@@ -11,13 +11,13 @@ set(SRC_LIST | |||
"main.cc" | |||
"single_op_parser.cc" | |||
"../session/omg.cc" | |||
"../ir_build/atc_ir_common.cc" | |||
"../ir_build/atc_ir_common.cc" | |||
) | |||
############ atc ############ | |||
add_executable(atc ${SRC_LIST} ${PROTO_HDRS}) | |||
target_compile_options(atc PRIVATE | |||
target_compile_options(atc PRIVATE | |||
-Werror | |||
-O2 | |||
-Wno-deprecated-declarations | |||
@@ -74,10 +74,130 @@ target_link_libraries(atc PRIVATE | |||
-ldl | |||
) | |||
############ atc.bin ############ | |||
add_executable(atc.bin ${SRC_LIST} ${PROTO_HDRS}) | |||
target_compile_options(atc.bin PRIVATE | |||
-Werror | |||
-O2 | |||
-Wno-deprecated-declarations | |||
) | |||
target_compile_definitions(atc.bin PRIVATE | |||
PROTOBUF_INLINE_NOT_IN_HEADERS=0 | |||
COMPILE_OMG_PACKAGE | |||
google=ascend_private | |||
) | |||
target_include_directories(atc.bin PRIVATE | |||
${CMAKE_CURRENT_LIST_DIR} | |||
${GE_CODE_DIR} | |||
${GE_CODE_DIR}/ge | |||
${GE_CODE_DIR}/inc/external | |||
${GE_CODE_DIR}/common/inc/external | |||
${GE_CODE_DIR}/common/inc/external/graph | |||
${GE_CODE_DIR}/inc | |||
${GE_CODE_DIR}/inc/framework | |||
${METADEF_DIR}/inc | |||
${METADEF_DIR}/inc/graph | |||
${METADEF_DIR}/inc/register | |||
${METADEF_DIR}/inc/external | |||
${METADEF_DIR}/inc/external/graph | |||
${METADEF_DIR}/inc/external/register | |||
${PARSER_DIR} | |||
${CMAKE_BINARY_DIR} | |||
${CMAKE_BINARY_DIR}/proto/ge | |||
#### yellow zone #### | |||
${GE_CODE_DIR}/../inc | |||
${GE_CODE_DIR}/../inc/common | |||
#### blue zone #### | |||
${GE_CODE_DIR}/third_party/fwkacllib/inc | |||
${GE_CODE_DIR}/third_party/fwkacllib/inc/toolchain | |||
) | |||
target_link_libraries(atc.bin PRIVATE | |||
$<BUILD_INTERFACE:intf_pub> | |||
ascend_protobuf | |||
ge_common | |||
register | |||
c_sec | |||
graph | |||
error_manager | |||
ge_compiler | |||
parser_common | |||
gflags | |||
json | |||
runtime_compile | |||
slog | |||
static_mmpa | |||
-lrt | |||
-ldl | |||
) | |||
############ fwk_atc.bin ############ | |||
add_executable(fwk_atc.bin ${SRC_LIST} ${PROTO_HDRS}) | |||
target_compile_options(fwk_atc.bin PRIVATE | |||
-Werror | |||
-O2 | |||
-Wno-deprecated-declarations | |||
) | |||
target_compile_definitions(fwk_atc.bin PRIVATE | |||
PROTOBUF_INLINE_NOT_IN_HEADERS=0 | |||
COMPILE_OMG_PACKAGE | |||
google=ascend_private | |||
) | |||
target_include_directories(fwk_atc.bin PRIVATE | |||
${CMAKE_CURRENT_LIST_DIR} | |||
${GE_CODE_DIR} | |||
${GE_CODE_DIR}/ge | |||
${GE_CODE_DIR}/inc/external | |||
${GE_CODE_DIR}/common/inc/external | |||
${GE_CODE_DIR}/common/inc/external/graph | |||
${GE_CODE_DIR}/inc | |||
${GE_CODE_DIR}/inc/framework | |||
${METADEF_DIR}/inc | |||
${METADEF_DIR}/inc/graph | |||
${METADEF_DIR}/inc/register | |||
${METADEF_DIR}/inc/external | |||
${METADEF_DIR}/inc/external/graph | |||
${METADEF_DIR}/inc/external/register | |||
${PARSER_DIR} | |||
${CMAKE_BINARY_DIR} | |||
${CMAKE_BINARY_DIR}/proto/ge | |||
#### yellow zone #### | |||
${GE_CODE_DIR}/../inc | |||
${GE_CODE_DIR}/../inc/common | |||
#### blue zone #### | |||
${GE_CODE_DIR}/third_party/fwkacllib/inc | |||
${GE_CODE_DIR}/third_party/fwkacllib/inc/toolchain | |||
) | |||
target_link_libraries(fwk_atc.bin PRIVATE | |||
$<BUILD_INTERFACE:intf_pub> | |||
ascend_protobuf | |||
ge_common | |||
register | |||
c_sec | |||
graph | |||
error_manager | |||
ge_compiler | |||
parser_common | |||
gflags | |||
json | |||
runtime_compile | |||
slog | |||
static_mmpa | |||
-lrt | |||
-ldl | |||
) | |||
############ install ############ | |||
set(INSTALL_BASE_DIR "") | |||
set(INSTALL_LIBRARY_DIR lib) | |||
install(TARGETS atc OPTIONAL | |||
install(TARGETS atc atc.bin fwk_atc.bin OPTIONAL | |||
LIBRARY DESTINATION ${INSTALL_LIBRARY_DIR} | |||
) |
@@ -0,0 +1,20 @@ | |||
#!/bin/bash | |||
#------------------------------------------------------------------- | |||
# Purpose: | |||
# Copyright 2020 Huawei Technologies Co., Ltd. All rights reserved. | |||
#------------------------------------------------------------------- | |||
LOCAL_PATH=$(cd "$(dirname "$0")"; pwd) | |||
PKG_PATH=$(cd ${LOCAL_PATH}/..; pwd) | |||
LIB_P="/lib64" | |||
PYTHON_P="/python/site-packages" | |||
LIB64_PATH="${PKG_PATH}${LIB_P}" | |||
PYTHON_PATH="${PKG_PATH}${PYTHON_P}" | |||
export LD_LIBRARY_PATH="${LIB64_PATH}:${LD_LIBRARY_PATH}" | |||
export PYTHONPATH="${PYTHON_PATH}:${PYTHONPATH}" | |||
if [ -f "${PKG_PATH}/bin/atc.bin" ];then | |||
atc.bin $@ | |||
else | |||
fwk_atc.bin $@ | |||
fi |
@@ -54,3 +54,108 @@ LOCAL_LDFLAGS := -lrt -ldl | |||
include $(BUILD_HOST_EXECUTABLE) | |||
include $(CLEAR_VARS) | |||
LOCAL_MODULE := atc.bin | |||
LOCAL_CFLAGS += -Werror -Wno-deprecated-declarations | |||
LOCAL_CFLAGS += -DPROTOBUF_INLINE_NOT_IN_HEADERS=0 -DCOMPILE_OMG_PACKAGE -O2 -Dgoogle=ascend_private | |||
LOCAL_SRC_FILES := \ | |||
main.cc \ | |||
single_op_parser.cc \ | |||
../session/omg.cc \ | |||
../ir_build/atc_ir_common.cc \ | |||
LOCAL_C_INCLUDES := \ | |||
$(LOCAL_PATH)/../ ./ \ | |||
$(TOPDIR)inc \ | |||
$(TOPDIR)metadef/inc \ | |||
$(TOPDIR)graphengine/inc \ | |||
$(TOPDIR)inc/external \ | |||
$(TOPDIR)metadef/inc/external \ | |||
$(TOPDIR)graphengine/inc/external \ | |||
$(TOPDIR)metadef/inc/external/graph \ | |||
$(TOPDIR)graphengine/inc/framework \ | |||
$(TOPDIR)libc_sec/include \ | |||
$(TOPDIR)metadef/inc/common/util \ | |||
$(TOPDIR)parser \ | |||
third_party/json/include \ | |||
third_party/gflags/include \ | |||
third_party/protobuf/include \ | |||
proto/om.proto \ | |||
proto/ge_ir.proto \ | |||
proto/task.proto \ | |||
proto/insert_op.proto \ | |||
LOCAL_SHARED_LIBRARIES := \ | |||
libc_sec \ | |||
libge_common \ | |||
libascend_protobuf \ | |||
libslog \ | |||
libgraph \ | |||
libregister \ | |||
liberror_manager \ | |||
libge_compiler \ | |||
libruntime_compile \ | |||
libparser_common \ | |||
liberror_manager \ | |||
LOCAL_STATIC_LIBRARIES := libgflags | |||
LOCAL_LDFLAGS := -lrt -ldl | |||
include $(BUILD_HOST_EXECUTABLE) | |||
include $(CLEAR_VARS) | |||
LOCAL_MODULE := fwk_atc.bin | |||
LOCAL_CFLAGS += -Werror -Wno-deprecated-declarations | |||
LOCAL_CFLAGS += -DPROTOBUF_INLINE_NOT_IN_HEADERS=0 -DCOMPILE_OMG_PACKAGE -O2 -Dgoogle=ascend_private | |||
LOCAL_SRC_FILES := \ | |||
main.cc \ | |||
single_op_parser.cc \ | |||
../session/omg.cc \ | |||
../ir_build/atc_ir_common.cc \ | |||
LOCAL_C_INCLUDES := \ | |||
$(LOCAL_PATH)/../ ./ \ | |||
$(TOPDIR)inc \ | |||
$(TOPDIR)metadef/inc \ | |||
$(TOPDIR)graphengine/inc \ | |||
$(TOPDIR)inc/external \ | |||
$(TOPDIR)metadef/inc/external \ | |||
$(TOPDIR)graphengine/inc/external \ | |||
$(TOPDIR)metadef/inc/external/graph \ | |||
$(TOPDIR)graphengine/inc/framework \ | |||
$(TOPDIR)libc_sec/include \ | |||
$(TOPDIR)metadef/inc/common/util \ | |||
$(TOPDIR)parser \ | |||
third_party/json/include \ | |||
third_party/gflags/include \ | |||
third_party/protobuf/include \ | |||
proto/om.proto \ | |||
proto/ge_ir.proto \ | |||
proto/task.proto \ | |||
proto/insert_op.proto \ | |||
LOCAL_SHARED_LIBRARIES := \ | |||
libc_sec \ | |||
libge_common \ | |||
libascend_protobuf \ | |||
libslog \ | |||
libgraph \ | |||
libregister \ | |||
liberror_manager \ | |||
libge_compiler \ | |||
libruntime_compile \ | |||
libparser_common \ | |||
liberror_manager \ | |||
LOCAL_STATIC_LIBRARIES := libgflags | |||
LOCAL_LDFLAGS := -lrt -ldl | |||
include $(BUILD_HOST_EXECUTABLE) |
@@ -1,3 +1,10 @@ | |||
#!/usr/bin/python3.7 | |||
# -*- coding: UTF-8 -*- | |||
#------------------------------------------------------------------- | |||
# Purpose: | |||
# Copyright 2020 Huawei Technologies Co., Ltd. All rights reserved. | |||
#------------------------------------------------------------------- | |||
import os | |||
import re | |||
import sys | |||
@@ -1 +1 @@ | |||
Subproject commit 29c31bb87d8bbe6904ab6fa72034a803fb50a746 | |||
Subproject commit 5b9a7f84a4347f8816d492aa51f2414ccf8a0744 |
@@ -1 +1 @@ | |||
Subproject commit ba956d349d8ad3e864d27467f4f0119333cbadc6 | |||
Subproject commit 70369668abebed84942d9f355494a89e82cc1eac |
@@ -1,42 +0,0 @@ | |||
# Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
cmake_minimum_required(VERSION 3.0) | |||
set(CMAKE_CXX_STANDARD 11) | |||
project(ge_st CXX C) | |||
set(CMAKE_CXX_FLAGS "-O1 -fPIC -Wl,-unresolved-symbols=ignore-in-shared-libs") | |||
file(GLOB_RECURSE RES50_TRAIN_SRCS RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} | |||
"resnet50/resnet50_train.cc" | |||
"resnet50/common.cc" | |||
) | |||
include_directories(${GE_SOURCE_DIR}/inc) | |||
include_directories(${GE_SOURCE_DIR}/inc/graph) | |||
include_directories(${GE_SOURCE_DIR}/inc/framework) | |||
include_directories(${GE_SOURCE_DIR}/inc/external) | |||
include_directories(${GE_SOURCE_DIR}/inc/external/ge) | |||
include_directories(${GE_SOURCE_DIR}/inc/external/graph) | |||
include_directories(${GE_SOURCE_DIR}/third_party/fwkacllib/inc) | |||
include_directories(${GE_SOURCE_DIR}/third_party/fwkacllib/inc/ops) | |||
include_directories(/usr/local/HiAI/opp/op_proto/built-in/inc) | |||
add_executable(st_resnet50_train ${RES50_TRAIN_SRCS}) | |||
target_link_libraries(st_resnet50_train | |||
${PROTOBUF_LIBRARY} | |||
ge_client_train ge_memory | |||
) |
@@ -1,768 +0,0 @@ | |||
/** | |||
* Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
* | |||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||
* you may not use this file except in compliance with the License. | |||
* You may obtain a copy of the License at | |||
* | |||
* http://www.apache.org/licenses/LICENSE-2.0 | |||
* | |||
* Unless required by applicable law or agreed to in writing, software | |||
* distributed under the License is distributed on an "AS IS" BASIS, | |||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* See the License for the specific language governing permissions and | |||
* limitations under the License. | |||
*/ | |||
#include <math.h> | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
#include <stdlib.h> | |||
#include <iostream> | |||
#include <vector> | |||
#include "common.h" | |||
#include "model.h" | |||
#define MAX_HEAD_SIZE 50 | |||
using namespace std; | |||
using namespace ge; | |||
void update_op_format(Operator ops, Format format) { | |||
printf("set format begin.........\n"); | |||
ge::TensorDesc tensor_desc_x = ops.GetInputDesc("x"); | |||
ge::TensorDesc tensor_desc_y = ops.GetOutputDesc("y"); | |||
Format f_x0 = tensor_desc_x.GetFormat(); | |||
Format f_y0 = tensor_desc_x.GetFormat(); | |||
printf("before set x format:%d \n", f_x0); | |||
printf("before set y format:%d \n", f_y0); | |||
printf("format to be set is :%d \n", format); | |||
tensor_desc_x.SetFormat(format); | |||
tensor_desc_y.SetFormat(format); | |||
ops.UpdateInputDesc("x", tensor_desc_x); | |||
ops.UpdateOutputDesc("y", tensor_desc_y); | |||
Format f_x = tensor_desc_x.GetFormat(); | |||
Format f_y = tensor_desc_y.GetFormat(); | |||
printf("after set x format:%d \n", f_x); | |||
printf("after set y format:%d \n", f_y); | |||
} | |||
/// getDimInfo: get dim info from data file | |||
/// param: | |||
/// fp: the testing datafile object | |||
/// | |||
/// return : | |||
/// dim_info: array to store the info of the dim in datafile, like [4,3,3,6,3,162(3*3*6*3)],4 is dim size,3,3,6,3 is the | |||
/// dim shape data_size: the size of the testing data including the data file | |||
void getDimInfo(FILE *fp, std::vector<uint64_t> &dim_info) { | |||
// get dim info from hisi testing data file | |||
uint32_t *dim_buffer = (uint32_t *)malloc(MAX_HEAD_SIZE * sizeof(uint32_t)); | |||
fread(dim_buffer, sizeof(uint32_t), MAX_HEAD_SIZE, fp); | |||
dim_info.push_back(*dim_buffer); // get dim size | |||
// get data shape to compute the datasize | |||
uint64_t data_size = 1; | |||
uint32_t i = 1; | |||
for (; i <= dim_info[0]; i++) { | |||
dim_info.push_back(*(dim_buffer + i)); | |||
data_size *= *(dim_buffer + i); | |||
} | |||
dim_info.push_back(data_size); | |||
free(dim_buffer); | |||
} | |||
/// readTestDataFile: read test date from hisi .t datafile | |||
/// param: | |||
/// infile: the path of hisi .t datafile | |||
/// return: | |||
/// dim_info: array to store the info of the dim in datafile, like [4,3,3,6,3],4 is dim size,3,3,6,3 is the dim shape | |||
void *readTestDataFile(std::string infile, std::vector<uint64_t> &dim_info) { | |||
FILE *fp; | |||
fp = fopen(infile.c_str(), "r"); | |||
if (fp == NULL) { | |||
printf("ERROR: cant't open file %s\n", infile.c_str()); | |||
return NULL; | |||
} else { | |||
getDimInfo(fp, dim_info); | |||
uint64_t data_size = dim_info[dim_info.size() - 1]; | |||
fclose(fp); | |||
fp = fopen(infile.c_str(), "r"); | |||
if (fp == NULL) { | |||
printf("ERROR: cant't open file %s\n", infile.c_str()); | |||
return NULL; | |||
} | |||
uint32_t *memory = (uint32_t *)malloc((dim_info[0] + 1 + data_size) * sizeof(uint32_t)); | |||
fread(memory, sizeof(uint32_t), (dim_info[0] + 1 + data_size), fp); | |||
fclose(fp); | |||
return memory + (dim_info[0] + 1); | |||
} | |||
} | |||
void *readUint8TestDataFile(std::string infile, int size) { | |||
