From: @ding_fei_fei Reviewed-by: @xsmq,@liucunwei Signed-off-by: @liucunweitags/v1.3.0
@@ -26,9 +26,9 @@ extern "C" { | |||||
#endif | #endif | ||||
// Current version is 1.0.0 | // Current version is 1.0.0 | ||||
#define ACL_MAJOR_VERSION 1 | |||||
#define ACL_MINOR_VERSION 0 | |||||
#define ACL_PATCH_VERSION 0 | |||||
#define ACL_MAJOR_VERSION 1 | |||||
#define ACL_MINOR_VERSION 0 | |||||
#define ACL_PATCH_VERSION 0 | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -66,8 +66,17 @@ ACL_FUNC_VISIBILITY aclError aclFinalize(); | |||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError aclrtGetVersion(int32_t *majorVersion, int32_t *minorVersion, int32_t *patchVersion); | ACL_FUNC_VISIBILITY aclError aclrtGetVersion(int32_t *majorVersion, int32_t *minorVersion, int32_t *patchVersion); | ||||
/** | |||||
* @ingroup AscendCL | |||||
* @brief get recent error message | |||||
* | |||||
* @retval null for failed | |||||
* @retval OtherValues success | |||||
*/ | |||||
ACL_FUNC_VISIBILITY const char *aclGetRecentErrMsg(); | |||||
#ifdef __cplusplus | #ifdef __cplusplus | ||||
} | } | ||||
#endif | #endif | ||||
#endif // INC_EXTERNAL_ACL_ACL_H_ | |||||
#endif // INC_EXTERNAL_ACL_ACL_H_ |
@@ -626,6 +626,15 @@ ACL_FUNC_VISIBILITY aclError aclSetTensorPlaceMent(aclTensorDesc *desc, aclMemTy | |||||
ACL_FUNC_VISIBILITY void aclAppLog(aclLogLevel logLevel, const char *func, const char *file, uint32_t line, | ACL_FUNC_VISIBILITY void aclAppLog(aclLogLevel logLevel, const char *func, const char *file, uint32_t line, | ||||
const char *fmt, ...); | const char *fmt, ...); | ||||
/** | |||||
* @ingroup AscendCL | |||||
* @brief get soc name | |||||
* | |||||
* @retval null for failed | |||||
* @retval OtherValues success | |||||
*/ | |||||
ACL_FUNC_VISIBILITY const char *aclrtGetSocName(); | |||||
#define ACL_APP_LOG(level, fmt, ...) \ | #define ACL_APP_LOG(level, fmt, ...) \ | ||||
aclAppLog(level, __FUNCTION__, __FILE__, __LINE__, fmt, ##__VA_ARGS__) | aclAppLog(level, __FUNCTION__, __FILE__, __LINE__, fmt, ##__VA_ARGS__) | ||||
@@ -282,6 +282,21 @@ ACL_FUNC_VISIBILITY aclError aclmdlAddDatasetBuffer(aclmdlDataset *dataset, aclD | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
* @brief Set aclTensorDesc to aclmdlDataset | |||||
* | |||||
* @param dataset [OUT] aclmdlDataset address of aclDataBuffer to be added | |||||
* @param tensorDesc [IN] aclTensorDesc address to be added | |||||
* @param index [IN] index of tensorDesc which to be added | |||||
* | |||||
* @retval ACL_SUCCESS The function is successfully executed. | |||||
* @retval OtherValues Failure | |||||
*/ | |||||
ACL_FUNC_VISIBILITY aclError aclmdlSetDatasetTensorDesc(aclmdlDataset *dataset, | |||||
aclTensorDesc *tensorDesc, | |||||
size_t index); | |||||
/** | |||||
* @ingroup AscendCL | |||||
* @brief Get the number of aclDataBuffer in aclmdlDataset | * @brief Get the number of aclDataBuffer in aclmdlDataset | ||||
* | * | ||||
* @param dataset [IN] aclmdlDataset poiter | * @param dataset [IN] aclmdlDataset poiter | ||||
@@ -38,9 +38,15 @@ typedef enum { | |||||
ACL_OP_DEBUG_LEVEL, | ACL_OP_DEBUG_LEVEL, | ||||
ACL_DEBUG_DIR, | ACL_DEBUG_DIR, | ||||
ACL_OP_COMPILER_CACHE_MODE, | ACL_OP_COMPILER_CACHE_MODE, | ||||
ACL_OP_COMPILER_CACHE_DIR | |||||
ACL_OP_COMPILER_CACHE_DIR, | |||||
ACL_OP_PERFORMANCE_MODE | |||||
} aclCompileOpt; | } aclCompileOpt; | ||||
typedef enum aclCompileFlag { | |||||
ACL_OP_COMPILE_DEFAULT, | |||||
ACL_OP_COMPILE_FUZZ | |||||
} aclOpCompileFlag; | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
* @brief compile op | * @brief compile op | ||||
@@ -108,6 +114,18 @@ ACL_FUNC_VISIBILITY aclError aclopCompileAndExecute(const char *opType, | |||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError aclSetCompileopt(aclCompileOpt opt, const char *value); | ACL_FUNC_VISIBILITY aclError aclSetCompileopt(aclCompileOpt opt, const char *value); | ||||
/** | |||||
* @ingroup AscendCL | |||||
* @brief set compile flag | |||||
* | |||||
* @param flag [IN] compile flag, ACL_OP_COMPILE_DEFAULT means compile with default mode | |||||
* ACL_OP_COMPILE_FUZZ means compile with fuzz mode | |||||
* | |||||
* @retval ACL_SUCCESS The function is successfully executed. | |||||
* @retval OtherValues Failure | |||||
*/ | |||||
ACL_FUNC_VISIBILITY aclError aclopSetCompileFlag(aclOpCompileFlag flag); | |||||
#ifdef __cplusplus | #ifdef __cplusplus | ||||
} | } | ||||
#endif | #endif | ||||
@@ -957,6 +957,17 @@ ACL_FUNC_VISIBILITY aclError aclrtDeviceDisablePeerAccess(int32_t peerDeviceId); | |||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError aclrtGetMemInfo(aclrtMemAttr attr, size_t *free, size_t *total); | ACL_FUNC_VISIBILITY aclError aclrtGetMemInfo(aclrtMemAttr attr, size_t *free, size_t *total); | ||||
/** | |||||
* @ingroup AscendCL | |||||
* @brief Set the timeout interval for waitting of op | |||||
* | |||||
* @param timeout [IN] op wait timeout | |||||
* | |||||
* @retval ACL_SUCCESS The function is successfully executed. | |||||
* @retval OtherValues Failure | |||||
*/ | |||||
ACL_FUNC_VISIBILITY aclError aclrtSetOpWaitTimeout(uint32_t timeout); | |||||
#ifdef __cplusplus | #ifdef __cplusplus | ||||
} | } | ||||
#endif | #endif | ||||
@@ -94,6 +94,7 @@ static const int32_t ACL_ERROR_RT_DEV_SETUP_ERROR = 507033; // device | |||||
static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error | static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error | ||||
static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error | static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error | ||||
static const int32_t ACL_ERROR_RT_SOCKET_CLOSE = 507901; // hdc disconnect | |||||
#ifdef __cplusplus | #ifdef __cplusplus | ||||
} | } | ||||
@@ -53,109 +53,123 @@ typedef void (*aclvencCallback)(acldvppPicDesc *input, acldvppStreamDesc *output | |||||
// Supported Pixel Format | // Supported Pixel Format | ||||
enum acldvppPixelFormat { | enum acldvppPixelFormat { | ||||
PIXEL_FORMAT_YUV_400 = 0, // 0 | |||||
PIXEL_FORMAT_YUV_SEMIPLANAR_420 = 1, // 1 | |||||
PIXEL_FORMAT_YVU_SEMIPLANAR_420 = 2, // 2 | |||||
PIXEL_FORMAT_YUV_SEMIPLANAR_422 = 3, // 3 | |||||
PIXEL_FORMAT_YVU_SEMIPLANAR_422 = 4, // 4 | |||||
PIXEL_FORMAT_YUV_SEMIPLANAR_444 = 5, // 5 | |||||
PIXEL_FORMAT_YVU_SEMIPLANAR_444 = 6, // 6 | |||||
PIXEL_FORMAT_YUYV_PACKED_422 = 7, // 7 | |||||
PIXEL_FORMAT_UYVY_PACKED_422 = 8, // 8 | |||||
PIXEL_FORMAT_YVYU_PACKED_422 = 9, // 9 | |||||
PIXEL_FORMAT_VYUY_PACKED_422 = 10, // 10 | |||||
PIXEL_FORMAT_YUV_PACKED_444 = 11, // 11 | |||||
PIXEL_FORMAT_RGB_888 = 12, // 12 | |||||
PIXEL_FORMAT_BGR_888 = 13, // 13 | |||||
PIXEL_FORMAT_ARGB_8888 = 14, // 14 | |||||
PIXEL_FORMAT_ABGR_8888 = 15, // 15 | |||||
PIXEL_FORMAT_RGBA_8888 = 16, // 16 | |||||
PIXEL_FORMAT_BGRA_8888 = 17, // 17 | |||||
PIXEL_FORMAT_YUV_SEMI_PLANNER_420_10BIT = 18, // 18 | |||||
PIXEL_FORMAT_YVU_SEMI_PLANNER_420_10BIT = 19, // 19 | |||||
PIXEL_FORMAT_YVU_PLANAR_420 = 20, // 20 | |||||
PIXEL_FORMAT_YVU_PLANAR_422, | |||||
PIXEL_FORMAT_YVU_PLANAR_444, | |||||
PIXEL_FORMAT_RGB_444 = 23, | |||||
PIXEL_FORMAT_BGR_444, | |||||
PIXEL_FORMAT_ARGB_4444, | |||||
PIXEL_FORMAT_ABGR_4444, | |||||
PIXEL_FORMAT_RGBA_4444, | |||||
PIXEL_FORMAT_BGRA_4444, | |||||
PIXEL_FORMAT_RGB_555, | |||||
PIXEL_FORMAT_BGR_555, | |||||
PIXEL_FORMAT_RGB_565, | |||||
PIXEL_FORMAT_BGR_565, | |||||
PIXEL_FORMAT_ARGB_1555, | |||||
PIXEL_FORMAT_ABGR_1555, | |||||
PIXEL_FORMAT_RGBA_1555, | |||||
PIXEL_FORMAT_BGRA_1555, | |||||
PIXEL_FORMAT_ARGB_8565, | |||||
PIXEL_FORMAT_ABGR_8565, | |||||
PIXEL_FORMAT_RGBA_8565, | |||||
PIXEL_FORMAT_BGRA_8565, | |||||
PIXEL_FORMAT_RGB_BAYER_8BPP = 50, | |||||
PIXEL_FORMAT_RGB_BAYER_10BPP, | |||||
PIXEL_FORMAT_RGB_BAYER_12BPP, | |||||
PIXEL_FORMAT_RGB_BAYER_14BPP, | |||||
PIXEL_FORMAT_RGB_BAYER_16BPP, | |||||
PIXEL_FORMAT_BGR_888_PLANAR = 70, | |||||
PIXEL_FORMAT_HSV_888_PACKAGE, | |||||
PIXEL_FORMAT_HSV_888_PLANAR, | |||||
PIXEL_FORMAT_LAB_888_PACKAGE, | |||||
PIXEL_FORMAT_LAB_888_PLANAR, | |||||
PIXEL_FORMAT_S8C1, | |||||
PIXEL_FORMAT_S8C2_PACKAGE, | |||||
PIXEL_FORMAT_S8C2_PLANAR, | |||||
PIXEL_FORMAT_S16C1, | |||||
PIXEL_FORMAT_U8C1, | |||||
PIXEL_FORMAT_U16C1, | |||||
PIXEL_FORMAT_S32C1, | |||||
PIXEL_FORMAT_U32C1, | |||||
PIXEL_FORMAT_U64C1, | |||||
PIXEL_FORMAT_S64C1, | |||||
PIXEL_FORMAT_YUV_SEMIPLANAR_440 = 1000, | |||||
PIXEL_FORMAT_YVU_SEMIPLANAR_440, | |||||
PIXEL_FORMAT_FLOAT32, | |||||
PIXEL_FORMAT_BUTT, | |||||
PIXEL_FORMAT_UNKNOWN = 10000 | |||||
PIXEL_FORMAT_YUV_400 = 0, // 0 | |||||
PIXEL_FORMAT_YUV_SEMIPLANAR_420 = 1, // 1 | |||||
PIXEL_FORMAT_YVU_SEMIPLANAR_420 = 2, // 2 | |||||
PIXEL_FORMAT_YUV_SEMIPLANAR_422 = 3, // 3 | |||||
PIXEL_FORMAT_YVU_SEMIPLANAR_422 = 4, // 4 | |||||
PIXEL_FORMAT_YUV_SEMIPLANAR_444 = 5, // 5 | |||||
PIXEL_FORMAT_YVU_SEMIPLANAR_444 = 6, // 6 | |||||
PIXEL_FORMAT_YUYV_PACKED_422 = 7, // 7 | |||||
PIXEL_FORMAT_UYVY_PACKED_422 = 8, // 8 | |||||
PIXEL_FORMAT_YVYU_PACKED_422 = 9, // 9 | |||||
PIXEL_FORMAT_VYUY_PACKED_422 = 10, // 10 | |||||
PIXEL_FORMAT_YUV_PACKED_444 = 11, // 11 | |||||
PIXEL_FORMAT_RGB_888 = 12, // 12 | |||||
PIXEL_FORMAT_BGR_888 = 13, // 13 | |||||
PIXEL_FORMAT_ARGB_8888 = 14, // 14 | |||||
PIXEL_FORMAT_ABGR_8888 = 15, // 15 | |||||
PIXEL_FORMAT_RGBA_8888 = 16, // 16 | |||||
PIXEL_FORMAT_BGRA_8888 = 17, // 17 | |||||
PIXEL_FORMAT_YUV_SEMI_PLANNER_420_10BIT = 18, // 18 | |||||
PIXEL_FORMAT_YVU_SEMI_PLANNER_420_10BIT = 19, // 19 | |||||
PIXEL_FORMAT_YVU_PLANAR_420 = 20, // 20 | |||||
PIXEL_FORMAT_YVU_PLANAR_422, | |||||
PIXEL_FORMAT_YVU_PLANAR_444, | |||||
PIXEL_FORMAT_RGB_444 = 23, | |||||
PIXEL_FORMAT_BGR_444, | |||||
PIXEL_FORMAT_ARGB_4444, | |||||
PIXEL_FORMAT_ABGR_4444, | |||||
PIXEL_FORMAT_RGBA_4444, | |||||
PIXEL_FORMAT_BGRA_4444, | |||||
PIXEL_FORMAT_RGB_555, | |||||
PIXEL_FORMAT_BGR_555, | |||||
PIXEL_FORMAT_RGB_565, | |||||
PIXEL_FORMAT_BGR_565, | |||||
PIXEL_FORMAT_ARGB_1555, | |||||
PIXEL_FORMAT_ABGR_1555, | |||||
PIXEL_FORMAT_RGBA_1555, | |||||
PIXEL_FORMAT_BGRA_1555, | |||||
PIXEL_FORMAT_ARGB_8565, | |||||
PIXEL_FORMAT_ABGR_8565, | |||||
PIXEL_FORMAT_RGBA_8565, | |||||
PIXEL_FORMAT_BGRA_8565, | |||||
PIXEL_FORMAT_RGB_BAYER_8BPP = 50, | |||||
PIXEL_FORMAT_RGB_BAYER_10BPP, | |||||
PIXEL_FORMAT_RGB_BAYER_12BPP, | |||||
PIXEL_FORMAT_RGB_BAYER_14BPP, | |||||
PIXEL_FORMAT_RGB_BAYER_16BPP, | |||||
PIXEL_FORMAT_BGR_888_PLANAR = 70, | |||||
PIXEL_FORMAT_HSV_888_PACKAGE, | |||||
PIXEL_FORMAT_HSV_888_PLANAR, | |||||
PIXEL_FORMAT_LAB_888_PACKAGE, | |||||
PIXEL_FORMAT_LAB_888_PLANAR, | |||||
PIXEL_FORMAT_S8C1, | |||||
PIXEL_FORMAT_S8C2_PACKAGE, | |||||
PIXEL_FORMAT_S8C2_PLANAR, | |||||
PIXEL_FORMAT_S16C1, | |||||
PIXEL_FORMAT_U8C1, | |||||
PIXEL_FORMAT_U16C1, | |||||
PIXEL_FORMAT_S32C1, | |||||
PIXEL_FORMAT_U32C1, | |||||
PIXEL_FORMAT_U64C1, | |||||
PIXEL_FORMAT_S64C1, | |||||
PIXEL_FORMAT_YUV_SEMIPLANAR_440 = 1000, | |||||
PIXEL_FORMAT_YVU_SEMIPLANAR_440, | |||||
PIXEL_FORMAT_FLOAT32, | |||||
PIXEL_FORMAT_BUTT, | |||||
PIXEL_FORMAT_UNKNOWN = 10000 | |||||
}; | }; | ||||
// Stream Format | // Stream Format | ||||
enum acldvppStreamFormat { H265_MAIN_LEVEL = 0, H264_BASELINE_LEVEL, H264_MAIN_LEVEL, H264_HIGH_LEVEL }; | |||||
enum acldvppStreamFormat { | |||||
H265_MAIN_LEVEL = 0, | |||||
H264_BASELINE_LEVEL, | |||||
H264_MAIN_LEVEL, | |||||
H264_HIGH_LEVEL | |||||
}; | |||||
// Supported Channel Mode | // Supported Channel Mode | ||||
enum acldvppChannelMode { DVPP_CHNMODE_VPC = 1, DVPP_CHNMODE_JPEGD = 2, DVPP_CHNMODE_JPEGE = 4 }; | |||||
enum acldvppChannelMode { | |||||
DVPP_CHNMODE_VPC = 1, | |||||
DVPP_CHNMODE_JPEGD = 2, | |||||
DVPP_CHNMODE_JPEGE = 4 | |||||
}; | |||||
// Supported Border Type | // Supported Border Type | ||||
enum acldvppBorderType { BORDER_CONSTANT = 0, BORDER_REPLICATE, BORDER_REFLECT, BORDER_REFLECT_101 }; | |||||
enum acldvppBorderType { | |||||
BORDER_CONSTANT = 0, | |||||
BORDER_REPLICATE, | |||||
BORDER_REFLECT, | |||||
BORDER_REFLECT_101 | |||||
}; | |||||
// Venc parameter type | // Venc parameter type | ||||
enum aclvencChannelDescParamType { | enum aclvencChannelDescParamType { | ||||
ACL_VENC_THREAD_ID_UINT64 = 0, | |||||
ACL_VENC_CALLBACK_PTR, | |||||
ACL_VENC_PIXEL_FORMAT_UINT32, | |||||
ACL_VENC_ENCODE_TYPE_UINT32, | |||||
ACL_VENC_PIC_WIDTH_UINT32, | |||||
ACL_VENC_PIC_HEIGHT_UINT32, | |||||
ACL_VENC_KEY_FRAME_INTERVAL_UINT32, | |||||
ACL_VENC_BUF_ADDR_PTR, | |||||
ACL_VENC_BUF_SIZE_UINT32, | |||||
ACL_VENC_RC_MODE_UINT32, | |||||
ACL_VENC_SRC_RATE_UINT32, | |||||
ACL_VENC_MAX_BITRATE_UINT32, | |||||
ACL_VENC_MAX_IP_PROP_UINT32 | |||||
ACL_VENC_THREAD_ID_UINT64 = 0, | |||||
ACL_VENC_CALLBACK_PTR, | |||||
ACL_VENC_PIXEL_FORMAT_UINT32, | |||||
ACL_VENC_ENCODE_TYPE_UINT32, | |||||
ACL_VENC_PIC_WIDTH_UINT32, | |||||
ACL_VENC_PIC_HEIGHT_UINT32, | |||||
ACL_VENC_KEY_FRAME_INTERVAL_UINT32, | |||||
ACL_VENC_BUF_ADDR_PTR, | |||||
ACL_VENC_BUF_SIZE_UINT32, | |||||
ACL_VENC_RC_MODE_UINT32, | |||||
ACL_VENC_SRC_RATE_UINT32, | |||||
ACL_VENC_MAX_BITRATE_UINT32, | |||||
ACL_VENC_MAX_IP_PROP_UINT32 | |||||
}; | }; | ||||
// Jpeg picture format | // Jpeg picture format | ||||
enum acldvppJpegFormat { | enum acldvppJpegFormat { | ||||
ACL_JPEG_CSS_444 = 0, | |||||
ACL_JPEG_CSS_422, | |||||
ACL_JPEG_CSS_420, | |||||
ACL_JPEG_CSS_GRAY, | |||||
ACL_JPEG_CSS_440, | |||||
ACL_JPEG_CSS_411, | |||||
ACL_JPEG_CSS_UNKNOWN = 1000 | |||||
ACL_JPEG_CSS_444 = 0, | |||||
ACL_JPEG_CSS_422, | |||||
ACL_JPEG_CSS_420, | |||||
ACL_JPEG_CSS_GRAY, | |||||
ACL_JPEG_CSS_440, | |||||
ACL_JPEG_CSS_411, | |||||
ACL_JPEG_CSS_UNKNOWN = 1000 | |||||
}; | }; | ||||
/** | /** | ||||
@@ -509,7 +523,9 @@ ACL_FUNC_VISIBILITY uint32_t acldvppGetPicDescRetCode(const acldvppPicDesc *picD | |||||
* @retval null for failed. | * @retval null for failed. | ||||
* @retval other success | * @retval other success | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY acldvppRoiConfig *acldvppCreateRoiConfig(uint32_t left, uint32_t right, uint32_t top, | |||||
ACL_FUNC_VISIBILITY acldvppRoiConfig *acldvppCreateRoiConfig(uint32_t left, | |||||
uint32_t right, | |||||
uint32_t top, | |||||
uint32_t bottom); | uint32_t bottom); | ||||
/** | /** | ||||
@@ -588,7 +604,10 @@ ACL_FUNC_VISIBILITY aclError acldvppSetRoiConfigBottom(acldvppRoiConfig *config, | |||||
* @retval ACL_SUCCESS The function is successfully executed. | * @retval ACL_SUCCESS The function is successfully executed. | ||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppSetRoiConfig(acldvppRoiConfig *config, uint32_t left, uint32_t right, uint32_t top, | |||||
ACL_FUNC_VISIBILITY aclError acldvppSetRoiConfig(acldvppRoiConfig *config, | |||||
uint32_t left, | |||||
uint32_t right, | |||||
uint32_t top, | |||||
uint32_t bottom); | uint32_t bottom); | ||||
/** | /** | ||||
@@ -1077,8 +1096,7 @@ ACL_FUNC_VISIBILITY aclError aclvencSetChannelDescMaxBitRate(aclvencChannelDesc | |||||
* @retval ACL_SUCCESS for success, other for failure | * @retval ACL_SUCCESS for success, other for failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError aclvencSetChannelDescParam(aclvencChannelDesc *channelDesc, | ACL_FUNC_VISIBILITY aclError aclvencSetChannelDescParam(aclvencChannelDesc *channelDesc, | ||||
aclvencChannelDescParamType paramType, size_t length, | |||||
const void *param); | |||||
aclvencChannelDescParamType paramType, size_t length, const void *param); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1227,8 +1245,7 @@ ACL_FUNC_VISIBILITY uint32_t aclvencGetChannelDescMaxBitRate(const aclvencChanne | |||||
* @retval ACL_SUCCESS for success, other for failure | * @retval ACL_SUCCESS for success, other for failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError aclvencGetChannelDescParam(const aclvencChannelDesc *channelDesc, | ACL_FUNC_VISIBILITY aclError aclvencGetChannelDescParam(const aclvencChannelDesc *channelDesc, | ||||
aclvencChannelDescParamType paramType, size_t length, | |||||
size_t *paramRetSize, void *param); | |||||
aclvencChannelDescParamType paramType, size_t length, size_t *paramRetSize, void *param); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1528,7 +1545,10 @@ ACL_FUNC_VISIBILITY aclError aclvdecDestroyFrameConfig(aclvdecFrameConfig *vdecF | |||||
* @retval ACL_SUCCESS The function is successfully executed. | * @retval ACL_SUCCESS The function is successfully executed. | ||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfo(const void *data, uint32_t size, uint32_t *width, uint32_t *height, | |||||
ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfo(const void *data, | |||||
uint32_t size, | |||||
uint32_t *width, | |||||
uint32_t *height, | |||||
int32_t *components); | int32_t *components); | ||||
/** | /** | ||||
@@ -1545,8 +1565,11 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfo(const void *data, uint32_t | |||||
* @retval ACL_SUCCESS The function is successfully executed. | * @retval ACL_SUCCESS The function is successfully executed. | ||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfoV2(const void *data, uint32_t size, uint32_t *width, | |||||
uint32_t *height, int32_t *components, | |||||
ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfoV2(const void *data, | |||||
uint32_t size, | |||||
uint32_t *width, | |||||
uint32_t *height, | |||||
int32_t *components, | |||||
acldvppJpegFormat *format); | acldvppJpegFormat *format); | ||||
/** | /** | ||||
@@ -1561,7 +1584,8 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegGetImageInfoV2(const void *data, uint32_ | |||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppJpegPredictEncSize(const acldvppPicDesc *inputDesc, | ACL_FUNC_VISIBILITY aclError acldvppJpegPredictEncSize(const acldvppPicDesc *inputDesc, | ||||
const acldvppJpegeConfig *config, uint32_t *size); | |||||
const acldvppJpegeConfig *config, | |||||
uint32_t *size); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1575,8 +1599,10 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegPredictEncSize(const acldvppPicDesc *inp | |||||
* @retval ACL_SUCCESS The function is successfully executed. | * @retval ACL_SUCCESS The function is successfully executed. | ||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppJpegPredictDecSize(const void *data, uint32_t dataSize, | |||||
acldvppPixelFormat outputPixelFormat, uint32_t *decSize); | |||||
ACL_FUNC_VISIBILITY aclError acldvppJpegPredictDecSize(const void *data, | |||||
uint32_t dataSize, | |||||
acldvppPixelFormat outputPixelFormat, | |||||
uint32_t *decSize); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1591,8 +1617,11 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegPredictDecSize(const void *data, uint32_ | |||||
* @retval ACL_SUCCESS The function is successfully executed. | * @retval ACL_SUCCESS The function is successfully executed. | ||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppPngGetImageInfo(const void *data, uint32_t dataSize, uint32_t *width, | |||||
uint32_t *height, int32_t *components); | |||||
ACL_FUNC_VISIBILITY aclError acldvppPngGetImageInfo(const void *data, | |||||
uint32_t dataSize, | |||||
uint32_t *width, | |||||
uint32_t *height, | |||||
int32_t *components); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1606,8 +1635,10 @@ ACL_FUNC_VISIBILITY aclError acldvppPngGetImageInfo(const void *data, uint32_t d | |||||
* @retval ACL_SUCCESS The function is successfully executed. | * @retval ACL_SUCCESS The function is successfully executed. | ||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppPngPredictDecSize(const void *data, uint32_t dataSize, | |||||
acldvppPixelFormat outputPixelFormat, uint32_t *decSize); | |||||
ACL_FUNC_VISIBILITY aclError acldvppPngPredictDecSize(const void *data, | |||||
uint32_t dataSize, | |||||
acldvppPixelFormat outputPixelFormat, | |||||
uint32_t *decSize); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1671,8 +1702,10 @@ ACL_FUNC_VISIBILITY aclError acldvppDestroyChannel(acldvppChannelDesc *channelDe | |||||
* @see acldvppCreateChannel | acldvppCreatePicDesc | * @see acldvppCreateChannel | acldvppCreatePicDesc | ||||
* | acldvppCreateResizeConfig | * | acldvppCreateResizeConfig | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcResizeAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, acldvppResizeConfig *resizeConfig, | |||||
