Browse Source

dynamic shape support pipeline

tags/v1.2.0
isaactalx 4 years ago
parent
commit
bc652f3721
37 changed files with 742 additions and 152 deletions
  1. +1
    -0
      ge/CMakeLists.txt
  2. +1
    -0
      ge/executor/CMakeLists.txt
  3. +1
    -0
      ge/graph/manager/graph_manager.cc
  4. +6
    -0
      ge/graph/optimize/mem_rw_conflict_optimize.cc
  5. +2
    -0
      ge/graph/partition/stage_partition.cc
  6. +1
    -0
      ge/graph/passes/subgraph_pass.cc
  7. +8
    -0
      ge/hybrid/executor/hybrid_execution_context.cc
  8. +8
    -1
      ge/hybrid/executor/hybrid_execution_context.h
  9. +23
    -1
      ge/hybrid/executor/hybrid_model_async_executor.cc
  10. +2
    -0
      ge/hybrid/executor/hybrid_model_async_executor.h
  11. +4
    -3
      ge/hybrid/executor/hybrid_model_executor.cc
  12. +1
    -0
      ge/hybrid/executor/hybrid_model_executor.h
  13. +284
    -0
      ge/hybrid/executor/hybrid_model_pipeline_executor.cc
  14. +88
    -0
      ge/hybrid/executor/hybrid_model_pipeline_executor.h
  15. +7
    -4
      ge/hybrid/executor/hybrid_profiler.cc
  16. +64
    -15
      ge/hybrid/executor/node_state.cc
  17. +15
    -3
      ge/hybrid/executor/node_state.h
  18. +4
    -7
      ge/hybrid/executor/rt_callback_manager.cc
  19. +3
    -5
      ge/hybrid/executor/rt_callback_manager.h
  20. +29
    -15
      ge/hybrid/executor/subgraph_executor.cc
  21. +8
    -3
      ge/hybrid/executor/subgraph_executor.h
  22. +7
    -6
      ge/hybrid/executor/worker/execution_engine.cc
  23. +4
    -4
      ge/hybrid/executor/worker/shape_inference_engine.cc
  24. +1
    -1
      ge/hybrid/executor/worker/shape_inference_engine.h
  25. +36
    -0
      ge/hybrid/model/graph_item.cc
  26. +7
    -0
      ge/hybrid/model/graph_item.h
  27. +2
    -2
      ge/hybrid/model/hybrid_model.cc
  28. +54
    -35
      ge/hybrid/model/hybrid_model_builder.cc
  29. +1
    -1
      ge/hybrid/model/hybrid_model_builder.h
  30. +16
    -1
      ge/hybrid/model/node_item.cc
  31. +1
    -0
      ge/hybrid/model/node_item.h
  32. +4
    -0
      ge/hybrid/node_executor/aicore/aicore_op_task.cc
  33. +14
    -14
      ge/hybrid/node_executor/aicpu/aicpu_node_executor.cc
  34. +2
    -2
      ge/hybrid/node_executor/aicpu/aicpu_node_executor.h
  35. +13
    -19
      ge/hybrid/node_executor/hccl/hccl_node_executor.cc
  36. +14
    -7
      ge/hybrid/node_executor/task_context.cc
  37. +6
    -3
      ge/hybrid/node_executor/task_context.h

+ 1
- 0
ge/CMakeLists.txt View File

@@ -351,6 +351,7 @@ set(TRAIN_SRC_LIST
"hybrid/executor/node_done_manager.cc"
"hybrid/executor/hybrid_profiler.cc"
"hybrid/executor/hybrid_model_executor.cc"
"hybrid/executor/hybrid_model_pipeline_executor.cc"
"hybrid/executor/hybrid_model_async_executor.cc"
"hybrid/executor/hybrid_execution_context.cc"
"hybrid/executor/subgraph_context.cc"


+ 1
- 0
ge/executor/CMakeLists.txt View File

@@ -81,6 +81,7 @@ set(SRC_LIST
"../hybrid/executor/node_done_manager.cc"
"../hybrid/executor/hybrid_profiler.cc"
"../hybrid/executor/hybrid_model_executor.cc"
"../hybrid/executor/hybrid_model_pipeline_executor.cc"
"../hybrid/executor/hybrid_model_async_executor.cc"
"../hybrid/executor/hybrid_execution_context.cc"
"../hybrid/executor/subgraph_context.cc"


+ 1
- 0
ge/graph/manager/graph_manager.cc View File

@@ -3032,6 +3032,7 @@ Status GraphManager::OptimizeSubgraph(const GraphNodePtr &graph_node, ComputeGra
return FAILED;
}
GE_TIMESTAMP_EVENT_END(GraphPartitionDynamicShape, "OptimizeSubgraph::GraphPartitionDynamicShape");
GE_DUMP(compute_graph, "AfterDynamicShapePartition");
GE_TIMESTAMP_START(GraphPartition);
GraphPartitioner &partitioner = GetCompilerStages(graph_node->GetGraphId()).partitioner;
ret = partitioner.Partition(compute_graph, GraphPartitioner::kPartitioning);


+ 6
- 0
ge/graph/optimize/mem_rw_conflict_optimize.cc View File

@@ -742,6 +742,12 @@ Status GraphOptimize::HandleMemoryRWConflict(ComputeGraphPtr &compute_graph) {
if (node->GetType() == NETOUTPUT && AttrUtils::HasAttr(node->GetOpDesc(), ATTR_NAME_PARENT_NODE_INDEX)) {
continue;
}
bool identity_reserved = false;
AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_CANNOT_BE_DELETED, identity_reserved);
if (identity_reserved) {
GELOGD("Identity [%s] need to be reserved", node->GetName().c_str());
continue;
}
if (node->GetType() == IDENTITY || node->GetType() == READVARIABLEOP) {
// split identity
ret = SplitIdentity(node);


+ 2
- 0
ge/graph/partition/stage_partition.cc View File

@@ -52,6 +52,7 @@ Status StagePartitioner::Partition() {
return SUCCESS;
}

GE_DUMP(root_graph_, "BeforeStagePartition");
if (SplitStageLevel() != SUCCESS) {
GELOGE(FAILED, "Split graph-stage for graph %s failed.", root_graph_->GetName().c_str());
return FAILED;
@@ -74,6 +75,7 @@ Status StagePartitioner::Partition() {
"maybe stage_level was not set correctly.", root_graph_->GetName().c_str());
return FAILED;
}
GE_DUMP(root_graph_, "AfterStagePartition");
return SUCCESS;
}



+ 1
- 0
ge/graph/passes/subgraph_pass.cc View File

@@ -460,6 +460,7 @@ Status SubgraphPass::InsertMemcpyNode(const ComputeGraphPtr &graph, const OutDat
.AddOutput("y", in_node->GetOpDesc()->GetOutputDesc(0))
.Build();
(void)AttrUtils::SetBool(op_desc, ATTR_NO_NEED_CONSTANT_FOLDING, false);
(void)AttrUtils::SetBool(op_desc, ATTR_NAME_CANNOT_BE_DELETED, true);
if (GraphUtils::InsertNodeAfter(out_anchor, in_anchors, graph->AddNode(op_desc)) != GRAPH_SUCCESS) {
GELOGE(FAILED, "Insert IDENTITY node %s after %s failed.", name.c_str(), in_node->GetName().c_str());
return FAILED;


+ 8
- 0
ge/hybrid/executor/hybrid_execution_context.cc View File

@@ -15,6 +15,7 @@
*/

#include "hybrid_execution_context.h"
#include <atomic>

namespace ge {
namespace hybrid {
@@ -23,7 +24,14 @@ const uint32_t kEndOfSequence = 0x0704000a;
const uint32_t kEndOfSequenceNew = 507005;
const int32_t kModelAbortNormal = 0x0704000e;
const int32_t kModelAbortNormalNew = 507024;

std::atomic_ulong context_id_gen {};
} // namespace

GraphExecutionContext::GraphExecutionContext() {
context_id = context_id_gen++;
}

void GraphExecutionContext::SetErrorCode(Status error_code) {
std::lock_guard<std::mutex> lk(mu);
this->status = error_code;


+ 8
- 1
ge/hybrid/executor/hybrid_execution_context.h View File

@@ -48,11 +48,15 @@
namespace ge {
namespace hybrid {
struct GraphExecutionContext {
GraphExecutionContext();
~GraphExecutionContext() = default;

void SetErrorCode(Status error_code);
Status GetStatus() const;
Status Synchronize(rtStream_t rt_stream);

uint64_t session_id = 0;
uint64_t context_id = 0;
const HybridModel *model = nullptr;
const GEThreadLocalContext *ge_context = nullptr;
rtStream_t stream = nullptr;
@@ -67,6 +71,8 @@ struct GraphExecutionContext {
std::atomic_bool is_eos_;
long profiling_level = 0;
long iteration = 0;

private:
Status status = SUCCESS;
mutable std::mutex mu;
};
@@ -75,7 +81,8 @@ struct GraphExecutionContext {
do { \
if ((context != nullptr) && (context)->profiler != nullptr) { \
if (node_name != nullptr) { \
context->profiler->RecordEvent(evt_type, "tid:%lu [%s] [%s] " fmt, GeLog::GetTid(), node_name, category, \
context->profiler->RecordEvent(evt_type, "tid:%lu [%s@%ld] [%s] " fmt, \
GeLog::GetTid(), node_name, context->iteration, category, \
##__VA_ARGS__); \
} else { \
context->profiler->RecordEvent(evt_type, "tid:%lu [%s] " fmt, GeLog::GetTid(), category, ##__VA_ARGS__); \


+ 23
- 1
ge/hybrid/executor/hybrid_model_async_executor.cc View File

@@ -25,6 +25,7 @@ namespace ge {
namespace hybrid {
namespace {
const int kDataOutputIndex = 0;
const size_t kMinimumPiplineStages = 2;
}
HybridModelAsyncExecutor::HybridModelAsyncExecutor(HybridModel *model)
: model_(model), run_flag_(false) {
@@ -95,7 +96,17 @@ Status HybridModelAsyncExecutor::Init() {
executor_ = std::unique_ptr<HybridModelExecutor>(new(std::nothrow) HybridModelExecutor(model_, device_id_, stream_));
GE_CHECK_NOTNULL(executor_);
GE_CHK_STATUS_RET(executor_->Init(), "Failed to init hybrid engine");

GELOGI("HybridModel stage nums:%zu", model_->GetRootGraphItem()->NumGroups());
if (model_->GetRootGraphItem()->NumGroups() >= kMinimumPiplineStages) {
pipe_executor_ =
std::unique_ptr<HybridModelPipelineExecutor>(new(std::nothrow) HybridModelPipelineExecutor(model_, device_id_));
GE_CHECK_NOTNULL(pipe_executor_);
GE_CHK_STATUS_RET(pipe_executor_->Init(), "Failed to init hybrid engine");
}

