From: @shenwei41 Reviewed-by: @lilongfei15,@liucunwei Signed-off-by: @lilongfei15,@liucunweitags/v1.2.0
@@ -96,7 +96,7 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status DumpManager::SetDumpConf | |||
dump_mode = dump_config.dump_mode; | |||
GELOGI("Dump mode is %s", dump_mode.c_str()); | |||
dump_properties.SetDumpMode(dump_mode); | |||
dump_properties_map_.emplace(kInferSessionId, dump_properties); | |||
dump_properties_map_[kInferSessionId] = dump_properties; | |||
return SUCCESS; | |||
} | |||
@@ -20,6 +20,7 @@ | |||
#include "common/ge/datatype_util.h" | |||
#include "framework/common/debug/ge_log.h" | |||
#include "framework/common/util.h" | |||
#include "framework/common/types.h" | |||
#include "graph/anchor.h" | |||
#include "graph/ge_tensor.h" | |||
#include "graph/op_desc.h" | |||
@@ -55,8 +56,10 @@ void DumpOp::SetLoopAddr(void *global_step, void *loop_per_iter, void *loop_cond | |||
loop_cond_ = reinterpret_cast<uintptr_t>(loop_cond); | |||
} | |||
void DumpOp::SetDynamicModelInfo(const string &dynamic_model_name, uint32_t dynamic_model_id) { | |||
void DumpOp::SetDynamicModelInfo(const string &dynamic_model_name, const string &dynamic_om_name, | |||
uint32_t dynamic_model_id) { | |||
dynamic_model_name_ = dynamic_model_name; | |||
dynamic_om_name_ = dynamic_om_name; | |||
dynamic_model_id_ = dynamic_model_id; | |||
} | |||
@@ -200,6 +203,32 @@ Status DumpOp::ExecutorDumpOp(aicpu::dump::OpMappingInfo &op_mapping_info) { | |||
return SUCCESS; | |||
} | |||
Status DumpOp::SetDumpModelName(aicpu::dump::OpMappingInfo &op_mapping_info) { | |||
if (dynamic_model_name_.empty() && dynamic_om_name_.empty()) { | |||
GELOGI("Single op dump, no need set model name"); | |||
return SUCCESS; | |||
} | |||
std::set<std::string> model_list = dump_properties_.GetAllDumpModel(); | |||
bool not_find_by_omname = model_list.find(dynamic_om_name_) == model_list.end(); | |||
bool not_find_by_modelname = model_list.find(dynamic_model_name_) == model_list.end(); | |||
std::string dump_model_name = not_find_by_omname ? dynamic_model_name_ : dynamic_om_name_; | |||
if (model_list.find(DUMP_ALL_MODEL) == model_list.end()) { | |||
if (not_find_by_omname && not_find_by_modelname) { | |||
std::string model_list_str; | |||
for (auto &model : model_list) { | |||
model_list_str += "[" + model + "]."; | |||
} | |||
GELOGW("Model %s will not be set to dump, dump list: %s", dump_model_name.c_str(), model_list_str.c_str()); | |||
return FAILED; | |||
} | |||
} | |||
if (!dump_model_name.empty() && dump_properties_.IsDumpOpen()) { | |||
GELOGD("Dump model name is %s", dump_model_name.c_str()); | |||
op_mapping_info.set_model_name(dump_model_name); | |||
} | |||
return SUCCESS; | |||
} | |||
Status DumpOp::LaunchDumpOp() { | |||
GELOGI("Start to launch dump op %s", op_desc_->GetName().c_str()); | |||
int32_t device_id = 0; | |||
@@ -209,8 +238,7 @@ Status DumpOp::LaunchDumpOp() { | |||
return RT_ERROR_TO_GE_STATUS(rt_ret); | |||
} | |||
if (device_id < 0) { | |||
GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, | |||
"Check device_id failed, device_id = %d, which should be not less than 0.", | |||
GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "Check device_id failed, device_id = %d, which should be not less than 0.", | |||
device_id); | |||
return ACL_ERROR_GE_INTERNAL_ERROR; | |||
} | |||
@@ -220,11 +248,12 @@ Status DumpOp::LaunchDumpOp() { | |||
op_mapping_info.set_flag(kAicpuLoadFlag); | |||
op_mapping_info.set_dump_step(dump_properties_.GetDumpStep()); | |||