ACL_FUNC_VISIBILITY aclError acldvppVpcResizeAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, | |||||
acldvppResizeConfig *resizeConfig, | |||||
aclrtStream stream); | aclrtStream stream); | ||||
/** | /** | ||||
@@ -1708,8 +1741,10 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcResizeAsync(acldvppChannelDesc *channelDe | |||||
* @retval ACL_SUCCESS The function is successfully executed. | * @retval ACL_SUCCESS The function is successfully executed. | ||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, acldvppRoiConfig *cropArea, | |||||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, | |||||
acldvppRoiConfig *cropArea, | |||||
aclrtStream stream); | aclrtStream stream); | ||||
/** | /** | ||||
@@ -1746,9 +1781,13 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcCropAsync(acldvppChannelDesc *channelDesc | |||||
* @retval ACL_SUCCESS The function is successfully executed. | * @retval ACL_SUCCESS The function is successfully executed. | ||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizeAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, acldvppRoiConfig *cropArea, | |||||
acldvppResizeConfig *resizeConfig, aclrtStream stream); | |||||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizeAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, | |||||
acldvppRoiConfig *cropArea, | |||||
acldvppResizeConfig *resizeConfig, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1772,9 +1811,12 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizeAsync(acldvppChannelDesc *chann | |||||
* @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | * @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropAsync(acldvppChannelDesc *channelDesc, | ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropAsync(acldvppChannelDesc *channelDesc, | ||||
acldvppBatchPicDesc *srcBatchPicDescs, uint32_t *roiNums, | |||||
uint32_t size, acldvppBatchPicDesc *dstBatchPicDescs, | |||||
acldvppRoiConfig *cropAreas[], aclrtStream stream); | |||||
acldvppBatchPicDesc *srcBatchPicDescs, | |||||
uint32_t *roiNums, | |||||
uint32_t size, | |||||
acldvppBatchPicDesc *dstBatchPicDescs, | |||||
acldvppRoiConfig *cropAreas[], | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1799,10 +1841,13 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropAsync(acldvppChannelDesc *channe | |||||
* @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | acldvppCreateDvppConfig | * @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | acldvppCreateDvppConfig | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizeAsync(acldvppChannelDesc *channelDesc, | ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizeAsync(acldvppChannelDesc *channelDesc, | ||||
acldvppBatchPicDesc *srcBatchPicDescs, uint32_t *roiNums, | |||||
uint32_t size, acldvppBatchPicDesc *dstBatchPicDescs, | |||||
acldvppBatchPicDesc *srcBatchPicDescs, | |||||
uint32_t *roiNums, | |||||
uint32_t size, | |||||
acldvppBatchPicDesc *dstBatchPicDescs, | |||||
acldvppRoiConfig *cropAreas[], | acldvppRoiConfig *cropAreas[], | ||||
acldvppResizeConfig *resizeConfig, aclrtStream stream); | |||||
acldvppResizeConfig *resizeConfig, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1825,9 +1870,12 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizeAsync(acldvppChannelDesc * | |||||
* | * | ||||
* @see acldvppCreateChannel | acldvppCreatePicDesc | acldvppCreateRoiConfig | * @see acldvppCreateChannel | acldvppCreatePicDesc | acldvppCreateRoiConfig | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropAndPasteAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, acldvppRoiConfig *cropArea, | |||||
acldvppRoiConfig *pasteArea, aclrtStream stream); | |||||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropAndPasteAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, | |||||
acldvppRoiConfig *cropArea, | |||||
acldvppRoiConfig *pasteArea, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1851,10 +1899,13 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcCropAndPasteAsync(acldvppChannelDesc *cha | |||||
* | * | ||||
* @see acldvppCreateChannel | acldvppCreatePicDesc | acldvppCreateRoiConfig | acldvppCreateResizeConfig | * @see acldvppCreateChannel | acldvppCreatePicDesc | acldvppCreateRoiConfig | acldvppCreateResizeConfig | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizePasteAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, acldvppRoiConfig *cropArea, | |||||
ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizePasteAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, | |||||
acldvppRoiConfig *cropArea, | |||||
acldvppRoiConfig *pasteArea, | acldvppRoiConfig *pasteArea, | ||||
acldvppResizeConfig *resizeConfig, aclrtStream stream); | |||||
acldvppResizeConfig *resizeConfig, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1879,11 +1930,14 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcCropResizePasteAsync(acldvppChannelDesc * | |||||
* | * | ||||
* @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | * @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropAndPasteAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppBatchPicDesc *srcBatchPicDescs, uint32_t *roiNums, | |||||
uint32_t size, acldvppBatchPicDesc *dstBatchPicDescs, | |||||
acldvppRoiConfig *cropAreas[], | |||||
acldvppRoiConfig *pasteAreas[], aclrtStream stream); | |||||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropAndPasteAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppBatchPicDesc *srcBatchPicDescs, | |||||
uint32_t *roiNums, | |||||
uint32_t size, | |||||
acldvppBatchPicDesc *dstBatchPicDescs, | |||||
acldvppRoiConfig *cropAreas[], | |||||
acldvppRoiConfig *pasteAreas[], | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1909,10 +1963,16 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropAndPasteAsync(acldvppChannelDesc | |||||
* | * | ||||
* @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | acldvppCreateResizeConfig | * @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | acldvppCreateResizeConfig | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizePasteAsync( | |||||
acldvppChannelDesc *channelDesc, acldvppBatchPicDesc *srcBatchPicDescs, uint32_t *roiNums, uint32_t size, | |||||
acldvppBatchPicDesc *dstBatchPicDescs, acldvppRoiConfig *cropAreas[], acldvppRoiConfig *pasteAreas[], | |||||
acldvppResizeConfig *resizeConfig, aclrtStream stream); | |||||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizePasteAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppBatchPicDesc *srcBatchPicDescs, | |||||
uint32_t *roiNums, | |||||
uint32_t size, | |||||
acldvppBatchPicDesc *dstBatchPicDescs, | |||||
acldvppRoiConfig *cropAreas[], | |||||
acldvppRoiConfig *pasteAreas[], | |||||
acldvppResizeConfig *resizeConfig, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1940,8 +2000,11 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizePasteAsync( | |||||
* | * | ||||
* @see acldvppCreateChannel | acldvppCreatePicDesc | * @see acldvppCreateChannel | acldvppCreatePicDesc | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppJpegDecodeAsync(acldvppChannelDesc *channelDesc, const void *data, uint32_t size, | |||||
acldvppPicDesc *outputDesc, aclrtStream stream); | |||||
ACL_FUNC_VISIBILITY aclError acldvppJpegDecodeAsync(acldvppChannelDesc *channelDesc, | |||||
const void *data, | |||||
uint32_t size, | |||||
acldvppPicDesc *outputDesc, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -1959,8 +2022,11 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegDecodeAsync(acldvppChannelDesc *channelD | |||||
* | * | ||||
* @see acldvppCreateChannel | acldvppCreateJpegeConfig | * @see acldvppCreateChannel | acldvppCreateJpegeConfig | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppJpegEncodeAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||||
const void *data, uint32_t *size, acldvppJpegeConfig *config, | |||||
ACL_FUNC_VISIBILITY aclError acldvppJpegEncodeAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppPicDesc *inputDesc, | |||||
const void *data, | |||||
uint32_t *size, | |||||
acldvppJpegeConfig *config, | |||||
aclrtStream stream); | aclrtStream stream); | ||||
/** | /** | ||||
@@ -1978,8 +2044,11 @@ ACL_FUNC_VISIBILITY aclError acldvppJpegEncodeAsync(acldvppChannelDesc *channelD | |||||
* | * | ||||
* @see acldvppCreateChannel | acldvppCreatePicDesc | * @see acldvppCreateChannel | acldvppCreatePicDesc | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppPngDecodeAsync(acldvppChannelDesc *channelDesc, const void *data, uint32_t size, | |||||
acldvppPicDesc *outputDesc, aclrtStream stream); | |||||
ACL_FUNC_VISIBILITY aclError acldvppPngDecodeAsync(acldvppChannelDesc *channelDesc, | |||||
const void *data, | |||||
uint32_t size, | |||||
acldvppPicDesc *outputDesc, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2034,8 +2103,11 @@ ACL_FUNC_VISIBILITY aclError aclvdecDestroyChannel(aclvdecChannelDesc *channelDe | |||||
* | * | ||||
* @see aclvdecCreateChannel | acldvppCreateStreamDesc | acldvppCreatePicDesc | * @see aclvdecCreateChannel | acldvppCreateStreamDesc | acldvppCreatePicDesc | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError aclvdecSendFrame(aclvdecChannelDesc *channelDesc, acldvppStreamDesc *input, | |||||
acldvppPicDesc *output, aclvdecFrameConfig *config, void *userData); | |||||
ACL_FUNC_VISIBILITY aclError aclvdecSendFrame(aclvdecChannelDesc *channelDesc, | |||||
acldvppStreamDesc *input, | |||||
acldvppPicDesc *output, | |||||
aclvdecFrameConfig *config, | |||||
void *userData); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2054,8 +2126,10 @@ ACL_FUNC_VISIBILITY aclError aclvdecSendFrame(aclvdecChannelDesc *channelDesc, a | |||||
* | * | ||||
* @see aclvdecCreateChannel | acldvppCreateStreamDesc | acldvppCreatePicDesc | aclvdecSendFrame | * @see aclvdecCreateChannel | acldvppCreateStreamDesc | acldvppCreatePicDesc | aclvdecSendFrame | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError aclvdecSendSkippedFrame(aclvdecChannelDesc *channelDesc, acldvppStreamDesc *input, | |||||
aclvdecFrameConfig *config, void *userData); | |||||
ACL_FUNC_VISIBILITY aclError aclvdecSendSkippedFrame(aclvdecChannelDesc *channelDesc, | |||||
acldvppStreamDesc *input, | |||||
aclvdecFrameConfig *config, | |||||
void *userData); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2076,8 +2150,10 @@ ACL_FUNC_VISIBILITY aclError aclvdecSendSkippedFrame(aclvdecChannelDesc *channel | |||||
* | * | ||||
* @see acldvppCreateChannel | acldvppCreatePicDesc | * @see acldvppCreateChannel | acldvppCreatePicDesc | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcConvertColorAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, aclrtStream stream); | |||||
ACL_FUNC_VISIBILITY aclError acldvppVpcConvertColorAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2099,8 +2175,11 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcConvertColorAsync(acldvppChannelDesc *cha | |||||
* | * | ||||
* @see acldvppCreateChannel | acldvppCreatePicDesc | * @see acldvppCreateChannel | acldvppCreatePicDesc | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcPyrDownAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, void *reserve, aclrtStream stream); | |||||
ACL_FUNC_VISIBILITY aclError acldvppVpcPyrDownAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, | |||||
void *reserve, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2112,7 +2191,8 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcPyrDownAsync(acldvppChannelDesc *channelD | |||||
* @retval ACL_SUCCESS The function is successfully executed. | * @retval ACL_SUCCESS The function is successfully executed. | ||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppSetChannelDescMode(acldvppChannelDesc *channelDesc, uint32_t mode); | |||||
ACL_FUNC_VISIBILITY aclError acldvppSetChannelDescMode(acldvppChannelDesc *channelDesc, | |||||
uint32_t mode); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2147,7 +2227,8 @@ ACL_FUNC_VISIBILITY uint32_t acldvppGetResizeConfigInterpolation(const acldvppRe | |||||
* @retval ACL_SUCCESS The function is successfully executed. | * @retval ACL_SUCCESS The function is successfully executed. | ||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError aclvdecSetChannelDescOutMode(aclvdecChannelDesc *channelDesc, uint32_t outMode); | |||||
ACL_FUNC_VISIBILITY aclError aclvdecSetChannelDescOutMode(aclvdecChannelDesc *channelDesc, | |||||
uint32_t outMode); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2244,7 +2325,9 @@ ACL_FUNC_VISIBILITY uint32_t acldvppGetLutMapDims(const acldvppLutMap *lutMap); | |||||
* @retval ACL_SUCCESS The function is successfully executed. | * @retval ACL_SUCCESS The function is successfully executed. | ||||
* @retval OtherValues Failure | * @retval OtherValues Failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppGetLutMapData(const acldvppLutMap *lutMap, uint32_t dim, uint8_t **data, | |||||
ACL_FUNC_VISIBILITY aclError acldvppGetLutMapData(const acldvppLutMap *lutMap, | |||||
uint32_t dim, | |||||
uint8_t **data, | |||||
uint32_t *len); | uint32_t *len); | ||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2262,8 +2345,10 @@ ACL_FUNC_VISIBILITY aclError acldvppGetLutMapData(const acldvppLutMap *lutMap, u | |||||
* @see acldvppCreateChannel|acldvppCreatePicDesc|acldvppCreateLutMap | * @see acldvppCreateChannel|acldvppCreatePicDesc|acldvppCreateLutMap | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcEqualizeHistAsync(const acldvppChannelDesc *channelDesc, | ACL_FUNC_VISIBILITY aclError acldvppVpcEqualizeHistAsync(const acldvppChannelDesc *channelDesc, | ||||
const acldvppPicDesc *inputDesc, acldvppPicDesc *outputDesc, | |||||
const acldvppLutMap *lutMap, aclrtStream stream); | |||||
const acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, | |||||
const acldvppLutMap *lutMap, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2284,7 +2369,8 @@ ACL_FUNC_VISIBILITY acldvppBorderConfig *acldvppCreateBorderConfig(); | |||||
* | * | ||||
* @retval ACL_SUCCESS for success, other for failure | * @retval ACL_SUCCESS for success, other for failure | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppSetBorderConfigValue(acldvppBorderConfig *borderConfig, uint32_t index, | |||||
ACL_FUNC_VISIBILITY aclError acldvppSetBorderConfigValue(acldvppBorderConfig *borderConfig, | |||||
uint32_t index, | |||||
double value); | double value); | ||||
/** | /** | ||||
@@ -2429,8 +2515,10 @@ ACL_FUNC_VISIBILITY aclError acldvppDestroyBorderConfig(acldvppBorderConfig *bor | |||||
* @see acldvppCreateChannel|acldvppCreatePicDesc|acldvppCreateBorderConfig | * @see acldvppCreateChannel|acldvppCreatePicDesc|acldvppCreateBorderConfig | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcMakeBorderAsync(const acldvppChannelDesc *channelDesc, | ACL_FUNC_VISIBILITY aclError acldvppVpcMakeBorderAsync(const acldvppChannelDesc *channelDesc, | ||||
const acldvppPicDesc *inputDesc, acldvppPicDesc *outputDesc, | |||||
const acldvppBorderConfig *borderConfig, aclrtStream stream); | |||||
const acldvppPicDesc *inputDesc, | |||||
acldvppPicDesc *outputDesc, | |||||
const acldvppBorderConfig *borderConfig, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2447,8 +2535,11 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcMakeBorderAsync(const acldvppChannelDesc | |||||
* | * | ||||
* @see acldvppCreateChannel | acldvppCreatePicDesc | acldvppCreateHist | * @see acldvppCreateChannel | acldvppCreatePicDesc | acldvppCreateHist | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcCalcHistAsync(acldvppChannelDesc *channelDesc, acldvppPicDesc *srcPicDesc, | |||||
acldvppHist *hist, void *reserve, aclrtStream stream); | |||||
ACL_FUNC_VISIBILITY aclError acldvppVpcCalcHistAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppPicDesc *srcPicDesc, | |||||
acldvppHist *hist, | |||||
void *reserve, | |||||
aclrtStream stream); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2457,7 +2548,7 @@ ACL_FUNC_VISIBILITY aclError acldvppVpcCalcHistAsync(acldvppChannelDesc *channel | |||||
* @retval null for failed. | * @retval null for failed. | ||||
* @retval OtherValues success. | * @retval OtherValues success. | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY acldvppHist *acldvppCreateHist(); | |||||
ACL_FUNC_VISIBILITY acldvppHist* acldvppCreateHist(); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2514,7 +2605,7 @@ ACL_FUNC_VISIBILITY aclError acldvppGetHistData(acldvppHist *hist, uint32_t dim, | |||||
* | * | ||||
* @see acldvppCreateHist | acldvppVpcCalcHistAsync | * @see acldvppCreateHist | acldvppVpcCalcHistAsync | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY uint32_t acldvppGetHistRetCode(acldvppHist *hist); | |||||
ACL_FUNC_VISIBILITY uint32_t acldvppGetHistRetCode(acldvppHist* hist); | |||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
@@ -2533,6 +2624,7 @@ ACL_FUNC_VISIBILITY uint32_t acldvppGetHistRetCode(acldvppHist *hist); | |||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppClearHist(acldvppHist *hist); | ACL_FUNC_VISIBILITY aclError acldvppClearHist(acldvppHist *hist); | ||||
/** | /** | ||||
* @ingroup AscendCL | * @ingroup AscendCL | ||||
* @brief dvpp vpc batch crop, resize config and make border. | * @brief dvpp vpc batch crop, resize config and make border. | ||||
@@ -2556,13 +2648,18 @@ ACL_FUNC_VISIBILITY aclError acldvppClearHist(acldvppHist *hist); | |||||
* | * | ||||
* @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | acldvppCreateResizeConfig | * @see acldvppCreateChannel | acldvppCreateBatchPicDesc | acldvppCreateRoiConfig | acldvppCreateResizeConfig | ||||
*/ | */ | ||||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizeMakeBorderAsync( | |||||
acldvppChannelDesc *channelDesc, acldvppBatchPicDesc *srcBatchPicDescs, uint32_t *roiNums, uint32_t size, | |||||
acldvppBatchPicDesc *dstBatchPicDescs, acldvppRoiConfig *cropAreas[], acldvppBorderConfig *borderCfgs[], | |||||
acldvppResizeConfig *resizeConfig, aclrtStream stream); | |||||
ACL_FUNC_VISIBILITY aclError acldvppVpcBatchCropResizeMakeBorderAsync(acldvppChannelDesc *channelDesc, | |||||
acldvppBatchPicDesc *srcBatchPicDescs, | |||||
uint32_t *roiNums, | |||||
uint32_t size, | |||||
acldvppBatchPicDesc *dstBatchPicDescs, | |||||
acldvppRoiConfig *cropAreas[], | |||||
acldvppBorderConfig *borderCfgs[], | |||||
acldvppResizeConfig *resizeConfig, | |||||
aclrtStream stream); | |||||
#ifdef __cplusplus | #ifdef __cplusplus | ||||
} | } | ||||
#endif | #endif | ||||
#endif // INC_EXTERNAL_ACL_OPS_ACL_DVPP_H_ | |||||
#endif // INC_EXTERNAL_ACL_OPS_ACL_DVPP_H_ |
@@ -119,6 +119,15 @@ extern HcclResult HcclAllGather(void *sendBuf, void *recvBuf, uint64_t sendCount | |||||
HcclComm comm, aclrtStream stream); | HcclComm comm, aclrtStream stream); | ||||
/** | /** | ||||
* @brief Barrier operator. | |||||
* | |||||
* @param comm A pointer identifying the communication resource based on. | |||||
* @param stream A pointer identifying the stream information. | |||||
* @return HcclResult | |||||
*/ | |||||
extern HcclResult HcclBarrier(HcclComm comm, aclrtStream stream); | |||||
/** | |||||
* @brief Destroy HCCL comm | * @brief Destroy HCCL comm | ||||
* | * | ||||
* @param comm A pointer identifying the communication resource targetting | * @param comm A pointer identifying the communication resource targetting | ||||
@@ -94,6 +94,7 @@ static const int32_t ACL_ERROR_RT_DEV_SETUP_ERROR = 507033; // device | |||||
static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error | static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error | ||||
static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error | static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error | ||||
static const int32_t ACL_ERROR_RT_SOCKET_CLOSE = 507901; // hdc disconnect | |||||
#ifdef __cplusplus | #ifdef __cplusplus | ||||
} | } | ||||
@@ -56,6 +56,7 @@ | |||||
#include <dirent.h> | #include <dirent.h> | ||||
#include <getopt.h> | #include <getopt.h> | ||||
#include <libgen.h> | #include <libgen.h> | ||||
#include <malloc.h> | |||||
#include <linux/types.h> | #include <linux/types.h> | ||||