GE_CHK_STATUS_RET(InitInputDesc(), "Failed to init input tensors");

return SUCCESS;
}

@@ -135,7 +146,18 @@ Status HybridModelAsyncExecutor::RunInternal() {
CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
continue, "PreRun failed."); // [No need to check value]

ret = executor_->Execute(args);
if (pipe_executor_ != nullptr) {
GELOGI("HybridModel will execute in pipeline mode");
auto iter_per_run = std::getenv("ITER_NUM");
if (iter_per_run) {
args.num_loops = static_cast<int>(strtol(iter_per_run, nullptr, 10));
}
ret = pipe_executor_->Execute(args);
} else {
GELOGI("HybridModel will execute in singleline mode");
ge::GetContext().SetSessionId(executor_->GetContext()->session_id);
ret = executor_->Execute(args);
}
ret = HandleResult(ret, current_data.index, args, data_wrapper->GetOutput());
if (ret != SUCCESS) {
CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_RUNTIME, JOBSUBSTATE_GRAPH_EXEC);


+ 2
- 0
ge/hybrid/executor/hybrid_model_async_executor.h View File

@@ -23,6 +23,7 @@
#include "external/ge/ge_api_types.h"
#include "graph/load/model_manager/data_inputer.h"
#include "hybrid/executor/hybrid_model_executor.h"
#include "hybrid/executor/hybrid_model_pipeline_executor.h"
#include "runtime/stream.h"

namespace ge {
@@ -81,6 +82,7 @@ class HybridModelAsyncExecutor {
std::atomic_bool run_flag_;
std::unique_ptr<DataInputer> data_inputer_;
std::unique_ptr<HybridModelExecutor> executor_;
std::unique_ptr<HybridModelPipelineExecutor> pipe_executor_;
std::future<Status> future_;
uint64_t iterator_count_ = 0;



+ 4
- 3
ge/hybrid/executor/hybrid_model_executor.cc View File

@@ -81,13 +81,14 @@ Status HybridModelExecutor::ExecuteGraphInternal(SubgraphExecutor &executor,
args.outputs.clear();
HYBRID_CHK_STATUS_RET(executor.GetOutputs(args.outputs, args.output_desc), "Failed to get outputs");
RECORD_MODEL_EXECUTION_EVENT(&context_, "[GetOutput] End");
context_.iteration +=1;
return SUCCESS;
}

Status HybridModelExecutor::Cleanup() {
GELOGD("Start to cleanup.");
context_.callback_manager->Destroy();
RuntimeInferenceContext::DestroyContext(std::to_string(context_.session_id));
RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
GELOGD("Cleanup successfully.");
return SUCCESS;
}
@@ -105,7 +106,7 @@ Status HybridModelExecutor::InitExecutionContext() {
GELOGD("session id from model = %lu, from context = %lu", model_->GetSessionId(), context_.session_id);
context_.allocator = NpuMemoryAllocator::GetAllocator(device_id_);
GE_CHECK_NOTNULL(context_.allocator);
context_.callback_manager = std::unique_ptr<CallbackManager>(new(std::nothrow)CallbackManager(stream_));
context_.callback_manager = std::unique_ptr<CallbackManager>(new(std::nothrow)CallbackManager());
GE_CHECK_NOTNULL(context_.callback_manager);
context_.dump_properties = PropertiesManager::Instance().GetDumpProperties(context_.session_id);
const char *profiling_level = std::getenv(kEnvProfilingLevel);
@@ -126,7 +127,7 @@ Status HybridModelExecutor::InitExecutionContext() {

Status HybridModelExecutor::ResetExecutionContext(GraphExecutionContext &context) {
GE_CHK_STATUS_RET_NOLOG(context.callback_manager->Init());
string ctx_id = std::to_string(context.session_id);
string ctx_id = std::to_string(context.context_id);
RuntimeInferenceContext::DestroyContext(ctx_id);
GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::CreateContext(ctx_id), "Failed to Destroy RuntimeInferenceContext");
return SUCCESS;


+ 1
- 0
ge/hybrid/executor/hybrid_model_executor.h View File

@@ -32,6 +32,7 @@ class HybridModelExecutor {
std::vector<TensorValue> outputs;
std::vector<ConstGeTensorDescPtr> output_desc;
bool is_eos = false;
int num_loops = 10;
};

HybridModelExecutor(HybridModel *model, uint32_t device_id, rtStream_t stream);


+ 284
- 0
ge/hybrid/executor/hybrid_model_pipeline_executor.cc View File

@@ -0,0 +1,284 @@
#include "hybrid_model_pipeline_executor.h"

#include "common/math/math_util.h"
#include "graph/ge_context.h"
#include "graph/runtime_inference_context.h"

namespace ge {
namespace hybrid {
namespace {
constexpr int kNumExecutors = 2;
const int kIntBase = 10;
const char *const kEnvProfilingLevel = "HYBRID_PROFILING_LEVEL";
}

StageExecutor::StageExecutor(int id, HybridModel *model, PipeExecutionConfig *config)
: id_(id), model_(model), pipe_config_(config) {}

StageExecutor::~StageExecutor() { GELOGD("~StageExecutor(), id = %d", id_); }

Status StageExecutor::Init() {
GELOGD("[Executor: %d] Start to init StateExecutor", id_);
context_.rt_context = pipe_config_->rt_context;
GE_CHK_STATUS_RET_NOLOG(InitExecutionContext());
GE_CHK_RT_RET(rtStreamCreate(&stream_, RT_STREAM_PRIORITY_DEFAULT));
context_.stream = stream_;

root_graph_executor_.reset(new (std::nothrow) SubgraphExecutor(model_->GetRootGraphItem(), &context_));
GE_CHECK_NOTNULL(root_graph_executor_);

GELOGD("[Executor: %d] Init stage executor successfully", id_);
return SUCCESS;
}

Status StageExecutor::ResetExecutionContext(GraphExecutionContext &context) {
GE_CHK_STATUS_RET_NOLOG(context.callback_manager->Init());
string ctx_id = std::to_string(context.context_id);
RuntimeInferenceContext::DestroyContext(ctx_id);
GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::CreateContext(ctx_id), "Failed to Destroy RuntimeInferenceContext");
return SUCCESS;
}

Status StageExecutor::Start(const std::vector<TensorValue> &inputs, const std::vector<ConstGeTensorDescPtr> &input_desc,
int iteration_count) {
GELOGD("Start");
GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));
int num_loops = iteration_count / pipe_config_->num_executors;
if (id_ < iteration_count % iteration_count) {
num_loops += 1;
}
FMK_INT32_MULCHECK(num_loops, pipe_config_->num_stages);
num_loops *= pipe_config_->num_stages;
GELOGD("[Executor: %d] loop count = %d", id_, num_loops);

for (int loop_idx = 0; loop_idx < num_loops; ++loop_idx) {
GELOGD("[Executor: %d] Start to wait for task.", id_);
StageTask task_info;
task_queue_.Pop(task_info);
GELOGD("[Executor: %d] Got task, stage = %d, iteration = %ld", id_, task_info.stage, task_info.iteration);
if (task_info.iteration >= pipe_config_->iteration_end) {
GELOGE(INTERNAL_ERROR, "[Executor: %d] Unexpected iteration: %d", id_, task_info.iteration);
return INTERNAL_ERROR;
}

if (task_info.event != nullptr) {
GELOGD("[%d] Add StreamWaitEvent", id_);
GE_CHK_RT_RET(rtStreamWaitEvent(stream_, task_info.event));
RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] [Stage = %d] End", task_info.iteration - 1,
task_info.stage);
}

RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] [Stage = %d] Start", task_info.iteration,
task_info.stage);

if (task_info.stage == 0) {
GELOGD("[Executor: %d] To ResetExecutionContext", id_);
GE_CHK_STATUS_RET(ResetExecutionContext(context_), "[Executor: %d] Failed to reset context", id_);
context_.iteration = task_info.iteration;
GE_CHK_STATUS_RET_NOLOG(SetInputs(inputs, input_desc));
}

RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync Start", task_info.stage);
GE_CHK_STATUS_RET(root_graph_executor_->PartialExecuteAsync(task_info.stage));
RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync End", task_info.stage);
GELOGD("[Executor: %d] PartialExecuteAsync successfully.", id_);

// notify next execution unit
StageTask next_task;
next_task.stage = task_info.stage;
next_task.iteration = task_info.iteration + 1;

auto sync_result = Synchronize();
if (sync_result != SUCCESS) {
GELOGE(sync_result, "[Executor: %d] Failed to sync result. iteration = %d", id_, task_info.iteration);

context_.profiler->Dump(std::cout);
context_.callback_manager->Destroy();
RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
return sync_result;
}

RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] [Stage = %d] End", task_info.iteration, task_info.stage);

// if not end stage
if (task_info.stage >= pipe_config_->num_stages - 1) {
RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] Schedule End", task_info.iteration);
GELOGD("[Executor: %d] End of iteration [%ld]", id_, task_info.iteration);
context_.callback_manager->Destroy();
RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
}
next_executor_->ExecuteAsync(next_task);
GELOGD("[Executor: %d] Push item successfully.", id_);
}

GELOGD("[Executor: %d] Process task ended.", id_);
return SUCCESS;
}

Status StageExecutor::ExecuteAsync(const StageTask &args) {
(void)task_queue_.Push(args);
return SUCCESS;
}

Status StageExecutor::Synchronize() {
auto ret = root_graph_executor_->Synchronize();
RECORD_MODEL_EXECUTION_EVENT(&context_, "[Synchronize] End, ret = %u", ret);
return ret;
}

HybridModelPipelineExecutor::HybridModelPipelineExecutor(HybridModel *model, uint32_t device_id)
: model_(model), device_id_(device_id) {
config_.num_executors = kNumExecutors;
config_.num_stages = model_->GetRootGraphItem()->NumGroups();
config_.device_id = device_id_;
}

Status StageExecutor::InitExecutionContext() {
GE_CHK_RT_RET(rtCtxCreate(&context_.rt_gen_context, RT_CTX_GEN_MODE, 0));
GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));

context_.model = model_;
context_.session_id = ::ge::GetContext().SessionId();
GELOGD("session id from model = %lu, from context = %lu", model_->GetSessionId(), context_.session_id);
context_.allocator = NpuMemoryAllocator::GetAllocator(pipe_config_->device_id);
GE_CHECK_NOTNULL(context_.allocator);
context_.callback_manager = std::unique_ptr<CallbackManager>(new (std::nothrow) CallbackManager());
GE_CHECK_NOTNULL(context_.callback_manager);
context_.dump_properties = PropertiesManager::Instance().GetDumpProperties(context_.session_id);
if (IsLogEnable(GE_MODULE_NAME, DLOG_DEBUG)) {
context_.trace_enabled = true;
}
return SUCCESS;
}