FILE *fp; | |||
fp = fopen(infile.c_str(), "r"); | |||
if (fp == NULL) { | |||
printf("ERROR: cant't open file %s\n", infile.c_str()); | |||
return NULL; | |||
} | |||
uint8_t *memory = (uint8_t *)malloc((size) * sizeof(uint8_t)); | |||
fread(memory, sizeof(uint8_t), (size), fp); | |||
fclose(fp); | |||
return memory; | |||
} | |||
/// allclose | |||
/// param: | |||
/// a:compared file a | |||
/// b:compared file b | |||
/// count: the count size which will compare | |||
/// rtol: | |||
/// atol: | |||
/// return: | |||
/// true or false | |||
bool allclose(float *a, float *b, uint64_t count, float rtol = 1e-05, float atol = 1e-08) { | |||
uint32_t i = 0; | |||
for (; i < count; ++i) { | |||
if (fabs(a[i] - b[i]) > (atol + rtol * fabs(b[i]))) { | |||
printf("compara failed: i= %d, a[i]=%f, b[i]=%f,atol=%f,rtol=%f\n", i, a[i], b[i], atol, rtol); | |||
return false; | |||
} | |||
} | |||
return true; | |||
} | |||
/// compFp32WithTData: compare the data with the data in hisi .t file | |||
/// param: | |||
/// actual_output_data: the result of ge | |||
/// expected_data_file: the path of hisi .t result file | |||
/// rtol: | |||
/// atol: | |||
/// return: | |||
/// true of false | |||
bool compFp32WithTData(float *actual_output_data, std::string expected_data_file, float rtol = 1e-05, float atol = 1e-08) { | |||
std::vector<uint64_t> dim_info; | |||
float *expected_output_data = (float *)readTestDataFile(expected_data_file, dim_info); | |||
uint32_t i = 1; | |||
uint64_t data_size = 1; | |||
for (; i <= dim_info[0]; i++) { | |||
data_size *= dim_info[i]; | |||
} | |||
return allclose(actual_output_data, expected_output_data, data_size, rtol, atol); | |||
} | |||
int SwitchDatatype(DataType dt) { | |||
int size = 1; | |||
if (dt == ge::DT_FLOAT) size = 4; | |||
if (dt == ge::DT_INT32) size = 4; | |||
if (dt == ge::DT_FLOAT16) size = 2; | |||
if (dt == ge::DT_INT64) size = 8; | |||
return size; | |||
} | |||
ge::Tensor genTensor(std::vector<int64_t> tensor_shape, Format format, DataType dt) { | |||
int size = 1; | |||
for (int i = 0; i < tensor_shape.size(); i++) { | |||
size = size * tensor_shape[i]; | |||
} | |||
int data_type_size = SwitchDatatype(dt); | |||
size = abs(size * data_type_size); | |||
vector<uint8_t> data_value; | |||
if (size == 0) { | |||
TensorDesc input_tensor_desc = TensorDesc(ge::Shape(tensor_shape), format, dt); | |||
input_tensor_desc.SetRealDimCnt(tensor_shape.size()); | |||
Tensor gen_tensor = Tensor(input_tensor_desc, data_value); | |||
return gen_tensor; | |||
} | |||
for (int i = 0; i < size; i++) { | |||
data_value.push_back(1); | |||
} | |||
TensorDesc input_tensor_desc = TensorDesc(ge::Shape(tensor_shape), format, dt); | |||
input_tensor_desc.SetRealDimCnt(tensor_shape.size()); | |||
Tensor gen_tensor = Tensor(input_tensor_desc, data_value); | |||
return gen_tensor; | |||
} | |||
ge::Tensor genTensor_withVaule(std::vector<int64_t> tensor_shape, float value) { | |||
int size = 1; | |||
for (int i = 0; i < tensor_shape.size(); i++) { | |||
size = size * tensor_shape[i]; | |||
} | |||
float *data_value = new float[size]; | |||
for (int i = 0; i < size; i++) { | |||
*(data_value + i) = value; | |||
} | |||
Tensor gen_ge_tensor; | |||
TensorDesc input_tensor_desc = TensorDesc(ge::Shape(tensor_shape), FORMAT_NCHW); | |||
gen_ge_tensor.SetTensorDesc(input_tensor_desc); | |||
gen_ge_tensor.SetData((uint8_t *)data_value, size * 4); | |||
return gen_ge_tensor; | |||
} | |||
Tensor genTesnor_Shape_as_data(std::vector<int64_t> tensor_shape) { | |||
Format format = FORMAT_NCHW; | |||
DataType dt = DT_INT32; | |||
int size = tensor_shape.size(); | |||
int32_t *tensor_data = new int32_t[size]; | |||
std::cout << "shape tensor size:" << size << endl; | |||
for (int i = 0; i < size; i++) { | |||
*(tensor_data + i) = tensor_shape[i]; | |||
} | |||
Tensor gen_tensor; | |||
TensorDesc input_tensor_desc = TensorDesc(ge::Shape({size}), FORMAT_NCHW, DT_INT32); | |||
gen_tensor.SetData((uint8_t *)tensor_data, size * GetDatTypeSize(dt)); | |||
gen_tensor.SetTensorDesc(input_tensor_desc); | |||
return gen_tensor; | |||
} | |||
/// train_flag is 0 when infer; train_flag is 1 when train; train_flag is 0 default | |||
/// run_mode_path is not 0,1,2 when TBE; run_mode_path is 1 when FE; run_mode_path is 0 default | |||
/// run_mode_path is 2 now when AICPU, ge.enabledlocalFmkop is 1 | |||
ge::Status GEInitialize_api(string train_flag, string run_mode_path) { | |||
ge::Status ret; | |||
if (run_mode_path == "0") { | |||
const std::map<string, string> config = { | |||
{"device_id", "0,2,4,6"}, | |||
{"rank_table_file", "hccl from csa/paas"}, | |||
{"ge.graphRunMode", train_flag}, | |||
{"ge.aicpuFlag", "1"}, | |||
{"ge.feFlag", "1"}, | |||
{DDK_VERSION_FLAG, "1.60.T17.B830"}, | |||
{"ge.soLoadPath", | |||
"/usr/local/HiAI/runtime/lib64/plugin/opskernel/libfe.so:/usr/local/HiAI/runtime/lib64/plugin/opskernel/" | |||
"libaicpu_plugin.so"}}; | |||
ret = ge::GEInitialize(config); | |||
} else if (run_mode_path == "1") { | |||
const std::map<string, string> config = { | |||
{"device_id", "0,2,4,6"}, | |||
{"rank_table_file", "hccl from csa/paas"}, | |||
{"ge.graphRunMode", train_flag}, | |||
{"ge.feFlag", "1"}, | |||
{DDK_VERSION_FLAG, "1.60.T17.B830"}, | |||
{TBE_PLUGIN_PATH_FLAG, "/usr/local/HiAI/runtime/lib64/tbe_plugin/bert"}, | |||
{"ge.soLoadPath", "/usr/local/HiAI/runtime/lib64/plugin/opskernel/libfe.so"}}; | |||
ret = ge::GEInitialize(config); | |||
} else if (run_mode_path == "2") { | |||
const std::map<string, string> config = {{"device_id", "0,2,4,6"}, | |||
{"rank_table_file", "hccl from csa/paas"}, | |||
{"ge.graphRunMode", train_flag}, | |||
{LOCAL_FMKOP_FLAG, "1"}}; | |||
ret = ge::GEInitialize(config); | |||
} else { | |||
const std::map<string, string> config = { | |||
{"device_id", "0,2,4,6"}, | |||
{"rank_table_file", "hccl from csa/paas"}, | |||
{"ge.graphRunMode", train_flag}, | |||
{DDK_VERSION_FLAG, "1.60.T17.B830"}, | |||
{TBE_PLUGIN_PATH_FLAG, "/usr/local/HiAI/runtime/lib64/tbe_plugin/" + run_mode_path}}; | |||
ret = ge::GEInitialize(config); | |||
} | |||
std::cout << "GEInitialize_ret is " << ret << std::endl; | |||
return ret; | |||
} | |||
/// train_flag is infer default | |||
/// run_mode: is multi group of [fe,aicpu,bert,deeplabv3,mobilenetv2,single_path_nas,ssd] | |||
/// but bert,deeplabv3,mobilenetv2,single_path_nas,ssd can only set one value from array | |||
/// eg:"fe,aicpu,bert" or "fe", default is “fe” | |||
/// "fe,aicpu,bert" remain open fe aicpu and bert | |||
ge::Status GEInitialize_api_new(string train_flag, string run_mode) { | |||
ge::Status ret; | |||
vector<string> modes; | |||
char *strs = new char[run_mode.length() + 1]; | |||
strcpy(strs, run_mode.c_str()); | |||
const char *delim = ","; | |||
char *p = strtok(strs, delim); | |||
while (p) { | |||
string s = p; // transform substr to string | |||
modes.push_back(s); // save to result array | |||
p = strtok(NULL, delim); | |||
} | |||
std::map<string, string> config = { | |||
{"device_id", "0,2,4,6"}, | |||
{"rank_table_file", "hccl from csa/paas"}, | |||
{DDK_VERSION_FLAG, "1.60.T17.B830"}, | |||
{"ge.opsProtoLibPath", "/usr/local/HiAI/runtime/ops/op_proto/built-in/libopsproto.so"}}; | |||
if (train_flag == "infer") | |||
config.insert(pair<string, string>("ge.graphRunMode", "0")); | |||
else if (train_flag == "train") | |||
config.insert(pair<string, string>("ge.graphRunMode", "1")); | |||
else | |||
std::cout << "GeInitialize give the error param" << std::endl; | |||
for (int i = 0; i < modes.size(); i++) { | |||
if (modes[i] == "fe") { | |||
config.insert(pair<string, string>("ge.feFlag", "1")); | |||
if (config.find("ge.soLoadPath") != config.end()) { | |||
config["ge.soLoadPath"] = | |||
"/usr/local/HiAI/runtime/lib64/plugin/opskernel/libfe.so:/usr/local/HiAI/runtime/lib64/plugin/opskernel/" | |||
"libaicpu_plugin.so:/usr/local/HiAI/runtime/lib64/plugin/opskernel/libge_local_engine.so:/usr/local/HiAI/" | |||
"runtime/lib64/plugin/opskernel/librts_engine.so"; | |||
} else { | |||
config.insert(pair<string, string>( | |||
"ge.soLoadPath", | |||
"/usr/local/HiAI/runtime/lib64/plugin/opskernel/libfe.so:/usr/local/HiAI/runtime/lib64/plugin/opskernel/" | |||
"libge_local_engine.so:/usr/local/HiAI/runtime/lib64/plugin/opskernel/librts_engine.so")); | |||
} | |||
} else if (modes[i] == "aicpu") { | |||
config.insert(pair<string, string>("ge.aicpuFlag", "1")); | |||
if (config.find("ge.soLoadPath") != config.end()) { | |||
config["ge.soLoadPath"] = | |||
"/usr/local/HiAI/runtime/lib64/plugin/opskernel/libfe.so:/usr/local/HiAI/runtime/lib64/plugin/opskernel/" | |||
"libaicpu_plugin.so:/usr/local/HiAI/runtime/lib64/plugin/opskernel/libge_local_engine.so:/usr/local/HiAI/" | |||
"runtime/lib64/plugin/opskernel/librts_engine.so"; | |||
} else { | |||
config.insert(pair<string, string>( | |||
"ge.soLoadPath", | |||
"/usr/local/HiAI/runtime/lib64/plugin/opskernel/libaicpu_plugin.so:/usr/local/HiAI/runtime/lib64/plugin/" | |||
"opskernel/libge_local_engine.so:/usr/local/HiAI/runtime/lib64/plugin/opskernel/librts_engine.so")); | |||
} | |||
} else if (modes[i] == "bert" || modes[i] == "deeplabv3" || modes[i] == "mobilenetv2" || | |||
modes[i] == "single_path_nas" || modes[i] == "ssd") { | |||
config.insert(pair<string, string>(TBE_PLUGIN_PATH_FLAG, "/usr/local/HiAI/runtime/lib64/tbe_plugin/" + modes[i])); | |||
} else if (modes[i] == "plugin") { | |||
} else | |||
std::cout << "GeInitialize give the error param" << std::endl; | |||
} | |||
ret = ge::GEInitialize(config); | |||
std::cout << "GEInitialize_ret is " << ret << std::endl; | |||
return ret; | |||
} | |||
ge::Status GEFinalize_api() { | |||
ge::Status ret = ge::GEFinalize(); | |||
std::cout << "GEFinalize ret is " << ret << std::endl; | |||
return ret; | |||
} | |||
/// set train_flag | |||
/// if run_mode_path is "fe" remain FE process; "fe,plugin" is FE and TBE plugin process | |||
/// "aicpu" is open aicpu plugin | |||
int RunGraph_initData(Graph &graph, string op_name, map<string, std::vector<int64_t>> attr_test, string train_flag, | |||
string run_mode_path) { | |||
std::map<string, string> options = {{RUN_FLAG, "1"}}; | |||
uint32_t graph_id = 0; | |||
ge::Status ret = GEInitialize_api_new(train_flag, run_mode_path); | |||
EXPECT_EQ(ret, ge::SUCCESS); | |||
ge::Session *session = new Session(options); | |||
ASSERT_TRUE(session != NULL); | |||
std::vector<Tensor> input; | |||
if (attr_test.find("input1") != attr_test.end()) { | |||
Tensor input_tensor = genTensor(attr_test["input1"]); | |||
input.push_back(input_tensor); | |||
} | |||
if (attr_test.find("input2") != attr_test.end()) { | |||
Tensor input_tensor = genTensor(attr_test["input2"]); | |||
input.push_back(input_tensor); | |||
} | |||
if (attr_test.find("input3") != attr_test.end()) { | |||
Tensor input_tensor = genTensor(attr_test["input3"]); | |||
input.push_back(input_tensor); | |||
} | |||
std::vector<Tensor> output; | |||
ret = session->AddGraph(graph_id, graph); | |||
EXPECT_EQ(ret, ge::SUCCESS); | |||
if (train_flag == "1") { | |||
setenv("GE_TRAIN", "1", true); | |||
ret = session->RunGraph(graph_id, input, output); | |||
setenv("GE_TRAIN", "0", true); | |||
} else { | |||
ret = session->RunGraph(graph_id, input, output); | |||
} | |||
delete session; | |||
GEFinalize_api(); | |||
if (ret != ge::SUCCESS) { | |||
std::cout << " run graph failed" << std::endl; | |||
return -1; | |||
} else { | |||
return 0; | |||
} | |||
} | |||
ge::Status session_add_and_run_graph(ge::Session *session, uint32_t graph_id, Graph &graph, std::vector<Tensor> inputs, | |||
std::vector<Tensor> &outputs) { | |||
ge::Status ret = session->AddGraph(graph_id, graph); | |||
EXPECT_EQ(ret, ge::SUCCESS); | |||
ret = session->RunGraph(graph_id, inputs, outputs); | |||
return ret; | |||
} | |||
ge::Session *create_session() { | |||
// Init session | |||
std::map<string, string> options = {{"a", "b"}, {TRAIN_FLAG, "1"}}; | |||
ge::Session *session = new Session(options); | |||
ASSERT_TRUE(session != NULL); | |||
return session; | |||
} | |||
ge::Session *create_aipp_session() { | |||
// Init session | |||
std::map<string, string> options = {{"a", "b"}, {TRAIN_FLAG, "1"}, {"ge.insertOpFile", "/root/host/ge/aipp.cfg"}}; | |||
ge::Session *session = new Session(options); | |||
ASSERT_TRUE(session != NULL); | |||
return session; | |||
} | |||
int buildCheckPointGraph(Graph &graph, map<string, TensorDesc> variables) { | |||
std::vector<Operator> inputs{}; | |||
std::vector<Operator> outputs{}; | |||
for (map<string, TensorDesc>::iterator it = variables.begin(); it != variables.end(); ++it) { | |||
auto var = op::Variable(string(it->first)); | |||
var.update_output_desc_y(it->second); | |||
inputs.push_back(var); | |||
graph.AddOp(var); | |||
} | |||
auto save = op::Save().create_dynamic_input_tensors(inputs.size()); | |||
for (int i = 0; i < inputs.size(); i++) { | |||
save.set_dynamic_input_tensors(i, inputs[i]); | |||
} | |||
graph.SetInputs(inputs).SetOutputs(outputs); | |||
return 0; | |||
} | |||