#include <linux/hdreg.h> | #include <linux/hdreg.h> | ||||
@@ -550,6 +550,10 @@ MMPA_FUNC_VISIBILITY mmFileHandle mmShmOpen(const CHAR *name, INT32 oflag, mmMod | |||||
MMPA_FUNC_VISIBILITY INT32 mmShmUnlink(const CHAR *name); | MMPA_FUNC_VISIBILITY INT32 mmShmUnlink(const CHAR *name); | ||||
MMPA_FUNC_VISIBILITY VOID *mmMmap(mmFd_t fd, mmSize_t size, mmOfft_t offset, mmFd_t *extra, INT32 prot, INT32 flags); | MMPA_FUNC_VISIBILITY VOID *mmMmap(mmFd_t fd, mmSize_t size, mmOfft_t offset, mmFd_t *extra, INT32 prot, INT32 flags); | ||||
MMPA_FUNC_VISIBILITY INT32 mmMunMap(VOID *data, mmSize_t size, mmFd_t *extra); | MMPA_FUNC_VISIBILITY INT32 mmMunMap(VOID *data, mmSize_t size, mmFd_t *extra); | ||||
MMPA_FUNC_VISIBILITY mmSize mmGetPageSize(); | |||||
MMPA_FUNC_VISIBILITY VOID *mmAlignMalloc(mmSize mallocSize, mmSize alignSize); | |||||
MMPA_FUNC_VISIBILITY VOID mmAlignFree(VOID *addr); | |||||
#define MMPA_DLL_API | #define MMPA_DLL_API | ||||
#ifdef __cplusplus | #ifdef __cplusplus | ||||
@@ -557,6 +557,10 @@ MMPA_FUNC_VISIBILITY mmFileHandle mmShmOpen(const CHAR *name, INT32 oflag, mmMod | |||||
MMPA_FUNC_VISIBILITY INT32 mmShmUnlink(const CHAR *name); | MMPA_FUNC_VISIBILITY INT32 mmShmUnlink(const CHAR *name); | ||||
MMPA_FUNC_VISIBILITY VOID *mmMmap(mmFd_t fd, mmSize_t size, mmOfft_t offset, mmFd_t *extra, INT32 prot, INT32 flags); | MMPA_FUNC_VISIBILITY VOID *mmMmap(mmFd_t fd, mmSize_t size, mmOfft_t offset, mmFd_t *extra, INT32 prot, INT32 flags); | ||||
MMPA_FUNC_VISIBILITY INT32 mmMunMap(VOID *data, mmSize_t size, mmFd_t *extra); | MMPA_FUNC_VISIBILITY INT32 mmMunMap(VOID *data, mmSize_t size, mmFd_t *extra); | ||||
MMPA_FUNC_VISIBILITY mmSize mmGetPageSize(); | |||||
MMPA_FUNC_VISIBILITY VOID *mmAlignMalloc(mmSize mallocSize, mmSize alignSize); | |||||
MMPA_FUNC_VISIBILITY VOID mmAlignFree(VOID *addr); | |||||
#ifdef __cplusplus | #ifdef __cplusplus | ||||
#if __cplusplus | #if __cplusplus | ||||
} | } | ||||
@@ -146,6 +146,8 @@ REG_OP(Cast) | |||||
/** | /** | ||||
*@brief Returns the truth value of (x1 >= x2) element-wise. \n | *@brief Returns the truth value of (x1 >= x2) element-wise. \n | ||||
*when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||||
*aicore accuracy is not guaranteed \n | |||||
*@par Inputs: | *@par Inputs: | ||||
*Two inputs, including: | *Two inputs, including: | ||||
@@ -167,6 +169,8 @@ REG_OP(GreaterEqual) | |||||
/** | /** | ||||
*@brief Returns the truth value of (x1 < x2) element-wise. \n | *@brief Returns the truth value of (x1 < x2) element-wise. \n | ||||
*when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||||
*aicore accuracy is not guaranteed \n | |||||
*@par Inputs: | *@par Inputs: | ||||
*Two inputs, including: | *Two inputs, including: | ||||
@@ -567,6 +571,8 @@ REG_OP(InvGrad) | |||||
/** | /** | ||||
*@brief: Returns the truth value of (x <= y) element-wise. \n | *@brief: Returns the truth value of (x <= y) element-wise. \n | ||||
*when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||||
*aicore accuracy is not guaranteed \n | |||||
*@par Inputs: | *@par Inputs: | ||||
* Two inputs, including: | * Two inputs, including: | ||||
@@ -1464,6 +1470,8 @@ REG_OP(ReciprocalGrad) | |||||
/** | /** | ||||
*@brief Returns the truth value of (x1 > x2) element-wise. \n | *@brief Returns the truth value of (x1 > x2) element-wise. \n | ||||
*when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||||
*aicore accuracy is not guaranteed \n | |||||
*@par Inputs: | *@par Inputs: | ||||
*@li x1: A Tensor of type float16, float32, double, int64, int32, int16, int8, | *@li x1: A Tensor of type float16, float32, double, int64, int32, int16, int8, | ||||
@@ -3801,6 +3809,34 @@ REG_OP(ArgMaxGradD) | |||||
.OP_END_FACTORY_REG(ArgMaxGradD) | .OP_END_FACTORY_REG(ArgMaxGradD) | ||||
/** | /** | ||||
*@brief Calculates the reversed outputs of the function "AddMatMatElements" | |||||
* c = c * beta + alpha * a * b | |||||
*@par Inputs: | |||||
*Three inputs, including: | |||||
* @li c: A mutable Tensor. Must be one of the following types: | |||||
* float16, float32. | |||||
* @li a: A mutable Tensor of the same type as "c". | |||||
* @li b: A mutable Tensor of the same type as "c". | |||||
* @li beta: A mutable scalar of the same type as "c". | |||||
* @li alpha: A mutable scalar of the same type as "c". \n | |||||
*@par Outputs: | |||||
* @li c: A mutable Tensor. Has the same type as "c". \n | |||||
*@par Third-party framework compatibility | |||||
* Compatible with the TensorFlow operator AddMatMatElements. | |||||
*/ | |||||
REG_OP(AddMatMatElements) | |||||
.INPUT(c, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.INPUT(a, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.INPUT(b, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.INPUT(beta, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.INPUT(alpha, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.OUTPUT(c, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.OP_END_FACTORY_REG(AddMatMatElements) | |||||
/** | |||||
*@brief Returns cosine similarity between x1 and x2,computed along dim. \n | *@brief Returns cosine similarity between x1 and x2,computed along dim. \n | ||||
*@par Inputs: | *@par Inputs: | ||||
@@ -24,6 +24,22 @@ | |||||
#include "graph/operator_reg.h" | #include "graph/operator_reg.h" | ||||
namespace ge { | namespace ge { | ||||
/** | |||||
*@brief Decode the frame(s) of a GIF-encoded image to a uint8 tensor . \n | |||||
*@par Inputs: | |||||
*@li contents:A Tensor of type string. 0-D. The GIF-encoded image. \n | |||||
*@par Outputs: | |||||
*image:A Tensor of type uint8. \n | |||||
*@par Third-party framework compatibility | |||||
*Compatible with tensorflow DecodeGif operator. | |||||
*/ | |||||
REG_OP(DecodeGif) | |||||
.INPUT(contents, TensorType({DT_STRING})) | |||||
.OUTPUT(image, TensorType({DT_UINT8})) | |||||
.OP_END_FACTORY_REG(DecodeGif) | |||||
/** | /** | ||||
*@brief Adjust the hue of one or more images . \n | *@brief Adjust the hue of one or more images . \n | ||||
@@ -1071,6 +1087,88 @@ REG_OP(EncodePng) | |||||
.ATTR(compression, Int, -1) | .ATTR(compression, Int, -1) | ||||
.OP_END_FACTORY_REG(EncodePng) | .OP_END_FACTORY_REG(EncodePng) | ||||
/** | |||||
*@brief PNG-decode an image. | |||||
*@par Inputs: | |||||
*contents: 0-D. PNG-decoded image . | |||||
*@par Attributes: | |||||
*channels: graph channels \n | |||||
*dtype: type of image | |||||
*@par Outputs: | |||||
*image: is a 3-D uint8 or uint16 Tensor of shape [height, width, channels] | |||||
where channels is: 1: for grayscale; 2: for grayscale + alpha; 3: for RGB; | |||||
4: for RGBA . \n | |||||
*@par Third-party framework compatibility | |||||
*Compatible with tensorflow DecodePng operator. | |||||
*/ | |||||
REG_OP(DecodePng) | |||||
.INPUT(contents, TensorType({DT_STRING})) | |||||
.OUTPUT(image, TensorType({DT_UINT8, DT_UINT16})) | |||||
.ATTR(dtype, Type, DT_UINT8) | |||||
.ATTR(channels, Int, 0) | |||||
.OP_END_FACTORY_REG(DecodePng) | |||||
/** | |||||
*@brief Bmp-decode an image. \n | |||||
*@par Inputs: | |||||
*@li contents: A Tensor of type string. 0-D. The BMP-encoded image. \n | |||||
*@par Attributes: | |||||
*@li channels: Decode the desired number of color channels of the image. \n | |||||
*@par Outputs: | |||||
*image: A Tensor dtype of uint8. | |||||
* @par Third-party framework compatibility | |||||
* Compatible with tensorflow DecodeBmp operator. | |||||
*/ | |||||
REG_OP(DecodeBmp) | |||||
.INPUT(contents, TensorType({DT_STRING})) | |||||
.OUTPUT(image, TensorType({DT_UINT8})) | |||||
.ATTR(channels, Int, 0) | |||||
.OP_END_FACTORY_REG(DecodeBmp) | |||||
/* | |||||
*@brief Function parse image from string to int. \n | |||||
*@par Inputs: | |||||
*@li contents: A Tensor of type string. 0-D. The JPEG-encoded image. \n | |||||
*@li crop_window: 1-D. The crop window: [crop_y, crop_x, crop_height, crop_width]. \n | |||||
*@par Attributes: | |||||
*@li channels: An optional int. Defaults to 0. Number of color channels for the | |||||
*decoded image. | |||||
*@li ratio: An optional int. Defaults to 1. Downscaling ratio. | |||||
*@li fancy_upscaling: An optional bool. Defaults to True. If true use a slower | |||||
*but nicer upscaling of the chroma planes | |||||
*@li try_recover_truncated: An optional bool. Defaults to False. If true try to | |||||
*recover an image from truncated input. | |||||
*@li acceptable_fraction: An optional float. Defaults to 1. The minimum required | |||||
fraction of lines before a truncated input is accepted. | |||||
*@li dct_method: An optional string. Defaults to "". string specifying a hint | |||||
*about the algorithm used for decompression. \n | |||||
*@par Outputs: | |||||
*image: A Tensor dtype of uint8. | |||||
*/ | |||||
REG_OP(DecodeAndCropJpeg) | |||||
.INPUT(contents, TensorType({DT_STRING})) | |||||
.INPUT(crop_window, TensorType({DT_INT32})) | |||||
.OUTPUT(image, TensorType({DT_UINT8})) | |||||
.ATTR(channels, Int, 0) | |||||
.ATTR(ratio, Int, 1) | |||||
.ATTR(fancy_upscaling, Bool, true) | |||||
.ATTR(try_recover_truncated, Bool, false) | |||||
.ATTR(acceptable_fraction, Float, 1.0) | |||||
.ATTR(dct_method, String, "") | |||||
.OP_END_FACTORY_REG(DecodeAndCropJpeg) | |||||
/** | /** | ||||
*@brief Resizes "images" to "size" using bilinear interpolation . \n | *@brief Resizes "images" to "size" using bilinear interpolation . \n | ||||
@@ -83,6 +83,25 @@ REG_OP(Cholesky) | |||||
.OP_END_FACTORY_REG(Cholesky) | .OP_END_FACTORY_REG(Cholesky) | ||||
/** | /** | ||||
*@brief Computes the outer product of two 1D vectors . \n | |||||
*@par Inputs: | |||||
*The input x1 and x2 has to be a 1D vector.Inputs include: | |||||
*@li x1:A Tensor. Must be one of the following types: float16, float32. | |||||
Shape is [N] . \n | |||||
*@li x2:A Tensor. Must have the same type as x. Shape is [M] . \n | |||||
*@par Outputs: | |||||
*y:A Tensor. Has the same type as x . \n | |||||
*/ | |||||
REG_OP(Ger) | |||||
.INPUT(x1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(x2, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OP_END_FACTORY_REG(Ger) | |||||
/** | |||||
*@brief Computes the sign and the log of the absolute value of the determinant | *@brief Computes the sign and the log of the absolute value of the determinant | ||||
of one or more square matrices . \n | of one or more square matrices . \n | ||||
@@ -328,6 +347,34 @@ REG_OP(SelfAdjointEig) | |||||
.OP_END_FACTORY_REG(SelfAdjointEig) | .OP_END_FACTORY_REG(SelfAdjointEig) | ||||
/** | /** | ||||
*@brief Computes the sign and the log of the absolute value of the determinant | |||||
of one or more square matrices . \n | |||||
*@par Inputs: | |||||
*The input x is a tensor of shape [N, M, M] whose inner-most 2 dimensions | |||||
form square matrices. Inputs include: | |||||
*x:A Tensor. Must be one of the following types: double, float32, float16 | |||||
Shape is [..., M, M] . \n | |||||
*@par Outputs: | |||||
*@li y:A Tensor. Has the same type as x. | |||||
*@li sign:A Tensor. Has the same type as x . \n | |||||
*@attention Constraints: | |||||
*The input x is a tensor of shape [N, M, M] whose inner-most 2 dimensions | |||||
form square matrices. \n | |||||
*@par Third-party framework compatibility | |||||
*Compatible with tensorflow LogMatrixDeterminant operator. | |||||
*/ | |||||
REG_OP(Slogdet) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
.OUTPUT(sign, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
.OP_END_FACTORY_REG(Slogdet) | |||||
/** | |||||
*@brief Computes the singular value decompositions of one or more matrices . \n | *@brief Computes the singular value decompositions of one or more matrices . \n | ||||
*@par Inputs: | *@par Inputs: | ||||
@@ -534,6 +534,29 @@ REG_OP(NextAfter) | |||||
.OP_END_FACTORY_REG(NextAfter) | .OP_END_FACTORY_REG(NextAfter) | ||||
/** | /** | ||||
*@brief Calculate the P-norm distance between vectors function. \n | |||||
*@par Inputs: | |||||
*One inputs, including: | |||||
* @li input_x: A tensor. Must be one of the following types: | |||||
* float16, float32. \n | |||||
*@par Attributes: | |||||
*@li p: An optional float.Defaults to 2. \n | |||||
*@par Outputs: | |||||
*y: A Tensor with the same type and shape of input_x's. \n | |||||
*@par Third-party framework compatibility | |||||
*Compatible with the Pytorch operator Pdist. \n | |||||
*/ | |||||
REG_OP(Pdist) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.ATTR(p, Float, 2.0) | |||||
.OP_END_FACTORY_REG(Pdist) | |||||
/** | |||||
*@brief Compute element-wise finiteness, return a boolean tensor. | *@brief Compute element-wise finiteness, return a boolean tensor. | ||||
*@par Inputs: | *@par Inputs: | ||||
@@ -91,6 +91,36 @@ REG_OP(MatMulV2) | |||||
.ATTR(offset_x, Int, 0) | .ATTR(offset_x, Int, 0) | ||||
.OP_END_FACTORY_REG(MatMulV2) | .OP_END_FACTORY_REG(MatMulV2) | ||||
/** | |||||
*@brief Multiplies matrix "a" by matrix "b", producing "a * b" . \n | |||||
*@par Inputs: | |||||
*Two inputs, including: | |||||
* @li x1: A matrix Tensor. 2D. Must be one of the following types: int8. | |||||
* @li x2: A matrix Tensor. 2D. Must be one of the following types: int8. | |||||
* @li compress_index: A compress index matrix of type int8. | |||||
* @li bias: A 1D Tensor. Must be one of the following types: int32, float16. | |||||
*@par Attributes: | |||||
*@li transpose_x1: A bool. If True, changes the shape of "x1" from [M, K] to [K, M]. | |||||
*@li transpose_x2: A bool. If True, changes the shape of "x2" from [M, K] to [K, M] . \n | |||||
*@par Outputs: | |||||
*y: The result matrix Tensor. 2D. Must be one of the following types: float16, | |||||
* int32. \n | |||||
*/ | |||||
REG_OP(MatMulV2Compress) | |||||
.INPUT(x1, TensorType({DT_INT8})) | |||||
.INPUT(x2, TensorType({DT_INT8})) | |||||
.INPUT(compress_index, TensorType({DT_INT8})) | |||||
.OPTIONAL_INPUT(bias, TensorType({DT_INT32, DT_FLOAT16})) | |||||
.OUTPUT(y, TensorType({DT_INT32, DT_FLOAT16})) | |||||
.OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | |||||
.ATTR(transpose_x1, Bool, false) | |||||
.ATTR(transpose_x2, Bool, false) | |||||
.ATTR(offset_x, Int, 0) | |||||
.OP_END_FACTORY_REG(MatMulV2Compress) | |||||
/** | /** | ||||
*@brief Performs Matrix-to-matrix Multiply, producing c=alpha[0]*a*b+beta[0]*c . \n | *@brief Performs Matrix-to-matrix Multiply, producing c=alpha[0]*a*b+beta[0]*c . \n | ||||
@@ -189,8 +219,8 @@ REG_OP(BatchMatMul) | |||||
* float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ] . \n | * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ] . \n | ||||
* @par Attributes: | * @par Attributes: | ||||
* @li adj_x: A bool. If True, changes the shape of "x1" from [B, M, K] to [B, K, M]. | |||||
* @li adj_y: A bool. If True, changes the shape of "x2" from [B, M, K] to [B, K, M] . \n | |||||
* @li adj_x1: A bool. If True, changes the shape of "x1" from [B, M, K] to [B, K, M]. | |||||
* @li adj_x2: A bool. If True, changes the shape of "x2" from [B, M, K] to [B, K, M] . \n | |||||
* @par Outputs: | * @par Outputs: | ||||
* y: The result matrix Tensor. 2D or higher. Must be one of the following types: float16, | * y: The result matrix Tensor. 2D or higher. Must be one of the following types: float16, | ||||
@@ -201,15 +231,16 @@ REG_OP(BatchMatMul) | |||||
*/ | */ | ||||
REG_OP(BatchMatMulV2) | REG_OP(BatchMatMulV2) | ||||
.INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||||
.INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||||
.INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||||
.INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||||
.OPTIONAL_INPUT(bias, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | ||||
.OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | ||||
.ATTR(adj_x1, Bool, false) | .ATTR(adj_x1, Bool, false) | ||||
.ATTR(adj_x2, Bool, false) | .ATTR(adj_x2, Bool, false) | ||||
.ATTR(offset_x, Int, 0) | |||||
.OP_END_FACTORY_REG(BatchMatMulV2) | .OP_END_FACTORY_REG(BatchMatMulV2) | ||||
/** | /** | ||||
*@brief Computes half the L2 norm of a tensor without the sqrt . \n | *@brief Computes half the L2 norm of a tensor without the sqrt . \n | ||||
@@ -369,7 +400,7 @@ REG_OP(MatrixSetDiagD) | |||||
* int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, | * int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, | ||||
* uint64 | * uint64 | ||||
*@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
*Must be one of the following types: int32, int64 | |||||
*Must be one of the following types: int32 or int64 | |||||
*@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
*Must be one of the following types: float16, float32, int8, uint8, double, | *Must be one of the following types: float16, float32, int8, uint8, double, | ||||
* int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, | * int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, | ||||
@@ -429,7 +460,7 @@ REG_OP(TensorScatterUpdate) | |||||
*@li var: An ND Tensor . \n | *@li var: An ND Tensor . \n | ||||
*Must be one of the following types: float16, float32, int32, int8, uint8 | *Must be one of the following types: float16, float32, int32, int8, uint8 | ||||
*@li indices: An ND Tensor of type int32 or int64. | |||||
*@li indices: An ND Tensor of type int32 or int64 | |||||
*@li updates: An Tensor. format:NCHW, NHWC . \n | *@li updates: An Tensor. format:NCHW, NHWC . \n | ||||
@@ -447,10 +478,10 @@ REG_OP(TensorScatterUpdate) | |||||
* Compatible with the TensorFlow operator ScatterAdd. | * Compatible with the TensorFlow operator ScatterAdd. | ||||
*/ | */ | ||||
REG_OP(ScatterAdd) | REG_OP(ScatterAdd) | ||||
.INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(indices, TensorType::IndexNumberType()) | .INPUT(indices, TensorType::IndexNumberType()) | ||||
.INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
.OP_END_FACTORY_REG(ScatterAdd) | .OP_END_FACTORY_REG(ScatterAdd) | ||||
@@ -463,7 +494,7 @@ REG_OP(ScatterAdd) | |||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
*@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
*Must be one of the following types: int32 | |||||
*Must be one of the following types: int32 or int64 | |||||
*@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
@@ -478,10 +509,10 @@ REG_OP(ScatterAdd) | |||||
* Compatible with the TensorFlow operator ScatterDiv. | * Compatible with the TensorFlow operator ScatterDiv. | ||||
*/ | */ | ||||
REG_OP(ScatterDiv) | REG_OP(ScatterDiv) | ||||
.INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(indices, TensorType({DT_INT32})) | |||||
.INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(indices, TensorType::IndexNumberType()) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
.OP_END_FACTORY_REG(ScatterDiv) | .OP_END_FACTORY_REG(ScatterDiv) | ||||
@@ -493,7 +524,7 @@ REG_OP(ScatterDiv) | |||||
*@li var: An ND Tensor. | *@li var: An ND Tensor. | ||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
*@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
*Must be one of the following types: int32 | |||||
*Must be one of the following types: int32 or int64 | |||||
*@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
*@par Attributes: | *@par Attributes: | ||||
@@ -507,10 +538,10 @@ REG_OP(ScatterDiv) | |||||
* Compatible with the TensorFlow operator ScatterNdAdd. | * Compatible with the TensorFlow operator ScatterNdAdd. | ||||
*/ | */ | ||||
REG_OP(ScatterNdAdd) | REG_OP(ScatterNdAdd) | ||||
.INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(indices, TensorType::IndexNumberType()) | .INPUT(indices, TensorType::IndexNumberType()) | ||||
.INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
.OP_END_FACTORY_REG(ScatterNdAdd) | .OP_END_FACTORY_REG(ScatterNdAdd) | ||||
@@ -550,7 +581,7 @@ REG_OP(TensorScatterAdd) | |||||
*@li var: An ND Tensor. | *@li var: An ND Tensor. | ||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
*@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
*Must be one of the following types: int32, int64 | |||||
*Must be one of the following types: int32 or int64 | |||||
*@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
@@ -565,10 +596,10 @@ REG_OP(TensorScatterAdd) | |||||