Status StageExecutor::SetInputs(const vector<TensorValue> &inputs, const vector<ConstGeTensorDescPtr> &input_desc) {
root_graph_executor_->InitForPartialExecution(inputs, input_desc);
return SUCCESS;
}

Status StageExecutor::GetOutputs(vector<TensorValue> &outputs, vector<ConstGeTensorDescPtr> &output_desc) {
return root_graph_executor_->GetOutputs(outputs, output_desc);
}

void StageExecutor::Reset() {
task_queue_.Stop();
task_queue_.Clear();
task_queue_.Restart();
}

Status HybridModelPipelineExecutor::Init() {
const char *profiling_level = std::getenv(kEnvProfilingLevel);
if (profiling_level != nullptr) {
context_.profiling_level = std::strtol(profiling_level, nullptr, kIntBase);
GELOGD("Got profiling level = %ld", context_.profiling_level);
if (context_.profiling_level > 0) {
context_.profiler.reset(new (std::nothrow) HybridProfiler());
GE_CHECK_NOTNULL(context_.profiler);
}
}

GELOGD("Number of stages = %d, number of executors = %d", config_.num_stages, config_.num_executors);
GE_CHK_RT_RET(rtCtxGetCurrent(&config_.rt_context));
GE_CHK_STATUS_RET_NOLOG(InitStageExecutors());
return SUCCESS;
}

Status HybridModelPipelineExecutor::InitStageExecutors() {
for (int i = 0; i < config_.num_executors; ++i) {
auto stage_executor = std::unique_ptr<StageExecutor>(new (std::nothrow) StageExecutor(i, model_, &config_));
GE_CHECK_NOTNULL(stage_executor);
GE_CHK_STATUS_RET_NOLOG(stage_executor->Init());

if (context_.profiler != nullptr) {
// will call unique_ptr::release later
stage_executor->context_.profiler.reset(context_.profiler.get());
stage_executor->context_.profiling_level = context_.profiling_level;
}

stage_executors_.emplace_back(std::move(stage_executor));
}

// build propagation loop
for (int i = 0; i < config_.num_executors - 1; ++i) {
stage_executors_[i]->SetNext(stage_executors_[i + 1].get());
}
stage_executors_[config_.num_executors - 1]->SetNext(stage_executors_[0].get());
return SUCCESS;
}

Status HybridModelPipelineExecutor::Execute(HybridModelExecutor::ExecuteArgs &args) {
int loop_count = args.num_loops;
GE_CHECK_GE(loop_count, 2);

auto &inputs = args.inputs;
auto &input_desc = args.input_desc;
// Start schedulers
std::vector<std::future<Status>> futures;
for (size_t i = 0; i < stage_executors_.size(); ++i) {
GELOGD("Starting executor %zu", i);
auto executor = stage_executors_[i].get();
executor->Reset();
auto future = std::async(
[loop_count, executor, inputs, input_desc]() { return executor->Start(inputs, input_desc, loop_count); });

futures.emplace_back(std::move(future));
}

// Push initial tasks
GELOGD("Start to execute with loops, loop count = %d", loop_count);
config_.iteration_end = iteration_ + loop_count;
for (int i = 0; i < config_.num_stages; ++i) {
StageExecutor::StageTask task_info;
task_info.stage = i;
task_info.iteration = iteration_;
stage_executors_[0]->ExecuteAsync(task_info);
}

// Wait for end of iterations
bool has_error = false;
for (size_t i = 0; i < stage_executors_.size(); ++i) {
GELOGD("Start to sync result of executor[%zu]", i);
auto ret = futures[i].get();
if (ret != SUCCESS) {
GELOGE(ret, "[Executor: %zu] Failed to schedule tasks.", i);
has_error = true;
continue;
}

ret = stage_executors_[i]->Synchronize();

if (ret != SUCCESS) {
GELOGE(ret, "[Executor: %zu] Failed to synchronize result.", i);
has_error = true;
continue;
}
}

// record for profiling analyzer
RECORD_MODEL_EXECUTION_EVENT(&context_, "[Cleanup] End");

if (context_.profiler != nullptr) {
context_.profiler->Dump(std::cout);
}

iteration_ = config_.iteration_end;

if (has_error) {
GELOGE(FAILED, "Error occurred while execution");
return FAILED;
}

auto last_iter_executor_idx = loop_count % stage_executors_.size();
GE_CHK_STATUS_RET(stage_executors_[last_iter_executor_idx]->GetOutputs(args.outputs, args.output_desc),
"Failed to get output from executor[%d]", last_iter_executor_idx);
return SUCCESS;
}

HybridModelPipelineExecutor::~HybridModelPipelineExecutor() {
GELOGD("~HybridModelPipelineExecutor()");
for (auto &executor : stage_executors_) {
(void)executor->context_.profiler.release();
}
}
} // namespace hybrid
} // namespace ge

+ 88
- 0
ge/hybrid/executor/hybrid_model_pipeline_executor.h View File

@@ -0,0 +1,88 @@
#ifndef GE_HYBRID_EXECUTOR_HYBRID_MODEL_PIPELINE_EXECUTOR_H_
#define GE_HYBRID_EXECUTOR_HYBRID_MODEL_PIPELINE_EXECUTOR_H_

#include "common/blocking_queue.h"
#include "common/thread_pool.h"
#include "hybrid/executor/hybrid_execution_context.h"
#include "hybrid/executor/rt_callback_manager.h"
#include "hybrid/executor/subgraph_executor.h"
#include "hybrid_model_executor.h"

namespace ge {
namespace hybrid {

struct PipeExecutionConfig {
uint32_t device_id;
rtContext_t rt_context;
int num_executors;
int num_stages;
long iteration_end;
};

class StageExecutor {
public:
struct StageTask {
rtEvent_t event = nullptr;
int stage = 0;
long iteration = 0;
};

StageExecutor(int id, HybridModel *model, PipeExecutionConfig *config);

~StageExecutor();

Status Init();

void Reset();

Status Start(const std::vector<TensorValue> &inputs, const std::vector<ConstGeTensorDescPtr> &input_desc,
int loop_count);

Status SetInputs(const std::vector<TensorValue> &inputs, const std::vector<ConstGeTensorDescPtr> &input_desc);

Status ExecuteAsync(const StageTask &args);

Status GetOutputs(std::vector<TensorValue> &outputs, std::vector<ConstGeTensorDescPtr> &output_desc);

Status Synchronize();

void SetNext(StageExecutor *next_executor) { next_executor_ = next_executor; }

private:
friend class HybridModelPipelineExecutor;
static Status ResetExecutionContext(GraphExecutionContext &context);
Status InitExecutionContext();

int id_;
HybridModel *model_;

PipeExecutionConfig *pipe_config_;
BlockingQueue<StageTask> task_queue_;
std::unique_ptr<SubgraphExecutor> root_graph_executor_;
GraphExecutionContext context_;
StageExecutor *next_executor_;

rtStream_t stream_ = nullptr;
};

class HybridModelPipelineExecutor {
public:
HybridModelPipelineExecutor(HybridModel *model, uint32_t device_id);
~HybridModelPipelineExecutor();
Status Init();
Status InitStageExecutors();
Status Execute(HybridModelExecutor::ExecuteArgs &args);

private:
HybridModel *model_;
uint32_t device_id_;

std::vector<std::unique_ptr<StageExecutor>> stage_executors_;
PipeExecutionConfig config_;
GraphExecutionContext context_;
long iteration_ = 0;
};
} // namespace hybrid
} // namespace ge

#endif // GE_HYBRID_EXECUTOR_HYBRID_MODEL_PIPELINE_EXECUTOR_H_

+ 7
- 4
ge/hybrid/executor/hybrid_profiler.cc View File

@@ -24,7 +24,7 @@
namespace ge {
namespace hybrid {
namespace {
const int kMaxEvents = 10000;
const int kMaxEvents = 1024 * 500;
const int kEventDescMax = 512;
const int kMaxEventTypes = 8;
const int kIndent = 8;
@@ -46,11 +46,14 @@ void HybridProfiler::RecordEvent(EventType event_type, const char *fmt, ...) {
}

va_end(args);
std::string event = buf;
auto index = counter_++;
if (index >= static_cast<int>(events_.size())) {
GELOGE(INTERNAL_ERROR, "index out of range. index = %d, max event size = %zu", index, events_.size());
return;
}
auto &evt = events_[index];
evt.timestamp = std::chrono::system_clock::now();
evt.desc = std::move(event);
evt.desc = std::string(buf);
evt.event_type = event_type;
}

@@ -78,7 +81,7 @@ void HybridProfiler::Dump(std::ostream &output_stream) {
auto cost_dump = std::chrono::duration_cast<std::chrono::microseconds>(end_dump - start_dump).count();
output_stream << std::setw(kIndent) << elapsed_dump << "\t\t" << cost_dump
<< "\t\t" << "[Dump profiling]" << std::endl;
events_.clear();
Reset();
}

void HybridProfiler::Reset() {


+ 64
- 15
ge/hybrid/executor/node_state.cc View File

@@ -34,6 +34,14 @@ ShapeInferenceState::ShapeInferenceState(const NodeItem &node_item) : node_item(
GELOGD("[%s] ShapeInferenceState created, pending shape count = %d",
node_item.NodeName().c_str(),
this->num_pending_shapes_);

for (int i = 0; i < node_item.num_inputs; ++i){
input_tensor_desc.emplace_back(std::move(*node_item.MutableInputDesc(i)));
}

for (int i = 0; i < node_item.num_outputs; ++i){
output_tensor_desc.emplace_back(std::move(*node_item.MutableOutputDesc(i)));
}
}