int buildInitGraph(Graph &graph, std::vector<TensorDesc> desc_var, std::vector<std::string> name_var, | |||
std::vector<float> values_var) { | |||
std::vector<Operator> inputs{}; | |||
std::vector<Operator> outputs{}; | |||
for (int i = 0; i < desc_var.size(); i++) { | |||
desc_var[i].SetRealDimCnt(desc_var[i].GetShape().GetDimNum()); | |||
auto tensor_data = genTensor_withVaule(desc_var[i].GetShape().GetDims(), values_var[i]); | |||
auto var_constant = op::Constant().set_attr_value(tensor_data); | |||
var_constant.update_output_desc_y(desc_var[i]); | |||
auto var_init = op::Variable(string(name_var[i])); | |||
var_init.update_output_desc_y(desc_var[i]); | |||
auto var_assign = op::Assign().set_input_ref(var_init).set_input_value(var_constant); | |||
inputs.push_back(var_init); | |||
} | |||
graph.SetInputs(inputs).SetOutputs(outputs); | |||
return 0; | |||
} | |||
int buildInitGraph_other_dataType(Graph &graph, std::vector<TensorDesc> desc_var, std::vector<std::string> name_var) { | |||
std::vector<Operator> inputs{}; | |||
std::vector<Operator> outputs{}; | |||
for (int i = 0; i < desc_var.size(); i++) { | |||
desc_var[i].SetRealDimCnt(desc_var[i].GetShape().GetDimNum()); | |||
auto tensor_data = genTensor(desc_var[i].GetShape().GetDims(), desc_var[i].GetFormat(), desc_var[i].GetDataType()); | |||
auto var_constant = op::Constant().set_attr_value(tensor_data); | |||
var_constant.update_output_desc_y(desc_var[i]); | |||
auto var_init = op::Variable(string(name_var[i])); | |||
var_init.update_output_desc_y(desc_var[i]); | |||
auto var_assign = op::Assign().set_input_ref(var_init).set_input_value(var_constant); | |||
inputs.push_back(var_init); | |||
graph.AddOp(var_constant); | |||
graph.AddOp(var_init); | |||
graph.AddOp(var_assign); | |||
} | |||
graph.SetInputs(inputs).SetOutputs(outputs); | |||
return 0; | |||
} | |||
bool build_multi_input_multi_output_graph(Graph &graph) { | |||
auto data1 = op::Data("Data1").set_attr_index(0); | |||
auto data2 = op::Data("Data2").set_attr_index(1); | |||
vector<uint64_t> dim_info; | |||
auto relu1 = op::Relu("Relu1").set_input_x(data1); | |||
auto relu2 = op::Relu("Relu2").set_input_x(data2); | |||
auto eltwise = op::Eltwise("Eltwise") | |||
.create_dynamic_input_x(2) | |||
.set_dynamic_input_x(0, relu1) | |||
.set_dynamic_input_x(1, relu2) | |||
.set_attr_N(2) | |||
.set_attr_mode(1) | |||
.set_attr_coeff({1, 1}); | |||
auto eltwise1 = op::Eltwise("Eltwise1") | |||
.create_dynamic_input_x(2) | |||
.set_dynamic_input_x(0, eltwise) | |||
.set_dynamic_input_x(1, eltwise) | |||
.set_attr_N(2) | |||
.set_attr_mode(1) | |||
.set_attr_coeff({1, 1}); | |||
auto eltwise2 = op::Eltwise("Eltwise2") | |||
.create_dynamic_input_x(2) | |||
.set_dynamic_input_x(0, eltwise) | |||
.set_dynamic_input_x(1, eltwise) | |||
.set_attr_N(2) | |||
.set_attr_mode(1) | |||
.set_attr_coeff({1, 1}); | |||
std::vector<Operator> inputs{data1, data2}; | |||
std::vector<Operator> outputs{eltwise1, eltwise2}; | |||
graph.SetInputs(inputs).SetOutputs(outputs); | |||
return true; | |||
} | |||
void build_big_graph(Graph &graph, map<string, std::vector<int64_t>> attr) { | |||
auto data = op::Data("Data").set_attr_index(0); | |||
auto weight = op::Const("weight1").set_attr_value(genTensor(attr["weight"])); | |||
vector<int64_t> weight_shape(attr["weight"].begin(), attr["weight"].end()); | |||
TensorDesc weight_desc(ge::Shape(weight_shape), FORMAT_NCHW, DT_FLOAT); | |||
weight.update_output_desc_y(weight_desc); | |||
auto conv_1 = op::Conv2D("conv1").set_input_x(data).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_2 = op::Conv2D("conv2").set_input_x(conv_1).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_3 = op::Conv2D("conv3").set_input_x(conv_2).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_4 = op::Conv2D("conv4").set_input_x(conv_3).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_5 = op::Conv2D("conv5").set_input_x(conv_4).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_6 = op::Conv2D("conv6").set_input_x(conv_5).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_7 = op::Conv2D("conv7").set_input_x(conv_6).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_8 = op::Conv2D("conv8").set_input_x(conv_7).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_9 = op::Conv2D("conv9").set_input_x(conv_8).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_10 = op::Conv2D("conv10").set_input_x(conv_9).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_11 = op::Conv2D("conv11").set_input_x(conv_10).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_12 = op::Conv2D("conv12").set_input_x(conv_11).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_13 = op::Conv2D("conv13").set_input_x(conv_12).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_14 = op::Conv2D("conv14").set_input_x(conv_13).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_15 = op::Conv2D("conv15").set_input_x(conv_14).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_16 = op::Conv2D("conv16").set_input_x(conv_15).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_17 = op::Conv2D("conv17").set_input_x(conv_16).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_18 = op::Conv2D("conv18").set_input_x(conv_17).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_19 = op::Conv2D("conv19").set_input_x(conv_18).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_20 = op::Conv2D("conv20").set_input_x(conv_19).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_21 = op::Conv2D("conv21").set_input_x(conv_20).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_22 = op::Conv2D("conv22").set_input_x(conv_21).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_23 = op::Conv2D("conv23").set_input_x(conv_22).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_24 = op::Conv2D("conv24").set_input_x(conv_23).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_25 = op::Conv2D("conv25").set_input_x(conv_24).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_26 = op::Conv2D("conv26").set_input_x(conv_25).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_27 = op::Conv2D("conv27").set_input_x(conv_26).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_28 = op::Conv2D("conv28").set_input_x(conv_27).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_29 = op::Conv2D("conv29").set_input_x(conv_28).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_30 = op::Conv2D("conv30").set_input_x(conv_29).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_31 = op::Conv2D("conv31").set_input_x(conv_30).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_32 = op::Conv2D("conv32").set_input_x(conv_31).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_33 = op::Conv2D("conv33").set_input_x(conv_32).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_34 = op::Conv2D("conv34").set_input_x(conv_33).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_35 = op::Conv2D("conv35").set_input_x(conv_34).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_36 = op::Conv2D("conv36").set_input_x(conv_35).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_37 = op::Conv2D("conv37").set_input_x(conv_36).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_38 = op::Conv2D("conv38").set_input_x(conv_37).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_39 = op::Conv2D("conv39").set_input_x(conv_38).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_40 = op::Conv2D("conv40").set_input_x(conv_39).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_41 = op::Conv2D("conv41").set_input_x(conv_40).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_42 = op::Conv2D("conv42").set_input_x(conv_41).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_43 = op::Conv2D("conv43").set_input_x(conv_42).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_44 = op::Conv2D("conv44").set_input_x(conv_43).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_45 = op::Conv2D("conv45").set_input_x(conv_44).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_46 = op::Conv2D("conv46").set_input_x(conv_45).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_47 = op::Conv2D("conv47").set_input_x(conv_46).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_48 = op::Conv2D("conv48").set_input_x(conv_47).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_49 = op::Conv2D("conv49").set_input_x(conv_48).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_50 = op::Conv2D("conv50").set_input_x(conv_49).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_51 = op::Conv2D("conv51").set_input_x(conv_50).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_52 = op::Conv2D("conv52").set_input_x(conv_51).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_53 = op::Conv2D("conv53").set_input_x(conv_52).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_54 = op::Conv2D("conv54").set_input_x(conv_53).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_55 = op::Conv2D("conv55").set_input_x(conv_54).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_56 = op::Conv2D("conv56").set_input_x(conv_55).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_57 = op::Conv2D("conv57").set_input_x(conv_56).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_58 = op::Conv2D("conv58").set_input_x(conv_57).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_59 = op::Conv2D("conv59").set_input_x(conv_58).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_60 = op::Conv2D("conv60").set_input_x(conv_59).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_61 = op::Conv2D("conv61").set_input_x(conv_60).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_62 = op::Conv2D("conv62").set_input_x(conv_61).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_63 = op::Conv2D("conv63").set_input_x(conv_62).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_64 = op::Conv2D("conv64").set_input_x(conv_63).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_65 = op::Conv2D("conv65").set_input_x(conv_64).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_66 = op::Conv2D("conv66").set_input_x(conv_65).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_67 = op::Conv2D("conv67").set_input_x(conv_66).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_68 = op::Conv2D("conv68").set_input_x(conv_67).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_69 = op::Conv2D("conv69").set_input_x(conv_68).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_70 = op::Conv2D("conv70").set_input_x(conv_69).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_71 = op::Conv2D("conv71").set_input_x(conv_70).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_72 = op::Conv2D("conv72").set_input_x(conv_71).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_73 = op::Conv2D("conv73").set_input_x(conv_72).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_74 = op::Conv2D("conv74").set_input_x(conv_73).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_75 = op::Conv2D("conv75").set_input_x(conv_74).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_76 = op::Conv2D("conv76").set_input_x(conv_75).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_77 = op::Conv2D("conv77").set_input_x(conv_76).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_78 = op::Conv2D("conv78").set_input_x(conv_77).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_79 = op::Conv2D("conv79").set_input_x(conv_78).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_80 = op::Conv2D("conv80").set_input_x(conv_79).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_81 = op::Conv2D("conv81").set_input_x(conv_80).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_82 = op::Conv2D("conv82").set_input_x(conv_81).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_83 = op::Conv2D("conv83").set_input_x(conv_82).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_84 = op::Conv2D("conv84").set_input_x(conv_83).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_85 = op::Conv2D("conv85").set_input_x(conv_84).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_86 = op::Conv2D("conv86").set_input_x(conv_85).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_87 = op::Conv2D("conv87").set_input_x(conv_86).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_88 = op::Conv2D("conv88").set_input_x(conv_87).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_89 = op::Conv2D("conv89").set_input_x(conv_88).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_90 = op::Conv2D("conv90").set_input_x(conv_89).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_91 = op::Conv2D("conv91").set_input_x(conv_80).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_92 = op::Conv2D("conv92").set_input_x(conv_91).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_93 = op::Conv2D("conv93").set_input_x(conv_92).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_94 = op::Conv2D("conv94").set_input_x(conv_93).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_95 = op::Conv2D("conv95").set_input_x(conv_94).