOffsets) | |||
.INPUT(input, TensorType({DT_STRING})) | |||
.OUTPUT(row_splits, TensorType({DT_INT64})) | |||
.OUTPUT(char_values, TensorType({DT_INT32})) | |||
.OUTPUT(char_to_byte_starts, TensorType({DT_INT64})) | |||
.REQUIRED_ATTR(input_encoding, String) | |||
.ATTR(errors, String, "replace") | |||
.ATTR(replacement_char, Int, 65533) | |||
.ATTR(replace_control_characters, Bool, false) | |||
.OP_END_FACTORY_REG(UnicodeDecodeWithOffsets) | |||
/** | |||
*@brief Decodes each string in `input` into a sequence of Unicode code points. \n | |||
*@par Inputs: | |||
include: | |||
*@li input:The text to be decoded. Can have any shape. Note that the output is flattened | |||
to a vector of char values. \n | |||
*@par Attributes: | |||
* input_encoding:Text encoding of the input strings. This is any of the encodings supported | |||
by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. | |||
* errors:Error handling policy when there is invalid formatting found in the input. | |||
The value of 'strict' will cause the operation to produce a InvalidArgument | |||
error on any invalid input formatting. A value of 'replace' (the default) will | |||
cause the operation to replace any invalid formatting in the input with the | |||
`replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||
skip any invalid formatting in the input and produce no corresponding output | |||
character. | |||
* replacement_char:The replacement character codepoint to be used in place of any invalid | |||
formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||
be used. The default value is the default unicode replacement character is | |||
0xFFFD or U+65533. | |||
* replace_control_characters:Whether to replace the C0 control characters (00-1F) with the | |||
`replacement_char`. Default is false. \n | |||
*@par Outputs: | |||
*@li row_splits:A 1D tensor containing the row splits. | |||
*@li char_values:A 1D tensor containing the decoded codepoints. \n | |||
*@see UnicodeDecode() | |||
*@par Third-party framework compatibility | |||
*compatible with UnicodeDecode op of tensorflow | |||
*@par Restrictions: | |||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||
*/ | |||
REG_OP(UnicodeDecode) | |||
.INPUT(input, TensorType({DT_STRING})) | |||
.OUTPUT(row_splits, TensorType({DT_INT64})) | |||
.OUTPUT(char_values, TensorType({DT_INT32})) | |||
.REQUIRED_ATTR(input_encoding, String) | |||
.ATTR(errors, String, "replace") | |||
.ATTR(replacement_char, Int, 65533) | |||
.ATTR(replace_control_characters, Bool, false) | |||
.OP_END_FACTORY_REG(UnicodeDecode) | |||
/** | |||
*@brief Transcode the input text from a source encoding to a destination encoding. \n | |||
*@par Inputs: | |||
include: | |||
*@li input:The text to be processed. Can have any shape. \n | |||
*@par Attributes: | |||
* input_encoding:Text encoding of the input strings. This is any of the encodings supported | |||
by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. | |||
* output_encoding:The unicode encoding to use in the output. Must be one of `"UTF-8", "UTF-16-BE", "UTF-32-BE"`. | |||
Multi-byte encodings will be big-endian. | |||
* errors:Error handling policy when there is invalid formatting found in the input. | |||
The value of 'strict' will cause the operation to produce a InvalidArgument | |||