Status ShapeInferenceState::UpdateInputShape(int idx, const GeTensorDesc &target) {
@@ -56,11 +64,10 @@ Status ShapeInferenceState::UpdateInputShape(int idx, const GeTensorDesc &target
tensor_size);

std::lock_guard<std::mutex> lk(mu_);
auto tensor_desc = node_item.MutableInputDesc(idx);
GE_CHECK_NOTNULL(tensor_desc);
tensor_desc->SetShape(target.GetShape());
tensor_desc->SetOriginShape(target.GetOriginShape());
(void) TensorUtils::SetSize(*tensor_desc, tensor_size);
auto &input_desc = input_tensor_desc[idx];
input_desc.SetShape(target.GetShape());
input_desc.SetOriginShape(target.GetOriginShape());
(void) TensorUtils::SetSize(input_desc, tensor_size);
if (--num_pending_shapes_ <= 0) {
ready_cv_.notify_all();
}
@@ -115,12 +122,27 @@ Status ShapeInferenceState::AwaitShapesReady(const GraphExecutionContext &contex
}
}

for (size_t i = 0; i < input_tensor_desc.size(); ++i) {
auto dst_tensor_desc = node_item.op_desc->MutableInputDesc(i);
if (dst_tensor_desc == nullptr) {
continue;
}

auto &tensor_desc = input_tensor_desc[i];
int64_t tensor_size = -1;
(void) TensorUtils::GetSize(tensor_desc, tensor_size);

dst_tensor_desc->SetShape(tensor_desc.MutableShape());
dst_tensor_desc->SetOriginShape(tensor_desc.GetOriginShape());
(void) TensorUtils::SetSize(*dst_tensor_desc, tensor_size);
}

for (auto &p : shape_futures) {
auto idx = p.first;
auto &future = p.second;
RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] Start", idx);
GeTensorDescPtr src_tensor_desc;
GE_CHK_STATUS_RET_NOLOG(future.GetTensorDesc(src_tensor_desc));
const GeTensorDesc* src_tensor_desc = nullptr;
GE_CHK_STATUS_RET_NOLOG(future.GetTensorDesc(&src_tensor_desc));
GE_CHECK_NOTNULL(src_tensor_desc);
RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] End", idx);

@@ -142,10 +164,28 @@ Status ShapeInferenceState::AwaitShapesReady(const GraphExecutionContext &contex
return SUCCESS;
}

ShapeFuture::ShapeFuture(NodePtr src_node,
const vector<GeTensorDesc> &ShapeInferenceState::GetOutputTensorDesc() const {
return output_tensor_desc;
}

Status ShapeInferenceState::UpdateOutputDesc() {
for (size_t i = 0; i < output_tensor_desc.size(); ++i) {
auto src_tensor_desc = node_item.MutableOutputDesc(i);
GE_CHECK_NOTNULL(src_tensor_desc);
auto &dst_tensor_desc = output_tensor_desc[i];
dst_tensor_desc.SetShape(src_tensor_desc->MutableShape());
dst_tensor_desc.SetOriginShape(src_tensor_desc->GetOriginShape());
int64_t tensor_size = -1;
(void) TensorUtils::GetSize(*src_tensor_desc, tensor_size);
(void) TensorUtils::SetSize(dst_tensor_desc, tensor_size);
}
return SUCCESS;
}

ShapeFuture::ShapeFuture(NodeState *src_node,
uint32_t src_index,
SubgraphContext *subgraph_context)
: src_node_(std::move(src_node)), src_index_(src_index), subgraph_context_(subgraph_context) {
: src_node_(src_node), src_index_(src_index), subgraph_context_(subgraph_context) {
}

NodeState::NodeState(const NodeItem &node_item, SubgraphContext *subgraph_context)
@@ -187,6 +227,13 @@ Status NodeState::WaitForPrepareDone() {

return SUCCESS;
}
Status NodeState::UpdateOutputShapes(int index, const GeShape &shape, const GeShape &ori_shape) {
auto self_tensor_desc = op_desc_->MutableOutputDesc(index);
GE_CHECK_NOTNULL(self_tensor_desc);
self_tensor_desc->SetShape(shape);
self_tensor_desc->SetOriginShape(ori_shape);
return SUCCESS;
}

void NodeState::SetTaskContext(std::shared_ptr<TaskContext> &task_context) {
task_context_ = task_context;
@@ -198,17 +245,19 @@ std::shared_ptr<TaskContext> NodeState::GetTaskContext() {

Status ShapeFuture::Get(GeShape &ori_shape, GeShape &shape) {
GELOGD("Start to wait node: %s for getting shape", src_node_->GetName().c_str());
HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_), "cancelled");
shape = src_node_->GetOpDesc()->MutableOutputDesc(src_index_)->MutableShape();
ori_shape = src_node_->GetOpDesc()->MutableOutputDesc(src_index_)->GetOriginShape();
HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_->GetNodeItem()->node), "cancelled");
auto &output_desc = src_node_->GetShapeInferenceState().GetOutputTensorDesc().at(src_index_);
shape = output_desc.GetShape();
ori_shape = output_desc.GetOriginShape();
GELOGD("Get shape from %s:%u. shape = [%s]", src_node_->GetName().c_str(), src_index_, shape.ToString().c_str());
return SUCCESS;
}

Status ShapeFuture::GetTensorDesc(GeTensorDescPtr &tensor_desc) {
Status ShapeFuture::GetTensorDesc(const GeTensorDesc **tensor_desc) {
GE_CHECK_NOTNULL(tensor_desc);
GELOGD("Start to wait node: %s for getting shape", src_node_->GetName().c_str());
HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_), "cancelled");
tensor_desc = src_node_->GetOpDesc()->MutableOutputDesc(src_index_);
HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_->GetNodeItem()->node), "cancelled");
*tensor_desc = &src_node_->GetShapeInferenceState().GetOutputTensorDesc().at(src_index_);
return SUCCESS;
}
} // namespace hybrid


+ 15
- 3
ge/hybrid/executor/node_state.h View File

@@ -30,16 +30,17 @@ class NodeTask;
struct GraphExecutionContext;
class SubgraphContext;
class TaskContext;
class NodeState;

class ShapeFuture {
public:
ShapeFuture(NodePtr src_node, uint32_t src_index, SubgraphContext *subgraph_context);
ShapeFuture(NodeState *src_node, uint32_t src_index, SubgraphContext *subgraph_context);
~ShapeFuture() = default;
Status Get(GeShape &ori_shape, GeShape &shape);
Status GetTensorDesc(GeTensorDescPtr &tensor_desc);
Status GetTensorDesc(const GeTensorDesc **tensor_desc);

private:
NodePtr src_node_;
NodeState *src_node_;
uint32_t src_index_;
SubgraphContext *subgraph_context_;
};
@@ -53,10 +54,19 @@ struct ShapeInferenceState {

Status AwaitShapesReady(const GraphExecutionContext &context);

Status UpdateOutputDesc();

const vector<GeTensorDesc> &GetOutputTensorDesc() const;

const NodeItem &node_item;

private:
friend struct NodeState;
std::vector<std::pair<int, ShapeFuture>> shape_futures;
// do not directly update op_desc, in case race condition across pipelines
std::vector<GeTensorDesc> input_tensor_desc;
std::vector<GeTensorDesc> output_tensor_desc;

int num_pending_shapes_ = 0;
std::condition_variable ready_cv_;
std::mutex mu_;
@@ -88,6 +98,8 @@ struct NodeState {
return shape_inference_state_;
}

Status UpdateOutputShapes(int index, const GeShape &shape, const GeShape &ori_shape);

const shared_ptr<NodeTask> &GetKernelTask() const {
return kernel_task_;
}


+ 4
- 7
ge/hybrid/executor/rt_callback_manager.cc View File

@@ -21,14 +21,11 @@

namespace ge {
namespace hybrid {
CallbackManager::CallbackManager(rtStream_t stream) : stream_(stream) {
}

Status CallbackManager::RegisterCallback(rtCallback_t callback, void *user_data) {
Status CallbackManager::RegisterCallback(rtStream_t stream, rtCallback_t callback, void *user_data) {
GELOGD("To register callback");
rtEvent_t event = nullptr;
GE_CHK_RT_RET(rtEventCreate(&event));
auto rt_ret = rtEventRecord(event, stream_);
auto rt_ret = rtEventRecord(event, stream);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Failed to invoke rtEventRecord, error code = %d", rt_ret);
(void) rtEventDestroy(event);
@@ -112,11 +109,11 @@ void CallbackManager::RtCallbackFunc(void *data) {
delete callback_func;
}

Status CallbackManager::RegisterCallback(const std::function<void()> &callback) {
Status CallbackManager::RegisterCallback(rtStream_t stream, const std::function<void()> &callback) {
auto func = std::unique_ptr<std::function<void()>>(new(std::nothrow) std::function<void()>(callback));
GE_CHECK_NOTNULL(func);
GELOGD("Callback registered");
return RegisterCallback(RtCallbackFunc, func.release());
return RegisterCallback(stream, RtCallbackFunc, func.release());
}
} // namespace hybrid
} // namespace ge

+ 3
- 5
ge/hybrid/executor/rt_callback_manager.h View File

@@ -30,23 +30,21 @@ namespace ge {
namespace hybrid {
class CallbackManager {
public:
explicit CallbackManager(rtStream_t stream);

CallbackManager() = default;
~CallbackManager() = default;

Status Init();

Status Destroy();

Status RegisterCallback(rtCallback_t callback, void *user_data);
Status RegisterCallback(const std::function<void()> &callback);
Status RegisterCallback(rtStream_t stream, rtCallback_t callback, void *user_data);
Status RegisterCallback(rtStream_t stream, const std::function<void()> &callback);

private:
Status CallbackProcess(rtContext_t context);
static void RtCallbackFunc(void *data);

BlockingQueue<std::pair<rtEvent_t, std::pair<rtCallback_t, void *>>> callback_queue_;
rtStream_t stream_;
std::future<Status> ret_future_;
};
} // namespace hybrid


+ 29
- 15
ge/hybrid/executor/subgraph_executor.cc View File

@@ -24,6 +24,7 @@ namespace ge {
namespace hybrid {
namespace {
constexpr int kDefaultThreadNum = 4;
constexpr int kDefaultQueueSize = 16;
constexpr int kDataInputIndex = 0;
}

@@ -31,7 +32,8 @@ SubgraphExecutor::SubgraphExecutor(const GraphItem *graph_item, GraphExecutionCo
: graph_item_(graph_item),
context_(context),
force_infer_shape_(force_infer_shape),
pre_run_pool_(kDefaultThreadNum) {
pre_run_pool_(kDefaultThreadNum),
ready_queue_(kDefaultQueueSize) {
}

SubgraphExecutor::~SubgraphExecutor() {
@@ -169,7 +171,7 @@ Status SubgraphExecutor::ExecuteAsyncForKnownShape(const std::vector<TensorValue
GE_CHECK_NOTNULL(node_state);
node_state->SetKernelTask(node_item->kernel_task);

known_shape_task_context_ = TaskContext::Create(*node_item, context_, subgraph_context_.get());
known_shape_task_context_ = TaskContext::Create(node_state.get(), context_, subgraph_context_.get());
GE_CHECK_NOTNULL(known_shape_task_context_);

HYBRID_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, known_shape_task_context_, *context_),
@@ -201,11 +203,11 @@ Status SubgraphExecutor::ExecuteAsync(TaskContext &task_context) {
return SUCCESS;
}