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_96 = op::Conv2D("conv96").set_input_x(conv_95).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_97 = op::Conv2D("conv97").set_input_x(conv_96).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_98 = op::Conv2D("conv98").set_input_x(conv_97).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_99 = op::Conv2D("conv99").set_input_x(conv_98).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_100 = op::Conv2D("conv100").set_input_x(conv_99).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_101 = op::Conv2D("conv101").set_input_x(conv_100).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_102 = op::Conv2D("conv102").set_input_x(conv_101).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_103 = op::Conv2D("conv103").set_input_x(conv_102).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_104 = op::Conv2D("conv104").set_input_x(conv_103).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_105 = op::Conv2D("conv105").set_input_x(conv_104).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_106 = op::Conv2D("conv106").set_input_x(conv_105).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_107 = op::Conv2D("conv107").set_input_x(conv_106).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_108 = op::Conv2D("conv108").set_input_x(conv_107).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_109 = op::Conv2D("conv109").set_input_x(conv_108).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_110 = op::Conv2D("conv110").set_input_x(conv_109).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_111 = op::Conv2D("conv111").set_input_x(conv_110).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_112 = op::Conv2D("conv112").set_input_x(conv_111).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_113 = op::Conv2D("conv113").set_input_x(conv_112).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_114 = op::Conv2D("conv114").set_input_x(conv_113).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_115 = op::Conv2D("conv115").set_input_x(conv_114).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_116 = op::Conv2D("conv116").set_input_x(conv_115).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_117 = op::Conv2D("conv117").set_input_x(conv_116).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_118 = op::Conv2D("conv118").set_input_x(conv_117).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_119 = op::Conv2D("conv119").set_input_x(conv_118).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_120 = op::Conv2D("conv120").set_input_x(conv_119).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_121 = op::Conv2D("conv121").set_input_x(conv_120).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_122 = op::Conv2D("conv122").set_input_x(conv_121).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_123 = op::Conv2D("conv123").set_input_x(conv_122).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_124 = op::Conv2D("conv124").set_input_x(conv_123).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_125 = op::Conv2D("conv125").set_input_x(conv_124).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_126 = op::Conv2D("conv126").set_input_x(conv_125).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_127 = op::Conv2D("conv127").set_input_x(conv_126).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_128 = op::Conv2D("conv128").set_input_x(conv_127).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_129 = op::Conv2D("conv129").set_input_x(conv_128).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
auto conv_130 = op::Conv2D("conv130").set_input_x(conv_129).set_input_filter(weight).set_attr_pads({0,0,0,0}).set_attr_strides({1,1,1,1}); | |||
std::vector<Operator> inputs{data}; | |||
std::vector<Operator> outputs{conv_130}; | |||
graph.SetInputs(inputs).SetOutputs(outputs); | |||
} | |||
int GetDatTypeSize(DataType dt) { | |||
int dailation = 1; | |||
if (dt == ge::DT_FLOAT) | |||
dailation = 4; | |||
else if (dt == ge::DT_FLOAT16) | |||
dailation = 2; | |||
else if (dt == ge::DT_INT16) | |||
dailation = 2; | |||
else if (dt == ge::DT_UINT16) | |||
dailation = 2; | |||
else if (dt == ge::DT_INT32) | |||
dailation = 4; | |||
else if (dt == ge::DT_UINT32) | |||
dailation = 4; | |||
else if (dt == ge::DT_INT64) | |||
dailation = 8; | |||
else if (dt == ge::DT_UINT64) | |||
dailation = 8; | |||
else if (dt == ge::DT_INT8) | |||
dailation = 1; | |||
return dailation; | |||
} | |||
int buildConvGraph_new(Graph &graph, std::vector<TensorDesc> desc_var, std::vector<std::string> name_var, int flag, | |||
Format format) { | |||
auto data_x_shape = op::Data("xShape").set_attr_index(0); | |||
auto var = op::Variable(name_var[0]); | |||
auto var1 = op::Variable(name_var[1]); //add one seat of ApplyMomentum() | |||
auto label1 = op::Variable(name_var[2]); //add one seat of ApplyMomentum() | |||
auto conv2dgrad = op::Conv2DBackpropFilterD("output_1"); | |||
auto test2 = op::ApplyMomentum(); | |||
var.update_output_desc_y(desc_var[0]); | |||
var1.update_output_desc_y(desc_var[1]); | |||
label1.update_output_desc_y(desc_var[2]); | |||
graph.AddOp(var); | |||
graph.AddOp(var1); | |||
graph.AddOp(label1); | |||
auto conv2d = op::Conv2D().set_input_x(data_x_shape).set_input_filter(var).set_attr_strides({1, 1, 1, 1}).set_attr_pads({0,0,0,0}); | |||
update_op_format(conv2d, format); | |||
ge::TensorDesc tensor_desc_w = conv2d.GetInputDesc("filter"); | |||
tensor_desc_w.SetFormat(format); | |||
conv2d.UpdateInputDesc("filter", tensor_desc_w); | |||
if (flag >= 1) { | |||
conv2dgrad.set_input_x(data_x_shape) | |||
.set_attr_filter_size(desc_var[0].GetShape().GetDims()) | |||
.set_input_out_backprop(conv2d) | |||
.set_attr_strides({1, 1, 1, 1}) | |||
.set_attr_pads({0, 0, 0, 0}); | |||
update_op_format(conv2dgrad, format); | |||
graph.AddOp(conv2dgrad); | |||
} | |||
if (flag >= 2) { | |||
// set conv2dgrad var | |||
test2.set_input_accum(var1) | |||
.set_input_grad(conv2dgrad) | |||
.set_input_lr(label1) | |||
.set_input_momentum(label1) | |||
.set_input_var(var); | |||
graph.AddOp(test2); | |||
} | |||
std::vector<Operator> inputs{data_x_shape}; // set all val | |||
std::vector<Operator> outputs{conv2d}; | |||
graph.SetInputs(inputs).SetOutputs(outputs); | |||
graph.AddOp(conv2d); | |||
return 0; | |||
} | |||
/// load bin data_fail | |||
/// input_path: path of bin data_file | |||
/// shapes: the shape of Tensor | |||
/// ft: the format of Tensor | |||
/// dt: the dataType of Tensor | |||
Tensor load_variable_input_data(string input_path, std::vector<int64_t> shapes, Format ft, DataType dt) { | |||
vector<uint64_t> dim_info1; | |||
uint8_t *input_data = (uint8_t *)readTestDataFile(input_path, dim_info1); // common.h | |||
TensorDesc input_tensor_desc = TensorDesc(ge::Shape(shapes), ft, dt); | |||
input_tensor_desc.SetRealDimCnt(shapes.size()); | |||
Tensor input_tensor = Tensor(input_tensor_desc, input_data, GetDatTypeSize(dt) * dim_info1[dim_info1[0] + 1]); | |||
return input_tensor; | |||
} |
@@ -1,102 +0,0 @@ | |||
/** | |||
* Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
* | |||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||
* you may not use this file except in compliance with the License. | |||
* You may obtain a copy of the License at | |||
* | |||
* http://www.apache.org/licenses/LICENSE-2.0 | |||
* | |||
* Unless required by applicable law or agreed to in writing, software | |||
* distributed under the License is distributed on an "AS IS" BASIS, | |||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* See the License for the specific language governing permissions and | |||
* limitations under the License. | |||
*/ | |||
#ifndef ST_RESNET50_GE_COMMON_H_ | |||
#define ST_RESNET50_GE_COMMON_H_ | |||
#include "common/ge_inner_error_codes.h" | |||
#include "utils/tensor_utils.h" | |||
#define MY_USER_GE_LOGI(...) GE_LOG_INFO(1, __VA_ARGS__) | |||
#define MY_USER_GE_LOGW(...) GE_LOG_WARN(1, __VA_ARGS__) | |||
#define MY_USER_GE_LOGE(...) GE_LOG_ERROR(1, 3, __VA_ARGS__) | |||
#ifndef USER_GE_LOGI | |||
#define USER_GE_LOGI MY_USER_GE_LOGI | |||
#endif // USER_GE_LOGI | |||
#ifndef USER_GE_LOGW | |||
#define USER_GE_LOGW MY_USER_GE_LOGW | |||
#endif // USER_GE_LOGW | |||
#ifndef USER_GE_LOGE | |||
#define USER_GE_LOGE MY_USER_GE_LOGE | |||
#endif // USER_GE_LOGE | |||
/// train_flag is 0 when infer, train_flag is 1 when train.this param is set for RunGranph_readData() and | |||
/// RunGraph_initData() | |||
#define TRAIN_FLAG_INFER "infer" | |||
#define TRAIN_FLAG_TRAIN "train" | |||
#include <string.h> | |||
#include <unistd.h> | |||
#include <algorithm> | |||
#include <chrono> | |||
#include <iostream> | |||
#include <thread> | |||
#include <vector> | |||
#include "ge_api.h" | |||
#include "graph.h" | |||
#include "ptest.h" | |||
#include "ops/all_ops.h" | |||
using namespace std; | |||
using namespace ge; | |||
// read bin file and compile result | |||
void update_op_format(Operator ops, Format format = ge::FORMAT_NCHW); | |||
void getDimInfo(FILE *fp, std::vector<uint64_t> &dim_info); | |||
void *readTestDataFile(std::string infile, std::vector<uint64_t> &dim_info); | |||
void *readUint8TestDataFile(std::string infile, int size); | |||
bool allclose(float *a, float *b, uint64_t count, float rtol, float atol); | |||
bool compFp32WithTData(float *actual_output_data, std::string expected_data_file, float rtol, float atol); | |||
Tensor load_variable_input_data(string input_path, std::vector<int64_t> shapes, Format ft = ge::FORMAT_NCHW, | |||
DataType dt = ge::DT_FLOAT); | |||
// constructor Tensor | |||
int GetDatTypeSize(DataType dt); | |||
ge::Tensor genTensor(std::vector<int64_t> tensor_shape, Format format = ge::FORMAT_NCHW, DataType dt = ge::DT_FLOAT); | |||
ge::Tensor genTensor_withVaule(std::vector<int64_t> tensor_shape, float value = 1); | |||
Tensor genTesnor_Shape_as_data(std::vector<int64_t> tensor_shape); | |||
// Init GE | |||
ge::Status GEInitialize_api(string train_flag = "0", string run_mode_path = "0"); | |||
ge::Status GEInitialize_api_new(string train_flag = "infer", string run_mode = "fe"); | |||
ge::Status GEFinalize_api(); | |||
// constructor session and build graph | |||
ge::Session *create_aipp_session(); | |||
ge::Session *create_session(); | |||
ge::Status session_add_and_run_graph(ge::Session *session, uint32_t graphId, Graph &graph, std::vector<Tensor> inputs, | |||
std::vector<Tensor> &outputs); | |||
// common interface for infer | |||
int RunGraph_initData(Graph &graph, string op_name, map<string, std::vector<int64_t>> attr_test, | |||
string train_flag = "infer", string run_mode_path = "fe"); | |||
void Inputs_load_Data(string op_name, std::vector<Tensor> &input, map<string, std::vector<int64_t>> attr_test, | |||
Format format = ge::FORMAT_NCHW, DataType dt = ge::DT_FLOAT); | |||
bool comparaData(std::vector<Tensor> &output, string op_name, map<string, std::vector<int64_t>> attr_test); | |||
int RunGraph_readData(Graph &graph, string op_name, map<string, std::vector<int64_t>> attr_test, | |||
string train_flag = "infer", string run_mode_path = "fe", Format format = ge::FORMAT_NCHW, | |||
DataType dt = ge::DT_FLOAT); | |||
// common interface for train | |||
int buildCheckPointGraph(Graph &graph, map<string, TensorDesc> variables); | |||
int buildInitGraph(Graph &graph, std::vector<TensorDesc> desc_var, std::vector<std::string> name_var, | |||
std::vector<float> values_var); | |||
int buildInitGraph_other_dataType(Graph &graph, std::vector<TensorDesc> desc_var, std::vector<std::string> name_var); | |||
bool build_multi_input_multi_output_graph(Graph &graph); | |||
void build_big_graph(Graph &graph, map<string, std::vector<int64_t>> attr); | |||
int buildConvGraph_new(Graph &graph, std::vector<TensorDesc> desc_var, std::vector<std::string> name_var, int flag = 2); | |||
#endif // ST_RESNET50_GE_COMMON_H_ |
@@ -1,225 +0,0 @@ | |||
/** | |||
* Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
* | |||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||
* you may not use this file except in compliance with the License. | |||
* You may obtain a copy of the License at | |||
* | |||
* http://www.apache.org/licenses/LICENSE-2.0 | |||
* | |||
* Unless required by applicable law or agreed to in writing, software | |||
* distributed under the License is distributed on an "AS IS" BASIS, | |||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* See the License for the specific language governing permissions and | |||
* limitations under the License. | |||
*/ | |||
#ifndef ST_RESNET50_PTEST_H_ | |||
#define ST_RESNET50_PTEST_H_ | |||
#include <stdarg.h> | |||
#include <string.h> | |||
#include <exception> | |||
#include <functional> | |||
#include <iostream> | |||
#include <list> | |||
#include <map> | |||
#include <memory> | |||
#include <string> | |||
namespace ptest { | |||
class assertion_error : public std::exception { | |||
public: | |||
const char *what() const throw() { return "Assertion Exception"; } | |||
}; | |||
class TestFixture { | |||
public: | |||
virtual void SetUp() {} | |||