op_mapping_info.set_model_id(dynamic_model_id_); | |||
if (!dynamic_model_name_.empty() && dump_properties_.IsDumpOpen()) { | |||
op_mapping_info.set_model_name(dynamic_model_name_); | |||
if (SetDumpModelName(op_mapping_info) != SUCCESS) { | |||
return SUCCESS; | |||
} | |||
SetOpMappingLoopAddr(global_step_, loop_per_iter_, loop_cond_, op_mapping_info); | |||
GELOGI("Dump step is %s ,dump path is %s ,in Launch dump op", dump_properties_.GetDumpStep().c_str(), | |||
GELOGI("Dump step is %s ,dump path is %s in Launch dump op", dump_properties_.GetDumpStep().c_str(), | |||
dump_path.c_str()); | |||
uint32_t task_id = 0; | |||
uint32_t stream_id = 0; | |||
@@ -273,4 +302,4 @@ Status DumpOp::LaunchDumpOp() { | |||
} | |||
return SUCCESS; | |||
} | |||
} // namesapce ge | |||
} // namespace ge |
@@ -34,12 +34,13 @@ class DumpOp { | |||
vector<uintptr_t> output_addrs, rtStream_t stream); | |||
Status LaunchDumpOp(); | |||
void SetLoopAddr(void *global_step, void *loop_per_iter, void *loop_cond); | |||
void SetDynamicModelInfo(const string &dynamic_model_name, uint32_t dynamic_model_id); | |||
void SetDynamicModelInfo(const string &dynamic_model_name, const string &dynamic_om_name, uint32_t dynamic_model_id); | |||
private: | |||
Status ExecutorDumpOp(aicpu::dump::OpMappingInfo &op_mapping_info); | |||
Status DumpOutput(aicpu::dump::Task &task); | |||
Status DumpInput(aicpu::dump::Task &task); | |||
Status SetDumpModelName(aicpu::dump::OpMappingInfo &op_mapping_info); | |||
DumpProperties dump_properties_; | |||
OpDescPtr op_desc_; | |||
@@ -54,6 +55,7 @@ class DumpOp { | |||
uintptr_t loop_cond_; | |||
std::string dynamic_model_name_; | |||
std::string dynamic_om_name_; | |||
std::uint32_t dynamic_model_id_; | |||
}; | |||
} // namespace ge | |||
@@ -35,14 +35,14 @@ const std::string kDumpStatusOpen = "on"; | |||
const uint32_t kAicoreOverflow = (0x1 << 0); | |||
const uint32_t kAtomicOverflow = (0x1 << 1); | |||
const uint32_t kAllOverflow = (kAicoreOverflow | kAtomicOverflow); | |||
} | |||
} // namespace | |||
namespace ge { | |||
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY DumpProperties::DumpProperties(const DumpProperties &other) { | |||
CopyFrom(other); | |||
} | |||
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY DumpProperties &DumpProperties::operator=( | |||
const DumpProperties &other) { | |||
const DumpProperties &other) { | |||
CopyFrom(other); | |||
return *this; | |||
} | |||
@@ -97,7 +97,7 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY void DumpProperties::InitByOpti | |||
// The following is the new dump scenario of the fusion operator | |||
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY void DumpProperties::AddPropertyValue( | |||
const std::string &model, const std::set<std::string> &layers) { | |||
const std::string &model, const std::set<std::string> &layers) { | |||
for (const std::string &layer : layers) { | |||
GELOGI("This model %s config to dump layer %s", model.c_str(), layer.c_str()); | |||
} | |||
@@ -138,7 +138,7 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY std::set<std::string> DumpPrope | |||
} | |||
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY std::set<std::string> DumpProperties::GetPropertyValue( | |||
const std::string &model) const { | |||
const std::string &model) const { | |||
auto iter = model_dump_properties_map_.find(model); | |||
if (iter != model_dump_properties_map_.end()) { | |||
return iter->second; | |||