Status SubgraphExecutor::PrepareNodes() {
GELOGD("[%s] Start to prepare nodes. force infer shape = %s.",
Status SubgraphExecutor::PrepareNodes(int group) {
GELOGD("[%s] Start to prepare nodes. group = %d",
graph_item_->GetName().c_str(),
force_infer_shape_ ? "true" : "false");
auto &all_nodes = graph_item_->GetAllNodes();
group);
auto &all_nodes = graph_item_->GetAllNodes(group);
for (auto all_node : all_nodes) {
auto &node_item = *all_node;
// for while op
@@ -240,7 +242,8 @@ Status SubgraphExecutor::PrepareNodes() {
} else {
node_state->SetKernelTask(node_item.kernel_task);
}
auto unique_task_context = TaskContext::Create(*node_state->GetNodeItem(), context_, subgraph_context_.get());
auto unique_task_context =
TaskContext::Create(node_state.get(), context_, subgraph_context_.get());
GE_CHECK_NOTNULL(unique_task_context);
const auto &task = node_state->GetKernelTask();
if (task == nullptr) {
@@ -265,15 +268,17 @@ Status SubgraphExecutor::PrepareNodes() {
GELOGD("[%s] Push node [%s] to queue.", graph_item_->GetName().c_str(), node_item.NodeName().c_str());
}

GELOGD("[%s] Done preparing nodes successfully.", graph_item_->GetName().c_str());
return SUCCESS;
}

Status SubgraphExecutor::InferShape(ShapeInferenceEngine *shape_inference_engine, NodeState &node_state) {
const auto &node_item = *node_state.GetNodeItem();
Status SubgraphExecutor::InferShape(ShapeInferenceEngine *shape_inference_engine, NodeState &node_state) const {
GetContext().SetSessionId(context_->context_id);
HYBRID_CHK_STATUS_RET(shape_inference_engine->InferShape(node_state),
"[%s] Failed to InferShape.", node_state.GetName().c_str());
HYBRID_CHK_STATUS_RET(shape_inference_engine->PropagateOutputShapes(node_item),
"[%s] Failed to PropagateOutputShapes.", node_state.GetName().c_str());
"[%s] Failed to InferShape.", node_state.GetName().c_str());
GetContext().SetSessionId(context_->session_id);
HYBRID_CHK_STATUS_RET(shape_inference_engine->PropagateOutputShapes(node_state),
"[%s] Failed to PropagateOutputShapes.", node_state.GetName().c_str());
return SUCCESS;
}

@@ -285,7 +290,7 @@ Status SubgraphExecutor::PrepareForExecution(GraphExecutionContext *ctx, NodeSta
} else {
node_state.SetKernelTask(node_item.kernel_task);
}
auto unique_task_context = TaskContext::Create(*node_state.GetNodeItem(), context_, subgraph_context_.get());
auto unique_task_context = TaskContext::Create(&node_state, context_, subgraph_context_.get());
GE_CHECK_NOTNULL(unique_task_context);
const auto &task = node_state.GetKernelTask();
if (task == nullptr) {
@@ -336,11 +341,11 @@ Status SubgraphExecutor::LaunchTasks() {
}
}

Status SubgraphExecutor::ScheduleTasks() {
Status SubgraphExecutor::ScheduleTasks(int group) {
GELOGD("[%s] Start to schedule prepare workers.", graph_item_->GetName().c_str());
auto prepare_future = std::async(std::launch::async, [&]() -> Status {
GetContext().SetSessionId(context_->session_id);
auto ret = PrepareNodes();
auto ret = PrepareNodes(group);
ready_queue_.Push(nullptr);
return ret;
});
@@ -481,5 +486,14 @@ Status SubgraphExecutor::EnableOutputZeroCopy(const vector<TensorValue> &outputs
GELOGD("Done enabling zero copy for outputs successfully.");
return SUCCESS;
}

Status SubgraphExecutor::PartialExecuteAsync(int task_group) {
return ScheduleTasks(task_group);
}

Status SubgraphExecutor::InitForPartialExecution(const vector<TensorValue> &inputs,
const vector<ConstGeTensorDescPtr> &input_desc) {
return Init(inputs, input_desc);
}
} // namespace hybrid
} // namespace ge

+ 8
- 3
ge/hybrid/executor/subgraph_executor.h View File

@@ -36,6 +36,11 @@ class SubgraphExecutor {
SubgraphExecutor(const GraphItem *graph_item, GraphExecutionContext *context, bool force_infer_shape = false);
~SubgraphExecutor();

Status InitForPartialExecution(const std::vector<TensorValue> &inputs,
const std::vector<ConstGeTensorDescPtr> &input_desc);

Status PartialExecuteAsync(int task_group);

/**
* Execute subgraph async, output tensor address(not data) and output tensor descriptions are
* valid after this method returned
@@ -89,15 +94,15 @@ class SubgraphExecutor {
private:
Status PrepareForExecution(GraphExecutionContext *ctx, NodeState &node_state);
Status EnableOutputZeroCopy(const std::vector<TensorValue> &outputs);
static Status InferShape(ShapeInferenceEngine *shape_inference_engine, NodeState &node_state);
Status InferShape(ShapeInferenceEngine *shape_inference_engine, NodeState &node_state) const;
Status Init(const std::vector<TensorValue> &inputs,
const std::vector<ConstGeTensorDescPtr> &input_desc);
Status InitInputsForUnknownShape(const std::vector<TensorValue> &inputs,
const std::vector<ConstGeTensorDescPtr> &input_desc);
Status InitInputsForKnownShape(const std::vector<TensorValue> &inputs);
Status ExecuteAsyncForKnownShape(const std::vector<TensorValue> &inputs);
Status ScheduleTasks();
Status PrepareNodes();
Status ScheduleTasks(int group = -1);
Status PrepareNodes(int group = -1);
Status LaunchTasks();
Status SetOutputsToParentNode(TaskContext &task_context);



+ 7
- 6
ge/hybrid/executor/worker/execution_engine.cc View File

@@ -125,16 +125,16 @@ Status NodeDoneCallback::PrepareConstInputs(const NodeItem &node_item) {
RT_MEMCPY_DEVICE_TO_HOST));
}
tensor.SetData(std::move(host_buffer));
string session_id = std::to_string(context_->GetSessionId());
string context_id = std::to_string(graph_context_->context_id);
RuntimeInferenceContext *runtime_infer_ctx = nullptr;
GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(session_id, &runtime_infer_ctx),
"Failed to get RuntimeInferenceContext, session_id = %s", session_id.c_str());
GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(context_id, &runtime_infer_ctx),
"Failed to get RuntimeInferenceContext, context_id = %s", context_id.c_str());
GE_CHK_STATUS_RET(runtime_infer_ctx->SetTensor(node_item.node_id, output_idx, std::move(tensor)),
"Failed to SetTensor, node = %s, output_index = %d", node_item.NodeName().c_str(), output_idx);
GELOGD("[%s] Output[%d] cached successfully in session: %s. node_id = %d, shape = [%s]",
GELOGD("[%s] Output[%d] cached successfully in context: %s. node_id = %d, shape = [%s]",
node_item.NodeName().c_str(),
output_idx,
session_id.c_str(),
context_id.c_str(),
node_item.node_id,
ge_tensor_desc->GetShape().ToString().c_str());

@@ -332,6 +332,7 @@ Status NodeDoneCallback::OnNodeDone() {
if (node_item.shape_inference_type == DEPEND_SHAPE_RANGE || node_item.shape_inference_type == DEPEND_COMPUTE) {
// update output tensor sizes
GE_CHK_STATUS_RET_NOLOG(ShapeInferenceEngine::CalcOutputTensorSizes(node_item));
GE_CHK_STATUS_RET_NOLOG(context_->GetNodeState()->GetShapeInferenceState().UpdateOutputDesc());
}
// PropagateOutputs for type == DEPEND_COMPUTE
if (node_item.shape_inference_type == DEPEND_COMPUTE) {
@@ -363,7 +364,7 @@ Status ExecutionEngine::ExecuteAsync(NodeState &node_state,
RECORD_EXECUTION_EVENT(&execution_context, task_context->GetNodeName(), "Start");
auto cb = std::shared_ptr<NodeDoneCallback>(new(std::nothrow) NodeDoneCallback(&execution_context, task_context));
GE_CHECK_NOTNULL(cb);
auto callback = [&, cb]() {
auto callback = [task_context, cb]() {
auto ret = cb->OnNodeDone();
if (ret != SUCCESS) {
task_context->OnError(ret);


+ 4
- 4
ge/hybrid/executor/worker/shape_inference_engine.cc View File

@@ -109,7 +109,8 @@ Status ShapeInferenceEngine::AwaitDependentNodes(NodeState &node_state) {
return SUCCESS;
}

Status ShapeInferenceEngine::PropagateOutputShapes(const NodeItem &node_item) {
Status ShapeInferenceEngine::PropagateOutputShapes(NodeState &node_state) {
auto &node_item = *node_state.GetNodeItem();
if (node_item.is_output_shape_static) {
return SUCCESS;
}
@@ -140,9 +141,8 @@ Status ShapeInferenceEngine::PropagateOutputShapes(const NodeItem &node_item) {
// in case type 3 and 4, shape will be valid after computing is done
auto &infer_state = dst_node_state->GetShapeInferenceState();
if (shape_is_future) {
ShapeFuture future(node_item.node, i, subgraph_context_);
infer_state.UpdateInputShapeFuture(dst_input_index_and_node.first,
std::move(future));
ShapeFuture future(&node_state, i, subgraph_context_);
infer_state.UpdateInputShapeFuture(dst_input_index_and_node.first, std::move(future));
} else {
GE_CHK_STATUS_RET_NOLOG(infer_state.UpdateInputShape(dst_input_index_and_node.first, *output_desc));
}


+ 1
- 1
ge/hybrid/executor/worker/shape_inference_engine.h View File

@@ -32,7 +32,7 @@ class ShapeInferenceEngine {

Status InferShapeForSubgraph(const NodeItem &node_item, const FusedSubgraph &fused_subgraph);

Status PropagateOutputShapes(const NodeItem &node_item);
Status PropagateOutputShapes(NodeState &node_state);

static Status CalcOutputTensorSizes(const NodeItem &node_item, bool fallback_with_range = false);



+ 36
- 0
ge/hybrid/model/graph_item.cc View File

@@ -30,6 +30,19 @@ const vector<NodeItem *> &hybrid::GraphItem::GetAllNodes() const {
return node_items_;
}

const vector<NodeItem *> &GraphItem::GetAllNodes(int group) const {
if (group == -1) {
return GetAllNodes();
}

if (group >= static_cast<int>(grouped_node_items_.size())) {
static vector<NodeItem *> empty_nodes;
return empty_nodes;
}

return grouped_node_items_[group];
}

const vector<const NodeItem *> &GraphItem::GetInputNodes() const {
return input_nodes_;
}
@@ -74,5 +87,28 @@ const NodeItem *GraphItem::GetOutputNode() const {
const vector<std::pair<const NodeItem *, int>> &GraphItem::GetOutputEdges() const {
return output_edges_;
}