error on any invalid input formatting. A value of 'replace' (the default) will | |||
cause the operation to replace any invalid formatting in the input with the | |||
`replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||
skip any invalid formatting in the input and produce no corresponding output | |||
character. | |||
* replacement_char:The replacement character codepoint to be used in place of any invalid | |||
formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||
be used. The default value is the default unicode replacement character is | |||
0xFFFD or U+65533. | |||
* replace_control_characters:Whether to replace the C0 control characters (00-1F) with the | |||
`replacement_char`. Default is false. \n | |||
*@par Outputs: | |||
*@li output:A string tensor containing unicode text encoded using `output_encoding`. \n | |||
*@see UnicodeTranscode() | |||
*@par Third-party framework compatibility | |||
*compatible with UnicodeTranscode op of tensorflow | |||
*@par Restrictions: | |||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||
*/ | |||
REG_OP(UnicodeTranscode) | |||
.INPUT(input, TensorType({DT_STRING})) | |||
.OUTPUT(output, TensorType({DT_STRING})) | |||
.REQUIRED_ATTR(input_encoding, String) | |||
.ATTR(output_encoding, String, "UTF-8") | |||
.ATTR(errors, String, "replace") | |||
.ATTR(replacement_char, Int, 65533) | |||
.ATTR(replace_control_characters, Bool, false) | |||
.OP_END_FACTORY_REG(UnicodeTranscode) | |||
/** | |||
*@brief Encode a tensor of ints into unicode strings. \n | |||
*@par Inputs: | |||
include: | |||
*@li input_values:A 1D tensor containing the unicode codepoints that should be encoded. | |||
*@li input_splits:A 1D tensor specifying how the unicode codepoints should be split into strings. \n | |||
*@par Attributes: | |||
* output_encoding:The unicode encoding to use in the output. Must be one of `"UTF-8", "UTF-16-BE", "UTF-32-BE"`. | |||
Multi-byte encodings will be big-endian. | |||
* errors:Error handling policy when there is invalid formatting found in the input. | |||
The value of 'strict' will cause the operation to produce a InvalidArgument | |||
error on any invalid input formatting. A value of 'replace' (the default) will | |||
cause the operation to replace any invalid formatting in the input with the | |||
`replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||
skip any invalid formatting in the input and produce no corresponding output | |||
character. | |||
* replacement_char:The replacement character codepoint to be used in place of any invalid | |||
formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||
be used. The default value is the default unicode replacement character is | |||
0xFFFD or U+65533. \n | |||
*@par Outputs: | |||
*@li output:The 1-D Tensor of strings encoded from the provided unicode codepoints. \n | |||
*@see UnicodeEncode() | |||
*@par Third-party framework compatibility | |||
*compatible with UnicodeEncode op of tensorflow | |||
*@par Restrictions: | |||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||
*/ | |||
REG_OP(UnicodeEncode) | |||
.INPUT(input_values, TensorType({DT_INT32})) | |||
.INPUT(input_splits, TensorType({DT_INT32, DT_INT64})) | |||
.OUTPUT(output, TensorType({DT_STRING})) | |||
.ATTR(errors, String, "replace") | |||