virtual void TearDown() {} | |||
void Run() { _func(); } | |||
void BindFunction(std::function<void(void)> function) { _func = function; } | |||
void SetName(const std::string &name) { _name = name; } | |||
std::string Name() const { return _name; } | |||
virtual ~TestFixture() {} | |||
private: | |||
std::function<void(void)> _func; | |||
std::string _name; | |||
}; | |||
enum TestResult { SUCCESS, FAILED, UNAVAILABLE, UNKNOWN, NOCASEFOUND }; | |||
class TestManager { | |||
public: | |||
static TestManager &GetSingleton() { | |||
static TestManager instance; | |||
return instance; | |||
} | |||
void RegisterTest(const std::string &name, TestFixture *fixture) { _testfixtures[name] = fixture; } | |||
const std::string GetRunningTestcaseName() const { return _running_testcase_name; } | |||
const std::list<std::string> GetAllTestNames() const { | |||
std::list<std::string> result; | |||
for (auto &t : _testfixtures) { | |||
result.push_back(t.first); | |||
} | |||
return result; | |||
} | |||
TestResult RunTest(const std::string &name) { | |||
if (_testfixtures.find(name) == _testfixtures.end()) { | |||
return NOCASEFOUND; | |||
} | |||
_running_testcase_name = name; | |||
do { | |||
SetTestResult(name, UNKNOWN); | |||
_testfixtures[name]->SetUp(); | |||
if (_testresults[name] == FAILED) { | |||
_testresults[name] = UNAVAILABLE; | |||
break; | |||
} | |||
SetTestResult(name, SUCCESS); | |||
try { | |||
_testfixtures[name]->Run(); | |||
} catch (assertion_error &e) { | |||
// Do nothing as the error has been handled by the TestManager. | |||
} | |||
_testfixtures[name]->TearDown(); | |||
} while (0); | |||
return _testresults[name]; | |||
} | |||
void SetTestResult(const std::string &name, TestResult result) { _testresults[name] = result; } | |||
TestResult GetTestResult(const std::string &name) { return _testresults[name]; } | |||
private: | |||
std::map<std::string, TestFixture *> _testfixtures; | |||
std::map<std::string, TestResult> _testresults; | |||
std::string _running_testcase_name; | |||
}; | |||
class TestFixtureRegister { | |||
public: | |||
TestFixtureRegister(const std::string &name, TestFixture *fixture, std::function<void(void)> function) { | |||
fixture->BindFunction(function); | |||
fixture->SetName(name); | |||
TestManager::GetSingleton().RegisterTest(name, fixture); | |||
} | |||
}; | |||
} // namespace ptest | |||
#define _STR(x) #x | |||
#define _EMPTY_NAMESPACE | |||
#define _TEST(NAMESPACE, FIXTURECLASS, TESTNAME, CASENAME) \ | |||
void g_func_##TESTNAME##_##CASENAME(void); \ | |||
NAMESPACE::FIXTURECLASS g_fixture_##TESTNAME##_##CASENAME; \ | |||
ptest::TestFixtureRegister g_register_##TESTNAME##_##CASENAME( \ | |||
_STR(TESTNAME##_##CASENAME), &g_fixture_##TESTNAME##_##CASENAME, g_func_##TESTNAME##_##CASENAME); \ | |||
void g_func_##TESTNAME##_##CASENAME(void) | |||
#define TEST(TESTNAME, CASENAME) _TEST(ptest, TestFixture, TESTNAME, CASENAME) | |||
#define TEST_F(TESTFIXTURE, CASENAME) _TEST(_EMPTY_NAMESPACE, TESTFIXTURE, TESTFIXTURE, CASENAME) | |||
#define EXPECT_TRUE(X) \ | |||
do { \ | |||
if (!(X)) { \ | |||
std::string test_name = ptest::TestManager::GetSingleton().GetRunningTestcaseName(); \ | |||
ptest::TestManager::GetSingleton().SetTestResult(test_name, ptest::FAILED); \ | |||
std::cerr << #X << "Expectation Failed\n" \ | |||
<< "Testcase Name: " << test_name << "\n" \ | |||
<< "File: " __FILE__ << "\tLine:" << __LINE__ << std::endl; \ | |||
} \ | |||
} while (0); | |||
// With the macro definition ensures that the compiler can detect compiler warning. | |||
#define Max_Log_Len 1024 | |||
#define PRINT_ERR(lpszFormat, ...) \ | |||
do { \ | |||
char szTmpBuf[Max_Log_Len + 1] = {0}; \ | |||
snprintf(szTmpBuf, Max_Log_Len, lpszFormat, ##__VA_ARGS__); \ | |||
std::cerr << szTmpBuf << std::endl; \ | |||
} while (0) | |||
// Increase the content of print error messages and error to facilitate rapid analysis | |||
#define EXPECT_TRUE_C(X, ERR_TYPE, format, ...) \ | |||
do { \ | |||
if (!(X)) { \ | |||
std::string test_name = ptest::TestManager::GetSingleton().GetRunningTestcaseName(); \ | |||
ptest::TestManager::GetSingleton().SetTestResult(test_name, ptest::FAILED); \ | |||
std::cerr << #X << " Expectation Failed." \ | |||
<< "Testcase Name: " << test_name << " File:" __FILE__ << " Line:" << __LINE__ << std::endl; \ | |||
PRINT_ERR("[" ERR_TYPE "]" format, ##__VA_ARGS__); \ | |||
} \ | |||
} while (0) | |||
#define ASSERT_TRUE(X) \ | |||
do { \ | |||
if (!(X)) { \ | |||
std::string test_name = ptest::TestManager::GetSingleton().GetRunningTestcaseName(); \ | |||
ptest::TestManager::GetSingleton().SetTestResult(test_name, ptest::FAILED); \ | |||
std::cerr << #X << "Assertion Failed\n" \ | |||
<< "Testcase Name: " << test_name << "\n" \ | |||
<< "File: " __FILE__ << "\tLine:" << __LINE__ << std::endl; \ | |||
throw ptest::assertion_error(); \ | |||
} \ | |||
} while (0); | |||
// Add printing error information and error line content for quick analysis | |||
#define ASSERT_TRUE_C(X, ERR_TYPE, format, ...) \ | |||
do { \ | |||
if (!(X)) { \ | |||
std::string test_name = ptest::TestManager::GetSingleton().GetRunningTestcaseName(); \ | |||
ptest::TestManager::GetSingleton().SetTestResult(test_name, ptest::FAILED); \ | |||
std::cerr << #X << " Assertion Failed." \ | |||
<< "Testcase Name: " << test_name << " File:" __FILE__ << " Line:" << __LINE__ << std::endl; \ | |||
PRINT_ERR("[" ERR_TYPE "]" format, ##__VA_ARGS__); \ | |||
throw ptest::assertion_error(); \ | |||
} \ | |||
} while (0); | |||
#define CONFIG_ERR "CONFIG_ERR" | |||
#define LOAD_MODEL_ERR "LOAD_MODEL_ERR" | |||
#define FILE_READ_ERR "FILE_READ_ERR" | |||
#define RUN_ERROR "RUN_ERROR" | |||
#define MEM_ERROR "MEM_ERROR" | |||
#define RESULT_ERR "RESULT_ERR" | |||
#define EXPECT_FALSE(X) EXPECT_TRUE(!(X)) | |||
#define EXPECT_EQ(X, Y) EXPECT_TRUE(((X) == (Y))) | |||
#define EXPECT_NE(X, Y) EXPECT_TRUE(((X) != (Y))) | |||
#define EXPECT_GT(X, Y) EXPECT_TRUE(((X) > (Y))) | |||
#define EXPECT_GE(X, Y) EXPECT_TRUE(((X) >= (Y))) | |||
#define EXPECT_LT(X, Y) EXPECT_TRUE(((X) < (Y))) | |||
#define EXPECT_LE(X, Y) EXPECT_TRUE(((X) <= (Y))) | |||
#define EXPECT_FALSE_C(X, ERR_TYPE, format, ...) EXPECT_TRUE_C(!(X), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define EXPECT_EQ_C(X, Y, ERR_TYPE, format, ...) EXPECT_TRUE_C(((X) == (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define EXPECT_NE_C(X, Y, ERR_TYPE, format, ...) EXPECT_TRUE_C(((X) != (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define EXPECT_GT_C(X, Y, ERR_TYPE, format, ...) EXPECT_TRUE_C(((X) > (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define EXPECT_GE_C(X, Y, ERR_TYPE, format, ...) EXPECT_TRUE_C(((X) >= (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define EXPECT_LT_C(X, Y, ERR_TYPE, format, ...) EXPECT_TRUE_C(((X) < (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define EXPECT_LE_C(X, Y, ERR_TYPE, format, ...) EXPECT_TRUE_C(((X) <= (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define ASSERT_FALSE(X) ASSERT_TRUE(!(X)) | |||
#define ASSERT_EQ(X, Y) ASSERT_TRUE(((X) == (Y))) | |||
#define ASSERT_NE(X, Y) ASSERT_TRUE(((X) != (Y))) | |||
#define ASSERT_GT(X, Y) ASSERT_TRUE(((X) > (Y))) | |||
#define ASSERT_GE(X, Y) ASSERT_TRUE(((X) >= (Y))) | |||
#define ASSERT_LT(X, Y) ASSERT_TRUE(((X) < (Y))) | |||
#define ASSERT_LE(X, Y) ASSERT_TRUE(((X) <= (Y))) | |||
#define ASSERT_FALSE_C(X, ERR_TYPE, format, ...) ASSERT_TRUE_C(!(X), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define ASSERT_EQ_C(X, Y, ERR_TYPE, format, ...) ASSERT_TRUE_C(((X) == (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define ASSERT_NE_C(X, Y, ERR_TYPE, format, ...) ASSERT_TRUE_C(((X) != (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define ASSERT_GT_C(X, Y, ERR_TYPE, format, ...) ASSERT_TRUE_C(((X) > (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define ASSERT_GE_C(X, Y, ERR_TYPE, format, ...) ASSERT_TRUE_C(((X) >= (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define ASSERT_LT_C(X, Y, ERR_TYPE, format, ...) ASSERT_TRUE_C(((X) < (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#define ASSERT_LE_C(X, Y, ERR_TYPE, format, ...) ASSERT_TRUE_C(((X) <= (Y)), ERR_TYPE, format, ##__VA_ARGS__) | |||
#endif // ST_RESNET50_PTEST_H_ |
@@ -1,852 +0,0 @@ | |||
/** | |||
* Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
* | |||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||
* you may not use this file except in compliance with the License. | |||
* You may obtain a copy of the License at | |||
* | |||
* http://www.apache.org/licenses/LICENSE-2.0 | |||
* | |||
* Unless required by applicable law or agreed to in writing, software | |||
* distributed under the License is distributed on an "AS IS" BASIS, | |||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* See the License for the specific language governing permissions and | |||
* limitations under the License. | |||
*/ | |||
#include <assert.h> | |||
#include <sys/stat.h> | |||
#include <sys/types.h> | |||
#include <algorithm> | |||
#include <chrono> | |||
#include <ctime> | |||
#include <sstream> | |||
#include "common.h" | |||
#include "ge_api.h" | |||
#include "graph.h" | |||
#include "ops/all_ops.h" | |||
#include "types.h" | |||
#include "utils/tensor_utils.h" | |||
using namespace std; | |||
using namespace ge; | |||
using namespace op; | |||
typedef bool (*Func)(Graph &graph); | |||
#define PADDING_MODE 6 | |||
#define GRAD_PADDING_MODE 3 | |||
vector<int64_t> pad_1{1, 1, 1, 1}; | |||
vector<int64_t> pad_0{0, 0, 0, 0}; | |||
vector<int64_t> stride_1{1, 1}; | |||
vector<int64_t> stride_2{2, 2}; | |||
// (int out_channels, int h, int w, vector<uint_64> stride{1,1}, vector<uint_64> pad{1,1,1,1}, op::Data() input) | |||
#define GENERATE_CONV_VAR(LAYER, BLK, OPNUM, in_channels, out_channels, h, w, stride, pad, input) \ | |||
auto &LAYER##_##BLK##_##OPNUM##_input = input; \ | |||
\ | |||
TensorDesc LAYER##_##BLK##_##OPNUM##_desc(ge::Shape({out_channels, in_channels, h, w}), FORMAT_NCHW, DT_FLOAT); \ | |||
auto LAYER##_##BLK##_##OPNUM##_weight = op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_weight"); \ | |||
LAYER##_##BLK##_##OPNUM##_weight.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_mom_weight = \ | |||
op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_mom_weight"); \ | |||
LAYER##_##BLK##_##OPNUM##_mom_weight.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
LAYER##_##BLK##_##OPNUM##_mom_weight.update_input_desc_x(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
cout << string(#LAYER) + string(#BLK) + string(#OPNUM) << "'s weight shape is:" << in_channels << out_channels << h \ | |||
<< w << endl; \ | |||
cout << string(#LAYER) + string(#BLK) + string(#OPNUM) \ | |||
<< "'s input_x op's shape is:" << input.GetOutputDesc("y").GetShape().GetDim(2) << endl; \ | |||
auto LAYER##_##BLK##_##OPNUM##_tmp_dims = input.GetOutputDesc("y").GetShape().GetDims(); \ | |||
for (auto LAYER##_##BLK##_##OPNUM##_tmp_it = LAYER##_##BLK##_##OPNUM##_tmp_dims.begin(); \ | |||
LAYER##_##BLK##_##OPNUM##_tmp_it != LAYER##_##BLK##_##OPNUM##_tmp_dims.end(); \ | |||
LAYER##_##BLK##_##OPNUM##_tmp_it++) { \ | |||
cout << *LAYER##_##BLK##_##OPNUM##_tmp_it; \ | |||
} \ | |||
cout << endl; \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM = op::Conv2D(string(#LAYER) + string(#BLK) + string(#OPNUM)) \ | |||
.set_input_x(input, "y") \ | |||
.set_input_filter(LAYER##_##BLK##_##OPNUM##_weight) \ | |||
.set_attr_strides({1, 1, stride[0], stride[1]}) \ | |||
.set_attr_pads(pad) \ | |||
.set_attr_data_format("NCHW"); \ | |||
update_op_format(LAYER##_##BLK##_##OPNUM); | |||
#define GENERATE_CONSTANT(LAYER, BLK, OPNUM, CONSTNAME) \ | |||
Tensor LAYER##_##BLK##_##OPNUM##_##CONSTNAME##_tensor; \ | |||
float *LAYER##_##BLK##_##OPNUM##_##CONSTNAME##_data = new float[LAYER##_##BLK##_##OPNUM##_size]; \ | |||
for (int i = 0; i < (int)LAYER##_##BLK##_##OPNUM##_size; i++) { \ | |||
*(LAYER##_##BLK##_##OPNUM##_##CONSTNAME##_data + i) = 0.01; \ | |||
} \ | |||
LAYER##_##BLK##_##OPNUM##_##CONSTNAME##_tensor.SetData((uint8_t *)LAYER##_##BLK##_##OPNUM##_##CONSTNAME##_data, \ | |||
LAYER##_##BLK##_##OPNUM##_size * sizeof(float)); \ | |||
LAYER##_##BLK##_##OPNUM##_##CONSTNAME##_tensor.SetTensorDesc(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_##CONSTNAME##_constant = \ | |||
op::Constant().set_attr_value(LAYER##_##BLK##_##OPNUM##_##CONSTNAME##_tensor); \ | |||
LAYER##_##BLK##_##OPNUM##_##CONSTNAME##_constant.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
delete[] LAYER##_##BLK##_##OPNUM##_##CONSTNAME##_data; | |||
#define GENERATE_CONV_VAR_VAR(LAYER, BLK, OPNUM, in_channels, out_channels, h, w, stride, pad, input) \ | |||
TensorDesc LAYER##_##BLK##_##OPNUM##_desc(ge::Shape({out_channels, in_channels, h, w}), FORMAT_NCHW, DT_FLOAT); \ | |||
uint32_t LAYER##_##BLK##_##OPNUM##_size = LAYER##_##BLK##_##OPNUM##_desc.GetShape().GetShapeSize(); \ | |||
auto LAYER##_##BLK##_##OPNUM##_weight = op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_weight"); \ | |||