Status GraphItem::GroupNodes() {
int last_group = INT32_MIN;
std::set<int> seen_groups;
for (auto node : node_items_) {
int group = node->group;
if (group != last_group) {
if (seen_groups.find(group) != seen_groups.end()) {
GELOGE(INTERNAL_ERROR, "Unordered node group found. node = %s, group = %d", node->NodeName().c_str(), group);
return INTERNAL_ERROR;
} else {
last_group = group;
seen_groups.insert(group);
grouped_node_items_.emplace_back(std::vector<NodeItem *>());
}
}

GELOGD("Adding node [%s] to group %d", node->NodeName().c_str(), group);
grouped_node_items_.back().emplace_back(node);
}

return SUCCESS;
}
} // namespace hybrid
} // namespace ge

+ 7
- 0
ge/hybrid/model/graph_item.h View File

@@ -26,7 +26,9 @@ class GraphItem {
public:
GraphItem() = default;
~GraphItem();
Status GroupNodes();
const vector<NodeItem *> &GetAllNodes() const;
const vector<NodeItem *> &GetAllNodes(int group) const;
const vector<const NodeItem *> &GetInputNodes() const;
Status GetOutputDescList(std::vector<ConstGeTensorDescPtr> &output_desc_list) const;
const vector<std::pair<const NodeItem *, int>> &GetOutputEdges() const;
@@ -46,6 +48,10 @@ class GraphItem {
name_ = name;
}

size_t NumGroups() const {
return grouped_node_items_.size();
}

const NodeItem *GetOutputNode() const;

bool IsDynamic() const;
@@ -56,6 +62,7 @@ class GraphItem {
friend class HybridModelBuilder;
std::string name_;
std::vector<NodeItem *> node_items_;
std::vector<std::vector<NodeItem *>> grouped_node_items_;
std::vector<const NodeItem *> input_nodes_;
const NodeItem *output_node_ = nullptr;
// <src_node, out_index>


+ 2
- 2
ge/hybrid/model/hybrid_model.cc View File

@@ -52,7 +52,7 @@ Status HybridModel::Init(bool is_single_op) {
return SUCCESS;
}

TensorValue* HybridModel::GetVariable(const string &name) const {
TensorValue *HybridModel::GetVariable(const string &name) const {
auto it = variable_tensors_.find(name);
if (it == variable_tensors_.end()) {
GELOGD("Failed to get variable tensor. var name = [%s]", name.c_str());
@@ -113,7 +113,7 @@ GeModelPtr HybridModel::GetGeModel(const NodePtr &node) const {
return it->second;
}

const GraphItem* HybridModel::GetRootGraphItem() const {
const GraphItem *HybridModel::GetRootGraphItem() const {
return root_graph_item_.get();
}



+ 54
- 35
ge/hybrid/model/hybrid_model_builder.cc View File

@@ -287,6 +287,16 @@ Status HybridModelBuilder::ParseDependentInputNodes(NodeItem &node_item, const s
src_node_item->NodeName().c_str());
src_node_item->has_observer = true;
node_item.dependents_for_execution.emplace_back(src_node);
node_item.has_observer = true;
for (auto &dst_node : ge_node->GetOutNodes()) {
if (dst_node == nullptr) {
continue;
}

NodeItem *dst_node_item = nullptr;
GE_CHK_STATUS_RET_NOLOG(GetOrCreateNodeItem(dst_node, &dst_node_item));
dst_node_item->dependents_for_execution.emplace_back(ge_node);
}
} else if (src_node_item->shape_inference_type == DEPEND_COMPUTE) {
GELOGD("[%s] Add input data dependent node [%s] due to inference type = DEPEND_COMPUTE",
node_item.NodeName().c_str(),
@@ -614,6 +624,15 @@ Status HybridModelBuilder::UnfoldSubgraphs(ComputeGraph &root_graph, ComputeGrap
continue;
}

if (op_desc->HasAttr(ATTR_STAGE_LEVEL)) {
uint32_t stage_level = UINT32_MAX;
if (AttrUtils::GetInt(node->GetOpDesc(), ATTR_STAGE_LEVEL, stage_level)) {
for (const auto &stage_node : subgraph->GetAllNodes()) {
GELOGD("Set ATTR_STAGE_LEVEL on node %s, stage_level=%u", stage_node->GetName().c_str(), stage_level);
(void)AttrUtils::SetInt(stage_node->GetOpDesc(), ATTR_STAGE_LEVEL, stage_level);
}
}
}
GE_CHK_GRAPH_STATUS_RET(UnfoldSubgraph(root_graph, *merged_graph, *subgraph),
"[%s] Failed to merge subgraph.",
subgraph->GetName().c_str());
@@ -621,6 +640,14 @@ Status HybridModelBuilder::UnfoldSubgraphs(ComputeGraph &root_graph, ComputeGrap

// invoke before adding subgraphs. in case modify node id in known-shaped subgraphs.
GE_CHK_GRAPH_STATUS_RET(merged_graph->TopologicalSorting(), "Failed to invoke TopologicalSorting on merged graph.");
GE_DUMP(merged_graph, "hybrid_merged_graph_BeforeStageSort");
merged_graph->TopologicalSorting([](const NodePtr &a, const NodePtr &b) -> bool {
uint32_t a_level = UINT32_MAX;
(void)AttrUtils::GetInt(a->GetOpDesc(), ATTR_STAGE_LEVEL, a_level);
uint32_t b_level = UINT32_MAX;
(void)AttrUtils::GetInt(b->GetOpDesc(), ATTR_STAGE_LEVEL, b_level);
return a_level < b_level;
});

for (auto &remained_subgraph : root_graph.GetAllSubgraphs()) {
GELOGD("Adding subgraph [%s] to merged-graph.", remained_subgraph->GetName().c_str());
@@ -675,41 +702,17 @@ Status HybridModelBuilder::UnfoldSubgraph(ComputeGraph &root_graph,
}

Status HybridModelBuilder::BuildOutputMapping(GraphItem &graph_item,
const NodeItem &node_item,
bool is_root_graph) {
auto output_size = node_item.num_inputs;
graph_item.output_edges_.resize(output_size);

for (auto &in_data_anchor : node_item.node->GetAllInDataAnchors()) {
auto peer_out_anchor = in_data_anchor->GetPeerOutAnchor();
GE_CHECK_NOTNULL(peer_out_anchor);
auto src_node = peer_out_anchor->GetOwnerNode();
GE_CHECK_NOTNULL(src_node);

auto src_node_item = GetNodeItem(src_node);
GE_CHECK_NOTNULL(src_node_item);
auto output_idx = in_data_anchor->GetIdx();
auto output_offset = src_node_item->output_start + peer_out_anchor->GetIdx();
GELOGI("Output[%d], node = %s, output_index = %d, output_offset = %d ",
output_idx,
src_node_item->NodeName().c_str(),
peer_out_anchor->GetIdx(),
output_offset);

GE_CHECK_LE(output_idx, output_size - 1);
graph_item.output_edges_[output_idx] = {src_node_item, peer_out_anchor->GetIdx()};
}

if (!is_root_graph) {
for (uint32_t i = 0; i < static_cast<uint32_t>(output_size); ++i) {
uint32_t p_index = i;
// Net output of Subgraph of while do not have parent index
if (AttrUtils::GetInt(node_item.op_desc->GetInputDesc(i), ATTR_NAME_PARENT_NODE_INDEX, p_index)) {
GELOGD("[%s] Parent index not set for input[%u].", node_item.NodeName().c_str(), i);
}

graph_item.output_index_mapping_.emplace_back(p_index);
const NodeItem &node_item) {
auto output_size = node_item.op_desc->GetAllInputsSize();
GE_CHECK_LE(output_size, UINT32_MAX);
for (uint32_t i = 0; i < static_cast<uint32_t>(output_size); ++i) {
uint32_t p_index = i;
// Net output of Subgraph of while do not have parent index
if (AttrUtils::GetInt(node_item.op_desc->GetInputDesc(i), ATTR_NAME_PARENT_NODE_INDEX, p_index)) {
GELOGD("[%s] Parent index not set for input[%u].", node_item.NodeName().c_str(), i);
}

graph_item.output_index_mapping_.emplace_back(p_index);
}

return SUCCESS;
@@ -732,6 +735,7 @@ Status HybridModelBuilder::LoadGraph() {

GE_CHK_STATUS_RET(LoadDynamicSubgraph(*root_graph, true), "Failed to load root graph.");
GELOGD("Done loading root graph successfully.");
GE_CHK_STATUS_RET(hybrid_model_.root_graph_item_->GroupNodes(), "Failed to group nodes for root graph");

for (auto &sub_graph : root_graph->GetAllSubgraphs()) {
GE_CHECK_NOTNULL(sub_graph);
@@ -805,6 +809,7 @@ Status HybridModelBuilder::VarNodeToTensor(const NodePtr &var_node, std::unique_
// var size is only for checking, will not allocate any memory by it
tensor.reset(new(std::nothrow)TensorValue(dev_mem, static_cast<size_t>(var_size)));
GE_CHECK_NOTNULL(tensor);
GELOGI("Get var memory addr %p for node %s, size = %lld, mem_type=%u", dev_mem, var_name.c_str(), var_size, mem_type);
return SUCCESS;
}