.ATTR(output_encoding, String, "UTF-8") | |||
.ATTR(replacement_char, Int, 65533) | |||
.OP_END_FACTORY_REG(UnicodeEncode) | |||
/** | |||
*@brief Split elements of input based on delimiter into a SparseTensor . \n | |||
@@ -62,6 +289,116 @@ REG_OP(StringSplit) | |||
.OP_END_FACTORY_REG(StringSplit) | |||
/** | |||
*@brief Replaces the match of pattern in input with rewrite. \n | |||
*@par Inputs: | |||
include: | |||
*@li input:A Tensor of type string. The text to be processed. \n | |||
*@par Attributes: | |||
*@li pattern:A string. The regular expression to match the input. | |||
*@li rewrite:A string. The rewrite to be applied to the matched expression. | |||
*@li replace_global:An optional bool. Defaults to True. If True, the replacement is global, | |||
otherwise the replacement is done only on the first match. | |||
*@par output: | |||
*@li output::A Tensor of type string. | |||
*/ | |||
REG_OP(StaticRegexReplace) | |||
.INPUT(input, TensorType({DT_STRING})) | |||
.OUTPUT(output, TensorType({DT_STRING})) | |||
.ATTR(pattern, String, "") | |||
.ATTR(rewrite, String, "") | |||
.ATTR(replace_global, Bool, true) | |||
.OP_END_FACTORY_REG(StaticRegexReplace) | |||
/** | |||
*@brief The input is a string tensor of any shape. The pattern is the | |||
*regular expression to be matched with every element of the input tensor. | |||
*The boolean values (True or False) of the output tensor indicate | |||
*if the input matches the regex pattern provided. | |||
*@par Inputs: | |||
include: | |||
*@li input:A Tensor of type string. The text to be processed. \n | |||
*@par Attributes: | |||
*@li pattern:A string. The regular expression to match the input. | |||
*@par output: | |||
*@li output::A bool tensor with the same shape as `input`. | |||
*/ | |||
REG_OP(StaticRegexFullMatch) | |||
.INPUT(input, TensorType({DT_STRING})) | |||
.OUTPUT(output, TensorType({DT_BOOL})) | |||
.ATTR(pattern, String, "") | |||
.OP_END_FACTORY_REG(StaticRegexFullMatch) | |||
/** | |||
*@brief A Tensor of type string. The input to be joined. \n | |||
*@par Inputs: | |||
include: | |||
*@li input:A Tensor of type string. The text to be processed. | |||
*@li segment_ids:A Tensor. Must be one of the following types: int32, int64. | |||
*A tensor whose shape is a prefix of data.shape. Negative segment ids are not supported. | |||
*@li num_segments:A Tensor. Must be one of the following types: int32, int64. A scalar. | |||
*@par Attributes: | |||
*@li separator:An optional string. Defaults to "". The separator to use when joining. | |||
*@par output: | |||
*@li output::A Tensor of type string.. | |||
*/ | |||
REG_OP(UnsortedSegmentJoin) | |||
.INPUT(input, TensorType({DT_STRING})) | |||
.INPUT(segment_ids, TensorType({DT_INT32,DT_INT64})) | |||
.INPUT(num_segments, TensorType({DT_INT32,DT_INT64})) | |||
.OUTPUT(output, TensorType({DT_STRING})) | |||
.ATTR(separator, String, "") | |||
.OP_END_FACTORY_REG(UnsortedSegmentJoin) | |||
/** | |||
*@brief Inputs to TensorFlow operations are outputs of another TensorFlow operation. | |||
*This method is used to obtain a symbolic handle that represents the computation of the input. | |||
*@par Inputs: | |||
include: | |||
*@li input:A Tensor of type string. The text to be processed. | |||
*@par Attributes: | |||
*@li encoding:An optional string. Defaults to "". | |||