* Compatible with the TensorFlow operator ScatterNdSub. | * Compatible with the TensorFlow operator ScatterNdSub. | ||||
*/ | */ | ||||
REG_OP(ScatterNdSub) | REG_OP(ScatterNdSub) | ||||
.INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(indices, TensorType::IndexNumberType()) | .INPUT(indices, TensorType::IndexNumberType()) | ||||
.INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
.OP_END_FACTORY_REG(ScatterNdSub) | .OP_END_FACTORY_REG(ScatterNdSub) | ||||
@@ -608,7 +639,7 @@ REG_OP(TensorScatterSub) | |||||
*@li var: An ND Tensor. | *@li var: An ND Tensor. | ||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
*@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
*Must be one of the following types: int32, int64 | |||||
*Must be one of the following types: int32 or int64 | |||||
*@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
*@par Attributes: | *@par Attributes: | ||||
@@ -622,10 +653,10 @@ REG_OP(TensorScatterSub) | |||||
* Compatible with the TensorFlow operator ScatterSub. | * Compatible with the TensorFlow operator ScatterSub. | ||||
*/ | */ | ||||
REG_OP(ScatterSub) | REG_OP(ScatterSub) | ||||
.INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(indices, TensorType::IndexNumberType()) | .INPUT(indices, TensorType::IndexNumberType()) | ||||
.INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
.OP_END_FACTORY_REG(ScatterSub) | .OP_END_FACTORY_REG(ScatterSub) | ||||
@@ -796,7 +827,7 @@ REG_OP(ConfusionMatrix) | |||||
*@li var: An ND Tensor. | *@li var: An ND Tensor. | ||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
*@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
*Must be one of the following types: int32 | |||||
*Must be one of the following types: int32 or int64 | |||||
*@li updates: An ND Tensor . \n | *@li updates: An ND Tensor . \n | ||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
@@ -813,7 +844,7 @@ REG_OP(ConfusionMatrix) | |||||
*/ | */ | ||||
REG_OP(ScatterMul) | REG_OP(ScatterMul) | ||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | ||||
.INPUT(indices, TensorType({DT_INT32})) | |||||
.INPUT(indices, TensorType::IndexNumberType()) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | ||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | ||||
.ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
@@ -826,13 +857,13 @@ REG_OP(ScatterMul) | |||||
*@par Inputs: | *@par Inputs: | ||||
* Three inputs, including: | * Three inputs, including: | ||||
*@li var: An ND Tensor. | *@li var: An ND Tensor. | ||||
*Must be one of the following types: float16, float, int32 | |||||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||||
*@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
*Must be one of the following types: int32 | |||||
*Must be one of the following types: int32 or int64 | |||||
*@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
*Must be one of the following types: float16, float, int32 | |||||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||||
*@par Attributes: | *@par Attributes: | ||||
*use_locking: An optional bool. Defaults to "False". If "True", the operation | *use_locking: An optional bool. Defaults to "False". If "True", the operation | ||||
@@ -845,10 +876,10 @@ REG_OP(ScatterMul) | |||||
* Compatible with the TensorFlow operator ScatterMin. | * Compatible with the TensorFlow operator ScatterMin. | ||||
*/ | */ | ||||
REG_OP(ScatterMin) | REG_OP(ScatterMin) | ||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
.INPUT(indices, TensorType({DT_INT32})) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(indices, TensorType::IndexNumberType()) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
.OP_END_FACTORY_REG(ScatterMin) | .OP_END_FACTORY_REG(ScatterMin) | ||||
@@ -859,13 +890,13 @@ REG_OP(ScatterMin) | |||||
* Three inputs, including: | * Three inputs, including: | ||||
*@li var: An ND Tensor . \n | *@li var: An ND Tensor . \n | ||||
*Must be one of the following types: float16, float, int32 | |||||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||||
*@li indices: An NCHW, NHWC, or ND Tensor . \n | *@li indices: An NCHW, NHWC, or ND Tensor . \n | ||||
*Must be one of the following types: int32 | |||||
*Must be one of the following types: int32 or int64 | |||||
*@li updates: An NCHW, NHWC, or ND Tensor . \n | *@li updates: An NCHW, NHWC, or ND Tensor . \n | ||||
*Must be one of the following types: float16, float, int32 | |||||
*Must be one of the following types: float16, float, int32, int8, uint8 | |||||
*@par Attributes: | *@par Attributes: | ||||
*use_locking: An optional bool. Defaults to "False". | *use_locking: An optional bool. Defaults to "False". | ||||
@@ -878,10 +909,10 @@ REG_OP(ScatterMin) | |||||
* Compatible with the TensorFlow operator ScatterMax. | * Compatible with the TensorFlow operator ScatterMax. | ||||
*/ | */ | ||||
REG_OP(ScatterMax) | REG_OP(ScatterMax) | ||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
.INPUT(indices, TensorType({DT_INT32})) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(indices, TensorType::IndexNumberType()) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
.OP_END_FACTORY_REG(ScatterMax) | .OP_END_FACTORY_REG(ScatterMax) | ||||
@@ -895,7 +926,7 @@ REG_OP(ScatterMax) | |||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
*@li indices: An ND Tensor . \n | *@li indices: An ND Tensor . \n | ||||
*Must be one of the following types: int32 | |||||
*Must be one of the following types: int32 or int64 | |||||
*@li updates: An ND Tensor . \n | *@li updates: An ND Tensor . \n | ||||
*Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
@@ -911,10 +942,10 @@ REG_OP(ScatterMax) | |||||
* Compatible with the TensorFlow operator ScatterUpdate. | * Compatible with the TensorFlow operator ScatterUpdate. | ||||
*/ | */ | ||||
REG_OP(ScatterUpdate) | REG_OP(ScatterUpdate) | ||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) | |||||
.INPUT(indices, TensorType({DT_INT32})) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) | |||||
.INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.INPUT(indices, TensorType::IndexNumberType()) | |||||
.INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
.ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
.OP_END_FACTORY_REG(ScatterUpdate) | .OP_END_FACTORY_REG(ScatterUpdate) | ||||
@@ -1096,6 +1127,33 @@ REG_OP(EinSum) | |||||
.REQUIRED_ATTR(equation, String) | .REQUIRED_ATTR(equation, String) | ||||
.REQUIRED_ATTR(tensor_size, Int) | .REQUIRED_ATTR(tensor_size, Int) | ||||
.OP_END_FACTORY_REG(EinSum) | .OP_END_FACTORY_REG(EinSum) | ||||
/** | |||||
*@brief Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. \n | |||||
*@par Inputs: | |||||
*No inputs | |||||
*@par Attributes: | |||||
*@li num_rows: An required int. \n | |||||
*@li num_columns: An optional int.Defaults to 0. \n | |||||
*@li batch_shape: An optional ListInt.Defaults to []. \n | |||||
*@li dtype: An optional int.Defaults to 0. \n | |||||
*@par Outputs: | |||||
*y: A Tensor with targeted type and shape. \n | |||||
*@par Third-party framework compatibility | |||||
*Compatible with the Pytorch operator Eye. \n | |||||
*/ | |||||
REG_OP(Eye) | |||||
.OUTPUT(y, TensorType::BasicType()) /* "Result, has targeted element type" */ | |||||
.REQUIRED_ATTR(num_rows, Int) | |||||
.ATTR(num_columns, Int, 0) | |||||
.ATTR(batch_shape, ListInt, {}) | |||||
.ATTR(dtype, Int, 0) | |||||
.OP_END_FACTORY_REG(Eye) | |||||
} // namespace ge | } // namespace ge | ||||
#endif // OPS_BUILT_IN_OP_PROTO_INC_MATRIX_CALCULATION_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_MATRIX_CALCULATION_OPS_H_ |
@@ -254,22 +254,22 @@ is min_size/sqrt(aspect_ratio), the width is min_size*sqrt(aspect_ratio). Defaul | |||||
*@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
* It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
*/ | */ | ||||
REG_OP(PriorBox) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(min_size, ListFloat) | |||||
.REQUIRED_ATTR(max_size, ListFloat) | |||||
.REQUIRED_ATTR(aspect_ratio, ListFloat) | |||||
.ATTR(img_h, Int, 0) | |||||
.ATTR(img_w, Int, 0) | |||||
.ATTR(step_h, Float, 0.0) | |||||
.ATTR(step_w, Float, 0.0) | |||||
.ATTR(flip, Bool, true) | |||||
.ATTR(clip, Bool, false) | |||||
.ATTR(offset, Float, 0.5) | |||||
.ATTR(variance, ListFloat, {0.1}) | |||||
.OP_END_FACTORY_REG(PriorBox); | |||||
REG_OP(PriorBox) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(min_size, ListFloat) | |||||
.REQUIRED_ATTR(max_size, ListFloat) | |||||
.REQUIRED_ATTR(aspect_ratio, ListFloat) | |||||
.ATTR(img_h, Int, 0) | |||||
.ATTR(img_w, Int, 0) | |||||
.ATTR(step_h, Float, 0.0) | |||||
.ATTR(step_w, Float, 0.0) | |||||
.ATTR(flip, Bool, true) | |||||
.ATTR(clip, Bool, false) | |||||
.ATTR(offset, Float, 0.5) | |||||
.ATTR(variance, ListFloat, {0.1}) | |||||
.OP_END_FACTORY_REG(PriorBox); | |||||
/** | /** | ||||
*@brief Performs SSD prior box detection, with four additional matrices and the "aspect_ratio" attribute deleted compared to PriorBox . \n | *@brief Performs SSD prior box detection, with four additional matrices and the "aspect_ratio" attribute deleted compared to PriorBox . \n | ||||
@@ -306,25 +306,25 @@ is min_size/sqrt(aspect_ratio), the width is min_size*sqrt(aspect_ratio). Defaul | |||||
*@par Restrictions: | *@par Restrictions: | ||||
*Warning: THIS FUNCTION IS DEPRECATED. Please use PriorBox instead. | *Warning: THIS FUNCTION IS DEPRECATED. Please use PriorBox instead. | ||||
*/ | */ | ||||
REG_OP(PriorBoxD) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(data_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(data_w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(box_height, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(box_width, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(min_size, ListFloat) | |||||
.REQUIRED_ATTR(max_size, ListFloat) | |||||
.ATTR(img_h, Int, 0) | |||||
.ATTR(img_w, Int, 0) | |||||
.ATTR(step_h, Float, 0.0) | |||||
.ATTR(step_w, Float, 0.0) | |||||
.ATTR(flip, Bool, true) | |||||
.ATTR(clip, Bool, false) | |||||
.ATTR(offset, Float, 0.5) | |||||
.ATTR(variance, ListFloat, {0.1}) | |||||
.OP_END_FACTORY_REG(PriorBoxD); | |||||
REG_OP(PriorBoxD) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(data_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(data_w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(box_height, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(box_width, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(min_size, ListFloat) | |||||
.REQUIRED_ATTR(max_size, ListFloat) | |||||
.ATTR(img_h, Int, 0) | |||||
.ATTR(img_w, Int, 0) | |||||
.ATTR(step_h, Float, 0.0) | |||||
.ATTR(step_w, Float, 0.0) | |||||
.ATTR(flip, Bool, true) | |||||
.ATTR(clip, Bool, false) | |||||
.ATTR(offset, Float, 0.5) | |||||
.ATTR(variance, ListFloat, {0.1}) | |||||
.OP_END_FACTORY_REG(PriorBoxD); | |||||
/** | /** | ||||
*@brief Performs SSD prior box detection, with four additional matrices and the "aspect_ratio" attribute deleted compared to PriorBox . \n | *@brief Performs SSD prior box detection, with four additional matrices and the "aspect_ratio" attribute deleted compared to PriorBox . \n | ||||
@@ -358,22 +358,22 @@ is min_size/sqrt(aspect_ratio), the width is min_size*sqrt(aspect_ratio). Defaul | |||||
*@par Restrictions: | *@par Restrictions: | ||||
*Warning: THIS FUNCTION IS DEPRECATED. Please use PriorBox instead. | *Warning: THIS FUNCTION IS DEPRECATED. Please use PriorBox instead. | ||||
*/ | */ | ||||
REG_OP(PriorBoxDV2) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(min_size, ListFloat) | |||||
.REQUIRED_ATTR(max_size, ListFloat) | |||||
.ATTR(img_h, Int, 0) | |||||
.ATTR(img_w, Int, 0) | |||||
.ATTR(step_h, Float, 0.0) | |||||
.ATTR(step_w, Float, 0.0) | |||||
.ATTR(flip, Bool, true) | |||||
.ATTR(clip, Bool, false) | |||||
.ATTR(offset, Float, 0.5) | |||||
.ATTR(variance, ListFloat, {0.1}) | |||||
.OP_END_FACTORY_REG(PriorBoxDV2); | |||||
REG_OP(PriorBoxDV2) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(min_size, ListFloat) | |||||
.REQUIRED_ATTR(max_size, ListFloat) | |||||
.ATTR(img_h, Int, 0) | |||||
.ATTR(img_w, Int, 0) | |||||
.ATTR(step_h, Float, 0.0) | |||||
.ATTR(step_w, Float, 0.0) | |||||
.ATTR(flip, Bool, true) | |||||
.ATTR(clip, Bool, false) | |||||
.ATTR(offset, Float, 0.5) | |||||
.ATTR(variance, ListFloat, {0.1}) | |||||
.OP_END_FACTORY_REG(PriorBoxDV2); | |||||
/** | /** | ||||
*@brief Performs Position Sensitive ROI Pooling . \n | *@brief Performs Position Sensitive ROI Pooling . \n | ||||
@@ -531,10 +531,10 @@ as xx...xyy...yww...whh...hbb...bc0c0..c0c1c1...c1......cncn...cn . \n | |||||
* It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
*/ | */ | ||||
REG_OP(Yolo) | REG_OP(Yolo) | ||||
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(coord_data, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(obj_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(classes_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(coord_data, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(obj_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(classes_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.ATTR(boxes, Int, 3) | .ATTR(boxes, Int, 3) | ||||
.ATTR(coords, Int, 4) | .ATTR(coords, Int, 4) | ||||
.ATTR(classes, Int, 80) | .ATTR(classes, Int, 80) | ||||
@@ -584,10 +584,10 @@ REG_OP(Yolo) | |||||
* It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
*/ | */ | ||||
REG_OP(YoloV2DetectionOutput) | REG_OP(YoloV2DetectionOutput) | ||||
.INPUT(coord_data, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(obj_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(classes_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(coord_data, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(obj_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(classes_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(biases, ListFloat) | .REQUIRED_ATTR(biases, ListFloat) | ||||
.ATTR(boxes, Int, 5) | .ATTR(boxes, Int, 5) | ||||
.ATTR(coords, Int, 4) | .ATTR(coords, Int, 4) | ||||
@@ -598,7 +598,7 @@ REG_OP(YoloV2DetectionOutput) | |||||
.ATTR(score_threshold, Float, 0.5) | .ATTR(score_threshold, Float, 0.5) | ||||
.ATTR(iou_threshold, Float, 0.45) | .ATTR(iou_threshold, Float, 0.45) | ||||
.ATTR(pre_nms_topn, Int, 512) | .ATTR(pre_nms_topn, Int, 512) | ||||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
.OP_END_FACTORY_REG(YoloV2DetectionOutput) | .OP_END_FACTORY_REG(YoloV2DetectionOutput) | ||||
@@ -647,12 +647,12 @@ REG_OP(YoloV2DetectionOutput) | |||||
*Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV2DetectionOutput instead. | *Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV2DetectionOutput instead. | ||||
*/ | */ | ||||
REG_OP(YoloV2DetectionOutputD) | REG_OP(YoloV2DetectionOutputD) | ||||
.INPUT(coord_data, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(obj_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(classes_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(windex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(hindex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(coord_data, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(obj_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(classes_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(windex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(hindex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(biases, ListFloat) | .REQUIRED_ATTR(biases, ListFloat) | ||||
.ATTR(boxes, Int, 5) | .ATTR(boxes, Int, 5) | ||||
.ATTR(coords, Int, 4) | .ATTR(coords, Int, 4) | ||||
@@ -663,7 +663,7 @@ REG_OP(YoloV2DetectionOutputD) | |||||
.ATTR(score_threshold, Float, 0.5) | .ATTR(score_threshold, Float, 0.5) | ||||
.ATTR(iou_threshold, Float, 0.45) | .ATTR(iou_threshold, Float, 0.45) | ||||
.ATTR(pre_nms_topn, Int, 512) | .ATTR(pre_nms_topn, Int, 512) | ||||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
.OP_END_FACTORY_REG(YoloV2DetectionOutputD) | .OP_END_FACTORY_REG(YoloV2DetectionOutputD) | ||||
@@ -707,16 +707,16 @@ REG_OP(YoloV2DetectionOutputD) | |||||
* It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
*/ | */ | ||||
REG_OP(YoloV3DetectionOutput) | REG_OP(YoloV3DetectionOutput) | ||||
.INPUT(coord_data_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(coord_data_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(coord_data_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(obj_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(obj_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(obj_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(classes_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(classes_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(classes_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(coord_data_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(coord_data_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(coord_data_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(obj_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(obj_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(obj_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(classes_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(classes_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(classes_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(biases_low, ListFloat) | .REQUIRED_ATTR(biases_low, ListFloat) | ||||
.REQUIRED_ATTR(biases_mid, ListFloat) | .REQUIRED_ATTR(biases_mid, ListFloat) | ||||
.REQUIRED_ATTR(biases_high, ListFloat) | .REQUIRED_ATTR(biases_high, ListFloat) | ||||
@@ -729,7 +729,7 @@ REG_OP(YoloV3DetectionOutput) | |||||
.ATTR(score_threshold, Float, 0.5) | .ATTR(score_threshold, Float, 0.5) | ||||
.ATTR(iou_threshold, Float, 0.45) | .ATTR(iou_threshold, Float, 0.45) | ||||
.ATTR(pre_nms_topn, Int, 512) | .ATTR(pre_nms_topn, Int, 512) | ||||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
.OP_END_FACTORY_REG(YoloV3DetectionOutput) | .OP_END_FACTORY_REG(YoloV3DetectionOutput) | ||||
@@ -776,22 +776,22 @@ s | |||||
*Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV3DetectionOutput instead. | *Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV3DetectionOutput instead. | ||||
*/ | */ | ||||
REG_OP(YoloV3DetectionOutputD) | REG_OP(YoloV3DetectionOutputD) | ||||
.INPUT(coord_data_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(coord_data_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(coord_data_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(obj_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(obj_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(obj_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(classes_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(classes_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(classes_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(windex1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(windex2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(windex3, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(hindex1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(hindex2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(hindex3, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(coord_data_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(coord_data_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(coord_data_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(obj_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(obj_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(obj_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(classes_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(classes_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(classes_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(windex1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(windex2, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(windex3, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(hindex1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(hindex2, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(hindex3, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(biases_low, ListFloat) | .REQUIRED_ATTR(biases_low, ListFloat) | ||||