@@ -1737,8 +1742,14 @@ Status HybridModelBuilder::CreateProfilingNodeBefore(GraphItem &graph_item, cons
for (const auto &task_def : task_def_lists) {
hybrid_model_.task_defs_[profiling_node].emplace_back(task_def);
}
if (op_desc->HasAttr(ATTR_STAGE_LEVEL)) {
uint32_t stage_level = UINT32_MAX;
(void)ge::AttrUtils::GetInt(op_desc, ATTR_STAGE_LEVEL, stage_level);
(void)ge::AttrUtils::SetInt(node_ptr->GetOpDesc(), ATTR_STAGE_LEVEL, stage_level);
}
NodeItem *node_item = nullptr;
GE_CHK_STATUS_RET_NOLOG(GetOrCreateNodeItem(profiling_node, &node_item));
GE_CHECK_NOTNULL(node_item);
node_item->input_start = 0;
node_item->output_start = 0;
graph_item.node_items_.emplace_back(node_item);
@@ -1812,8 +1823,14 @@ Status HybridModelBuilder::CreateProfilingNodeAfter(GraphItem &graph_item, const
for (const auto &task_def : task_def_lists) {
hybrid_model_.task_defs_[profiling_node].emplace_back(task_def);
}
if (op_desc->HasAttr(ATTR_STAGE_LEVEL)) {
uint32_t stage_level = UINT32_MAX;
(void)ge::AttrUtils::GetInt(op_desc, ATTR_STAGE_LEVEL, stage_level);
(void)ge::AttrUtils::SetInt(profiling_node->GetOpDesc(), ATTR_STAGE_LEVEL, stage_level);
}
NodeItem *node_item = nullptr;
GE_CHK_STATUS_RET_NOLOG(GetOrCreateNodeItem(profiling_node, &node_item));
GE_CHECK_NOTNULL(node_item);
node_item->input_start = 0;
node_item->output_start = 0;
graph_item.node_items_.emplace_back(node_item);
@@ -1859,7 +1876,9 @@ Status HybridModelBuilder::LoadDynamicSubgraph(ComputeGraph &graph, bool is_root
data_nodes.emplace_back(node_item);
} else if (op_type == NETOUTPUT) {
graph_item->output_node_ = node_item;
GE_CHK_STATUS_RET_NOLOG(BuildOutputMapping(*graph_item, *node_item, is_root_graph));
if (!is_root_graph) {
GE_CHK_STATUS_RET_NOLOG(BuildOutputMapping(*graph_item, *node_item));
}
}
GE_CHK_STATUS_RET_NOLOG(CreateProfilingNodeBefore(*graph_item, node));
graph_item->node_items_.emplace_back(node_item);


+ 1
- 1
ge/hybrid/model/hybrid_model_builder.h View File

@@ -53,7 +53,7 @@ class HybridModelBuilder {
std::vector<NodeItem *> &data_nodes,
bool is_root_graph);
static Status ResolveRefIo(NodeItem &node_item);
Status BuildOutputMapping(GraphItem &partitioned_call, const NodeItem &node_item, bool is_root_graph);
Status BuildOutputMapping(GraphItem &partitioned_call, const NodeItem &node_item);
Status ValidateParams();
Status LoadGraph();
Status LoadGeModel(ComputeGraph &graph, const GeModelPtr &ge_model);


+ 16
- 1
ge/hybrid/model/node_item.cc View File

@@ -21,8 +21,8 @@
#include "graph/compute_graph.h"
#include "graph/debug/ge_attr_define.h"
#include "graph/utils/node_utils.h"
#include "hybrid/node_executor/node_executor.h"
#include "hybrid/executor/worker/shape_inference_engine.h"
#include "hybrid/node_executor/node_executor.h"

namespace ge {
namespace hybrid {
@@ -146,6 +146,20 @@ Status NodeItem::InitInputsAndOutputs() {
GE_CHECK_LE(op_desc->GetOutputsSize(), INT32_MAX);
num_inputs = static_cast<int>(op_desc->GetInputsSize());
num_outputs = static_cast<int>(op_desc->GetOutputsSize());
if (AttrUtils::GetInt(op_desc, ::ge::ATTR_STAGE_LEVEL, group)) {
GELOGD("[%s] Got stage level from op_desc = %d", op_desc->GetName().c_str(), group);
} else {
if (AttrUtils::GetInt(node->GetOwnerComputeGraph(), ::ge::ATTR_STAGE_LEVEL, group)) {
GELOGD("[%s] Got stage level from parent graph = %d", op_desc->GetName().c_str(), group);
} else {
auto parent_node = node->GetOwnerComputeGraph()->GetParentNode();
if ((parent_node != nullptr) && (AttrUtils::GetInt(parent_node->GetOpDesc(), ::ge::ATTR_STAGE_LEVEL, group))) {
GELOGD("[%s] Got stage level from parent node = %d", op_desc->GetName().c_str(), group);
} else {
GELOGD("[%s] Node do not set stage level", op_desc->GetName().c_str());
}
}
}
ResolveOptionalInputs();
return SUCCESS;
}
@@ -244,6 +258,7 @@ std::string NodeItem::DebugString() const {
ss << ", is_dynamic = " << (is_dynamic ? "True" : "False");
ss << ", is_output_static = " << (is_output_shape_static ? "True" : "False");
ss << ", unknown_shape_op_type = " << shape_inference_type;
ss << ", stage = " << group;
ss << ", input_start = " << input_start;
ss << ", num_inputs = " << num_inputs;
ss << ", output_start = " << output_start;


+ 1
- 0
ge/hybrid/model/node_item.h View File

@@ -74,6 +74,7 @@ struct NodeItem {
NodePtr node;
OpDesc *op_desc;
int node_id = -1;
int group = -1;
int num_inputs = 0;
int num_outputs = 0;
int input_start = -1;


+ 4
- 0
ge/hybrid/node_executor/aicore/aicore_op_task.cc View File

@@ -17,6 +17,7 @@
#include "hybrid/node_executor/aicore/aicore_op_task.h"
#include "framework/common/taskdown_common.h"
#include "framework/common/debug/log.h"
#include "graph/ge_context.h"
#include "hybrid/executor/hybrid_execution_context.h"
#include "hybrid/node_executor/aicore/aicore_task_builder.h"
#include "graph/load/model_manager/tbe_handle_store.h"
@@ -198,9 +199,12 @@ Status AiCoreOpTask::UpdateTilingInfo(TaskContext &context) {
tiling_info.clear_atomic = true;

auto execution_context = context.GetExecutionContext();

GetContext().SetSessionId(execution_context->context_id);
RECORD_EXECUTION_EVENT(execution_context, context.GetNodeName(), "[CalcTilingInfo] Start");
GE_CHK_STATUS_RET(CalcTilingInfo(node, tiling_info));
RECORD_EXECUTION_EVENT(execution_context, context.GetNodeName(), "[CalcTilingInfo] End");
GetContext().SetSessionId(execution_context->session_id);

// update op args by tiling info
block_dim_ = static_cast<uint32_t>(tiling_info.block_dim);


+ 14
- 14
ge/hybrid/node_executor/aicpu/aicpu_node_executor.cc View File

@@ -74,7 +74,7 @@ Status AicpuNodeTaskBase::InitExtInfo(const std::string &kernel_ext_info, int64_
return SUCCESS;
}

Status AicpuNodeTaskBase::UpdateOutputShapeFromExtInfo() {
Status AicpuNodeTaskBase::UpdateOutputShapeFromExtInfo(TaskContext &task_context) {
if (node_item_->num_outputs == 0) {
GELOGD("Task [%s] output_num is 0, no need update output shape.", node_name_.c_str());
return SUCCESS;
@@ -91,19 +91,19 @@ Status AicpuNodeTaskBase::UpdateOutputShapeFromExtInfo() {
// not support update data type now, just for param
DataType data_type;
aicpu_ext_handle_.GetOutputShapeAndType(i, shape, data_type);
auto output_desc = node_item_->MutableOutputDesc(i);
GE_CHECK_NOTNULL(output_desc);
GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(shape, i, output_desc),
GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(task_context, shape, i),
"Update node %s [%d]th output shape failed.",
node_name_.c_str(), i);
}
return SUCCESS;
}

Status AicpuNodeTaskBase::UpdateShapeToOutputDesc(const GeShape &shape_new,
int32_t output_index, GeTensorDescPtr &output_desc) {
Status AicpuNodeTaskBase::UpdateShapeToOutputDesc(TaskContext &task_context,
const GeShape &shape_new,
int32_t output_index) {
auto output_desc = task_context.MutableOutputDesc(output_index);
GE_CHECK_NOTNULL(output_desc);
auto shape_old = output_desc->GetShape();
output_desc->SetShape(shape_new);
GELOGD("Update node[%s] out[%d] shape from %s to %s.", node_name_.c_str(), output_index,
shape_old.ToString().c_str(), shape_new.ToString().c_str());

@@ -111,9 +111,9 @@ Status AicpuNodeTaskBase::UpdateShapeToOutputDesc(const GeShape &shape_new,
auto origin_format = output_desc->GetOriginFormat();
auto format = output_desc->GetFormat();
if (origin_format == format) {
output_desc->SetOriginShape(shape_new);
return SUCCESS;
return task_context.GetNodeState()->UpdateOutputShapes(output_index, shape_new, shape_new);
}

// if format is not same need convert shape
std::vector<int64_t> origin_dims_new;
auto trans_ret = formats::TransShape(format, shape_new.GetDims(),
@@ -122,7 +122,8 @@ Status AicpuNodeTaskBase::UpdateShapeToOutputDesc(const GeShape &shape_new,
"Node[%s] out[%d] originFormat[%d] is not same as format[%d], but TransShape failed, shape=%s.",
node_name_.c_str(), output_index, origin_format, format, shape_new.ToString().c_str());
auto origin_shape_new = GeShape(origin_dims_new);
output_desc->SetOriginShape(origin_shape_new);
GE_CHK_STATUS_RET(task_context.GetNodeState()->UpdateOutputShapes(output_index, shape_new, origin_shape_new),
"Node[%s] failed to update update shape, index = %d", node_name_.c_str(), output_index);
GELOGD("Node[%s] out[%d] originFormat[%d] is not same as format[%d], need update from %s ro %s.",
node_name_.c_str(), output_index, origin_format, format,
origin_shape_old.ToString().c_str(), origin_shape_new.ToString().c_str());
@@ -513,7 +514,6 @@ Status AicpuTfNodeTask::UpdateShapeByHbmBuffer(TaskContext &context,
node_name_.c_str(), node_item_->num_outputs, out_shape_hbm.size());
for (auto i = 0; i < node_item_->num_outputs; ++i) {
const auto &result_summary = output_summary_host_[i];
auto output_desc = node_item_->MutableOutputDesc(i);
std::vector<int64_t> shape_dims;
if (result_summary.shape_data_size > 0) {
const auto &shape_hbm = out_shape_hbm[i];
@@ -531,7 +531,7 @@ Status AicpuTfNodeTask::UpdateShapeByHbmBuffer(TaskContext &context,
GELOGD("Node[%s] [%d]th output dim[%u]=%ld.", node_name_.c_str(), i, dim_idx, shape_addr[dim_idx]);
}
}
GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(GeShape(shape_dims), i, output_desc),
GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(context, GeShape(shape_dims), i),
"Node[%s] update [%d]th output shape failed.",
node_name_.c_str(), i);
}
@@ -634,7 +634,7 @@ Status AicpuTfNodeTask::TaskCallback(TaskContext &context) {
// check need update shape, call update shape.
if (unknown_type_ == DEPEND_SHAPE_RANGE) {
// check result
callback_ret = UpdateOutputShapeFromExtInfo();
callback_ret = UpdateOutputShapeFromExtInfo(context);
} else if (unknown_type_ == DEPEND_COMPUTE) {
callback_ret = UpdateShapeAndDataByResultSummary(context);
}
@@ -781,7 +781,7 @@ Status AicpuNodeTask::TaskCallback(TaskContext &context) {
// check need update shape, call update shape.
if (node_item_->is_dynamic && unknown_type_ == DEPEND_SHAPE_RANGE) {
// check result
callback_ret = UpdateOutputShapeFromExtInfo();
callback_ret = UpdateOutputShapeFromExtInfo(context);
} else {
GELOGD("Node[%s] unknown shape type is %d no need update output shape.",
node_name_.c_str(), unknown_type_);