LAYER##_##BLK##_##OPNUM##_weight.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_mom_weight = \ | |||
op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_mom_weight"); \ | |||
LAYER##_##BLK##_##OPNUM##_mom_weight.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
GENERATE_CONSTANT(LAYER, BLK, OPNUM, weight); \ | |||
auto LAYER##_##BLK##_##OPNUM##_weight_assign = op::Assign() \ | |||
.set_input_ref(LAYER##_##BLK##_##OPNUM##_weight) \ | |||
.set_input_value(LAYER##_##BLK##_##OPNUM##_weight_constant); \ | |||
\ | |||
GENERATE_CONSTANT(LAYER, BLK, OPNUM, mom_weight); \ | |||
auto LAYER##_##BLK##_##OPNUM##_mom_weight_assign = \ | |||
op::Assign() \ | |||
.set_input_ref(LAYER##_##BLK##_##OPNUM##_mom_weight) \ | |||
.set_input_value(LAYER##_##BLK##_##OPNUM##_mom_weight_constant); \ | |||
\ | |||
input.push_back(LAYER##_##BLK##_##OPNUM##_weight); \ | |||
input.push_back(LAYER##_##BLK##_##OPNUM##_mom_weight); | |||
// (int out_channels, Operator& input) | |||
#define GENERATE_BN_VAR(LAYER, BLK, OPNUM, out_channels, input) \ | |||
auto &LAYER##_##BLK##_##OPNUM##_input = input; \ | |||
\ | |||
TensorDesc LAYER##_##BLK##_##OPNUM##_desc(ge::Shape({1, out_channels, 1, 1}), FORMAT_NCHW, DT_FLOAT); \ | |||
auto LAYER##_##BLK##_##OPNUM##_scale = op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_scale"); \ | |||
LAYER##_##BLK##_##OPNUM##_scale.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_mom_scale = \ | |||
op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_mom_scale"); \ | |||
LAYER##_##BLK##_##OPNUM##_mom_scale.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_b = op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_b"); \ | |||
LAYER##_##BLK##_##OPNUM##_b.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_mom_b = op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_mom_b"); \ | |||
LAYER##_##BLK##_##OPNUM##_mom_b.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_mean = op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_mean"); \ | |||
LAYER##_##BLK##_##OPNUM##_mean.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
auto LAYER##_##BLK##_##OPNUM##_variance = \ | |||
op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_variance"); \ | |||
LAYER##_##BLK##_##OPNUM##_variance.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM = op::FusedBatchNorm(string(#LAYER) + string(#BLK) + string(#OPNUM)) \ | |||
.set_input_x(input, "y") \ | |||
.set_input_scale(LAYER##_##BLK##_##OPNUM##_scale) \ | |||
.set_input_b(LAYER##_##BLK##_##OPNUM##_b) \ | |||
.set_input_mean(LAYER##_##BLK##_##OPNUM##_mean) \ | |||
.set_input_variance(LAYER##_##BLK##_##OPNUM##_variance) \ | |||
.set_attr_mode(1) \ | |||
.set_attr_epsilon(1e-5) \ | |||
.set_attr_is_training(true); | |||
#define GENERATE_BN_VAR_VAR(LAYER, BLK, OPNUM, out_channels, input) \ | |||
TensorDesc LAYER##_##BLK##_##OPNUM##_desc(ge::Shape({1, out_channels, 1, 1}), FORMAT_NCHW, DT_FLOAT); \ | |||
uint32_t LAYER##_##BLK##_##OPNUM##_size = LAYER##_##BLK##_##OPNUM##_desc.GetShape().GetShapeSize(); \ | |||
auto LAYER##_##BLK##_##OPNUM##_scale = op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_scale"); \ | |||
LAYER##_##BLK##_##OPNUM##_scale.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_mom_scale = \ | |||
op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_mom_scale"); \ | |||
LAYER##_##BLK##_##OPNUM##_mom_scale.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_b = op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_b"); \ | |||
LAYER##_##BLK##_##OPNUM##_b.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_mom_b = op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_mom_b"); \ | |||
LAYER##_##BLK##_##OPNUM##_mom_b.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_mean = op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_mean"); \ | |||
LAYER##_##BLK##_##OPNUM##_mean.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
auto LAYER##_##BLK##_##OPNUM##_variance = \ | |||
op::Variable(string(#LAYER) + string(#BLK) + string(#OPNUM) + "_variance"); \ | |||
LAYER##_##BLK##_##OPNUM##_variance.update_output_desc_y(LAYER##_##BLK##_##OPNUM##_desc); \ | |||
\ | |||
GENERATE_CONSTANT(LAYER, BLK, OPNUM, scale); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_scale_assign = op::Assign() \ | |||
.set_input_ref(LAYER##_##BLK##_##OPNUM##_scale) \ | |||
.set_input_value(LAYER##_##BLK##_##OPNUM##_scale_constant); \ | |||
GENERATE_CONSTANT(LAYER, BLK, OPNUM, mom_scale); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_mom_scale_assign = \ | |||
op::Assign() \ | |||
.set_input_ref(LAYER##_##BLK##_##OPNUM##_mom_scale) \ | |||
.set_input_value(LAYER##_##BLK##_##OPNUM##_mom_scale_constant); \ | |||
\ | |||
GENERATE_CONSTANT(LAYER, BLK, OPNUM, b); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_b_assign = \ | |||
op::Assign().set_input_ref(LAYER##_##BLK##_##OPNUM##_b).set_input_value(LAYER##_##BLK##_##OPNUM##_b_constant); \ | |||
\ | |||
GENERATE_CONSTANT(LAYER, BLK, OPNUM, mom_b); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_mom_b_assign = op::Assign() \ | |||
.set_input_ref(LAYER##_##BLK##_##OPNUM##_mom_b) \ | |||
.set_input_value(LAYER##_##BLK##_##OPNUM##_mom_b_constant); \ | |||
GENERATE_CONSTANT(LAYER, BLK, OPNUM, mean); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_mean_assign = op::Assign() \ | |||
.set_input_ref(LAYER##_##BLK##_##OPNUM##_mean) \ | |||
.set_input_value(LAYER##_##BLK##_##OPNUM##_mean_constant); \ | |||
\ | |||
GENERATE_CONSTANT(LAYER, BLK, OPNUM, variance); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_variance_assign = op::Assign() \ | |||
.set_input_ref(LAYER##_##BLK##_##OPNUM##_variance) \ | |||
.set_input_value(LAYER##_##BLK##_##OPNUM##_variance_constant); \ | |||
\ | |||
input.push_back(LAYER##_##BLK##_##OPNUM##_scale); \ | |||
input.push_back(LAYER##_##BLK##_##OPNUM##_mom_scale); \ | |||
input.push_back(LAYER##_##BLK##_##OPNUM##_b); \ | |||
input.push_back(LAYER##_##BLK##_##OPNUM##_mom_b); \ | |||
input.push_back(LAYER##_##BLK##_##OPNUM##_mean); \ | |||
input.push_back(LAYER##_##BLK##_##OPNUM##_variance); | |||
// (int out_channels, Operator& input) | |||
#define GENERATE_RELU_VAR(LAYER, BLK, OPNUM, input) \ | |||
auto &LAYER##_##BLK##_##OPNUM##_input = input; \ | |||
auto LAYER##_##BLK##_##OPNUM = op::Relu(string(#LAYER) + string(#BLK) + string(#OPNUM)).set_input_x(input, "y"); | |||
// (int out_channels, Operator& input) | |||
#define GENERATE_MAXPOOL_VAR(LAYER, BLK, OPNUM, input) \ | |||
auto &LAYER##_##BLK##_##OPNUM##_input = input; \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM = op::MaxPoolWithArgmax(string(#LAYER) + string(#BLK) + string(#OPNUM)) \ | |||
.set_input_x(input, "y") \ | |||
.set_attr_ksize({1, 3, 3, 1}) \ | |||
.set_attr_padding("SAME") \ | |||
.set_attr_strides({1, 2, 2, 1}); | |||
// (int out_channels, Operator& input) | |||
#define GENERATE_ADD_VAR(LAYER, BLK, OPNUM, input_x1, input_x2) \ | |||
auto LAYER##_##BLK##_##OPNUM = \ | |||
op::Add(string(#LAYER) + string(#BLK) + string(#OPNUM)).set_input_x1(input_x1, "y").set_input_x2(input_x2, "y"); | |||
// (int in_channels, int out_channels,vector<int64_t> stride{1,1}, Operator& input) | |||
#define MAKE_RESIDUAL_BLOCK(LAYER, BLK, in_channels, out_channels, stride, input) \ | |||
auto &LAYER##_##BLK##_input = input; \ | |||
auto &LAYER##_##BLK##_stride = stride; \ | |||
int LAYER##_##BLK##_out_chls = out_channels / 4; \ | |||
\ | |||
GENERATE_CONV_VAR(LAYER, BLK, conv1, in_channels, LAYER##_##BLK##_out_chls, 1, 1, stride, pad_0, input); \ | |||
GENERATE_BN_VAR(LAYER, BLK, bn1, LAYER##_##BLK##_out_chls, LAYER##_##BLK##_conv1); \ | |||
GENERATE_RELU_VAR(LAYER, BLK, relu1, LAYER##_##BLK##_bn1); \ | |||
\ | |||
GENERATE_CONV_VAR(LAYER, BLK, conv2, LAYER##_##BLK##_out_chls, LAYER##_##BLK##_out_chls, 3, 3, stride_1, pad_1, \ | |||
LAYER##_##BLK##_relu1); \ | |||
GENERATE_BN_VAR(LAYER, BLK, bn2, LAYER##_##BLK##_out_chls, LAYER##_##BLK##_conv2); \ | |||
GENERATE_RELU_VAR(LAYER, BLK, relu2, LAYER##_##BLK##_bn2); \ | |||
\ | |||
GENERATE_CONV_VAR(LAYER, BLK, conv3, LAYER##_##BLK##_out_chls, out_channels, 1, 1, stride_1, pad_0, \ | |||
LAYER##_##BLK##_relu2); \ | |||
GENERATE_BN_VAR(LAYER, BLK, bn3, out_channels, LAYER##_##BLK##_conv3); \ | |||
\ | |||
GENERATE_CONV_VAR(LAYER, BLK, conv4, in_channels, out_channels, 1, 1, stride, pad_0, input); \ | |||
GENERATE_BN_VAR(LAYER, BLK, bn4, out_channels, LAYER##_##BLK##_conv4); \ | |||
\ | |||
GENERATE_ADD_VAR(LAYER, BLK, add5, LAYER##_##BLK##_bn3, LAYER##_##BLK##_bn4); \ | |||
GENERATE_RELU_VAR(LAYER, BLK, relu5, LAYER##_##BLK##_add5); \ | |||
\ | |||
auto &LAYER##_##BLK##_output = LAYER##_##BLK##_relu5; \ | |||
auto &LAYER##_##BLK##_output_label = "y"; | |||
#define MAKE_RESIDUAL_BLOCK_VAR(LAYER, BLK, in_channels, out_channels, stride, input) \ | |||
int LAYER##_##BLK##_out_chls = out_channels / 4; \ | |||
GENERATE_CONV_VAR_VAR(LAYER, BLK, conv1, in_channels, LAYER##_##BLK##_out_chls, 1, 1, stride, pad_0, input); \ | |||
GENERATE_BN_VAR_VAR(LAYER, BLK, bn1, LAYER##_##BLK##_out_chls, input); \ | |||
\ | |||
GENERATE_CONV_VAR_VAR(LAYER, BLK, conv2, LAYER##_##BLK##_out_chls, LAYER##_##BLK##_out_chls, 3, 3, stride_1, pad_1, \ | |||
input); \ | |||
GENERATE_BN_VAR_VAR(LAYER, BLK, bn2, LAYER##_##BLK##_out_chls, input); \ | |||
\ | |||
GENERATE_CONV_VAR_VAR(LAYER, BLK, conv3, LAYER##_##BLK##_out_chls, out_channels, 1, 1, stride_1, pad_0, input); \ | |||
GENERATE_BN_VAR_VAR(LAYER, BLK, bn3, out_channels, input); \ | |||
\ | |||
GENERATE_CONV_VAR_VAR(LAYER, BLK, conv4, in_channels, out_channels, 1, 1, stride, pad_0, input); \ | |||
GENERATE_BN_VAR_VAR(LAYER, BLK, bn4, out_channels, input); | |||
// (int in_channels, int out_channels,vector<int64_t> stride{1,1}, Operator& input) | |||
#define MAKE_NORMAL_BLOCK(LAYER, BLK, in_channels, out_channels, stride, input) \ | |||
auto &LAYER##_##BLK##_input = input; \ | |||
auto &LAYER##_##BLK##_stride = stride; \ | |||
int LAYER##_##BLK##_out_chls = out_channels / 4; \ | |||
\ | |||
GENERATE_CONV_VAR(LAYER, BLK, conv1, in_channels, LAYER##_##BLK##_out_chls, 1, 1, stride, pad_0, input); \ | |||
GENERATE_BN_VAR(LAYER, BLK, bn1, LAYER##_##BLK##_out_chls, LAYER##_##BLK##_conv1); \ | |||
GENERATE_RELU_VAR(LAYER, BLK, relu1, LAYER##_##BLK##_bn1); \ | |||
\ | |||
GENERATE_CONV_VAR(LAYER, BLK, conv2, LAYER##_##BLK##_out_chls, LAYER##_##BLK##_out_chls, 3, 3, stride_1, pad_1, \ | |||
LAYER##_##BLK##_relu1); \ | |||
GENERATE_BN_VAR(LAYER, BLK, bn2, LAYER##_##BLK##_out_chls, LAYER##_##BLK##_conv2); \ | |||
GENERATE_RELU_VAR(LAYER, BLK, relu2, LAYER##_##BLK##_bn2); \ | |||
\ | |||
GENERATE_CONV_VAR(LAYER, BLK, conv3, LAYER##_##BLK##_out_chls, out_channels, 1, 1, stride_1, pad_0, \ | |||
LAYER##_##BLK##_relu2); \ | |||
GENERATE_BN_VAR(LAYER, BLK, bn3, out_channels, LAYER##_##BLK##_conv3); \ | |||
\ | |||
GENERATE_ADD_VAR(LAYER, BLK, add5, LAYER##_##BLK##_bn3, input); \ | |||
GENERATE_RELU_VAR(LAYER, BLK, relu5, LAYER##_##BLK##_add5); \ | |||
\ | |||
auto &LAYER##_##BLK##_output = LAYER##_##BLK##_relu5; \ | |||
auto &LAYER##_##BLK##_output_label = "y"; | |||
#define MAKE_NORMAL_BLOCK_VAR(LAYER, BLK, in_channels, out_channels, stride, input) \ | |||
int LAYER##_##BLK##_out_chls = out_channels / 4; \ | |||
GENERATE_CONV_VAR_VAR(LAYER, BLK, conv1, in_channels, LAYER##_##BLK##_out_chls, 1, 1, stride, pad_0, input); \ | |||
GENERATE_BN_VAR_VAR(LAYER, BLK, bn1, LAYER##_##BLK##_out_chls, input); \ | |||
\ | |||
GENERATE_CONV_VAR_VAR(LAYER, BLK, conv2, LAYER##_##BLK##_out_chls, LAYER##_##BLK##_out_chls, 3, 3, stride_1, pad_1, \ | |||
input); \ | |||
GENERATE_BN_VAR_VAR(LAYER, BLK, bn2, LAYER##_##BLK##_out_chls, input); \ | |||
\ | |||
GENERATE_CONV_VAR_VAR(LAYER, BLK, conv3, LAYER##_##BLK##_out_chls, out_channels, 1, 1, stride_1, pad_0, input); \ | |||
GENERATE_BN_VAR_VAR(LAYER, BLK, bn3, out_channels, input); | |||
// (int in_channels, int out_channels,vector<int64_t> stride{1,1}, Operator& input) | |||
#define MAKE_RESIDUAL_LAYER(LAYER, in_channels, out_channels, stride, input) \ | |||
MAKE_RESIDUAL_BLOCK(LAYER, blk1, in_channels, out_channels, stride, input); \ | |||
\ | |||
auto &LAYER##_output = LAYER##_blk1_output; \ | |||
auto &LAYER##_output_label = LAYER##_blk1_output_label; | |||
#define MAKE_RESIDUAL_LAYER_VAR(LAYER, in_channels, out_channels, stride, input) \ | |||
MAKE_RESIDUAL_BLOCK_VAR(LAYER, blk1, in_channels, out_channels, stride, input); | |||
// (int in_channels, int out_channels,vector<int64_t> stride{1,1}, Operator& input) | |||
#define MAKE_NORMAL_LAYER(LAYER, in_channels, out_channels, stride, input) \ | |||
MAKE_NORMAL_BLOCK(LAYER, blk1, in_channels, out_channels, stride, input); \ | |||
\ | |||
auto &LAYER##_output = LAYER##_blk1_output; \ | |||
auto &LAYER##_output_label = LAYER##_blk1_output_label; | |||
#define MAKE_NORMAL_LAYER_VAR(LAYER, in_channels, out_channels, stride, input) \ | |||
MAKE_NORMAL_BLOCK_VAR(LAYER, blk1, in_channels, out_channels, stride, input); | |||
#define MAKE_RESNET50(input) \ | |||
MAKE_RESIDUAL_LAYER(layer1, 64, 256, stride_1, input) \ | |||