.REQUIRED_ATTR(biases_mid, ListFloat) | .REQUIRED_ATTR(biases_mid, ListFloat) | ||||
.REQUIRED_ATTR(biases_high, ListFloat) | .REQUIRED_ATTR(biases_high, ListFloat) | ||||
@@ -804,7 +804,7 @@ REG_OP(YoloV3DetectionOutputD) | |||||
.ATTR(score_threshold, Float, 0.5) | .ATTR(score_threshold, Float, 0.5) | ||||
.ATTR(iou_threshold, Float, 0.45) | .ATTR(iou_threshold, Float, 0.45) | ||||
.ATTR(pre_nms_topn, Int, 512) | .ATTR(pre_nms_topn, Int, 512) | ||||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
.OP_END_FACTORY_REG(YoloV3DetectionOutputD) | .OP_END_FACTORY_REG(YoloV3DetectionOutputD) | ||||
@@ -848,7 +848,7 @@ There are three Yolo operators at Yolov3DetectionOutput's preceding layer on Yol | |||||
* It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
*/ | */ | ||||
REG_OP(YoloV3DetectionOutputV2) | REG_OP(YoloV3DetectionOutputV2) | ||||
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(biases, ListFloat) | .REQUIRED_ATTR(biases, ListFloat) | ||||
.ATTR(boxes, Int, 3) | .ATTR(boxes, Int, 3) | ||||
.ATTR(coords, Int, 4) | .ATTR(coords, Int, 4) | ||||
@@ -862,7 +862,7 @@ REG_OP(YoloV3DetectionOutputV2) | |||||
.ATTR(N, Int, 10) | .ATTR(N, Int, 10) | ||||
.ATTR(resize_origin_img_to_net, Bool, false) | .ATTR(resize_origin_img_to_net, Bool, false) | ||||
.ATTR(out_box_dim, Int, 3) | .ATTR(out_box_dim, Int, 3) | ||||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
.OP_END_FACTORY_REG(YoloV3DetectionOutputV2) | .OP_END_FACTORY_REG(YoloV3DetectionOutputV2) | ||||
@@ -910,9 +910,9 @@ REG_OP(YoloV3DetectionOutputV2) | |||||
* Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV3DetectionOutputV2 instead. | * Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV3DetectionOutputV2 instead. | ||||
*/ | */ | ||||
REG_OP(YoloV3DetectionOutputV2D) | REG_OP(YoloV3DetectionOutputV2D) | ||||
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.DYNAMIC_INPUT(windex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.DYNAMIC_INPUT(hindex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.DYNAMIC_INPUT(windex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.DYNAMIC_INPUT(hindex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(biases, ListFloat) | .REQUIRED_ATTR(biases, ListFloat) | ||||
.ATTR(boxes, Int, 3) | .ATTR(boxes, Int, 3) | ||||
.ATTR(coords, Int, 4) | .ATTR(coords, Int, 4) | ||||
@@ -926,7 +926,7 @@ REG_OP(YoloV3DetectionOutputV2D) | |||||
.ATTR(N, Int, 10) | .ATTR(N, Int, 10) | ||||
.ATTR(resize_origin_img_to_net, Bool, false) | .ATTR(resize_origin_img_to_net, Bool, false) | ||||
.ATTR(out_box_dim, Int, 3) | .ATTR(out_box_dim, Int, 3) | ||||
.OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
.OP_END_FACTORY_REG(YoloV3DetectionOutputV2D) | .OP_END_FACTORY_REG(YoloV3DetectionOutputV2D) | ||||
@@ -1466,9 +1466,9 @@ REG_OP(NormalizeBBox) | |||||
* y: A Tensor. Must have the same type as box_predictions. | * y: A Tensor. Must have the same type as box_predictions. | ||||
*/ | */ | ||||
REG_OP(DecodeBboxV2) | REG_OP(DecodeBboxV2) | ||||
.INPUT(boxes, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(anchors, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(anchors, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.ATTR(scales, ListFloat, {1.0, 1.0, 1.0, 1.0}) | .ATTR(scales, ListFloat, {1.0, 1.0, 1.0, 1.0}) | ||||
.ATTR(decode_clip, Float, 0.0) | .ATTR(decode_clip, Float, 0.0) | ||||
.ATTR(reversed_box, Bool, false) | .ATTR(reversed_box, Bool, false) | ||||
@@ -1592,7 +1592,6 @@ selected indices from the boxes tensor, where M <= max_output_size. \n | |||||
*Compatible with onnx NonMaxSuppression operator. | *Compatible with onnx NonMaxSuppression operator. | ||||
*/ | */ | ||||
REG_OP(NonMaxSuppressionV7) | REG_OP(NonMaxSuppressionV7) | ||||
.INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
.INPUT(scores, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(scores, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
@@ -1641,7 +1640,7 @@ REG_OP(RoiExtractor) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
.ATTR(finest_scale, Int, 56) | .ATTR(finest_scale, Int, 56) | ||||
.ATTR(roi_scale_factor, Float, 0) | .ATTR(roi_scale_factor, Float, 0) | ||||
.ATTR(spatial_scale, ListFloat, { 1.f/4, 1.f/8, 1.f/16, 1.f/32 }) | |||||
.ATTR(spatial_scale, ListFloat, {1.f / 4, 1.f / 8, 1.f / 16, 1.f / 32}) | |||||
.ATTR(pooled_height, Int, 7) | .ATTR(pooled_height, Int, 7) | ||||
.ATTR(pooled_width, Int, 7) | .ATTR(pooled_width, Int, 7) | ||||
.ATTR(sample_num, Int, 0) | .ATTR(sample_num, Int, 0) | ||||
@@ -1649,6 +1648,84 @@ REG_OP(RoiExtractor) | |||||
.ATTR(aligned, Bool, true) | .ATTR(aligned, Bool, true) | ||||
.OP_END_FACTORY_REG(RoiExtractor) | .OP_END_FACTORY_REG(RoiExtractor) | ||||
/** | |||||
*@brief Performs Position Sensitive PS ROI Pooling . \n | |||||
*@par Inputs: | |||||
* Two inputs, including: | |||||
*@li x: An NC1HWC0 tensor of type float16 or float32, describing the feature | |||||
* map, dimension C1 must be equal to | |||||
* (int(output_dim+15)/C0))*group_size*group_size. | |||||
*@li rois: A tensor of type float16 or float32, with shape | |||||
* [batch, 5, rois_num], describing the ROIs, each ROI consists of five | |||||
* elements: "batch_id", "x1", "y1", "x2", and "y2", which "batch_id" indicates | |||||
* the index of the input feature map, "x1", "y1", "x2", or "y2" must be | |||||
* greater than or equal to "0.0" . \n | |||||
*@par Attributes: | |||||
*@li output_dim: A required int32, specifying the number of output channels, | |||||
* must be greater than 0. | |||||
*@li group_size: A required int32, specifying the number of groups to encode | |||||
* position-sensitive score maps, must be within the range (0, 128). | |||||
*@li spatial_scale: A required float32, scaling factor for mapping the input | |||||
* coordinates to the ROI coordinates . \n | |||||
*@par Outputs: | |||||
*y: An NC1HWC0 tensor of type float16 or float32, describing the result | |||||
* feature map . \n | |||||
*@attention Constraints: | |||||
* HC1HWC0: channel must be Group_size squared, rois_num is a multiple of 16 | |||||
*/ | |||||
REG_OP(PSROIPoolingV2) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(rois, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(spatial_scale, Float) | |||||
.REQUIRED_ATTR(output_dim, Int) | |||||
.REQUIRED_ATTR(group_size, Int) | |||||
.OP_END_FACTORY_REG(PSROIPoolingV2) | |||||
/** | |||||
*@brief Performs Position Sensitive PS ROI Pooling Grad . \n | |||||
*@par Inputs: | |||||
* Two inputs, including: | |||||
*@li x: An NC1HWC0 tensor of type float16 or float32, describing the result | |||||
* feature map . \n | |||||
*@li rois: A tensor of type float16 or float32, with shape | |||||
* [batch, 5, rois_num], describing the ROIs, each ROI consists of five | |||||
* elements: "batch_id", "x1", "y1", "x2", and "y2", which "batch_id" indicates | |||||
* the index of the input feature map, "x1", "y1", "x2", or "y2" must be | |||||
* greater than or equal to "0.0" . \n | |||||
*@par Attributes: | |||||
*@li output_dim: A required int32, specifying the number of output channels, | |||||
* must be greater than 0. | |||||
*@li group_size: A required int32, specifying the number of groups to encode | |||||
* position-sensitive score maps, must be within the range (0, 128). | |||||
*@li spatial_scale: A required float32, scaling factor for mapping the input | |||||
* coordinates to the ROI coordinates . \n | |||||
*@li input_size: A required listInt, mapping the gradinput size: (H, W) | |||||
*@par Outputs: | |||||
*y: An NC1HWC0 tensor of type float16 or float32, describing the feature | |||||
* map, dimension C1 must be equal to | |||||
* (int(output_dim+15)/C0))*group_size*group_size. | |||||
*@attention Constraints: | |||||
* HC1HWC0: channel must be Group_size squared, rois_num is a multiple of 16 | |||||
*/ | |||||
REG_OP(PSROIPoolingGradV2D) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(rois, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.REQUIRED_ATTR(spatial_scale, Float) | |||||
.REQUIRED_ATTR(output_dim, Int) | |||||
.REQUIRED_ATTR(group_size, Int) | |||||
.REQUIRED_ATTR(input_size, ListInt) | |||||
.OP_END_FACTORY_REG(PSROIPoolingGradV2D) | |||||
} // namespace ge | } // namespace ge | ||||
#endif // OPS_BUILT_IN_OP_PROTO_INC_NN_DETECT_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_DETECT_OPS_H_ |
@@ -526,6 +526,31 @@ REG_OP(LayerNorm) | |||||
.OP_END_FACTORY_REG(LayerNorm) | .OP_END_FACTORY_REG(LayerNorm) | ||||
/** | /** | ||||
*@brief Returns a tensor where each sub-tensor of input along dimension | |||||
* dim is normalized such that the p-norm of the sub-tensor is lower than the value maxnorm. \n | |||||
*@par Inputs: | |||||
*One input, including: | |||||
* @li x: A Tensor. Must be one of the following types: float16, float32 . \n | |||||
*@par Attributes: | |||||
* @li p: Specify L_p norm, the type is float. | |||||
* @li dim: The processed dim, the type is int. | |||||
* @li maxnorm: Threshold for comparison, the type is float. \n | |||||
*@par Outputs: | |||||
*One outputs, including: | |||||
* @li y: shape and dtype of output, should be same shape and type as input. | |||||
*/ | |||||
REG_OP(Renorm) | |||||
.INPUT(x, TensorType::BasicType()) | |||||
.OUTPUT(y, TensorType::BasicType()) | |||||
.REQUIRED_ATTR(p, Float) | |||||
.REQUIRED_ATTR(dim, Int) | |||||
.REQUIRED_ATTR(maxnorm, Float) | |||||
.OP_END_FACTORY_REG(Renorm) | |||||
/** | |||||
*@brief LayerNormGrad operator interface implementation | *@brief LayerNormGrad operator interface implementation | ||||
* calculating: dy, x, variance, mean, gamma | * calculating: dy, x, variance, mean, gamma | ||||
* pd_xl = data_dy*data_gamma | * pd_xl = data_dy*data_gamma | ||||
@@ -683,7 +708,68 @@ REG_OP(DropOutDoMask) | |||||
.INPUT(keep_prob, TensorType({DT_FLOAT, DT_FLOAT16})) | .INPUT(keep_prob, TensorType({DT_FLOAT, DT_FLOAT16})) | ||||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | ||||
.OP_END_FACTORY_REG(DropOutDoMask) | .OP_END_FACTORY_REG(DropOutDoMask) | ||||
/** | |||||
*@brief Return "output" according to the algorithm of dropout_do_mask: | |||||
* scale_x = x *(1 / keep_prob) | |||||
* output = select(mask == 1, scale_x, 0) | |||||
*@par Inputs: | |||||
*Three inputs, including: | |||||
* @li x: A mutable Tensor. Must be one of the following types: | |||||
* float16, float32 | |||||
* @li mask: A mutable Tensor. Must met all of the following rules: | |||||
* shape of mask should be 1D. | |||||
* dtype of mask should be uint8. | |||||
* value of shape should met the following algorithm: | |||||
* value = (size(x) + 128 - 1) // 128 * 128 | |||||
* @li keep_prob: A mutable Tensor. Must met all of the following rules: | |||||
* shape of "keep_prob" should be (1,) or [1,]. | |||||
* Has the same type as "x" . \n | |||||
*@par Output: | |||||
*y: A mutable Tensor. Has the same type as "x". | |||||
*@par Restrictions: | |||||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
*/ | |||||
REG_OP(DropOutDoMaskV3) | |||||
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.INPUT(mask, TensorType({DT_UINT8})) | |||||
.INPUT(keep_prob, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.OP_END_FACTORY_REG(DropOutDoMaskV3) | |||||
/** | |||||
*@brief Return "output" according to the algorithm of dropout_do_mask: | |||||
* scale_x = x *(1 / keep_prob) | |||||
* output = select(mask == 1, scale_x, 0) | |||||
*@par Inputs: | |||||
*Two inputs, including: | |||||
* @li x: A mutable Tensor. Must be one of the following types: | |||||
* float16, float32 | |||||
* @li mask: A mutable Tensor. Must met all of the following rules: | |||||
* shape of mask should be 1D. | |||||
* dtype of mask should be uint8. | |||||
* value of shape should met the following algorithm: | |||||
* value = (size(x) + 128 - 1) // 128 * 128 | |||||
*@par Attributes: | |||||
* @li keep_prob: A mutable Tensor. Must met all of the following rules: | |||||
* shape of "keep_prob" should be (1,) or [1,]. | |||||
* Has the same type as "x" . \n | |||||
*@par Output: | |||||
*y: A mutable Tensor. Has the same type as "x". | |||||
*@par Restrictions: | |||||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
*/ | |||||
REG_OP(DropOutDoMaskV3D) | |||||
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.INPUT(mask, TensorType({DT_UINT8})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.REQUIRED_ATTR(keep_prob, Float) | |||||
.OP_END_FACTORY_REG(DropOutDoMaskV3D) | |||||
/** | /** | ||||
*@brief Scales the input . \n | *@brief Scales the input . \n | ||||
@@ -1356,6 +1442,58 @@ REG_OP(PoissonNllLoss) | |||||
.ATTR(eps, Float, 1e-8) | .ATTR(eps, Float, 1e-8) | ||||
.ATTR(reduction, String, "mean") | .ATTR(reduction, String, "mean") | ||||
.OP_END_FACTORY_REG(PoissonNllLoss) | .OP_END_FACTORY_REG(PoissonNllLoss) | ||||
/** | |||||
*@brief rnn_gen_mask | |||||
* @par Inputs: | |||||
* @li seq_length: A ND Tensor of type int32. Recoed the current length of each batch.\n | |||||
* | |||||
* @par Attributes: | |||||
* @li num_step: A required int.\n | |||||
* @li hidden_size: A required int. \n | |||||
* | |||||
* | |||||
* @par Output: | |||||
* y: A mutable Tensor of type int32, with the shape of [num_step, batch_size, hidden_size]. \n | |||||
* | |||||
*/ | |||||
REG_OP(RnnGenMask) | |||||
.INPUT(seq_length, TensorType({DT_INT32})) | |||||
.OUTPUT(seq_mask, TensorType({DT_INT32})) | |||||
.REQUIRED_ATTR(num_step, Int) | |||||
.REQUIRED_ATTR(hidden_size, Int) | |||||
.OP_END_FACTORY_REG(RnnGenMask) | |||||
/** | |||||
* @brief Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) | |||||
* between input x (a 2D mini-batch Tensor) and output y (which is a 2D Tensor of target class indices) \n | |||||
* @par Inputs: | |||||
* Two inputs, including: | |||||
* @li x: A tensor. Must be one of the following types: | |||||
* float16, float32. \n | |||||
* | |||||
* @par Inputs: | |||||
* @li target: A tensor. Must be the following types: | |||||
* int32. \n | |||||
* @par Attributes: | |||||
* @li reduction: An optional string. Defaults to "mean" \n | |||||
* @par Outputs: | |||||
* y: A Tensor has same element type as input x. \n | |||||
* is_target: A Tensor has same element type as input target. \n | |||||
* @par Third-party framework compatibility | |||||
* Compatible with the Pytorch operator MultiLabelMarginLoss. \n | |||||
*/ | |||||
REG_OP(MultilabelMarginLoss) | |||||
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.INPUT(target, TensorType({DT_INT32})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
.OUTPUT(is_target, TensorType({DT_INT32})) | |||||
.ATTR(reduction, String, "mean") | |||||
.OP_END_FACTORY_REG(MultilabelMarginLoss) | |||||
} // namespace ge | } // namespace ge | ||||
#endif // OPS_BUILT_IN_OP_PROTO_INC_NN_NORM_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_NORM_OPS_H_ |
@@ -397,8 +397,8 @@ No default value. | |||||
specifying the stride of the sliding window for each dimension of | specifying the stride of the sliding window for each dimension of | ||||
the input tensor. No default value. | the input tensor. No default value. | ||||
*@li padding: A required string type of float16. | *@li padding: A required string type of float16. | ||||
*@li pads: A list type of int32. Default value {0, 0, 0}. | |||||
*@li dilation: A list type of int32. Default value {1, 1, 1}. | |||||
*@li pads: A list type of int32. Default value {0,0,0,0,0,0}. | |||||
*@li dilation: A list type of int32. Default value {1,1,1,1,1,1}. | |||||
*@li ceil_mode: A ceil mode number of int32 . Default value 0. | *@li ceil_mode: A ceil mode number of int32 . Default value 0. | ||||
*@li data_format: An optional string. Defaults to "NDHWC" . \n | *@li data_format: An optional string. Defaults to "NDHWC" . \n | ||||
@@ -421,8 +421,8 @@ REG_OP(MaxPool3D) | |||||
.REQUIRED_ATTR(ksize, ListInt) | .REQUIRED_ATTR(ksize, ListInt) | ||||
.REQUIRED_ATTR(strides, ListInt) | .REQUIRED_ATTR(strides, ListInt) | ||||
.REQUIRED_ATTR(padding, String) | .REQUIRED_ATTR(padding, String) | ||||
.ATTR(pads, ListInt, {0,0,0}) | |||||
.ATTR(dilation, ListInt, {1,1,1}) | |||||
.ATTR(pads, ListInt, {0,0,0,0,0,0}) | |||||
.ATTR(dilation, ListInt, {1,1,1,1,1,1}) | |||||
.ATTR(ceil_mode, Int, 0) | .ATTR(ceil_mode, Int, 0) | ||||
.ATTR(data_format, String, "NDHWC") | .ATTR(data_format, String, "NDHWC") | ||||
.OP_END_FACTORY_REG(MaxPool3D) | .OP_END_FACTORY_REG(MaxPool3D) | ||||
@@ -1184,6 +1184,7 @@ REG_OP(MaxPool3DGrad) | |||||
.OUTPUT(y, TensorType::RealNumberType()) | .OUTPUT(y, TensorType::RealNumberType()) | ||||
.REQUIRED_ATTR(ksize, ListInt) | .REQUIRED_ATTR(ksize, ListInt) | ||||
.REQUIRED_ATTR(strides, ListInt) | .REQUIRED_ATTR(strides, ListInt) | ||||
.ATTR(padding, String, "SAME") | |||||
.REQUIRED_ATTR(pads, ListInt) | .REQUIRED_ATTR(pads, ListInt) | ||||
.ATTR(data_format, String, "NDHWC") | .ATTR(data_format, String, "NDHWC") | ||||
.OP_END_FACTORY_REG(MaxPool3DGrad) | .OP_END_FACTORY_REG(MaxPool3DGrad) | ||||
@@ -1440,12 +1441,11 @@ REG_OP(MaxPoolV3Grad) | |||||
.OP_END_FACTORY_REG(MaxPoolV3Grad) | .OP_END_FACTORY_REG(MaxPoolV3Grad) | ||||
/** | /** | ||||
*@brief Performs dilation2d on the input . \n | |||||
*@brief Performs Dilation2D on the input . \n | |||||
*@par Inputs: | *@par Inputs: | ||||
*x: A tensor of shape is 4d, format is support NHWC. | *x: A tensor of shape is 4d, format is support NHWC. | ||||
*filter: A tensor of shape is 3d, the type is same with x, | |||||
and the c dimension is same with x. \n | |||||
*filter: A tensor of shape is 3d, the type is same with x, and the c dimension is same with x. \n | |||||
*@par Attributes: | *@par Attributes: | ||||
*@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimensions are 1. | *@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimensions are 1. | ||||
@@ -1474,6 +1474,84 @@ REG_OP(Dilation2D) | |||||
.OP_END_FACTORY_REG(Dilation2D) | .OP_END_FACTORY_REG(Dilation2D) | ||||
/** | /** | ||||
*@brief Performs Dilation2DBackpropFilter on the input. \n | |||||
*@par Inputs: | |||||
*x: A tensor of shape is 4d, format is support NHWC. | |||||
*filter: A tensor of shape is 3d, the type is same with x, and the c dimension is same with x. | |||||
*out_backprop: Has the same type and format as input x and the c dimension is same with x. \n | |||||
*@par Attributes | |||||
*@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimension are 1. | |||||
*@li rates: A required list of 4 ints, the rates of the N and C dimensions are 1. | |||||
*@li padding_mode: A optional string. Defaults to "SAME", it support SAME and VALID. | |||||
*@li pads: A optional list of 4 ints. | |||||
*@li ceil_mode: An optional bool. Defaults to "false". Use ceil or floor to calculate the output size when padding_mode is "CALCULATED". | |||||
*@li data_format: An optional string, specifying the data format of "rates" and "strides", either "NCHW" or "NHWC" (default). \n | |||||
*@par Outputs: | |||||
*y: The output tensor. Has the same type and format as input "filter" . \n | |||||
*@par Third-party framework compatibility | |||||
* Compatible with the TensorFlow operator Dilation2DBackpropFilter. | |||||
*/ | |||||
REG_OP(Dilation2DBackpropFilter) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
.INPUT(filter, | |||||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
.INPUT(out_backprop, | |||||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
.OUTPUT(y, | |||||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
.REQUIRED_ATTR(strides, ListInt) | |||||
.REQUIRED_ATTR(rates, ListInt) | |||||
.ATTR(padding_mode, String, "SAME") | |||||
.ATTR(pads, ListInt, {0, 0, 0, 0}) | |||||
.ATTR(ceil_mode, Bool, false) | |||||
.ATTR(data_format, String, "NHWC") | |||||
.OP_END_FACTORY_REG(Dilation2DBackpropFilter) | |||||
/** | |||||
*@brief Performs Dilation2DBackpropInput on the input. \n | |||||
*@par Inputs: | |||||
*x: A tensor of shape is 4d, format is support NHWC. | |||||
*filter: A tensor of shape is 3d, the type is same with x, and the c dimension is same with x. | |||||
*out_backprop: Has the same type and format as input x and the c dimension is same with x. \n | |||||
*@par Attributes | |||||