+ 2
- 2
ge/hybrid/node_executor/aicpu/aicpu_node_executor.h View File

@@ -49,9 +49,9 @@ class AicpuNodeTaskBase : public NodeTask {

virtual Status UpdateExtInfo();

virtual Status UpdateOutputShapeFromExtInfo();
virtual Status UpdateOutputShapeFromExtInfo(TaskContext &task_context);

Status UpdateShapeToOutputDesc(const GeShape &shape_new, int32_t output_index, GeTensorDescPtr &output_desc);
Status UpdateShapeToOutputDesc(TaskContext &task_context, const GeShape &shape_new, int32_t output_index);

virtual Status LaunchTask(TaskContext &context) = 0;



+ 13
- 19
ge/hybrid/node_executor/hccl/hccl_node_executor.cc View File

@@ -22,6 +22,8 @@
#include "graph/manager/util/hcom_util.h"
#include "graph/runtime_inference_context.h"
#include "graph/utils/type_utils.h"
#include "graph/types.h"
#include "hccl/hcom.h"
#include "hybrid/executor/hybrid_execution_context.h"

namespace ge {
@@ -96,13 +98,13 @@ Status HcclNodeTask::ExecuteAsync(TaskContext &context, std::function<void()> do
GE_CHK_STATUS_RET(HcomOmeUtil::GetHcclRootId(op_desc, root_id), "GetHcclRootId failed");
}
op_info.root = root_id;
auto callback = [this, op_desc](HcclResult status) {
auto callback = [op_desc, done_callback](HcclResult status) {
if (status != HCCL_SUCCESS) {
GELOGE(HCCL_E_INTERNAL, "node %s call HcomExecEnqueueOperation failed, ret: 0x%X",
op_desc->GetName().c_str(), status);
}
std::lock_guard<std::mutex> lock(this->hccl_mutex_);
this->cond_.notify_all();
done_callback();
GELOGI("node %s hccl callback success.", op_desc->GetName().c_str());
};
int32_t count = 0;
@@ -119,11 +121,6 @@ Status HcclNodeTask::ExecuteAsync(TaskContext &context, std::function<void()> do
return HCCL_E_INTERNAL;
}

// pending until hccl finished
std::unique_lock<std::mutex> ulock(hccl_mutex_);
cond_.wait(ulock);

GE_CHK_STATUS_RET_NOLOG(context.RegisterCallback(done_callback));
GELOGI("[%s] HcclNodeTask::ExecuteAsync success.", context.GetNodeName());
return SUCCESS;
}
@@ -165,7 +162,8 @@ Status RdmaNodeTask::Init(TaskContext &context) {

Status RdmaNodeTask::ExtractTensor(TaskContext &context, vector<HcomRemoteAccessAddrInfo> &addr_infos) {
RuntimeInferenceContext *ctx = nullptr;
GE_CHK_STATUS_RET(RuntimeInferenceContext::GetContext(std::to_string(context.GetSessionId()), &ctx));
GE_CHK_STATUS_RET(
RuntimeInferenceContext::GetContext(std::to_string(context.GetExecutionContext()->context_id), &ctx));

ge::Tensor remote_tensor;
GE_CHK_STATUS_RET(ctx->GetTensor(remote_index_.first, remote_index_.second, remote_tensor));
@@ -282,12 +280,13 @@ Status RdmaNodeTask::ExecuteAsync(TaskContext &context, std::function<void()> do
return SUCCESS;
}

auto callback = [this](HcclResult status) {
TaskContext *p_ctx = &context;
auto callback = [p_ctx, done_callback](HcclResult status) {
if (status != HCCL_SUCCESS) {
GELOGE(HCCL_E_INTERNAL, "Call HcomExecInitialize failed, ret: 0x%X", status);
GELOGE(HCCL_E_INTERNAL, "Call HcomExcutorInitialize failed, ret: 0x%X", status);
p_ctx->SetStatus(FAILED);
}
std::lock_guard<std::mutex> lock(this->hccl_mutex_);
this->cond_.notify_all();
done_callback();
GELOGI("rdma callback success.");
};

@@ -297,15 +296,10 @@ Status RdmaNodeTask::ExecuteAsync(TaskContext &context, std::function<void()> do
}
HcclResult hccl_ret = HcomExecEnqueueRemoteAccess(context.GetNodeItem().NodeType(), addr_infos, callback);
if (hccl_ret != HCCL_SUCCESS) {
GELOGE(HCCL_E_INTERNAL, "Call HcomExecInitialize failed, ret: 0x%X", hccl_ret);
GELOGE(HCCL_E_INTERNAL, "Call HcomExcutorInitialize failed, ret: 0x%X", hccl_ret);
return HCCL_E_INTERNAL;
}

// pending until hccl finished
std::unique_lock<std::mutex> ulock(hccl_mutex_);
cond_.wait(ulock);

(void)context.RegisterCallback(done_callback);
GELOGI("[%s] RdmaNodeTask::ExecuteAsync success.", context.GetNodeName());
return SUCCESS;
}


+ 14
- 7
ge/hybrid/node_executor/task_context.cc View File

@@ -27,10 +27,12 @@
namespace ge {
namespace hybrid {
TaskContext::TaskContext(GraphExecutionContext *execution_context,
const NodeItem *node_item,
NodeState *node_state,
SubgraphContext *subgraph_context)
: node_item_(node_item), execution_context_(execution_context), subgraph_context_(subgraph_context) {
}
: node_state_(node_state),
node_item_(node_state->GetNodeItem()),
execution_context_(execution_context),
subgraph_context_(subgraph_context) {}

TaskContext::~TaskContext() {
GELOGD("[%s] TaskContext destroyed.", node_item_->NodeName().c_str());
@@ -47,9 +49,10 @@ TaskContext::~TaskContext() {
}
}

std::unique_ptr<TaskContext> TaskContext::Create(const NodeItem &node_item,
std::unique_ptr<TaskContext> TaskContext::Create(NodeState *node_state,
GraphExecutionContext *execution_context,
SubgraphContext *subgraph_context) {
const NodeItem &node_item = *node_state->GetNodeItem();
GELOGI("[%s] To create task context, input start = %d, num_inputs = %d, output start = %d, num_outputs = %d.",
node_item.NodeName().c_str(),
node_item.input_start,
@@ -65,7 +68,7 @@ std::unique_ptr<TaskContext> TaskContext::Create(const NodeItem &node_item,
}

auto task_context = std::unique_ptr<TaskContext>(
new(std::nothrow)TaskContext(execution_context, &node_item, subgraph_context));
new(std::nothrow)TaskContext(execution_context, node_state, subgraph_context));
if (task_context == nullptr) {
GELOGE(MEMALLOC_FAILED, "[%s] Failed to create instance of TaskContext.", node_item.NodeName().c_str());
return nullptr;
@@ -154,7 +157,7 @@ Status TaskContext::RegisterCallback(const std::function<void()> &callback_fun)
GELOGW("[%s] Callback is NULL", GetNodeName());
return SUCCESS;
}
auto ret = execution_context_->callback_manager->RegisterCallback(callback_fun);
auto ret = execution_context_->callback_manager->RegisterCallback(GetStream(), callback_fun);
if (ret != SUCCESS) {
GELOGE(ret, "[%s] Failed to register callback", GetNodeName());
execution_context_->callback_manager->Destroy();
@@ -309,7 +312,7 @@ Status TaskContext::SetOutput(int index, const TensorValue &tensor) {
return SUCCESS;
}

rtStream_t TaskContext::GetStream() {
rtStream_t TaskContext::GetStream() const {
return execution_context_->stream;
}

@@ -536,6 +539,10 @@ Status TaskContext::SaveProfilingTaskDescInfo(uint32_t task_id, uint32_t stream
return SUCCESS;
}

NodeState *TaskContext::GetNodeState() const {
return node_state_;
}

Status TaskContext::SaveProfilingGraphDescInfo(uint32_t task_id, uint32_t stream_id) {
if (ProfilingManager::Instance().ProfilingModelExecuteOn()) {
const NodeItem &node_item = GetNodeItem();


+ 6
- 3
ge/hybrid/node_executor/task_context.h View File

@@ -25,6 +25,7 @@
#include "framework/common/ge_types.h"
#include "hybrid/common/tensor_value.h"
#include "hybrid/common/npu_memory_allocator.h"
#include "hybrid/executor/node_state.h"
#include "hybrid/executor/rt_callback_manager.h"
#include "hybrid/model/node_item.h"

@@ -35,7 +36,7 @@ class SubgraphContext;

class TaskContext {
public:
static std::unique_ptr<TaskContext> Create(const NodeItem &node_item,
static std::unique_ptr<TaskContext> Create(NodeState *node_state,
GraphExecutionContext *execution_context,
SubgraphContext *subgraph_context);

@@ -45,6 +46,7 @@ class TaskContext {
int NumOutputs() const;
size_t NumWorkspaces() const;
const NodeItem &GetNodeItem() const;
NodeState *GetNodeState() const;
const char *GetNodeName() const;
TensorValue *MutableInput(int index);
ConstGeTensorDescPtr GetInputDesc(int index) const;
@@ -58,7 +60,7 @@ class TaskContext {
const TensorValue *GetOutput(int index) const;
TensorValue *MutableOutput(int index);
TensorValue *GetVariable(const std::string &name);
rtStream_t GetStream();
rtStream_t GetStream() const;
int64_t GetSessionId() const;
uint64_t GetIterationNumber() const;

@@ -119,12 +121,13 @@ class TaskContext {

private:
TaskContext(GraphExecutionContext *execution_context,
const NodeItem *node_item,
NodeState *node_state,
SubgraphContext *subgraph_context);

static string TensorDesc2String(const GeTensorDesc &desc);
Status AllocateTensor(const GeTensorDesc &tensor_desc, TensorValue &tensor, AllocationAttr *attr);

NodeState *node_state_ = nullptr;
const NodeItem *node_item_ = nullptr;
bool force_infer_shape_ = false;
GraphExecutionContext *execution_context_;


Loading…
Cancel
Save