*@par output: | |||
*@li output::A Tensor of type string.. | |||
*/ | |||
REG_OP(StringLower) | |||
.INPUT(input, TensorType({DT_STRING})) | |||
.OUTPUT(output, TensorType({DT_STRING})) | |||
.ATTR(encoding, String, "") | |||
.OP_END_FACTORY_REG(StringLower) | |||
/** | |||
*@brief Inputs to TensorFlow operations are outputs of another TensorFlow operation. | |||
*This method is used to obtain a symbolic handle that represents the computation of the input. | |||
*@par Inputs: | |||
include: | |||
*@li input:A Tensor of type string. The text to be processed. | |||
*@par Attributes: | |||
*@li encoding:An optional string. Defaults to "". | |||
*@par output: | |||
*@li output::A Tensor of type string.. | |||
*/ | |||
REG_OP(StringUpper) | |||
.INPUT(input, TensorType({DT_STRING})) | |||
.OUTPUT(output, TensorType({DT_STRING})) | |||
.ATTR(encoding, String, "") | |||
.OP_END_FACTORY_REG(StringUpper) | |||
/** | |||
*@brief Split elements of source based on sep into a SparseTensor . \n | |||
*@par Inputs: | |||
@@ -418,12 +418,8 @@ REG_OP(BatchToSpace) | |||
* Warning: THIS FUNCTION IS DEPRECATED. Please use BatchToSpace instead. | |||
*/ | |||
REG_OP(BatchToSpaceD) | |||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT64, DT_INT32, DT_UINT8, | |||
DT_UINT16, DT_UINT32, DT_UINT64, DT_INT8, DT_INT16, DT_COMPLEX64, | |||
DT_COMPLEX128, DT_QINT8, DT_QUINT8, DT_QINT16, DT_QUINT16, DT_QINT32})) | |||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT64, DT_INT32, DT_UINT8, | |||
DT_UINT16, DT_UINT32, DT_UINT64, DT_INT8, DT_INT16, DT_COMPLEX64, | |||
DT_COMPLEX128, DT_QINT8, DT_QUINT8, DT_QINT16, DT_QUINT16, DT_QINT32})) | |||
.INPUT(x, TensorType::BasicType()) | |||
.OUTPUT(y, TensorType::BasicType()) | |||
.REQUIRED_ATTR(block_size, Int) | |||
.REQUIRED_ATTR(crops, ListInt) | |||
.OP_END_FACTORY_REG(BatchToSpaceD) | |||
@@ -156,6 +156,12 @@ RTS_API rtError_t rtProfilerTrace(uint64_t id, bool notify, uint32_t flags, rtSt | |||
/** | |||
* @ingroup profiling_base | |||
* @brief ts send keypoint profiler log. | |||
*/ | |||
RTS_API rtError_t rtProfilerTraceEx(uint64_t id, uint64_t modelId, uint16_t tagId, rtStream_t stream); | |||
/** | |||
* @ingroup profiling_base | |||
* @brief ts set profiling reporter callback. | |||
*/ | |||
RTS_API rtError_t rtSetMsprofReporterCallback(MsprofReporterCallback callback); | |||
@@ -200,7 +206,7 @@ RTS_API rtError_t rtRegDeviceStateCallback(const char *regName, rtDeviceStateCal | |||
/** | |||
* @ingroup dvrt_base | |||
* @brief register callback for fail task | |||
* @brief register callback for fail task | |||
* @param [in] uniName unique register name, can't be null | |||
* @param [in] callback fail task callback function | |||
* @param [out] NA | |||
@@ -343,7 +349,7 @@ RTS_API rtError_t rtLabelCreateExV2(rtLabel_t *label, rtModel_t model, rtStream_ | |||
/** | |||
* @ingroup dvrt_base | |||
* @brief get current thread last stream id and task id | |||
* @brief get current thread last stream id and task id | |||
* @param [out] stream id and task id | |||
* @param [in] null | |||
* @return RT_ERROR_NONE for ok | |||
@@ -183,6 +183,18 @@ RTS_API rtError_t rtNotifyWait(rtNotify_t notify, rtStream_t stream); | |||
/** | |||
* @ingroup dvrt_event | |||
* @brief Wait for a notify with time out | |||