*@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimension are 1. | |||||
*@li rates: A required list of 4 ints, the rates of the N and C dimensions are 1. | |||||
*@li padding_mode: A optional string. Defaults to "SAME", it support SAME and VALID. | |||||
*@li pads: A optional list of 4 ints. | |||||
*@li ceil_mode: An optional bool. Defaults to "false". Use ceil or floor to calculate the output size when padding_mode is "CALCULATED". | |||||
*@li data_format: An optional string, specifying the data format of "rates" and "strides", either "NCHW" or "NHWC" (default). \n | |||||
*@par Outputs: | |||||
*y: The output tensor. Has the same type and format as input "x" . \n | |||||
*@par Third-party framework compatibility | |||||
* Compatible with the TensorFlow operator Dilation2DBackpropInput. | |||||
*/ | |||||
REG_OP(Dilation2DBackpropInput) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
.INPUT(filter, | |||||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
.INPUT(out_backprop, | |||||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
.OUTPUT(y, | |||||
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
.REQUIRED_ATTR(strides, ListInt) | |||||
.REQUIRED_ATTR(rates, ListInt) | |||||
.ATTR(padding_mode, String, "SAME") | |||||
.ATTR(pads, ListInt, {0, 0, 0, 0}) | |||||
.ATTR(ceil_mode, Bool, false) | |||||
.ATTR(data_format, String, "NHWC") | |||||
.OP_END_FACTORY_REG(Dilation2DBackpropInput) | |||||
/** | |||||
* @brief Applies a 2D adaptive average pooling over | * @brief Applies a 2D adaptive average pooling over | ||||
* an input signal composed of several input planes. \n | * an input signal composed of several input planes. \n | ||||
@@ -1604,5 +1682,22 @@ REG_OP(MaxPoolWithArgmaxV1) | |||||
.ATTR(ceil_mode, Bool, false) | .ATTR(ceil_mode, Bool, false) | ||||
.OP_END_FACTORY_REG(MaxPoolWithArgmaxV1) | .OP_END_FACTORY_REG(MaxPoolWithArgmaxV1) | ||||
// SubSample | |||||
REG_OP(SubSample) | |||||
.INPUT(labels, TensorType({DT_INT32})) | |||||
.OUTPUT(y, TensorType({DT_INT32})) | |||||
.REQUIRED_ATTR(batch_size_per_images, Int) | |||||
.REQUIRED_ATTR(positive_fraction, Float) | |||||
.OP_END_FACTORY_REG(SubSample) | |||||
// SubSampleLabels | |||||
REG_OP(SubSampleLabels) | |||||
.INPUT(labels, TensorType({DT_INT32})) | |||||
.INPUT(shuffle_matrix, TensorType({DT_INT32})) | |||||
.OUTPUT(y, TensorType({DT_INT32})) | |||||
.REQUIRED_ATTR(batch_size_per_images, Int) | |||||
.REQUIRED_ATTR(positive_fraction, Float) | |||||
.OP_END_FACTORY_REG(SubSampleLabels) | |||||
} // namespace ge | } // namespace ge | ||||
#endif // OPS_BUILT_IN_OP_PROTO_INC_NN_POOLING_OPS_H | #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_POOLING_OPS_H |
@@ -836,7 +836,7 @@ REG_OP(HardShrink) | |||||
*backprops: A Tensor with the same type and shape of features's. \n | *backprops: A Tensor with the same type and shape of features's. \n | ||||
* | * | ||||
*@par Attributes: | *@par Attributes: | ||||
*@li lambda: An optional float.Defaults to 0.5. \n | |||||
*@li lambd: An optional float.Defaults to 0.5. \n | |||||
* | * | ||||
*@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
*Compatible with the Pytorch operator Hardshrink_backward. \n | *Compatible with the Pytorch operator Hardshrink_backward. \n | ||||
@@ -845,7 +845,7 @@ REG_OP(HardShrink) | |||||
.INPUT(gradients, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(gradients, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
.INPUT(features, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(features, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
.OUTPUT(backprops, TensorType({DT_FLOAT16, DT_FLOAT})) | .OUTPUT(backprops, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
.ATTR(lambda, Float, 0.5) | |||||
.ATTR(lambd, Float, 0.5) | |||||
.OP_END_FACTORY_REG(HardShrinkGrad) | .OP_END_FACTORY_REG(HardShrinkGrad) | ||||
/** | /** | ||||
@@ -920,7 +920,30 @@ REG_OP(SoftShrinkGrad) | |||||
.OUTPUT(output_y, TensorType({DT_FLOAT16, DT_FLOAT})) | .OUTPUT(output_y, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
.ATTR(lambd, Float, 0.5) | .ATTR(lambd, Float, 0.5) | ||||
.OP_END_FACTORY_REG(SoftShrinkGrad) | .OP_END_FACTORY_REG(SoftShrinkGrad) | ||||
/** | |||||
*@brief Calculate the gradient of log simoid. \n | |||||
*@par Inputs: | |||||
*Two inputs, including: | |||||
* @li grads: A tensor, gradient of previous layer. Must be one of the following types: | |||||
* float16, float32. \n | |||||
* @li features: A tensor, input of log sigmoid. Must be one of the following types: | |||||
* float16, float32. \n | |||||
*@par Outputs: | |||||
*One outputs, including: | |||||
* @li backprops: A tensor with the same type of and shape of grads. \n | |||||
*@par Third-party framework compatibility | |||||
*Compatible with the Pytorch operator LogSigmoidBackward. \n | |||||
*/ | |||||
REG_OP(LogSigmoidGrad) | |||||
.INPUT(grads, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(features, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(backprops, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OP_END_FACTORY_REG(LogSigmoidGrad) | |||||
/** | /** | ||||
*@brief Calculate -ln(1+e^(-x)). \n | *@brief Calculate -ln(1+e^(-x)). \n | ||||
@@ -418,7 +418,7 @@ REG_OP(EmbeddingRankId) | |||||
*/ | */ | ||||
REG_OP(FillV2) | REG_OP(FillV2) | ||||
.INPUT(dims, TensorType({DT_INT16, DT_INT32, DT_INT64})) | .INPUT(dims, TensorType({DT_INT16, DT_INT32, DT_INT64})) | ||||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64})) | |||||
.ATTR(value, Float, 0) | .ATTR(value, Float, 0) | ||||
.OP_END_FACTORY_REG(FillV2) | .OP_END_FACTORY_REG(FillV2) | ||||
@@ -437,7 +437,7 @@ REG_OP(FillV2) | |||||
* Compatible with the ONNX operator ConstantOfShape. | * Compatible with the ONNX operator ConstantOfShape. | ||||
*/ | */ | ||||
REG_OP(FillV2D) | REG_OP(FillV2D) | ||||
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64})) | |||||
.ATTR(value, Float, 0) | .ATTR(value, Float, 0) | ||||
.REQUIRED_ATTR(dims, ListInt) | .REQUIRED_ATTR(dims, ListInt) | ||||
.OP_END_FACTORY_REG(FillV2D) | .OP_END_FACTORY_REG(FillV2D) | ||||
@@ -51,6 +51,246 @@ REG_OP(StringToNumber) | |||||
.ATTR(out_type, Type, DT_FLOAT) | .ATTR(out_type, Type, DT_FLOAT) | ||||
.OP_END_FACTORY_REG(StringToNumber) | .OP_END_FACTORY_REG(StringToNumber) | ||||
/** | |||||
*@brief Convert serialized tensorflow.TensorProto prototype to Tensor. | |||||
*@brief Parse an Example prototype. | |||||
*@par Input: | |||||
*serialized: A Tensor of type string. | |||||
*dense_defaults: DYNAMIC INPUT Tensor type as string, float, int64. \n | |||||
*@par Attributes: | |||||
*num_sparse: type int num of inputs sparse_indices , sparse_values, sparse_shapes | |||||
*out_type: output type | |||||
*sparse_keys: ListString | |||||
*sparse_types: types of sparse_values | |||||
*dense_keys: ListString | |||||
*dense_shapes: output of dense_defaults shape | |||||
*dense_types: output of dense_defaults type \n | |||||
*@par Outputs: | |||||
*sparse_indices: A Tensor of type string. | |||||
*sparse_values: Has the same type as sparse_types. | |||||
*sparse_shapes: A Tensor of type int64 | |||||
*dense_values: Has the same type as dense_defaults. | |||||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
**/ | |||||
REG_OP(ParseSingleExample) | |||||
.INPUT(serialized, TensorType({DT_STRING})) | |||||
.DYNAMIC_INPUT(dense_defaults, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) | |||||
.DYNAMIC_OUTPUT(sparse_indices, TensorType({DT_INT64})) | |||||
.DYNAMIC_OUTPUT(sparse_values, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) | |||||
.DYNAMIC_OUTPUT(sparse_shapes, TensorType({DT_INT64})) | |||||
.DYNAMIC_OUTPUT(dense_values, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) | |||||
.ATTR(num_sparse, Int, 0) | |||||
.ATTR(sparse_keys, ListString, {}) | |||||
.ATTR(dense_keys, ListString, {}) | |||||
.ATTR(sparse_types, ListType, {}) | |||||
.ATTR(dense_types, ListType, {}) | |||||
.ATTR(dense_shapes, ListListInt, {}) | |||||
.OP_END_FACTORY_REG(ParseSingleExample) | |||||
/** | |||||
*@brief Decodes raw file into tensor . \n | |||||
*@par Input: | |||||
*bytes: A Tensor of type string. | |||||
*@par Attributes: | |||||
*little_endian: bool ture | |||||
*out_type: output type | |||||
*@par Outputs: | |||||
*Output: A Tensor | |||||
**/ | |||||
REG_OP(DecodeRaw) | |||||
.INPUT(bytes, TensorType({DT_STRING})) | |||||
.OUTPUT(output, TensorType({DT_BOOL,DT_FLOAT16,DT_DOUBLE,DT_FLOAT, | |||||
DT_INT64,DT_INT32,DT_INT8,DT_UINT8,DT_INT16, | |||||
DT_UINT16,DT_COMPLEX64,DT_COMPLEX128})) | |||||
.ATTR(out_type, Type, DT_FLOAT) | |||||
.ATTR(little_endian, Bool, true) | |||||
.OP_END_FACTORY_REG(DecodeRaw) | |||||
/** | |||||
*@brief Convert serialized tensorflow.TensorProto prototype to Tensor. \n | |||||
*@par Inputs: | |||||
*serialized: A Tensor of string type. Scalar string containing serialized | |||||
*TensorProto prototype. \n | |||||
*@par Attributes: | |||||
*out_type: The type of the serialized tensor. The provided type must match the | |||||
*type of the serialized tensor and no implicit conversion will take place. \n | |||||
*@par Outputs: | |||||
*output: A Tensor of type out_type. \n | |||||
*@attention Constraints: | |||||
*The implementation for StringToNumber on Ascend uses AICPU, | |||||
*with badperformance. \n | |||||
*@par Third-party framework compatibility | |||||
*@li compatible with tensorflow ParseTensor operator. | |||||
*/ | |||||
REG_OP(ParseTensor) | |||||
.INPUT(serialized, TensorType({DT_STRING})) | |||||
.OUTPUT(output, TensorType(DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, | |||||
DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, | |||||
DT_UINT64, DT_BOOL, DT_DOUBLE, DT_STRING, | |||||
DT_COMPLEX64, DT_COMPLEX128})) | |||||
.ATTR(out_type, Type, DT_FLOAT) | |||||
.OP_END_FACTORY_REG(ParseTensor) | |||||
/** | |||||
*@brief Converts each string in the input Tensor to the specified numeric | |||||
*type . \n | |||||
*@par Inputs: | |||||
*Inputs include: | |||||
*records: Each string is a record/row in the csv and all records should have the | |||||
*same format. \n | |||||
*record_defaults: One tensor per column of the input record, with either a | |||||
*scalar default value for that column or an empty vector if the column is | |||||
*required. \n | |||||
*@par Attributes: | |||||
*OUT_TYPE: The numeric type to interpret each string in string_tensor as . \n | |||||
*field_delim: char delimiter to separate fields in a record. \n | |||||
*use_quote_delim: If false, treats double quotation marks as regular characters | |||||
*inside of the string fields (ignoring RFC 4180, Section 2, Bullet 5). \n | |||||
*na_value: Additional string to recognize as NA/NaN. \n | |||||
*@par Outputs: | |||||
*output: A Tensor. Has the same type as x . \n | |||||
*@attention Constraints: | |||||
*The implementation for StringToNumber on Ascend uses AICPU, with bad | |||||
*performance. \n | |||||
*@par Third-party framework compatibility | |||||
*@li compatible with tensorflow StringToNumber operator. | |||||
*/ | |||||
REG_OP(DecodeCSV) | |||||
.INPUT(records, TensorType({DT_STRING})) | |||||
.DYNAMIC_INPUT(record_defaults, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, | |||||
DT_INT64, DT_STRING, DT_RESOURCE})) | |||||
.DYNAMIC_OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, | |||||
DT_INT64, DT_STRING, DT_RESOURCE})) | |||||
.ATTR(OUT_TYPE, ListType, {}) | |||||
.ATTR(field_delim, String, ",") | |||||
.ATTR(use_quote_delim, Bool, true) | |||||
.ATTR(na_value, String, ",") | |||||
.ATTR(select_cols, ListInt, {}) | |||||
.OP_END_FACTORY_REG(DecodeCSV) | |||||
/** | |||||
*@brief Convert serialized tensorflow.TensorProto prototype to Tensor. | |||||
*@brief Parse an Example prototype. | |||||
*@par Input: | |||||
*serialized: A Tensor of type string. \n | |||||
*name:A Tensor of type string. \n | |||||
*sparse_keys: Dynamic input tensor of string. \n | |||||
*dense_keys: Dynamic input tensor of string \n | |||||
*dense_defaults: Dynamic input tensor type as string, float, int64. \n | |||||
*@par Attributes: | |||||
*Nsparse: Number of sparse_keys, sparse_indices and sparse_shapes \n | |||||
*Ndense: Number of dense_keys \n | |||||
*sparse_types: types of sparse_values \n | |||||
*Tdense: Type of dense_defaults dense_defaults and dense_values \n | |||||
*dense_shapes: output of dense_defaults shape \n | |||||
*@par Outputs: | |||||
*sparse_indices: A Tensor of type string. \n | |||||
*sparse_values: Has the same type as sparse_types. \n | |||||
*sparse_shapes: A Tensor of type int64 \n | |||||
*dense_values: Has the same type as dense_defaults. \n | |||||
*@par Third-party framework compatibility \n | |||||
*@li compatible with tensorflow StringToNumber operator. \n | |||||
*/ | |||||
REG_OP(ParseExample) | |||||
.INPUT(serialized, TensorType({DT_STRING})) | |||||
.INPUT(name, TensorType({DT_STRING})) | |||||
.DYNAMIC_INPUT(sparse_keys, TensorType({DT_STRING})) | |||||
.DYNAMIC_INPUT(dense_keys, TensorType({DT_STRING})) | |||||
.DYNAMIC_INPUT(dense_defaults, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
.DYNAMIC_OUTPUT(sparse_indices, TensorType({DT_INT64})) | |||||
.DYNAMIC_OUTPUT(sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
.DYNAMIC_OUTPUT(sparse_shapes, TensorType({DT_INT64})) | |||||
.DYNAMIC_OUTPUT(dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
.ATTR(Nsparse, Int, 0) | |||||
.ATTR(Ndense, Int, 0) | |||||
.ATTR(sparse_types, ListType, {}) | |||||
.ATTR(Tdense, ListType, {}) | |||||
.ATTR(dense_shapes, ListListInt, {}) | |||||
.OP_END_FACTORY_REG(ParseExample) | |||||
/** | |||||
*@brief Transforms a scalar brain.SequenceExample proto (as strings) into typed | |||||
*tensors. | |||||
*@par Input: | |||||
*serialized: A Tensor of type string. \n | |||||
*feature_list_dense_missing_assumed_empty:A Tensor of type string. \n | |||||
*context_sparse_keys: Dynamic input tensor of string. \n | |||||
*context_dense_keys: Dynamic input tensor of string \n | |||||
*feature_list_sparse_keys: Dynamic input tensor of string \n | |||||
*feature_list_dense_keys: Dynamic input tensor of string \n | |||||
*context_dense_defaults: Dynamic input tensor of string, float, int64 \n | |||||
*debug_name: A Tensor of type string. \n | |||||
*@par Attributes: | |||||
*Ncontext_sparse: Number of context_sparse_keys, context_sparse_indices and context_sparse_shapes \n | |||||
*Ncontext_dense: Number of context_dense_keys \n | |||||
*Nfeature_list_sparse: Number of feature_list_sparse_keys \n | |||||
*Nfeature_list_dense: Number of feature_list_dense_keys \n | |||||
*context_sparse_types: Types of context_sparse_values \n | |||||
*Tcontext_dense: Number of dense_keys \n | |||||
*feature_list_dense_types: Types of feature_list_dense_values \n | |||||
*context_dense_shapes: Shape of context_dense \n | |||||
*feature_list_sparse_types: Type of feature_list_sparse_values \n | |||||
*feature_list_dense_shapes: Shape of feature_list_dense \n | |||||
*@par Outputs: | |||||
*context_sparse_indices: Dynamic output tensor of type int64. \n | |||||
*context_sparse_values: Dynamic output tensor of type string, float, int64. \n | |||||
*context_sparse_shapes: Dynamic output tensor of type int64 \n | |||||
*context_dense_values: Dynamic output tensor of type string, float, int64. \n | |||||
*feature_list_sparse_indices: Dynamic output tensor of type int64. \n | |||||
*feature_list_sparse_values: Dynamic output tensor of type string, float, int64. \n | |||||
*feature_list_sparse_shapes: Dynamic output tensor of type int64 \n | |||||
*feature_list_dense_values: Dynamic output tensor of type string, float, int64. \n | |||||
*@par Third-party framework compatibility \n | |||||
*@li compatible with tensorflow StringToNumber operator. \n | |||||
*/ | |||||
REG_OP(ParseSingleSequenceExample) | |||||
.INPUT(serialized, TensorType({DT_STRING})) | |||||
.INPUT(feature_list_dense_missing_assumed_empty, TensorType({DT_STRING})) | |||||
.DYNAMIC_INPUT(context_sparse_keys, TensorType({DT_STRING})) | |||||
.DYNAMIC_INPUT(context_dense_keys, TensorType({DT_STRING})) | |||||
.DYNAMIC_INPUT(feature_list_sparse_keys, TensorType({DT_STRING})) | |||||
.DYNAMIC_INPUT(feature_list_dense_keys, TensorType({DT_STRING})) | |||||
.DYNAMIC_INPUT(context_dense_defaults, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
.INPUT(debug_name, TensorType({DT_STRING})) | |||||
.DYNAMIC_OUTPUT(context_sparse_indices, TensorType({DT_INT64})) | |||||
.DYNAMIC_OUTPUT(context_sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
.DYNAMIC_OUTPUT(context_sparse_shapes, TensorType({DT_INT64})) | |||||
.DYNAMIC_OUTPUT(context_dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
.DYNAMIC_OUTPUT(feature_list_sparse_indices, TensorType({DT_INT64})) | |||||
.DYNAMIC_OUTPUT(feature_list_sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
.DYNAMIC_OUTPUT(feature_list_sparse_shapes, TensorType({DT_INT64})) | |||||
.DYNAMIC_OUTPUT(feature_list_dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
.ATTR(Ncontext_sparse, Int, 0) | |||||
.ATTR(Ncontext_dense, Int, 0) | |||||
.ATTR(Nfeature_list_sparse, Int, 0) | |||||
.ATTR(Nfeature_list_dense, Int, 0) | |||||
.REQUIRED_ATTR(context_sparse_types, ListType) | |||||
.REQUIRED_ATTR(Tcontext_dense, ListType) | |||||
.REQUIRED_ATTR(feature_list_dense_types, ListType) | |||||
.REQUIRED_ATTR(context_dense_shapes, ListListInt) | |||||
.REQUIRED_ATTR(feature_list_sparse_types, ListType) | |||||
.REQUIRED_ATTR(feature_list_dense_shapes, ListListInt) | |||||
.OP_END_FACTORY_REG(ParseSingleSequenceExample) | |||||
} // namespace ge | } // namespace ge | ||||
#endif // OPS_BUILT_IN_OP_PROTO_INC_PARSING_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_PARSING_OPS_H_ |
@@ -62,6 +62,26 @@ REG_OP(Dequantize) | |||||
/** | /** | ||||
*@brief Quantizes the input . \n | *@brief Quantizes the input . \n | ||||
*@par Inputs: | |||||
*x: shape and dtype of input_x. \n | |||||
*scales: shape and dtype of input_scales. \n | |||||
*zero_points: shape and dtype of input_zero_points \n | |||||
*@par Attributes: | |||||
*@li axis: the processed dim. \n | |||||
*@par Outputs: | |||||
*y: shape and dtype of output_y, should be same shape as input, dtype is same as the quantified type . \n | |||||
*/ | |||||
REG_OP(Quantize) | |||||
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(scales, TensorType({DT_FLOAT})) | |||||
.INPUT(zero_points, TensorType({DT_INT8,DT_UINT8,DT_INT32})) | |||||
.OUTPUT(y, TensorType({DT_INT8,DT_UINT8,DT_INT32})) | |||||
.REQUIRED_ATTR(dtype, String) | |||||
.ATTR(axis, Int, 1) | |||||
.OP_END_FACTORY_REG(Quantize) | |||||
/** | |||||
*@brief Quantizes the input . \n | |||||
*@par Inputs: | *@par Inputs: | ||||
*x: An NC1HWC0 tensor of type float16 or float32, specifying the input . \n | *x: An NC1HWC0 tensor of type float16 or float32, specifying the input . \n | ||||
@@ -356,6 +356,39 @@ REG_OP(DropOutGenMask) | |||||
.ATTR(seed2, Int, 0) | .ATTR(seed2, Int, 0) | ||||
.OP_END_FACTORY_REG(DropOutGenMask) | .OP_END_FACTORY_REG(DropOutGenMask) | ||||
/** | |||||
*@brief Generate random uint8 mask for dropout v3 . \n | |||||
*@par Inputs: | |||||
include: | |||||
*@li shape:The shape of the output tensor. | |||||
*@li prob:0-D. Prob of 1 . \n | |||||
*@par Attributes: | |||||
*@li seed:If either seed or seed2 are set to be non-zero, the random number | |||||
*generator is seeded by the given seed. Otherwise, it is seeded by a random seed. | |||||
*@li seed2:A second seed to avoid seed collision . \n | |||||
*@par Outputs: | |||||
*y:Output (1-D) random number using uint8 data format . \n | |||||
*@attention Constraints: | |||||
*The output is aligned with 16 | |||||
*@par Restrictions: | |||||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
*@see DropOutGenMaskV3() | |||||
*/ | |||||
REG_OP(DropOutGenMaskV3) | |||||
.INPUT(shape, TensorType({ DT_INT32, DT_INT64 })) | |||||
.INPUT(prob, TensorType({ DT_FLOAT16, DT_FLOAT })) | |||||
.OUTPUT(y, TensorType({ DT_UINT8 })) | |||||
.ATTR(seed, Int, 0) | |||||
.ATTR(seed2, Int, 0) | |||||
.OP_END_FACTORY_REG(DropOutGenMaskV3) | |||||
/** | /** | ||||
*@brief Generates values in an interval . \n | *@brief Generates values in an interval . \n | ||||