MAKE_NORMAL_LAYER(layer2, 256, 256, stride_1, layer1_output) \ | |||
MAKE_NORMAL_LAYER(layer3, 256, 256, stride_1, layer2_output) \ | |||
MAKE_RESIDUAL_LAYER(layer4, 256, 512, stride_2, layer3_output) \ | |||
MAKE_NORMAL_LAYER(layer5, 512, 512, stride_1, layer4_output) \ | |||
MAKE_NORMAL_LAYER(layer6, 512, 512, stride_1, layer5_output) \ | |||
MAKE_NORMAL_LAYER(layer7, 512, 512, stride_1, layer6_output) \ | |||
MAKE_RESIDUAL_LAYER(layer8, 512, 1024, stride_2, layer7_output) \ | |||
MAKE_NORMAL_LAYER(layer9, 1024, 1024, stride_1, layer8_output) \ | |||
MAKE_NORMAL_LAYER(layer10, 1024, 1024, stride_1, layer9_output) \ | |||
MAKE_NORMAL_LAYER(layer11, 1024, 1024, stride_1, layer10_output) \ | |||
MAKE_NORMAL_LAYER(layer12, 1024, 1024, stride_1, layer11_output) \ | |||
MAKE_NORMAL_LAYER(layer13, 1024, 1024, stride_1, layer12_output) \ | |||
MAKE_RESIDUAL_LAYER(layer14, 1024, 2048, stride_2, layer13_output) \ | |||
MAKE_NORMAL_LAYER(layer15, 2048, 2048, stride_1, layer14_output) \ | |||
MAKE_NORMAL_LAYER(layer16, 2048, 2048, stride_1, layer15_output) \ | |||
\ | |||
auto &resnet50_output = layer16_output; \ | |||
auto &resnet50_output_label = layer16_output_label; | |||
#define MAKE_RESNET50_VAR(inputs) \ | |||
MAKE_RESIDUAL_LAYER_VAR(layer1, 64, 256, stride_1, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer2, 256, 256, stride_1, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer3, 256, 256, stride_1, inputs) \ | |||
MAKE_RESIDUAL_LAYER_VAR(layer4, 256, 512, stride_2, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer5, 512, 512, stride_1, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer6, 512, 512, stride_1, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer7, 512, 512, stride_1, inputs) \ | |||
MAKE_RESIDUAL_LAYER_VAR(layer8, 512, 1024, stride_2, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer9, 1024, 1024, stride_1, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer10, 1024, 1024, stride_1, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer11, 1024, 1024, stride_1, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer12, 1024, 1024, stride_1, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer13, 1024, 1024, stride_1, inputs) \ | |||
MAKE_RESIDUAL_LAYER_VAR(layer14, 1024, 2048, stride_2, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer15, 2048, 2048, stride_1, inputs) \ | |||
MAKE_NORMAL_LAYER_VAR(layer16, 2048, 2048, stride_1, inputs) \ | |||
//--------------------------------------------------------------------------------------------- | |||
// (Operator& input) | |||
#define GENERATE_BIASADD_GRAD(LAYER, BLK, OPNUM, input) \ | |||
auto LAYER##_##BLK##_##OPNUM##_grad = \ | |||
op::BiasAddGrad(string(#LAYER) + string(#BLK) + string(#OPNUM) + string("grad")) \ | |||
.set_input_x(input, input.name_out_dx()); | |||
// (Operator& input) | |||
#define GENERATE_MATMUL_GRAD(LAYER, BLK, OPNUM, input) \ | |||
auto LAYER##_##BLK##_##OPNUM##_grad = \ | |||
op::MatMul(string(#LAYER) + string(#BLK) + string(#OPNUM) + string("grad")).set_input_x1(input); | |||
// (Operator& input) | |||
#define GENERATE_RESHAPE_GRAD(LAYER, BLK, OPNUM, input) \ | |||
auto LAYER##_##BLK##_##OPNUM##_grad = \ | |||
op::Reshape(string(#LAYER) + string(#BLK) + string(#OPNUM) + string("grad")).set_input_tensor(input); | |||
// (Operator& input_grad, Operator& input_maxpool) | |||
#define GENERATE_MAXPOOL_GRAD(LAYER, BLK, OPNUM, input_grad, input_maxpool) \ | |||
auto LAYER##_##BLK##_##OPNUM##_grad = \ | |||
op::MaxPoolGradWithArgmax(string(#LAYER) + string(#BLK) + string(#OPNUM) + string("grad")) \ | |||
.set_input_x(LAYER##_##BLK##_##OPNUM##_input, "y") \ | |||
.set_input_grad(input_grad) \ | |||
.set_input_argmax(input_maxpool, input_maxpool.name_out_argmax()) \ | |||
.set_attr_ksize({1, 1, 3, 3}) \ | |||
.set_attr_strides({1, 1, 2, 2}) \ | |||
.set_attr_padding("SAME"); | |||
// (Operator& input_dy) | |||
#define GENERATE_RELU_GRAD(LAYER, BLK, OPNUM, input_dy, dy_label) \ | |||
auto LAYER##_##BLK##_##OPNUM##_grad = op::ReluGrad(string(#LAYER) + string(#BLK) + string(#OPNUM) + string("grad")) \ | |||
.set_input_gradients(input_dy, dy_label) \ | |||
.set_input_features(LAYER##_##BLK##_##OPNUM, "y"); | |||
// (Operator& input_dy) | |||
#define GENERATE_BN_GRAD(LAYER, BLK, OPNUM, input_dy) \ | |||
auto LAYER##_##BLK##_##OPNUM##_grad = \ | |||
op::FusedBatchNormGrad(string(#LAYER) + string(#BLK) + string(#OPNUM) + string("grad")) \ | |||
.set_input_dy(input_dy, "backprops") \ | |||
.set_input_x(LAYER##_##BLK##_##OPNUM##_input, "y") \ | |||
.set_input_scale(LAYER##_##BLK##_##OPNUM##_scale) \ | |||
.set_input_save_mean(LAYER##_##BLK##_##OPNUM, "save_mean") \ | |||
.set_input_save_inv_variance(LAYER##_##BLK##_##OPNUM, "save_inv_variance") \ | |||
.set_attr_epsilon(0.0001); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_momentum_scale = \ | |||
op::ApplyMomentum() \ | |||
.set_input_accum(LAYER##_##BLK##_##OPNUM##_mom_scale) \ | |||
.set_input_grad(LAYER##_##BLK##_##OPNUM##_grad, LAYER##_##BLK##_##OPNUM##_grad.name_out_bn_scale()) \ | |||
.set_input_lr(label1) \ | |||
.set_input_momentum(label1) \ | |||
.set_input_var(LAYER##_##BLK##_##OPNUM##_scale); \ | |||
\ | |||
auto LAYER##_##BLK##_##OPNUM##_momentum_b = \ | |||
op::ApplyMomentum() \ | |||
.set_input_accum(LAYER##_##BLK##_##OPNUM##_mom_b) \ | |||
.set_input_grad(LAYER##_##BLK##_##OPNUM##_grad, LAYER##_##BLK##_##OPNUM##_grad.name_out_bn_bias()) \ | |||
.set_input_lr(label1) \ | |||
.set_input_momentum(label1) \ | |||
.set_input_var(LAYER##_##BLK##_##OPNUM##_b); | |||
// (Operator& input) | |||
#define GENERATE_CONV_PROP_FILTER(LAYER, BLK, OPNUM, input_bngrad, stride) \ | |||
auto LAYER##_##BLK##_##OPNUM##_propfilter = \ | |||
op::Conv2DBackpropFilterD(string(#LAYER) + string(#BLK) + string(#OPNUM) + string("_propfilter")) \ | |||
.set_input_x(LAYER##_##BLK##_##OPNUM##_input, "y") \ | |||
.set_attr_filter_size(LAYER##_##BLK##_##OPNUM##_desc.GetShape().GetDims()) \ | |||
.set_input_out_backprop(input_bngrad, input_bngrad.name_out_dx()) \ | |||
.set_attr_strides(stride) \ | |||
.set_attr_pads({1, 1, 1, 1}); \ | |||
\ | |||
update_op_format(LAYER##_##BLK##_##OPNUM##_propfilter); \ | |||
auto LAYER##_##BLK##_##OPNUM##_momentum_weight = op::ApplyMomentum() \ | |||
.set_input_accum(LAYER##_##BLK##_##OPNUM##_mom_weight) \ | |||
.set_input_grad(LAYER##_##BLK##_##OPNUM##_propfilter) \ | |||
.set_input_lr(label1) \ | |||
.set_input_momentum(label1) \ | |||
.set_input_var(LAYER##_##BLK##_##OPNUM##_weight); | |||
///.set_attr_input_size({input_bngrad.name_out_dx().GetOutputDesc().GetShape().GetDim(0),LAYER##_##BLK##_##OPNUM##_weight.GetOutputDesc().GetShape().GetDim(1), | |||
///input_bngrad.name_out_dx().GetOutputDesc().GetShape().GetDim(2)*stride[2], | |||
///input_bngrad.name_out_dx().GetOutputDesc().GetShape().GetDim(3)*stride[3]}) | |||
#define GENERATE_CONV_PROP_INPUT(LAYER, BLK, OPNUM, input_bngrad, stride) \ | |||
auto LAYER##_##BLK##_##OPNUM##_propinput = \ | |||
op::Conv2DBackpropInputD(string(#LAYER) + string(#BLK) + string(#OPNUM) + string("_propinput")) \ | |||
.set_attr_input_size(LAYER##_##BLK##_##OPNUM##_input.GetOutputDesc("y").GetShape().GetDims()) \ | |||
.set_input_filter(LAYER##_##BLK##_##OPNUM##_weight) \ | |||
.set_input_out_backprop(input_bngrad, input_bngrad.name_out_dx()) \ | |||
.set_attr_strides(stride) \ | |||
.set_attr_pads({1, 1, 1, 1}); \ | |||
cout << string(#LAYER) + string(#BLK) + string(#OPNUM) + "_propinput" \ | |||
<< "'s input_x op's shape is:" << input_bngrad.GetOutputDesc("dx").GetShape().GetDim(3) * stride[3] << endl; \ | |||
cout << string(#LAYER) + string(#BLK) + string(#OPNUM) + "_propinput" \ | |||
<< "'s input_x op's shape is:" << input_bngrad.GetOutputDesc("dx").GetShape().GetDim(2) * stride[2] << endl; \ | |||
\ | |||
update_op_format(LAYER##_##BLK##_##OPNUM##_propinput); \ | |||
auto &LAYER##_##BLK##_##OPNUM##_propinput_label = "y" | |||
// (int out_channels, Operator& input) | |||
#define GENERATE_ADD_GRAD(LAYER, BLK, OPNUM, input_x1, input_x1_label, input_x2, input_x2_label) \ | |||
auto LAYER##_##BLK##_##OPNUM##_grad = op::Add(string(#LAYER) + string(#BLK) + string(#OPNUM) + string("grad")) \ | |||
.set_input_x1(input_x1, input_x1_label) \ | |||
.set_input_x2(input_x2, input_x2_label); | |||
// (Operator& input) | |||
#define MAKE_RESIDUAL_BLOCK_GRAD(LAYER, BLK, input_dy, dy_label) \ | |||
GENERATE_RELU_GRAD(LAYER, BLK, relu5, input_dy, dy_label); \ | |||
\ | |||
GENERATE_BN_GRAD(LAYER, BLK, bn4, LAYER##_##BLK##_relu5_grad); \ | |||
GENERATE_CONV_PROP_FILTER(LAYER, BLK, conv4, LAYER##_##BLK##_bn4_grad, LAYER##_##BLK##_stride); \ | |||
GENERATE_CONV_PROP_INPUT(LAYER, BLK, conv4, LAYER##_##BLK##_bn4_grad, LAYER##_##BLK##_stride); \ | |||
\ | |||
GENERATE_BN_GRAD(LAYER, BLK, bn3, LAYER##_##BLK##_relu5_grad); \ | |||
GENERATE_CONV_PROP_FILTER(LAYER, BLK, conv3, LAYER##_##BLK##_bn3_grad, stride_1); \ | |||
GENERATE_CONV_PROP_INPUT(LAYER, BLK, conv3, LAYER##_##BLK##_bn3_grad, stride_1); \ | |||
\ | |||
GENERATE_RELU_GRAD(LAYER, BLK, relu2, LAYER##_##BLK##_conv3_propinput, "y"); \ | |||
GENERATE_BN_GRAD(LAYER, BLK, bn2, LAYER##_##BLK##_relu2_grad); \ | |||
GENERATE_CONV_PROP_FILTER(LAYER, BLK, conv2, LAYER##_##BLK##_bn2_grad, stride_1); \ | |||
GENERATE_CONV_PROP_INPUT(LAYER, BLK, conv2, LAYER##_##BLK##_bn2_grad, stride_1); \ | |||
\ | |||
GENERATE_RELU_GRAD(LAYER, BLK, relu1, LAYER##_##BLK##_conv2_propinput, "y"); \ | |||
GENERATE_BN_GRAD(LAYER, BLK, bn1, LAYER##_##BLK##_relu1_grad); \ | |||
GENERATE_CONV_PROP_FILTER(LAYER, BLK, conv1, LAYER##_##BLK##_bn1_grad, LAYER##_##BLK##_stride); \ | |||
GENERATE_CONV_PROP_INPUT(LAYER, BLK, conv1, LAYER##_##BLK##_bn1_grad, LAYER##_##BLK##_stride); \ | |||
\ | |||
GENERATE_ADD_GRAD(LAYER, BLK, add5, LAYER##_##BLK##_conv1_propinput, LAYER##_##BLK##_conv1_propinput_label, \ | |||
LAYER##_##BLK##_conv4_propinput, LAYER##_##BLK##_conv4_propinput_label); \ | |||
\ | |||
auto &LAYER##_##BLK##_grad_output = LAYER##_##BLK##_add5_grad; \ | |||
auto &LAYER##_##BLK##_grad_output_label = "y" | |||
// (Operator& input) | |||
#define MAKE_NORMAL_BLOCK_GRAD(LAYER, BLK, input_dy, dy_label) \ | |||
GENERATE_RELU_GRAD(LAYER, BLK, relu5, input_dy, dy_label); \ | |||
\ | |||
GENERATE_BN_GRAD(LAYER, BLK, bn3, LAYER##_##BLK##_relu5_grad); \ | |||
GENERATE_CONV_PROP_FILTER(LAYER, BLK, conv3, LAYER##_##BLK##_bn3_grad, stride_1); \ | |||
GENERATE_CONV_PROP_INPUT(LAYER, BLK, conv3, LAYER##_##BLK##_bn3_grad, stride_1); \ | |||
\ | |||
GENERATE_RELU_GRAD(LAYER, BLK, relu2, LAYER##_##BLK##_conv3_propinput, "y"); \ | |||
GENERATE_BN_GRAD(LAYER, BLK, bn2, LAYER##_##BLK##_relu2_grad); \ | |||
GENERATE_CONV_PROP_FILTER(LAYER, BLK, conv2, LAYER##_##BLK##_bn2_grad, stride_1); \ | |||
GENERATE_CONV_PROP_INPUT(LAYER, BLK, conv2, LAYER##_##BLK##_bn2_grad, stride_1); \ | |||
\ | |||
GENERATE_RELU_GRAD(LAYER, BLK, relu1, LAYER##_##BLK##_conv2_propinput, "y"); \ | |||
GENERATE_BN_GRAD(LAYER, BLK, bn1, LAYER##_##BLK##_relu1_grad); \ | |||
GENERATE_CONV_PROP_FILTER(LAYER, BLK, conv1, LAYER##_##BLK##_bn1_grad, LAYER##_##BLK##_stride); \ | |||
GENERATE_CONV_PROP_INPUT(LAYER, BLK, conv1, LAYER##_##BLK##_bn1_grad, LAYER##_##BLK##_stride); \ | |||
\ | |||
GENERATE_ADD_GRAD(LAYER, BLK, add5, LAYER##_##BLK##_conv1_propinput, LAYER##_##BLK##_conv1_propinput_label, \ | |||
input_dy, dy_label); \ | |||
\ | |||
auto &LAYER##_##BLK##_grad_output = LAYER##_##BLK##_add5_grad; \ | |||
auto &LAYER##_##BLK##_grad_output_label = "y" | |||
// (Operator& input_dy) | |||
#define MAKE_RESIDUAL_LAYER_GRAD(LAYER, input_dy, dy_label) \ | |||
MAKE_RESIDUAL_BLOCK_GRAD(LAYER, blk1, input_dy, dy_label); \ | |||
\ | |||
auto &LAYER##_grad_output = LAYER##_blk1_grad_output; \ | |||
auto &LAYER##_grad_output_label = LAYER##_blk1_grad_output_label; | |||
// (Operator& input_dy) | |||
#define MAKE_NORMAL_LAYER_GRAD(LAYER, input_dy, dy_label) \ | |||
MAKE_NORMAL_BLOCK_GRAD(LAYER, blk1, input_dy, dy_label); \ | |||
\ | |||
auto &LAYER##_grad_output = LAYER##_blk1_grad_output; \ | |||
auto &LAYER##_grad_output_label = LAYER##_blk1_grad_output_label; | |||
#define MAKE_RESNET50_GRAD(input_dy, dy_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer16, input_dy, dy_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer15, layer16_grad_output, layer16_grad_output_label) \ | |||
MAKE_RESIDUAL_LAYER_GRAD(layer14, layer15_grad_output, layer15_grad_output_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer13, layer14_grad_output, layer14_grad_output_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer12, layer13_grad_output, layer13_grad_output_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer11, layer12_grad_output, layer12_grad_output_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer10, layer11_grad_output, layer11_grad_output_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer9, layer10_grad_output, layer10_grad_output_label) \ | |||