* @param [in] notify_ notify to be wait | |||
* @param [in] stream_ input stream | |||
* @param [in] timeOut input timeOut | |||
* @return RT_ERROR_NONE for ok | |||
* @return RT_ERROR_INVALID_VALUE for error input | |||
* @return RT_ERROR_STREAM_CONTEXT for stream is not in current ctx | |||
*/ | |||
RTS_API rtError_t rtNotifyWaitWithTimeOut(rtNotify_t notify_, rtStream_t stream_, uint32_t timeOut); | |||
/** | |||
* @ingroup dvrt_event | |||
* @brief Name a notify | |||
* @param [in] notify_ notify to be named | |||
* @param [in|out] name identification name | |||
@@ -27,5 +27,6 @@ | |||
#include "mem.h" | |||
#include "rt_model.h" | |||
#include "stream.h" | |||
#include "rt_stars.h" | |||
#endif // __CCE_RUNTIME_RT_H__ |
@@ -51,6 +51,7 @@ typedef enum tagModelTaskType { | |||
RT_MODEL_TASK_STREAM_LABEL_GOTO, | |||
RT_MODEL_TASK_MODEL_EXIT, | |||
RT_MODEL_TASK_ALL_KERNEL, | |||
RT_MODEL_TASK_PROFILER_TRACE_EX, | |||
} rtModelTaskType_t; | |||
typedef enum tagModelStreamType { | |||
@@ -197,6 +198,13 @@ typedef struct tagProfilerTraceTaskInfo { | |||
uint32_t reserved[6]; | |||
} rtProfilerTrace_t; | |||
typedef struct tagProfilerTraceExTaskInfo { | |||
uint64_t profilerTraceId; | |||
uint64_t modelId; | |||
uint16_t tagId; | |||
uint8_t reserved[22]; | |||
} rtProfilerTraceEx_t; | |||
typedef struct tagrtMemcpyAsyncTaskInfo { | |||
void *dst; | |||
uint64_t destMax; | |||
@@ -272,6 +280,7 @@ typedef struct tagTaskInfo { | |||
rtLabelSwitchTaskInfo_t labelSwitchTask; | |||
rtLabelGotoTaskInfo_t labelGotoTask; | |||
rtProfilerTrace_t profilertraceTask; | |||
rtProfilerTraceEx_t profilertraceExTask; | |||
rtMemcpyAsyncTaskInfo_t memcpyAsyncTask; | |||
rtNotifyTaskInfo_t notifyTask; | |||
rtReduceAsyncTaskInfo_t reduceAsyncTask; | |||
@@ -0,0 +1,29 @@ | |||
/* | |||
* Copyright (c) Huawei Technologies Co., Ltd. 2021. All rights reserved. | |||
* Description: | |||
*/ | |||
#ifndef __CCE_RUNTIME_STARS_H | |||
#define __CCE_RUNTIME_STARS_H | |||
#include "base.h" | |||
#if defined(__cplusplus) && !defined(COMPILE_OMG_PACKAGE) | |||
extern "C" { | |||
#endif | |||
/** | |||
* @ingroup rt_stars | |||
* @brief launch stars task. | |||
* used for send star sqe directly. | |||
* @param [in] taskSqe stars task sqe | |||
* @param [in] sqeLen stars task sqe length | |||
* @param [in] stream associated stream | |||
* @return RT_ERROR_NONE for ok, others failed | |||
*/ | |||
RTS_API rtError_t rtStarsTaskLaunch(const void *taskSqe, uint32_t sqeLen, rtStream_t stream); | |||
#if defined(__cplusplus) && !defined(COMPILE_OMG_PACKAGE) | |||
} | |||
#endif | |||
#endif // __CCE_RUNTIME_STARS_H |
@@ -41,42 +41,44 @@ namespace Engine { | |||
* the Reporter class .used to send data to profiling | |||
*/ | |||
class MSVP_PROF_API Reporter { | |||
public: | |||
virtual ~Reporter() {} | |||
public: | |||
virtual ~Reporter() {} | |||
public: | |||
/** | |||
* @ingroup reporter | |||
* @name : Report | |||
* @brief : API of libmsprof, report data to libmsprof, it's a non-blocking function \n | |||
The data will be firstly appended to cache, if the cache is full, data will be ignored | |||
* @param data [IN] const ReporterData * the data send to libmsporf | |||
* @retval PROFILING_SUCCESS 0 (success) | |||
* @retval PROFILING_FAILED -1 (failed) | |||
* | |||