@@ -147,8 +147,9 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY std::set<std::string> DumpPrope | |||
} | |||
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY bool DumpProperties::IsLayerNeedDump( | |||
const std::string &model, const std::string &om_name, const std::string &op_name) const { | |||
const std::string &model, const std::string &om_name, const std::string &op_name) const { | |||
// if dump all | |||
GELOGD("model name is %s om name is %s op is %s in layer need dump", model.c_str(), om_name.c_str(), op_name.c_str()); | |||
if (model_dump_properties_map_.find(DUMP_ALL_MODEL) != model_dump_properties_map_.end()) { | |||
return true; | |||
} | |||
@@ -203,7 +204,7 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY const std::string &DumpProperti | |||
} | |||
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY void DumpProperties::SetDumpOpSwitch( | |||
const std::string &dump_op_switch) { | |||
const std::string &dump_op_switch) { | |||
dump_op_switch_ = dump_op_switch; | |||
} | |||
@@ -270,4 +271,4 @@ void DumpProperties::SetDumpDebugOptions() { | |||
GELOGI("ge.exec.enableDumpDebug is false or is not set."); | |||
} | |||
} | |||
} // namespace | |||
} // namespace ge |
@@ -15,6 +15,8 @@ | |||
*/ | |||
#include "common/tbe_kernel_store.h" | |||
#include "graph/utils/attr_utils.h" | |||
#include "graph/debug/ge_attr_define.h" | |||
namespace ge { | |||
@@ -31,6 +33,15 @@ void TBEKernelStore::LoadTBEKernelBinToOpDesc(const std::shared_ptr<ge::OpDesc> | |||
GE_IF_BOOL_EXEC(!op_desc->SetExtAttr(ge::OP_EXTATTR_NAME_TBE_KERNEL, kernel_bin), | |||
GELOGW("LoadKernelTBEBinToOpDesc: SetExtAttr for kernel_bin failed");) | |||
GELOGI("Load tbe kernel:%s, %zu", kernel_bin->GetName().c_str(), kernel_bin->GetBinDataSize()); | |||
std::string atomic_kernel_name; | |||
(void) AttrUtils::GetStr(op_desc, ATOMIC_ATTR_TBE_KERNEL_NAME, atomic_kernel_name); | |||
if (!atomic_kernel_name.empty()) { | |||
GELOGI("Get atomic kernel name is %s.", atomic_kernel_name.c_str()); | |||
auto atomic_kernel_bin = FindKernel(atomic_kernel_name); | |||
GE_IF_BOOL_EXEC(!op_desc->SetExtAttr(EXT_ATTR_ATOMIC_TBE_KERNEL, atomic_kernel_bin), | |||
GELOGW("LoadKernelTBEBinToOpDesc: SetExtAttr for atomic kernel_bin failed");) | |||
} | |||
} | |||
} | |||
} | |||
@@ -67,6 +67,9 @@ bool ContainsDynamicInpus(const ge::OpDesc &op_desc) { | |||
} | |||
return false; | |||
} | |||
bool IsOptional(const ge::GeTensorDesc &tensor_desc) { | |||
return tensor_desc.GetFormat() == ge::FORMAT_RESERVED && tensor_desc.GetDataType() == ge::DT_UNDEFINED; | |||
} | |||
} // namespace | |||
namespace ge { | |||
@@ -154,7 +157,7 @@ static Status CheckEngineTypeSupport(const NodePtr &node, OpEngineType engine_ty | |||
} | |||
static Status AddInputs(const ComputeGraphPtr &graph, const NodePtr &node, const GeTensorDesc &tensor, int32_t index, | |||
bool attr) { | |||
bool attr, int32_t &data_index) { | |||
GE_CHECK_NOTNULL_EXEC(graph, return PARAM_INVALID); | |||
GE_CHECK_NOTNULL_EXEC(node, return PARAM_INVALID); | |||
@@ -197,9 +200,10 @@ static Status AddInputs(const ComputeGraphPtr &graph, const NodePtr &node, const | |||
"[Add][InputDesc]fail for node:%s", data_op->GetName().c_str()); | |||
GE_CHK_BOOL_EXEC(data_op->AddOutputDesc(tensor) == GRAPH_SUCCESS, return FAILED, | |||
"[Add][OutputDesc]fail for node:%s", data_op->GetName().c_str()); | |||
if (attr) { | |||
GE_CHK_BOOL_EXEC(AttrUtils::SetInt(data_op, ATTR_NAME_INDEX, index), return FAILED, | |||