MAKE_RESIDUAL_LAYER_GRAD(layer8, layer9_grad_output, layer9_grad_output_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer7, layer8_grad_output, layer8_grad_output_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer6, layer7_grad_output, layer7_grad_output_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer5, layer6_grad_output, layer6_grad_output_label) \ | |||
MAKE_RESIDUAL_LAYER_GRAD(layer4, layer5_grad_output, layer5_grad_output_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer3, layer4_grad_output, layer4_grad_output_label) \ | |||
MAKE_NORMAL_LAYER_GRAD(layer2, layer3_grad_output, layer3_grad_output_label) \ | |||
MAKE_RESIDUAL_LAYER_GRAD(layer1, layer2_grad_output, layer2_grad_output_label) \ | |||
\ | |||
auto &resnet50_grad_output = layer1_grad_output; \ | |||
auto &resnet50_grad_output_label = layer1_grad_output_label; | |||
bool resnet50(Graph &graph) { | |||
auto data = op::Data().set_attr_index(0); | |||
auto data1 = op::Data().set_attr_index(1); | |||
TensorDesc shape_desc(ge::Shape({32, 3, 224, 224}), FORMAT_NCHW, DT_FLOAT); | |||
data.update_output_desc_y(shape_desc); | |||
TensorDesc desc(ge::Shape({64, 3, 7, 7}), FORMAT_NCHW, DT_FLOAT); | |||
auto var = op::Variable("conv2d_var"); | |||
var.update_output_desc_y(desc); | |||
var.update_input_desc_x(desc); | |||
auto varw1 = op::Variable("conv2d_varw1"); | |||
varw1.update_output_desc_y(desc); | |||
auto conv2d = op::Conv2D("Translate") | |||
.set_input_x(data) | |||
.set_input_filter(var) | |||
.set_attr_strides({1, 1, 2, 2}) | |||
.set_attr_pads({2, 3, 2, 3}) | |||
.set_attr_data_format("NCHW"); | |||
TensorDesc desc_y; | |||
desc_y.SetFormat(FORMAT_NCHW); // shape: 32 64 112 112 | |||
conv2d.update_output_desc_y(desc_y); | |||
TensorDesc desc1(ge::Shape({1, 64, 1, 1}), FORMAT_NCHW, DT_FLOAT); | |||
auto var1 = op::Variable("bn_var1"); | |||
var1.update_output_desc_y(desc1); | |||
auto var2 = op::Variable("bn_var2"); | |||
var2.update_output_desc_y(desc1); | |||
auto var3 = op::Variable("bn_var3"); | |||
var3.update_output_desc_y(desc1); | |||
auto var4 = op::Variable("bn_var4"); | |||
var4.update_output_desc_y(desc1); | |||
TensorDesc desc2(ge::Shape({2048, 1001}), FORMAT_NCHW, DT_FLOAT); | |||
auto var5 = op::Variable("var5"); | |||
var5.update_output_desc_y(desc2); | |||
auto var6 = op::Variable("var6"); | |||
var6.update_output_desc_y(desc2); | |||
TensorDesc desclabel(ge::Shape({1, 1001, 1, 1}), FORMAT_NCHW, DT_FLOAT); | |||
auto label1 = op::Variable("label1"); | |||
label1.update_output_desc_y(desclabel); | |||
TensorDesc descmatlabel(ge::Shape({1, 1001, 1, 1}), FORMAT_NCHW, DT_FLOAT); | |||
auto matvar = op::Variable("matvar"); | |||
matvar.update_output_desc_y(descmatlabel); | |||
auto matvar1 = op::Variable("matvar1"); | |||
matvar1.update_output_desc_y(descmatlabel); | |||
auto bn = op::FusedBatchNorm() | |||
.set_input_x(conv2d, "y") | |||
.set_input_scale(var1) | |||
.set_input_b(var2) | |||
.set_input_mean(var3) | |||
.set_input_variance(var4) | |||
.set_attr_mode(1) | |||
.set_attr_epsilon(1e-5) | |||
.set_attr_is_training(true) | |||
.set_attr_is_training_fusion(true) | |||
.set_attr_moving_average_fraction(994352128); | |||
auto relu = op::Relu().set_input_x(bn, "y"); | |||
auto maxpool = op::MaxPoolWithArgmax() | |||
.set_input_x(relu, "y") | |||
.set_attr_ksize({1, 3, 3, 1}) | |||
.set_attr_padding("SAME") | |||
.set_attr_strides({1, 2, 2, 1}); | |||
MAKE_RESNET50(maxpool); | |||
std::vector<Operator> inputs{data}; //,var,var1,layer1_blk1_bn1_b,var3,var4}; | |||
std::vector<Operator> outputs{}; | |||
graph.SetInputs(inputs).SetOutputs(outputs); | |||
return true; | |||
} | |||
#define GENERATE_CONSTANT_USE_DESC(OPNUM, desc, val) \ | |||
uint32_t OPNUM##_size = desc.GetShape().GetShapeSize(); \ | |||
Tensor OPNUM##_tensor; \ | |||
OPNUM##_tensor.SetTensorDesc(desc); \ | |||
if (desc.GetDataType() == DT_FLOAT) { \ | |||
float *OPNUM##_data = new float[OPNUM##_size]; \ | |||
for (int i = 0; i < (int)OPNUM##_size; i++) { \ | |||
*(OPNUM##_data + i) = val; \ | |||
} \ | |||
OPNUM##_tensor.SetData((uint8_t *)OPNUM##_data, OPNUM##_size * sizeof(float)); \ | |||
delete[] OPNUM##_data; \ | |||
} \ | |||
if (desc.GetDataType() == DT_INT64) { \ | |||
int64_t *OPNUM##_data = new int64_t[OPNUM##_size]; \ | |||
for (int i = 0; i < (int)OPNUM##_size; i++) { \ | |||
*(OPNUM##_data + i) = val; \ | |||
} \ | |||
OPNUM##_tensor.SetData((uint8_t *)OPNUM##_data, OPNUM##_size * sizeof(int64_t)); \ | |||
delete[] OPNUM##_data; \ | |||
} \ | |||
auto OPNUM##_constant = op::Constant().set_attr_value(OPNUM##_tensor); \ | |||
OPNUM##_constant.update_output_desc_y(desc); | |||
#define GENERATE_VAR_LAYER(OPNUM, desc, input) \ | |||
auto OPNUM##_weight = op::Variable(string(#OPNUM)); \ | |||
OPNUM##_weight.update_output_desc_y(desc); \ | |||
auto OPNUM##_assign = op::Assign().set_input_ref(OPNUM##_weight).set_input_value(OPNUM##_constant); \ | |||
\ | |||
input.push_back(OPNUM##_weight); | |||
#define GENERATE_VAR_LAYER_1(OPNUM, desc, var_format, input, name) \ | |||
auto OPNUM##_weight = op::Variable(string(name)); \ | |||
OPNUM##_weight.update_output_desc_y(desc); \ | |||
auto OPNUM##_assign = op::Assign().set_input_ref(OPNUM##_weight).set_input_value(OPNUM##_constant); \ | |||
\ | |||
input.push_back(OPNUM##_weight); | |||
int BuildInitVarGraph(Graph &graph) { | |||
std::vector<Operator> inputs{}; | |||
std::vector<Operator> outputs{}; | |||
TensorDesc desc(ge::Shape({64, 3, 7, 7}), FORMAT_NCHW, DT_FLOAT); | |||
GENERATE_CONSTANT_USE_DESC(conv2d_var, desc, 0.01); | |||
GENERATE_VAR_LAYER(conv2d_var, desc, inputs); | |||
GENERATE_CONSTANT_USE_DESC(conv2d_varw1, desc, 0.01); | |||
GENERATE_VAR_LAYER(conv2d_varw1, desc, inputs); | |||
TensorDesc desc1(ge::Shape({1, 64, 1, 1}), FORMAT_NCHW, DT_FLOAT); | |||
GENERATE_CONSTANT_USE_DESC(bn_var1, desc1, 0.01); | |||
GENERATE_VAR_LAYER(bn_var1, desc1, inputs); | |||
GENERATE_CONSTANT_USE_DESC(bn_var2, desc1, 0.01); | |||
GENERATE_VAR_LAYER(bn_var2, desc1, inputs); | |||
GENERATE_CONSTANT_USE_DESC(bn_var3, desc1, 0.01); | |||
GENERATE_VAR_LAYER(bn_var3, desc1, inputs); | |||
GENERATE_CONSTANT_USE_DESC(bn_var4, desc1, 0.01); | |||
GENERATE_VAR_LAYER(bn_var4, desc1, inputs); | |||
TensorDesc desc2(ge::Shape({2048, 1001}), FORMAT_NCHW, DT_FLOAT); | |||
GENERATE_CONSTANT_USE_DESC(var5, desc2, 0.01); | |||
GENERATE_VAR_LAYER(var5, desc2, inputs); | |||
GENERATE_CONSTANT_USE_DESC(var6, desc2, 0.01); | |||
GENERATE_VAR_LAYER(var6, desc2, inputs); | |||
TensorDesc desclabel(ge::Shape({1, 1001, 1, 1}), FORMAT_NCHW, DT_FLOAT); | |||
GENERATE_CONSTANT_USE_DESC(label1, desclabel, 0.1); | |||
GENERATE_VAR_LAYER(label1, desclabel, inputs); | |||
TensorDesc descmatlabel(ge::Shape({1, 1001, 1, 1}), FORMAT_NCHW, DT_FLOAT); | |||
GENERATE_CONSTANT_USE_DESC(matvar, descmatlabel, 0.01); | |||
GENERATE_VAR_LAYER(matvar, descmatlabel, inputs); | |||
GENERATE_CONSTANT_USE_DESC(matvar1, descmatlabel, 0.01); | |||
GENERATE_VAR_LAYER(matvar1, descmatlabel, inputs); | |||
MAKE_RESNET50_VAR(inputs); | |||
TensorDesc ctrl(ge::Shape({1, 1, 1, 1}), FORMAT_NCHW, DT_INT64); | |||
GENERATE_CONSTANT_USE_DESC(iterations_per_loop, ctrl, 100); | |||
GENERATE_VAR_LAYER_1(iterations_per_loop, ctrl, "4D", inputs, "npu_runconfig/iterations_per_loop"); | |||
GENERATE_CONSTANT_USE_DESC(loop_cond, ctrl, 0); | |||
GENERATE_VAR_LAYER_1(loop_cond, ctrl, "4D", inputs, "npu_runconfig/loop_cond"); | |||
GENERATE_CONSTANT_USE_DESC(one, ctrl, 1); | |||
GENERATE_VAR_LAYER_1(one, ctrl, "4D", inputs, "npu_runconfig/one"); | |||
GENERATE_CONSTANT_USE_DESC(zero, ctrl, 0); | |||
GENERATE_VAR_LAYER_1(zero, ctrl, "4D", inputs, "npu_runconfig/zero"); | |||
graph.SetInputs(inputs).SetOutputs(outputs); | |||
return 0; | |||
} | |||
int TestBuildGraphTest(Func fun, Graph &graph, vector<ge::Tensor> &inputs, vector<ge::Tensor> &outputs) { | |||
bool graph_ret = fun(graph); | |||
ge::Tensor shapeTensor; | |||
TensorDesc shape_desc(ge::Shape({32, 3, 224, 224}), FORMAT_NCHW, DT_FLOAT); | |||
uint32_t sizeshape = shape_desc.GetShape().GetShapeSize(); | |||
printf("[test] desc size filter shape:%u\n", sizeshape); | |||
shapeTensor.SetTensorDesc(shape_desc); | |||
vector<float> dataValuec; | |||
for (int i = 0; i < sizeshape; i++) { | |||
dataValuec.push_back(1); | |||
} | |||
shapeTensor.SetData((uint8_t *)dataValuec.data(), 4 * sizeshape); | |||
inputs.push_back(shapeTensor); | |||
ge::Tensor shapeTensor1; | |||
TensorDesc shape_desc1(ge::Shape({1, 32, 1, 1}), FORMAT_NCHW, DT_FLOAT); | |||
uint32_t sizeshape1 = shape_desc1.GetShape().GetShapeSize(); | |||
printf("[test] desc size filter shape:%u\n", sizeshape1); | |||
shapeTensor1.SetTensorDesc(shape_desc1); | |||
vector<int32_t> dataValuec1; | |||
for (int i = 0; i < sizeshape1; i++) { | |||
dataValuec1.push_back(1); | |||
} | |||
shapeTensor1.SetData((uint8_t *)dataValuec1.data(), 4 * sizeshape1); | |||
return 0; | |||
} | |||
int runTrainGraph(Func fun, int loopCount) { | |||
printf("GE BBIT begin...\n"); | |||
std::chrono::system_clock::time_point start = std::chrono::system_clock::now(); | |||
std::map<std::string, std::string> ge_options = { | |||
{"device_id", "0"}, {"rank_table_file", ""}, {"graphType", "1"}, {"ge.graphRunMode", "2"}}; | |||
std::map<std::string, std::string> session_options = {{"a", "b"}, {TRAIN_FLAG, "1"}}; | |||
ge::Status ret; | |||
// init ge | |||
ret = GEInitialize_api_new("train", "fe,plugin"); | |||
printf("ge::GEInitialize ret:%d\n", ret); | |||
// init session | |||
ge::Session session(session_options); | |||
int graphId_initvar = 1; | |||
ge::Graph graph_initvar("initVarGraph"); | |||
bool graph_ret = BuildInitVarGraph(graph_initvar); | |||
// session addgraph | |||
int graphId = 0; | |||
// build graph | |||
ge::Graph graph("bigGraph"); | |||
std::vector<ge::Tensor> inputs; | |||
ge::Tensor outputTensor; | |||
std::vector<ge::Tensor> outputs; | |||
graph_ret = TestBuildGraphTest(fun, graph, inputs, outputs); | |||
printf("TestReluGrad ret:%d\n", graph_ret); | |||
ret = session.AddGraph(graphId_initvar, graph_initvar); | |||
printf("session.AddVarGraph ret:%d\n", ret); | |||
if (ret) return ret; | |||
ret = session.AddGraph(graphId, graph); | |||
printf("session.AddGraph ret:%d\n", ret); | |||
if (ret) return ret; | |||
std::vector<ge::Tensor> inputs1; | |||
std::vector<ge::Tensor> outputs1; | |||
ret = session.RunGraph(graphId_initvar, inputs1, outputs1); | |||
if (ret != SUCCESS) { | |||
return ret; | |||
} | |||
// add loop for test of stabilty: | |||
for (int i = 0; i < loopCount; i++) { | |||
// session rungraph | |||
printf("loopCount:%d\n", loopCount); | |||
ret = session.RunGraph(graphId, inputs, outputs); | |||
printf("session.RunGraph ret:%d\n", ret); | |||
if (ret) return ret; | |||
// define 99999 as loop forever | |||
if (loopCount == 99999) i = 0; | |||
} | |||
std::chrono::system_clock::time_point end = std::chrono::system_clock::now(); | |||
auto millisecondsduration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start); | |||
auto ms = millisecondsduration.count(); | |||
std::stringstream ss; | |||
ss << ms << "ms"; | |||
std::string run_time = ss.str(); | |||
printf("run time is : %s \n", run_time.c_str()); | |||
return 0; | |||
} | |||
int main(int argc, char *argv[]) { | |||
// add loop for test of stabilty: | |||
int loopCount = 1; | |||
if (argc >= 2) loopCount = atoi(argv[1]); | |||
Status ret = SUCCESS; | |||
ret = runTrainGraph(resnet50, loopCount); | |||
if (ret == SUCCESS) { | |||
std::cout << "[train resnet50 success]" << std::endl; | |||
} else { | |||
std::cout << "!!! train resnet50 fail !!!" << std::endl; | |||
} | |||
return ret; | |||
} |
@@ -1,56 +0,0 @@ | |||
# Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
""" | |||
ge st test. | |||
""" | |||
import pytest | |||
import subprocess | |||
import os | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_ge | |||
def test_resnet50_train(): | |||
ge_st_dir=os.environ.get('GE_ST_DIR', | |||
'/home/jenkins/workspace/release_pkg/gate/graphengine_lib') | |||
ge_lib_dir=os.environ.get('GRAPHENGINE_LIB', '/home/jenkins/workspace/release_pkg/gate/graphengine_lib') | |||
real_pythonpath=os.environ.get('REAL_PYTHONPATH') | |||
pythonpath=os.environ.get('PYTHONPATH') | |||
if real_pythonpath: | |||
if pythonpath: | |||
os.environ['PYTHONPATH']=real_pythonpath+':'+pythonpath | |||
else: | |||
os.environ['PYTHONPATH']=real_pythonpath | |||
print('PYTHONPATH: '+os.environ.get('PYTHONPATH')) | |||
os.environ['ASCEND_OPP_PATH']='/usr/local/Ascend/opp' | |||
os.environ['ASCEND_ENGINE_PATH']='/usr/local/Ascend/fwkacllib/lib64/plugin/opskernel/libaicpu_engine.so:' \ | |||
'/usr/local/Ascend/fwkacllib/lib64/plugin/opskernel/libfe.so:' \ | |||
'/usr/local/Ascend/fwkacllib/lib64/plugin/opskernel/librts_engine.so:'+ \ | |||
ge_lib_dir + '/libge_local_engine.so' | |||
print('ASCEND_OPP_PATH: '+os.environ.get('ASCEND_OPP_PATH')) | |||
print('ASCEND_ENGINE_PATH: '+os.environ.get('ASCEND_ENGINE_PATH')) | |||
print('LD_LIBRARY_PATH: '+os.environ.get('LD_LIBRARY_PATH')) | |||
cmd=ge_st_dir + '/st_resnet50_train' | |||
print('cmd: '+cmd) | |||
os.environ['SLOG_PRINT_TO_STDOUT']="1" | |||
ret=subprocess.call([cmd], shell=True) | |||
assert ret==0 | |||