* @par depend: | |||
* @li libmsprof | |||
* @li prof_reporter.h | |||
* @since c60 | |||
* @see Flush | |||
*/ | |||
virtual int Report(const ReporterData *data) = 0; | |||
public: | |||
/** | |||
* @ingroup reporter | |||
* @name : Report | |||
* @brief : API of libmsprof, report data to libmsprof, it's a non-blocking function \n | |||
The data will be firstly appended to cache, if the cache is full, data will be ignored | |||
* @param data [IN] const ReporterData * the data send to libmsporf | |||
* @retval PROFILING_SUCCESS 0 (success) | |||
* @retval PROFILING_FAILED -1 (failed) | |||
* | |||
* @par depend: | |||
* @li libmsprof | |||
* @li prof_reporter.h | |||
* @since c60 | |||
* @see Flush | |||
*/ | |||
virtual int Report(const ReporterData *data) = 0; | |||
/** | |||
* @ingroup reporter | |||
* @name : Flush | |||
* @brief : API of libmsprof, notify libmsprof send data over, it's a blocking function \n | |||
The all datas of cache will be write to file or send to host | |||
* @retval PROFILING_SUCCESS 0 (success) | |||
* @retval PROFILING_FAILED -1 (failed) | |||
* | |||
* @par depend: | |||
* @li libmsprof | |||
* @li prof_reporter.h | |||
* @since c60 | |||
* @see ProfMgrStop | |||
*/ | |||
virtual int Flush() = 0; | |||
/** | |||
* @ingroup reporter | |||
* @name : Flush | |||
* @brief : API of libmsprof, notify libmsprof send data over, it's a blocking function \n | |||
The all datas of cache will be write to file or send to host | |||
* @retval PROFILING_SUCCESS 0 (success) | |||
* @retval PROFILING_FAILED -1 (failed) | |||
* | |||
* @par depend: | |||
* @li libmsprof | |||
* @li prof_reporter.h | |||
* @since c60 | |||
* @see ProfMgrStop | |||
*/ | |||
virtual int Flush() = 0; | |||
virtual uint32_t GetReportDataMaxLen() = 0; | |||
}; | |||
} // namespace Engine | |||
@@ -55,7 +55,40 @@ extern "C" MsTuneStatus MsTrainTuning(ge::Graph &tuningGraph, std::vector<ge::Gr | |||
/** | |||
* @ingroup aoe | |||
* @par 描述: 梯度调优 | |||
* @par 描述: 调优初始化 | |||
* | |||
* @attention 无 | |||
* @param session [IN] ge连接会话 | |||
* @param option [IN] 参数集. 包含调优参数及ge参数 | |||
* @retval #AOE_SUCCESS 执行成功 | |||
* @retval #AOE_FAILED 执行失败 | |||
* @par 依赖: | |||
* @li tune_api.cpp:该接口所属的开发包。 | |||
* @li tune_api.h:该接口声明所在的头文件。 | |||
* @see 无 | |||
* @since | |||
*/ | |||
extern "C" AoeStatus AoeOnlineInitialize(ge::Session *session, const std::map<std::string, std::string> &option); | |||
/** | |||
* @ingroup aoe | |||
* @par 描述: 调优去初始化 | |||
* | |||
* @attention 无 | |||
* @param 无 | |||
* @retval #AOE_SUCCESS 执行成功 | |||
* @retval #AOE_FAILED 执行失败 | |||
* @par 依赖: | |||
* @li tune_api.cpp:该接口所属的开发包。 | |||
* @li tune_api.h:该接口声明所在的头文件。 | |||
* @see 无 | |||
* @since | |||
*/ | |||
extern "C" AoeStatus AoeOnlineFinalize(); | |||
/** | |||
* @ingroup aoe | |||
* @par 描述: 调优处理 | |||
* | |||
* @attention 无 | |||
* @param tuningGraph [IN] 调优图 | |||
@@ -71,5 +104,5 @@ extern "C" MsTuneStatus MsTrainTuning(ge::Graph &tuningGraph, std::vector<ge::Gr | |||
* @since | |||
*/ | |||
extern "C" AoeStatus AoeOnlineTuning(ge::Graph &tuningGraph, std::vector<ge::Graph> &dependGraph, | |||
ge::Session *session, const std::map<std::string, std::map<std::string, std::string>> &option); | |||
ge::Session *session, const std::map<std::string, std::string> &option); | |||
#endif |