if (attr && !is_const) { | |||
GE_CHK_BOOL_EXEC(AttrUtils::SetInt(data_op, ATTR_NAME_INDEX, data_index), return FAILED, | |||
"[Set][Attr:%s]fail for node:%s", ATTR_NAME_INDEX.c_str(), data_op->GetName().c_str()); | |||
++data_index; | |||
} | |||
ge::NodePtr arg_node = graph->AddNode(data_op); | |||
@@ -691,6 +695,34 @@ namespace { | |||
} | |||
return SUCCESS; | |||
} | |||
bool CheckNoAicore(const ComputeGraphPtr &graph) { | |||
for (const auto &node : graph->GetDirectNode()) { | |||
if (node == nullptr) { | |||
continue; | |||
} | |||
auto op_desc = node->GetOpDesc(); | |||
if (op_desc == nullptr) { | |||
continue; | |||
} | |||
if (op_desc->GetOpEngineName() == kAIcoreEngine) { | |||
return false; | |||
} | |||
} | |||
return true; | |||
} | |||
} | |||
void GeGenerator::RemoveConst(const vector<GeTensor> &inputs, vector<GeTensor> &outputs) { | |||
for (auto &input : inputs) { | |||
GeTensorDesc input_desc = input.GetTensorDesc(); | |||
bool is_const = false; | |||
(void)AttrUtils::GetBool(input_desc, CONST_ATTR_NAME_INPUT, is_const); | |||
bool is_optional = IsOptional(input_desc); | |||
if (!is_optional && !is_const) { | |||
outputs.emplace_back(input); | |||
} | |||
} | |||
} | |||
Status GeGenerator::CheckForSingleOp(OpDescPtr &op_desc, const vector<GeTensor> &inputs, | |||
@@ -757,7 +789,9 @@ Status GeGenerator::BuildSingleOp(OpDescPtr &op_desc, const vector<GeTensor> &in | |||
GELOGI("ATC parser success in single op build."); | |||
GeRootModelPtr ge_root_model = nullptr; | |||
GE_CHK_STATUS_RET_NOLOG(impl_->BuildModel(graph, inputs, ge_root_model)); | |||
vector<GeTensor> data_inputs; | |||
RemoveConst(inputs, data_inputs); | |||
GE_CHK_STATUS_RET_NOLOG(impl_->BuildModel(graph, data_inputs, ge_root_model)); | |||
map<string, GeAttrValue> op_attrs = op_desc_tmp->GetAllAttrs(); | |||
GE_CHECK_NOTNULL(ge_root_model); | |||
GE_CHECK_NOTNULL(ge_root_model->GetRootGraph()); | |||
@@ -773,7 +807,7 @@ Status GeGenerator::BuildSingleOp(OpDescPtr &op_desc, const vector<GeTensor> &in | |||
bool all_shape = false; | |||
(void)AttrUtils::GetBool(op_desc, kAicpuAllshape, all_shape); | |||
if (all_shape) { | |||
if (all_shape && CheckNoAicore(root_graph)) { | |||
GELOGD("Get aicpu all_shape kernel!"); | |||
vector<GeTensor> inputs_dynamic; | |||
vector<GeTensor> outputs_dynamic; | |||
@@ -840,18 +874,19 @@ Status GeGenerator::BuildSingleOpGraph(OpDescPtr &op_desc, const vector<GeTensor | |||
// 2. Create InputData node. | |||
int32_t arg_index = 0; | |||
int32_t data_index = 0; | |||
if (inputs.empty()) { | |||
for (const auto &input_desc : op_desc->GetAllInputsDescPtr()) { | |||
GE_CHECK_NOTNULL_EXEC(input_desc, return INTERNAL_ERROR); | |||
if (!IsNeedConnectInputOpForSingleOp(*input_desc)) { | |||
continue; | |||
} | |||
GE_CHK_STATUS_RET_NOLOG(AddInputs(compute_graph, op_node, *input_desc, arg_index, false)); | |||
GE_CHK_STATUS_RET_NOLOG(AddInputs(compute_graph, op_node, *input_desc, arg_index, false, data_index)); | |||
arg_index++; | |||
} | |||
} else { | |||
for (const auto &in_desc : inputs) { | |||
GE_CHK_STATUS_RET_NOLOG(AddInputs(compute_graph, op_node, in_desc.GetTensorDesc(), arg_index, true)); | |||
GE_CHK_STATUS_RET_NOLOG(AddInputs(compute_graph, op_node, in_desc.GetTensorDesc(), arg_index, true, data_index)); | |||
arg_index++; | |||
} | |||
} | |||
@@ -382,58 +382,6 @@ Status GraphBuilder::BuildForHostCpuGraph(ComputeGraphPtr &comp_graph, GeModelPt | |||
return BuildForUnknownShapeGraph(comp_graph, ge_model_ptr, session_id); | |||