@@ -898,14 +898,14 @@ REG_OP(Reduction) | |||||
*@brief Computes the euclidean norm of elements across dimensions of a tensor . \n | *@brief Computes the euclidean norm of elements across dimensions of a tensor . \n | ||||
*@par Inputs: | *@par Inputs: | ||||
*@li input_tensor: A Tensor. Must be one of the following types: float16, float32, int32. | |||||
*@li x: A Tensor. Must be one of the following types: float16, float32, int32. | |||||
*@li axes: A Tensor of type int8 or int32. Specifies the dimensions to reduce. Defaults to "None" . \n | *@li axes: A Tensor of type int8 or int32. Specifies the dimensions to reduce. Defaults to "None" . \n | ||||
*@par Attributes: | *@par Attributes: | ||||
*keep_dims: An optional bool. If "True", reduced dimensions will be retained. Defaults to "False" . \n | *keep_dims: An optional bool. If "True", reduced dimensions will be retained. Defaults to "False" . \n | ||||
*@par Outputs: | *@par Outputs: | ||||
*output_tensor: A Tensor. Must be one of the following types: float16, float32, int32 . \n | |||||
*y: A Tensor. Must be one of the following types: float16, float32, int32 . \n | |||||
*@attention Constraints: | *@attention Constraints: | ||||
* If "axes = None", all dimensions will be reduced. "axes" must be in the range [-rank(input_shape), rank(input_shape)) . \n | * If "axes = None", all dimensions will be reduced. "axes" must be in the range [-rank(input_shape), rank(input_shape)) . \n | ||||
@@ -1134,6 +1134,29 @@ REG_OP(GNTrainingUpdate) | |||||
.OP_END_FACTORY_REG(GNTrainingUpdate) | .OP_END_FACTORY_REG(GNTrainingUpdate) | ||||
/** | /** | ||||
*@brief Joins a string Tensor across the given dimensions. \n | |||||
*@par Inputs: | |||||
include: | |||||
*@li input:A Tensor of type string. The text to be processed. | |||||
*@li reduction_indices:A Tensor of type int. The text to be processed. | |||||
*@par Attributes: | |||||
*@li keep_dims:A bool, An optional bool. Defaults to False. If True, retain reduced dimensions with length 1.. | |||||
*@li separator:string. | |||||
*@par output: | |||||
*@li output::A Tensor of type string.. | |||||
*/ | |||||
REG_OP(ReduceJoin) | |||||
.INPUT(input, TensorType({DT_STRING})) | |||||
.INPUT(reduction_indices, TensorType({DT_INT32})) | |||||
.OUTPUT(output, TensorType({DT_STRING})) | |||||
.ATTR(keep_dims, Bool, true) | |||||
.ATTR(separator, String, "") | |||||
.OP_END_FACTORY_REG(ReduceJoin) | |||||
/** | |||||
* @brief Calculates the standard deviation and average value of Tensors. | * @brief Calculates the standard deviation and average value of Tensors. | ||||
* @par Inputs: | * @par Inputs: | ||||
@@ -257,6 +257,83 @@ REG_OP(DynamicRNN) | |||||
.OP_END_FACTORY_REG(DynamicRNN) | .OP_END_FACTORY_REG(DynamicRNN) | ||||
/** | /** | ||||
*@brief: DynamicRNNV3 calculation. | |||||
*@par Inputs: | |||||
*ten inputs: | |||||
*@li x:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li w:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li b:A required 1D Tensor. Must be one of the following types: float16, float32. The format must be ND. | |||||
*@li seq_length:A optional 1D Tensor. Must be one of the following types: int32. The format must be ND. | |||||
*@li init_h:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li init_c:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li wci:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li wcf:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li wco:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li mask:A 1D optional Tensor. Must be one of the following types: uint8. The format must be ND . \n | |||||
*@li real_mask:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li project:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@par Attributes: | |||||
*@li cell_type:An string identifying the cell type in the op. Default to "LSTM". Only LSTM is currently supported. | |||||
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported. | |||||
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1. | |||||
*@li use_peephole:An bool identifying if use peephole in the op. Default to false. | |||||
*@li keep_prob:An float identifying the keep prob in the op. Default to 1. | |||||
*@li cell_clip:An float identifying the cell clip in the op. Default to -1. | |||||
*@li num_proj:An integer identifying the num projection in the op. Default to 0. | |||||
*@li time_major:An bool identifying the time major in the op. Default to true. | |||||
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported. | |||||
*@li forget_bias:An float identifying the forget bias in the op. Default to 0. | |||||
*@li is_training:An bool identifying is training in the op. Default to true . \n | |||||
*@par Outputs: | |||||
*eight outputs: | |||||
*@li y:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li output_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li output_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li i:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li j:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
*@par Third-party framework compatibility: | |||||
* Compatible with the TF operator LSTM. | |||||
*/ | |||||
REG_OP(DynamicRNNV3) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32})) | |||||
.OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OPTIONAL_INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OPTIONAL_INPUT(wcf, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OPTIONAL_INPUT(wco, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OPTIONAL_INPUT(mask, TensorType({DT_UINT8})) | |||||
.OPTIONAL_INPUT(real_mask, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OPTIONAL_INPUT(project, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(output_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(i, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(j, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(f, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(o, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(tanhc, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.ATTR(cell_type, String, "LSTM") | |||||
.ATTR(direction, String, "UNIDIRECTIONAL") | |||||
.ATTR(cell_depth, Int, 1) | |||||
.ATTR(use_peephole, Bool, false) | |||||
.ATTR(keep_prob, Float, 1.0) | |||||
.ATTR(cell_clip, Float, -1.0) | |||||
.ATTR(num_proj, Int, 0) | |||||
.ATTR(time_major, Bool, true) | |||||
.ATTR(activation, String, "tanh") | |||||
.ATTR(forget_bias, Float, 0.0) | |||||
.ATTR(is_training, Bool, true) | |||||
.OP_END_FACTORY_REG(DynamicRNNV3) | |||||
/** | |||||
*@brief: DynamicLSTMV2 calculation. | *@brief: DynamicLSTMV2 calculation. | ||||
*@par Inputs: | *@par Inputs: | ||||
*ten inputs: | *ten inputs: | ||||
@@ -960,6 +1037,47 @@ REG_OP(CommonGRU) | |||||
.REQUIRED_ATTR(hidden_size, Int) | .REQUIRED_ATTR(hidden_size, Int) | ||||
.ATTR(linear_before_reset , Int, 0) | .ATTR(linear_before_reset , Int, 0) | ||||
.OP_END_FACTORY_REG(CommonGRU) | .OP_END_FACTORY_REG(CommonGRU) | ||||
/** | |||||
* @brief Calculates the reversed outputs of the function "embedding". \n | |||||
* @par Inputs: | |||||
* Four inputs, including: | |||||
* @li weight: A mutable Tensor of word grad. Must be one of the following types: | |||||
* float32. | |||||
* @li indices: A mutable word index Tensor of the int32 type.\n | |||||
* @li offsets: A mutable word index Tensor of the int32 type.\n | |||||
* @li per_sample_weights: to indicate all weights should be taken to be 1. | |||||
* If specified, per_sample_weights must have exactly the same shape as input | |||||
* and is treated as having the same offsets, if those are not None. | |||||
* Only supported for mode='sum'..\n | |||||
* @par Attributes: | |||||
* @li mode: An string attr which use "sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.. \n | |||||
* @li scale_grad_by_freq: An optional bool. Defaults to "False". | |||||
* If "True", "grad_weight" will be scale by word_frequency. | |||||
* If "False", "grad_weight" will not be scale by word_frequency. \n | |||||
* @li sparse: if True, gradient w.r.t.attr weight matrix will be a sparse tensor. \n | |||||
* @li include_last_offset: if True, attr offsets has one additional element, where the last element | |||||
* is equivalent to the size of indices. This matches the CSR format.. \n | |||||
* @par Outputs: | |||||
* @li grad_weight: A mutable output Tensor of new word grad has the same type as "grads". \n | |||||
* @par Third-party framework compatibility | |||||
* Compatible with the Pytorch operator EmbeddingBag. | |||||
*/ | |||||
REG_OP(EmbeddingBag) | |||||
.INPUT(weight, TensorType({ DT_FLOAT32 })) | |||||
.INPUT(indices, TensorType({ DT_INT32 })) | |||||
.OPTIONAL_INPUT(offsets, TensorType({DT_INT32})) | |||||
.OPTIONAL_INPUT(per_sample_weights, TensorType({DT_FLOAT32})) | |||||
.OUTPUT(y, TensorType({ DT_FLOAT32 })) | |||||
.ATTR(mode, String, "mean") | |||||
.ATTR(scale_grad_by_freq, Bool, false) | |||||
.ATTR(sparse, Bool, false) | |||||
.ATTR(include_last_offset, Bool, false) | |||||
.OP_END_FACTORY_REG(EmbeddingBag) | |||||
} // namespace ge | } // namespace ge | ||||
#endif // OPS_BUILT_IN_OP_PROTO_INC_RNN_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_RNN_H_ |
@@ -1006,9 +1006,9 @@ REG_OP(TopK) | |||||
*@par Inputs: | *@par Inputs: | ||||
*Inputs including: | *Inputs including: | ||||
* @li indices: A required index tensor. Must be one of the following types: float32, float16, int32, int8, uint8. | |||||
* @li x: A required slice tensor. Must be one of the following types: float32, float16, int32, int8, uint8. | |||||
* @li shape: A required list of int32, specifying the output shape. | |||||
* @li indices: A required index tensor. Must be one of the following types: int32 or int64. | |||||
* @li x: A required slice tensor. Must be one of the following types: float32, float16, int32, int8, uint8... | |||||
* @li shape: A required list of int32 or int64, specifying the output shape. | |||||
*@par Outputs: | *@par Outputs: | ||||
*y:A output Tensor with same datatype as "updates" . \n | *y:A output Tensor with same datatype as "updates" . \n | ||||
@@ -1019,7 +1019,7 @@ REG_OP(TopK) | |||||
* Compatible with the TensorFlow operator ScatterNd. | * Compatible with the TensorFlow operator ScatterNd. | ||||
*/ | */ | ||||
REG_OP(ScatterNd) | REG_OP(ScatterNd) | ||||
.INPUT(indices, TensorType::BasicType()) | |||||
.INPUT(indices, TensorType::IndexNumberType()) | |||||
.INPUT(x, TensorType::BasicType()) | .INPUT(x, TensorType::BasicType()) | ||||
.INPUT(shape, TensorType::IndexNumberType()) | .INPUT(shape, TensorType::IndexNumberType()) | ||||
.OUTPUT(y, TensorType::BasicType()) | .OUTPUT(y, TensorType::BasicType()) | ||||
@@ -1032,11 +1032,11 @@ REG_OP(ScatterNd) | |||||
*@par Inputs: | *@par Inputs: | ||||
*Inputs including: | *Inputs including: | ||||
* @li indices: A required index tensor. Must be one of the following types: | * @li indices: A required index tensor. Must be one of the following types: | ||||
* float, float16, int32, int16. format:ND. | |||||
* int32 or int64. format:ND. | |||||
* @li x: A required slice tensor. Must be one of the following types: | * @li x: A required slice tensor. Must be one of the following types: | ||||
* float, float16, int32, int16. format:ND. | |||||
* float16, float, int32, int8, uint8. format:ND. | |||||
*@par Attributes: | *@par Attributes: | ||||
* @li shape: A required list of int32, specifying the output shape. | |||||
* @li shape: A required list of int32 or int64, specifying the output shape. | |||||
*@par Outputs: | *@par Outputs: | ||||
*y: A Tensor. Has the same type as "x". format:ND . \n | *y: A Tensor. Has the same type as "x". format:ND . \n | ||||
@@ -1051,8 +1051,8 @@ REG_OP(ScatterNd) | |||||
*/ | */ | ||||
REG_OP(ScatterNdD) | REG_OP(ScatterNdD) | ||||
.INPUT(indices, TensorType::IndexNumberType()) | .INPUT(indices, TensorType::IndexNumberType()) | ||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16})) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||||
.REQUIRED_ATTR(shape, ListInt) | .REQUIRED_ATTR(shape, ListInt) | ||||
.OP_END_FACTORY_REG(ScatterNdD) | .OP_END_FACTORY_REG(ScatterNdD) | ||||
@@ -1877,6 +1877,33 @@ REG_OP(Crop) | |||||
.OP_END_FACTORY_REG(Crop) | .OP_END_FACTORY_REG(Crop) | ||||
/** | /** | ||||
*@brief Returns a namedtuple (values, indices) where values is the cumulative | |||||
* the cumulative minimum of elements of input in the dimension dim. | |||||
* And indices is the index location of each maximum value found in the dimension dim. \n | |||||
*@par Inputs: | |||||
*One inputs, including: | |||||
* @li x: A tensor . Must be one of the following types: | |||||
* float16, float32, int32, uint32, int8, uint8. \n | |||||
*@par Attributes: | |||||
* @li axis: Axis along which to cummin. \n | |||||
*@par Outputs: | |||||
* y: A Tensor with the same type and shape of x's. \n | |||||
* indices: A Tensor with the int32 type and the same shape of x's. \n | |||||
*@par Third-party framework compatibility | |||||
*Compatible with the Pytorch operator Cummin. \n | |||||
*/ | |||||
REG_OP(Cummin) | |||||
.INPUT(x, TensorType::BasicType()) | |||||
.OUTPUT(y, TensorType::BasicType()) | |||||
.OUTPUT(indices, TensorType::BasicType()) | |||||
.REQUIRED_ATTR(axis, Int) | |||||
.OP_END_FACTORY_REG(Cummin) | |||||
/** | |||||
*@brief Extends the input with copies of data along a specified dimension. For example: | *@brief Extends the input with copies of data along a specified dimension. For example: | ||||
*(1) If x = [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]], with shape (2, 3, 2); | *(1) If x = [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]], with shape (2, 3, 2); | ||||
*(2) axis = 1; | *(2) axis = 1; | ||||
@@ -25,6 +25,233 @@ | |||||
#include "graph/operator_reg.h" | #include "graph/operator_reg.h" | ||||
namespace ge { | namespace ge { | ||||
/** | |||||
*@brief Creates ngrams from ragged string data . \n | |||||
*@par Inputs: | |||||
include: | |||||
*@li data:1-D.The values tensor of the ragged string tensor to make ngrams out of. | |||||
*@li data_splits:The splits tensor of the ragged string tensor to make ngrams out of . \n | |||||
*@par Attributes: | |||||
* separator:The string to append between elements of the token. Use "" for no separator. | |||||
* ngram_widths:The sizes of the ngrams to create. | |||||
* left_pad:The string to use to pad the left side of the ngram sequence. Only used if pad_width != 0. | |||||
* right_pad:The string to use to pad the right side of the ngram sequence. Only used if pad_width != 0. | |||||
* pad_width:The number of padding elements to add to each side of each sequence. | |||||
* preserve_short_sequences: Preserve short sequences. \n | |||||
*@par Outputs: | |||||
*@li ngrams:The values tensor of the output ngrams ragged tensor. | |||||
*@li ngrams_splits:The splits tensor of the output ngrams ragged tensor. \n | |||||
*@see StringNGrams() | |||||
*@par Third-party framework compatibility | |||||
*compatible with StringNGrams op of tensorflow | |||||
*@par Restrictions: | |||||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
*/ | |||||
REG_OP(StringNGrams) | |||||
.INPUT(data, TensorType({DT_STRING})) | |||||
.INPUT(data_splits, TensorType({DT_INT32, DT_INT64})) | |||||
.OUTPUT(ngrams, TensorType({DT_STRING})) | |||||
.OUTPUT(ngrams_splits, TensorType({DT_INT32, DT_INT64})) | |||||
.REQUIRED_ATTR(separator, String) | |||||
.ATTR(ngram_widths, ListInt, {}) | |||||
.REQUIRED_ATTR(left_pad, String) | |||||
.REQUIRED_ATTR(right_pad, String) | |||||
.REQUIRED_ATTR(pad_width, Int) | |||||
.REQUIRED_ATTR(preserve_short_sequences, Bool) | |||||
.OP_END_FACTORY_REG(StringNGrams) | |||||
/** | |||||
*@brief Decodes each string in `input` into a sequence of Unicode code points . \n | |||||
*@par Inputs: | |||||
include: | |||||
*@li input:The text to be decoded. Can have any shape. Note that the output is flattened | |||||
to a vector of char values. \n | |||||
*@par Attributes: | |||||
* input_encoding:Text encoding of the input strings. This is any of the encodings supported | |||||
by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. | |||||
* errors:Error handling policy when there is invalid formatting found in the input. | |||||
The value of 'strict' will cause the operation to produce a InvalidArgument | |||||
error on any invalid input formatting. A value of 'replace' (the default) will | |||||
cause the operation to replace any invalid formatting in the input with the | |||||
`replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||||
skip any invalid formatting in the input and produce no corresponding output | |||||
character. | |||||
* replacement_char:The replacement character codepoint to be used in place of any invalid | |||||
formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||||
be used. The default value is the default unicode replacement character is | |||||
0xFFFD or U+65533. | |||||
* replace_control_characters:Whether to replace the C0 control characters (00-1F) with the | |||||
`replacement_char`. Default is false. \n | |||||
*@par Outputs: | |||||
*@li row_splits:A 1D tensor containing the row splits. | |||||
*@li char_values:A 1D tensor containing the decoded codepoints. | |||||
*@li char_to_byte_starts:A 1D int32 Tensor containing the byte index in the input string where each | |||||
character in `char_values` starts. \n | |||||
*@see UnicodeDecodeWithOffsets() | |||||
*@par Third-party framework compatibility | |||||
*compatible with UnicodeDecodeWithOffsets op of tensorflow | |||||
*@par Restrictions: | |||||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
*/ | |||||
REG_OP(UnicodeDecodeWithOffsets) | |||||
.INPUT(input, TensorType({DT_STRING})) | |||||
.OUTPUT(row_splits, TensorType({DT_INT64})) | |||||
.OUTPUT(char_values, TensorType({DT_INT32})) | |||||
.OUTPUT(char_to_byte_starts, TensorType({DT_INT64})) | |||||
.REQUIRED_ATTR(input_encoding, String) | |||||
.ATTR(errors, String, "replace") | |||||
.ATTR(replacement_char, Int, 65533) | |||||
.ATTR(replace_control_characters, Bool, false) | |||||
.OP_END_FACTORY_REG(UnicodeDecodeWithOffsets) | |||||
/** | |||||
*@brief Decodes each string in `input` into a sequence of Unicode code points. \n | |||||
*@par Inputs: | |||||
include: | |||||
*@li input:The text to be decoded. Can have any shape. Note that the output is flattened | |||||
to a vector of char values. \n | |||||
*@par Attributes: | |||||
* input_encoding:Text encoding of the input strings. This is any of the encodings supported | |||||
by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. | |||||
* errors:Error handling policy when there is invalid formatting found in the input. | |||||
The value of 'strict' will cause the operation to produce a InvalidArgument | |||||
error on any invalid input formatting. A value of 'replace' (the default) will | |||||
cause the operation to replace any invalid formatting in the input with the | |||||
`replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||||
skip any invalid formatting in the input and produce no corresponding output | |||||
character. | |||||
* replacement_char:The replacement character codepoint to be used in place of any invalid | |||||
formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||||
be used. The default value is the default unicode replacement character is | |||||
0xFFFD or U+65533. | |||||
* replace_control_characters:Whether to replace the C0 control characters (00-1F) with the | |||||
`replacement_char`. Default is false. \n | |||||
*@par Outputs: | |||||
*@li row_splits:A 1D tensor containing the row splits. | |||||
*@li char_values:A 1D tensor containing the decoded codepoints. \n | |||||
*@see UnicodeDecode() | |||||
*@par Third-party framework compatibility | |||||
*compatible with UnicodeDecode op of tensorflow | |||||
*@par Restrictions: | |||||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
*/ | |||||
REG_OP(UnicodeDecode) | |||||
.INPUT(input, TensorType({DT_STRING})) | |||||
.OUTPUT(row_splits, TensorType({DT_INT64})) | |||||
.OUTPUT(char_values, TensorType({DT_INT32})) | |||||
