diff --git a/inc/framework/common/ge_types.h b/inc/framework/common/ge_types.h index 8de6e434..0ab61d36 100644 --- a/inc/framework/common/ge_types.h +++ b/inc/framework/common/ge_types.h @@ -314,7 +314,7 @@ struct TaskDescInfo { std::vector output_format; std::vector> output_shape; std::vector output_data_type; - uint32_t context_id; + uint32_t context_id = 0xFFFFFFFFUL; }; struct OpDescInfo { diff --git a/metadef b/metadef index 22309b14..a4e44019 160000 --- a/metadef +++ b/metadef @@ -1 +1 @@ -Subproject commit 22309b14838a763d41dccd636fec567dae3720fd +Subproject commit a4e4401926e14de2a79f2b622669f306b29e97f8 diff --git a/third_party/fwkacllib/inc/ops/matrix_calculation_ops.h b/third_party/fwkacllib/inc/ops/matrix_calculation_ops.h index cae0f04a..b78679fa 100644 --- a/third_party/fwkacllib/inc/ops/matrix_calculation_ops.h +++ b/third_party/fwkacllib/inc/ops/matrix_calculation_ops.h @@ -84,6 +84,10 @@ REG_OP(MatMul) *y: The result matrix Tensor. 2D. Must be one of the following types: float32, float16, int32. Has format [ND, NHWC]. \n +*@attention Constraints: +* if performances better in format NZ, please close + "MatmulTransdataFusionPass" in fusion configuration. \n + *@par Third-party framework compatibility * Compatible with the TensorFlow operator BatchMatmul. */ @@ -124,6 +128,10 @@ REG_OP(MatMulV2) *y: The result matrix Tensor. 2D. Must be one of the following types: int32, * float16. \n +*@attention Constraints: +* if performances better in format NZ, please close + "MatmulTransdataFusionPass" in fusion configuration. + */ REG_OP(MatMulV2Compress) .INPUT(x1, TensorType({DT_INT8})) @@ -240,6 +248,10 @@ REG_OP(BatchMatMul) * y: The result matrix Tensor. 2D or higher. Must be one of the following types: float16, * float32, int32. 2D or higher. Has format [ND, NHWC]. Has the same shape length as "x1" and "x2" . \n +*@attention Constraints: +* if performances better in format NZ, please close + "MatmulTransdataFusionPass" in fusion configuration. \n + * @par Third-party framework compatibility * Compatible with the TensorFlow operator BatchMatmul. */ @@ -264,7 +276,12 @@ REG_OP(BatchMatMulV2) * TensorType::FloatingDataType() . \n *@par Outputs: -*y: A Tensor. Has the same type as "x". +*y: A Tensor. Has the same type as "x". \n + +*@attention Constraints: +* if performances better in format NZ, please close + "MatmulTransdataFusionPass" in fusion configuration. \n + *@par Third-party framework compatibility *Compatible with the TensorFlow operator L2Loss. */ @@ -1210,7 +1227,7 @@ REG_OP(IndexAdd) *qint8, quint8, qint32, uint16, complex128, uint32, uint64. \n * @li x2: A Tensor of the same type as "x1". -* @li indices: A Tensor of the indices, +* @li indices: A Tensor of the indices, * @par Attributes: * @li accumulate: Does it support self accumulation.Defaults to 0. @@ -1393,8 +1410,8 @@ REG_OP(Trace) */ REG_OP(Pinverse) - .INPUT(x, TensorType({ DT_FLOAT, DT_DOUBLE })) - .OUTPUT(y, TensorType({ DT_FLOAT, DT_DOUBLE })) + .INPUT(x, TensorType({ DT_FLOAT, DT_DOUBLE })) + .OUTPUT(y, TensorType({ DT_FLOAT, DT_DOUBLE })) .ATTR(rcond, Float, 1e-15) .OP_END_FACTORY_REG(Pinverse) diff --git a/third_party/fwkacllib/inc/ops/nn_detect_ops.h b/third_party/fwkacllib/inc/ops/nn_detect_ops.h index e87e1a82..84f573c5 100644 --- a/third_party/fwkacllib/inc/ops/nn_detect_ops.h +++ b/third_party/fwkacllib/inc/ops/nn_detect_ops.h @@ -1844,6 +1844,7 @@ REG_OP(NonMaxSuppressionV7) REG_OP(RoiExtractor) .DYNAMIC_INPUT(features, TensorType({DT_FLOAT16, DT_FLOAT})) .INPUT(rois, TensorType({DT_FLOAT16, DT_FLOAT})) + .OPTIONAL_INPUT(index, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) .ATTR(finest_scale, Int, 56) .ATTR(roi_scale_factor, Float, 0) @@ -2183,6 +2184,27 @@ REG_OP(RotatedBoxDecode) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) .ATTR(weight, ListFloat, {1.0, 1.0, 1.0, 1.0, 1.0}) .OP_END_FACTORY_REG(RotatedBoxDecode) + +/** +* @brief sort rois to balance on each core. \n + +* @par Inputs: +* one inputs, including: +* @li rois: ROI position. A 2D Tensor of float32 or float16 with shape (N, 5). "N" indicates the number of ROIs, +* the value "5" indicates the indexes of images where the ROIs are located, "batch", "x0", "y0", "x1", and "y1". + +* @par Outputs: +* balance_rois: A 2D Tensor of float32 or float16 with shape (N, 5), Outputs of the rois which balance. +* index: 1D Tensor 0f int32 with shape (N,), that is the index of origin rois. + +* @par Restrictions: +* Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. +*/ +REG_OP(BalanceRois) + .INPUT(rois, TensorType({DT_FLOAT16, DT_FLOAT})) + .OUTPUT(balance_rois, TensorType({DT_FLOAT16, DT_FLOAT})) + .OUTPUT(index, TensorType({DT_INT32})) + .OP_END_FACTORY_REG(BalanceRois) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_DETECT_OPS_H_