.REQUIRED_ATTR(input_encoding, String) | |||||
.ATTR(errors, String, "replace") | |||||
.ATTR(replacement_char, Int, 65533) | |||||
.ATTR(replace_control_characters, Bool, false) | |||||
.OP_END_FACTORY_REG(UnicodeDecode) | |||||
/** | |||||
*@brief Transcode the input text from a source encoding to a destination encoding. \n | |||||
*@par Inputs: | |||||
include: | |||||
*@li input:The text to be processed. Can have any shape. \n | |||||
*@par Attributes: | |||||
* input_encoding:Text encoding of the input strings. This is any of the encodings supported | |||||
by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. | |||||
* output_encoding:The unicode encoding to use in the output. Must be one of `"UTF-8", "UTF-16-BE", "UTF-32-BE"`. | |||||
Multi-byte encodings will be big-endian. | |||||
* errors:Error handling policy when there is invalid formatting found in the input. | |||||
The value of 'strict' will cause the operation to produce a InvalidArgument | |||||
error on any invalid input formatting. A value of 'replace' (the default) will | |||||
cause the operation to replace any invalid formatting in the input with the | |||||
`replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||||
skip any invalid formatting in the input and produce no corresponding output | |||||
character. | |||||
* replacement_char:The replacement character codepoint to be used in place of any invalid | |||||
formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||||
be used. The default value is the default unicode replacement character is | |||||
0xFFFD or U+65533. | |||||
* replace_control_characters:Whether to replace the C0 control characters (00-1F) with the | |||||
`replacement_char`. Default is false. \n | |||||
*@par Outputs: | |||||
*@li output:A string tensor containing unicode text encoded using `output_encoding`. \n | |||||
*@see UnicodeTranscode() | |||||
*@par Third-party framework compatibility | |||||
*compatible with UnicodeTranscode op of tensorflow | |||||
*@par Restrictions: | |||||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
*/ | |||||
REG_OP(UnicodeTranscode) | |||||
.INPUT(input, TensorType({DT_STRING})) | |||||
.OUTPUT(output, TensorType({DT_STRING})) | |||||
.REQUIRED_ATTR(input_encoding, String) | |||||
.ATTR(output_encoding, String, "UTF-8") | |||||
.ATTR(errors, String, "replace") | |||||
.ATTR(replacement_char, Int, 65533) | |||||
.ATTR(replace_control_characters, Bool, false) | |||||
.OP_END_FACTORY_REG(UnicodeTranscode) | |||||
/** | |||||
*@brief Encode a tensor of ints into unicode strings. \n | |||||
*@par Inputs: | |||||
include: | |||||
*@li input_values:A 1D tensor containing the unicode codepoints that should be encoded. | |||||
*@li input_splits:A 1D tensor specifying how the unicode codepoints should be split into strings. \n | |||||
*@par Attributes: | |||||
* output_encoding:The unicode encoding to use in the output. Must be one of `"UTF-8", "UTF-16-BE", "UTF-32-BE"`. | |||||
Multi-byte encodings will be big-endian. | |||||
* errors:Error handling policy when there is invalid formatting found in the input. | |||||
The value of 'strict' will cause the operation to produce a InvalidArgument | |||||
error on any invalid input formatting. A value of 'replace' (the default) will | |||||
cause the operation to replace any invalid formatting in the input with the | |||||
`replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||||
skip any invalid formatting in the input and produce no corresponding output | |||||
character. | |||||
* replacement_char:The replacement character codepoint to be used in place of any invalid | |||||
formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||||
be used. The default value is the default unicode replacement character is | |||||
0xFFFD or U+65533. \n | |||||
*@par Outputs: | |||||
*@li output:The 1-D Tensor of strings encoded from the provided unicode codepoints. \n | |||||
*@see UnicodeEncode() | |||||
*@par Third-party framework compatibility | |||||
*compatible with UnicodeEncode op of tensorflow | |||||
*@par Restrictions: | |||||
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
*/ | |||||
REG_OP(UnicodeEncode) | |||||
.INPUT(input_values, TensorType({DT_INT32})) | |||||
.INPUT(input_splits, TensorType({DT_INT32, DT_INT64})) | |||||
.OUTPUT(output, TensorType({DT_STRING})) | |||||
.ATTR(errors, String, "replace") | |||||
.ATTR(output_encoding, String, "UTF-8") | |||||
.ATTR(replacement_char, Int, 65533) | |||||
.OP_END_FACTORY_REG(UnicodeEncode) | |||||
/** | /** | ||||
*@brief Split elements of input based on delimiter into a SparseTensor . \n | *@brief Split elements of input based on delimiter into a SparseTensor . \n | ||||
@@ -62,6 +289,116 @@ REG_OP(StringSplit) | |||||
.OP_END_FACTORY_REG(StringSplit) | .OP_END_FACTORY_REG(StringSplit) | ||||
/** | /** | ||||
*@brief Replaces the match of pattern in input with rewrite. \n | |||||
*@par Inputs: | |||||
include: | |||||
*@li input:A Tensor of type string. The text to be processed. \n | |||||
*@par Attributes: | |||||
*@li pattern:A string. The regular expression to match the input. | |||||
*@li rewrite:A string. The rewrite to be applied to the matched expression. | |||||
*@li replace_global:An optional bool. Defaults to True. If True, the replacement is global, | |||||
otherwise the replacement is done only on the first match. | |||||
*@par output: | |||||
*@li output::A Tensor of type string. | |||||
*/ | |||||
REG_OP(StaticRegexReplace) | |||||
.INPUT(input, TensorType({DT_STRING})) | |||||
.OUTPUT(output, TensorType({DT_STRING})) | |||||
.ATTR(pattern, String, "") | |||||
.ATTR(rewrite, String, "") | |||||
.ATTR(replace_global, Bool, true) | |||||
.OP_END_FACTORY_REG(StaticRegexReplace) | |||||
/** | |||||
*@brief The input is a string tensor of any shape. The pattern is the | |||||
*regular expression to be matched with every element of the input tensor. | |||||
*The boolean values (True or False) of the output tensor indicate | |||||
*if the input matches the regex pattern provided. | |||||
*@par Inputs: | |||||
include: | |||||
*@li input:A Tensor of type string. The text to be processed. \n | |||||
*@par Attributes: | |||||
*@li pattern:A string. The regular expression to match the input. | |||||
*@par output: | |||||
*@li output::A bool tensor with the same shape as `input`. | |||||
*/ | |||||
REG_OP(StaticRegexFullMatch) | |||||
.INPUT(input, TensorType({DT_STRING})) | |||||
.OUTPUT(output, TensorType({DT_BOOL})) | |||||
.ATTR(pattern, String, "") | |||||
.OP_END_FACTORY_REG(StaticRegexFullMatch) | |||||
/** | |||||
*@brief A Tensor of type string. The input to be joined. \n | |||||
*@par Inputs: | |||||
include: | |||||
*@li input:A Tensor of type string. The text to be processed. | |||||
*@li segment_ids:A Tensor. Must be one of the following types: int32, int64. | |||||
*A tensor whose shape is a prefix of data.shape. Negative segment ids are not supported. | |||||
*@li num_segments:A Tensor. Must be one of the following types: int32, int64. A scalar. | |||||
*@par Attributes: | |||||
*@li separator:An optional string. Defaults to "". The separator to use when joining. | |||||
*@par output: | |||||
*@li output::A Tensor of type string.. | |||||
*/ | |||||
REG_OP(UnsortedSegmentJoin) | |||||
.INPUT(input, TensorType({DT_STRING})) | |||||
.INPUT(segment_ids, TensorType({DT_INT32,DT_INT64})) | |||||
.INPUT(num_segments, TensorType({DT_INT32,DT_INT64})) | |||||
.OUTPUT(output, TensorType({DT_STRING})) | |||||
.ATTR(separator, String, "") | |||||
.OP_END_FACTORY_REG(UnsortedSegmentJoin) | |||||
/** | |||||
*@brief Inputs to TensorFlow operations are outputs of another TensorFlow operation. | |||||
*This method is used to obtain a symbolic handle that represents the computation of the input. | |||||
*@par Inputs: | |||||
include: | |||||
*@li input:A Tensor of type string. The text to be processed. | |||||
*@par Attributes: | |||||
*@li encoding:An optional string. Defaults to "". | |||||
*@par output: | |||||
*@li output::A Tensor of type string.. | |||||
*/ | |||||
REG_OP(StringLower) | |||||
.INPUT(input, TensorType({DT_STRING})) | |||||
.OUTPUT(output, TensorType({DT_STRING})) | |||||
.ATTR(encoding, String, "") | |||||
.OP_END_FACTORY_REG(StringLower) | |||||
/** | |||||
*@brief Inputs to TensorFlow operations are outputs of another TensorFlow operation. | |||||
*This method is used to obtain a symbolic handle that represents the computation of the input. | |||||
*@par Inputs: | |||||
include: | |||||
*@li input:A Tensor of type string. The text to be processed. | |||||
*@par Attributes: | |||||
*@li encoding:An optional string. Defaults to "". | |||||
*@par output: | |||||
*@li output::A Tensor of type string.. | |||||
*/ | |||||
REG_OP(StringUpper) | |||||
.INPUT(input, TensorType({DT_STRING})) | |||||
.OUTPUT(output, TensorType({DT_STRING})) | |||||
.ATTR(encoding, String, "") | |||||
.OP_END_FACTORY_REG(StringUpper) | |||||
/** | |||||
*@brief Split elements of source based on sep into a SparseTensor . \n | *@brief Split elements of source based on sep into a SparseTensor . \n | ||||
*@par Inputs: | *@par Inputs: | ||||
@@ -418,12 +418,8 @@ REG_OP(BatchToSpace) | |||||
* Warning: THIS FUNCTION IS DEPRECATED. Please use BatchToSpace instead. | * Warning: THIS FUNCTION IS DEPRECATED. Please use BatchToSpace instead. | ||||
*/ | */ | ||||
REG_OP(BatchToSpaceD) | REG_OP(BatchToSpaceD) | ||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT64, DT_INT32, DT_UINT8, | |||||
DT_UINT16, DT_UINT32, DT_UINT64, DT_INT8, DT_INT16, DT_COMPLEX64, | |||||
DT_COMPLEX128, DT_QINT8, DT_QUINT8, DT_QINT16, DT_QUINT16, DT_QINT32})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT64, DT_INT32, DT_UINT8, | |||||
DT_UINT16, DT_UINT32, DT_UINT64, DT_INT8, DT_INT16, DT_COMPLEX64, | |||||
DT_COMPLEX128, DT_QINT8, DT_QUINT8, DT_QINT16, DT_QUINT16, DT_QINT32})) | |||||
.INPUT(x, TensorType::BasicType()) | |||||
.OUTPUT(y, TensorType::BasicType()) | |||||
.REQUIRED_ATTR(block_size, Int) | .REQUIRED_ATTR(block_size, Int) | ||||
.REQUIRED_ATTR(crops, ListInt) | .REQUIRED_ATTR(crops, ListInt) | ||||
.OP_END_FACTORY_REG(BatchToSpaceD) | .OP_END_FACTORY_REG(BatchToSpaceD) | ||||
@@ -156,6 +156,12 @@ RTS_API rtError_t rtProfilerTrace(uint64_t id, bool notify, uint32_t flags, rtSt | |||||
/** | /** | ||||
* @ingroup profiling_base | * @ingroup profiling_base | ||||
* @brief ts send keypoint profiler log. | |||||
*/ | |||||
RTS_API rtError_t rtProfilerTraceEx(uint64_t id, uint64_t modelId, uint16_t tagId, rtStream_t stream); | |||||
/** | |||||
* @ingroup profiling_base | |||||
* @brief ts set profiling reporter callback. | * @brief ts set profiling reporter callback. | ||||
*/ | */ | ||||
RTS_API rtError_t rtSetMsprofReporterCallback(MsprofReporterCallback callback); | RTS_API rtError_t rtSetMsprofReporterCallback(MsprofReporterCallback callback); | ||||
@@ -200,7 +206,7 @@ RTS_API rtError_t rtRegDeviceStateCallback(const char *regName, rtDeviceStateCal | |||||
/** | /** | ||||
* @ingroup dvrt_base | * @ingroup dvrt_base | ||||
* @brief register callback for fail task | |||||
* @brief register callback for fail task | |||||
* @param [in] uniName unique register name, can't be null | * @param [in] uniName unique register name, can't be null | ||||
* @param [in] callback fail task callback function | * @param [in] callback fail task callback function | ||||
* @param [out] NA | * @param [out] NA | ||||
@@ -343,7 +349,7 @@ RTS_API rtError_t rtLabelCreateExV2(rtLabel_t *label, rtModel_t model, rtStream_ | |||||
/** | /** | ||||
* @ingroup dvrt_base | * @ingroup dvrt_base | ||||
* @brief get current thread last stream id and task id | |||||
* @brief get current thread last stream id and task id | |||||
* @param [out] stream id and task id | * @param [out] stream id and task id | ||||
* @param [in] null | * @param [in] null | ||||
* @return RT_ERROR_NONE for ok | * @return RT_ERROR_NONE for ok | ||||
@@ -183,6 +183,18 @@ RTS_API rtError_t rtNotifyWait(rtNotify_t notify, rtStream_t stream); | |||||
/** | /** | ||||
* @ingroup dvrt_event | * @ingroup dvrt_event | ||||
* @brief Wait for a notify with time out | |||||
* @param [in] notify_ notify to be wait | |||||
* @param [in] stream_ input stream | |||||
* @param [in] timeOut input timeOut | |||||
* @return RT_ERROR_NONE for ok | |||||
* @return RT_ERROR_INVALID_VALUE for error input | |||||
* @return RT_ERROR_STREAM_CONTEXT for stream is not in current ctx | |||||
*/ | |||||
RTS_API rtError_t rtNotifyWaitWithTimeOut(rtNotify_t notify_, rtStream_t stream_, uint32_t timeOut); | |||||
/** | |||||
* @ingroup dvrt_event | |||||
* @brief Name a notify | * @brief Name a notify | ||||
* @param [in] notify_ notify to be named | * @param [in] notify_ notify to be named | ||||
* @param [in|out] name identification name | * @param [in|out] name identification name | ||||
@@ -27,5 +27,6 @@ | |||||
#include "mem.h" | #include "mem.h" | ||||
#include "rt_model.h" | #include "rt_model.h" | ||||
#include "stream.h" | #include "stream.h" | ||||
#include "rt_stars.h" | |||||
#endif // __CCE_RUNTIME_RT_H__ | #endif // __CCE_RUNTIME_RT_H__ |
@@ -51,6 +51,7 @@ typedef enum tagModelTaskType { | |||||
RT_MODEL_TASK_STREAM_LABEL_GOTO, | RT_MODEL_TASK_STREAM_LABEL_GOTO, | ||||
RT_MODEL_TASK_MODEL_EXIT, | RT_MODEL_TASK_MODEL_EXIT, | ||||
RT_MODEL_TASK_ALL_KERNEL, | RT_MODEL_TASK_ALL_KERNEL, | ||||
RT_MODEL_TASK_PROFILER_TRACE_EX, | |||||
} rtModelTaskType_t; | } rtModelTaskType_t; | ||||
typedef enum tagModelStreamType { | typedef enum tagModelStreamType { | ||||
@@ -197,6 +198,13 @@ typedef struct tagProfilerTraceTaskInfo { | |||||
uint32_t reserved[6]; | uint32_t reserved[6]; | ||||
} rtProfilerTrace_t; | } rtProfilerTrace_t; | ||||
typedef struct tagProfilerTraceExTaskInfo { | |||||
uint64_t profilerTraceId; | |||||
uint64_t modelId; | |||||
uint16_t tagId; | |||||
uint8_t reserved[22]; | |||||
} rtProfilerTraceEx_t; | |||||
typedef struct tagrtMemcpyAsyncTaskInfo { | typedef struct tagrtMemcpyAsyncTaskInfo { | ||||
void *dst; | void *dst; | ||||
uint64_t destMax; | uint64_t destMax; | ||||
@@ -272,6 +280,7 @@ typedef struct tagTaskInfo { | |||||
rtLabelSwitchTaskInfo_t labelSwitchTask; | rtLabelSwitchTaskInfo_t labelSwitchTask; | ||||
rtLabelGotoTaskInfo_t labelGotoTask; | rtLabelGotoTaskInfo_t labelGotoTask; | ||||
rtProfilerTrace_t profilertraceTask; | rtProfilerTrace_t profilertraceTask; | ||||
rtProfilerTraceEx_t profilertraceExTask; | |||||
rtMemcpyAsyncTaskInfo_t memcpyAsyncTask; | rtMemcpyAsyncTaskInfo_t memcpyAsyncTask; | ||||
rtNotifyTaskInfo_t notifyTask; | rtNotifyTaskInfo_t notifyTask; | ||||
rtReduceAsyncTaskInfo_t reduceAsyncTask; | rtReduceAsyncTaskInfo_t reduceAsyncTask; | ||||
@@ -0,0 +1,29 @@ | |||||
/* | |||||
* Copyright (c) Huawei Technologies Co., Ltd. 2021. All rights reserved. | |||||
* Description: | |||||
*/ | |||||
#ifndef __CCE_RUNTIME_STARS_H | |||||
#define __CCE_RUNTIME_STARS_H | |||||
#include "base.h" | |||||
#if defined(__cplusplus) && !defined(COMPILE_OMG_PACKAGE) | |||||
extern "C" { | |||||
#endif | |||||
/** | |||||
* @ingroup rt_stars | |||||
* @brief launch stars task. | |||||
* used for send star sqe directly. | |||||
* @param [in] taskSqe stars task sqe | |||||
* @param [in] sqeLen stars task sqe length | |||||
* @param [in] stream associated stream | |||||
* @return RT_ERROR_NONE for ok, others failed | |||||
*/ | |||||
RTS_API rtError_t rtStarsTaskLaunch(const void *taskSqe, uint32_t sqeLen, rtStream_t stream); | |||||
#if defined(__cplusplus) && !defined(COMPILE_OMG_PACKAGE) | |||||
} | |||||
#endif | |||||
#endif // __CCE_RUNTIME_STARS_H |
@@ -41,42 +41,44 @@ namespace Engine { | |||||
* the Reporter class .used to send data to profiling | * the Reporter class .used to send data to profiling | ||||
*/ | */ | ||||
class MSVP_PROF_API Reporter { | class MSVP_PROF_API Reporter { | ||||
public: | |||||
virtual ~Reporter() {} | |||||
public: | |||||
virtual ~Reporter() {} | |||||
public: | |||||
/** | |||||
* @ingroup reporter | |||||
* @name : Report | |||||
* @brief : API of libmsprof, report data to libmsprof, it's a non-blocking function \n | |||||
The data will be firstly appended to cache, if the cache is full, data will be ignored | |||||
* @param data [IN] const ReporterData * the data send to libmsporf | |||||
* @retval PROFILING_SUCCESS 0 (success) | |||||
* @retval PROFILING_FAILED -1 (failed) | |||||
* | |||||
* @par depend: | |||||
* @li libmsprof | |||||
* @li prof_reporter.h | |||||
* @since c60 | |||||
* @see Flush | |||||
*/ | |||||
virtual int Report(const ReporterData *data) = 0; | |||||
public: | |||||
/** | |||||
* @ingroup reporter | |||||
* @name : Report | |||||
* @brief : API of libmsprof, report data to libmsprof, it's a non-blocking function \n | |||||
The data will be firstly appended to cache, if the cache is full, data will be ignored | |||||
* @param data [IN] const ReporterData * the data send to libmsporf | |||||
* @retval PROFILING_SUCCESS 0 (success) | |||||
* @retval PROFILING_FAILED -1 (failed) | |||||
* | |||||
* @par depend: | |||||
* @li libmsprof | |||||
* @li prof_reporter.h | |||||
* @since c60 | |||||
* @see Flush | |||||
*/ | |||||
virtual int Report(const ReporterData *data) = 0; | |||||
/** | |||||
* @ingroup reporter | |||||
* @name : Flush | |||||
* @brief : API of libmsprof, notify libmsprof send data over, it's a blocking function \n | |||||
The all datas of cache will be write to file or send to host | |||||
* @retval PROFILING_SUCCESS 0 (success) | |||||
* @retval PROFILING_FAILED -1 (failed) | |||||
* | |||||
* @par depend: | |||||
* @li libmsprof | |||||
* @li prof_reporter.h | |||||
* @since c60 | |||||
* @see ProfMgrStop | |||||
*/ | |||||
virtual int Flush() = 0; | |||||
/** | |||||
* @ingroup reporter | |||||
* @name : Flush | |||||
* @brief : API of libmsprof, notify libmsprof send data over, it's a blocking function \n | |||||
The all datas of cache will be write to file or send to host | |||||
* @retval PROFILING_SUCCESS 0 (success) | |||||
* @retval PROFILING_FAILED -1 (failed) | |||||
* | |||||
* @par depend: | |||||
* @li libmsprof | |||||
* @li prof_reporter.h | |||||
* @since c60 | |||||
* @see ProfMgrStop | |||||
*/ | |||||
virtual int Flush() = 0; | |||||
virtual uint32_t GetReportDataMaxLen() = 0; | |||||
}; | }; | ||||
} // namespace Engine | } // namespace Engine | ||||
@@ -55,7 +55,40 @@ extern "C" MsTuneStatus MsTrainTuning(ge::Graph &tuningGraph, std::vector<ge::Gr | |||||
/** | /** | ||||
* @ingroup aoe | * @ingroup aoe | ||||
* @par 描述: 梯度调优 | |||||
* @par 描述: 调优初始化 | |||||
* | |||||
* @attention 无 | |||||
* @param session [IN] ge连接会话 | |||||
* @param option [IN] 参数集. 包含调优参数及ge参数 | |||||
* @retval #AOE_SUCCESS 执行成功 | |||||
* @retval #AOE_FAILED 执行失败 | |||||
* @par 依赖: | |||||
* @li tune_api.cpp:该接口所属的开发包。 | |||||
* @li tune_api.h:该接口声明所在的头文件。 | |||||
* @see 无 | |||||
* @since | |||||
*/ | |||||
extern "C" AoeStatus AoeOnlineInitialize(ge::Session *session, const std::map<std::string, std::string> &option); | |||||
/** | |||||
* @ingroup aoe | |||||
* @par 描述: 调优去初始化 | |||||
* | |||||
* @attention 无 | |||||
* @param 无 | |||||
* @retval #AOE_SUCCESS 执行成功 | |||||
* @retval #AOE_FAILED 执行失败 | |||||
* @par 依赖: | |||||
* @li tune_api.cpp:该接口所属的开发包。 | |||||
* @li tune_api.h:该接口声明所在的头文件。 | |||||
* @see 无 | |||||
* @since | |||||
*/ | |||||
extern "C" AoeStatus AoeOnlineFinalize(); | |||||
/** | |||||
* @ingroup aoe | |||||
* @par 描述: 调优处理 | |||||
* | * | ||||
* @attention 无 | * @attention 无 | ||||
* @param tuningGraph [IN] 调优图 | * @param tuningGraph [IN] 调优图 | ||||
@@ -71,5 +104,5 @@ extern "C" MsTuneStatus MsTrainTuning(ge::Graph &tuningGraph, std::vector<ge::Gr | |||||
* @since | * @since | ||||
*/ | */ | ||||
extern "C" AoeStatus AoeOnlineTuning(ge::Graph &tuningGraph, std::vector<ge::Graph> &dependGraph, | extern "C" AoeStatus AoeOnlineTuning(ge::Graph &tuningGraph, std::vector<ge::Graph> &dependGraph, | ||||
ge::Session *session, const std::map<std::string, std::map<std::string, std::string>> &option); | |||||
ge::Session *session, const std::map<std::string, std::string> &option); | |||||
#endif | #endif |