} | |||
static Status InsertMemcpyNode(const ComputeGraphPtr &graph, const OutDataAnchorPtr &out_anchor, | |||
const std::vector<InDataAnchorPtr> &in_anchors, const std::string &name) { | |||
GE_CHECK_NOTNULL(out_anchor); | |||
NodePtr in_node = out_anchor->GetOwnerNode(); | |||
GE_CHECK_NOTNULL(in_node); | |||
OpDescBuilder op_desc_builder(name, MEMCPYASYNC); | |||
OpDescPtr op_desc = op_desc_builder.AddInput("x", in_node->GetOpDesc()->GetOutputDesc(0)) | |||
.AddOutput("y", in_node->GetOpDesc()->GetOutputDesc(0)) | |||
.Build(); | |||
(void)AttrUtils::SetBool(op_desc, ATTR_NO_NEED_CONSTANT_FOLDING, false); | |||
if (GraphUtils::InsertNodeAfter(out_anchor, in_anchors, graph->AddNode(op_desc)) != GRAPH_SUCCESS) { | |||
GELOGE(FAILED, "Insert IDENTITY node %s after %s failed.", name.c_str(), in_node->GetName().c_str()); | |||
return FAILED; | |||
} | |||
return SUCCESS; | |||
} | |||
static Status GenerateTaskForConstant(const std::shared_ptr<ComputeGraph> &graph) { | |||
if (graph->GetGraphUnknownFlag()) { | |||
GELOGI("Graph %s is unknown graph, ignore gen_task for constant.", graph->GetName().c_str()); | |||
return SUCCESS; | |||
} | |||
for (auto &node : graph->GetDirectNode()) { | |||
// CONSTANT not generate task, so insert IDENTITY between CONSTANT and NETOUTPUT | |||
auto op_desc = node->GetOpDesc(); | |||
if (op_desc == nullptr) { | |||
continue; | |||
} | |||
auto op_type = op_desc->GetType(); | |||
if (op_type == NETOUTPUT) { | |||
for (InDataAnchorPtr &in_data_anchor : node->GetAllInDataAnchors()) { | |||
const OutDataAnchorPtr &peer_out_anchor = in_data_anchor->GetPeerOutAnchor(); | |||
GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, continue); | |||
NodePtr in_node = peer_out_anchor->GetOwnerNode(); | |||
GE_CHECK_NOTNULL(in_node); | |||
std::string in_node_op_type = in_node->GetType(); | |||
if (in_node_op_type == CONSTANT) { | |||
GELOGD("Insert MemcpyAsync node between %s and %s.", in_node->GetName().c_str(), node->GetName().c_str()); | |||
std::string name = node->GetName() + "_input_" + std::to_string(in_data_anchor->GetIdx()) + "_Memcpy"; | |||
if (InsertMemcpyNode(graph, peer_out_anchor, {in_data_anchor}, name) != SUCCESS) { | |||
GELOGE(FAILED, "Insert memcpy between %s and %s failed.", | |||
in_node->GetName().c_str(), node->GetName().c_str()); | |||
return FAILED; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
return SUCCESS; | |||
} | |||
Status GraphBuilder::MarkFpBpProfilingTaskAttr(ComputeGraphPtr &com_graph) { | |||
bool original_unknown_shape_flag = com_graph->GetGraphUnknownFlag(); | |||
com_graph->SetGraphUnknownFlag(false); | |||
@@ -516,9 +464,6 @@ Status GraphBuilder::BuildForDynamicShapeGraph(ComputeGraphPtr &comp_graph, | |||
!sub_graph->GetParentGraph()->GetGraphUnknownFlag()) { | |||
continue; | |||
} | |||
GE_CHK_STATUS_RET(GenerateTaskForConstant(sub_graph), "Generate task For constant node in subgraph failed."); | |||
if (sub_graph->GetGraphUnknownFlag()) { | |||
// unknown shape build flow | |||
GE_CHK_STATUS_RET(BuildForUnknownShapeGraph(sub_graph, ge_model_ptr, session_id), | |||
@@ -574,6 +574,50 @@ Status ModelBuilder::MergeWeights() { | |||
return SUCCESS; | |||
} | |||
Status ModelBuilder::SaveAtomicTBEKernel(const OpDescPtr &op_desc) { | |||
ge::NodePtr atomic_clean_node = nullptr; | |||
atomic_clean_node = op_desc->TryGetExtAttr("atomic_clean_node_ptr", atomic_clean_node); | |||
if (atomic_clean_node == nullptr) { | |||
return SUCCESS; | |||
} | |||
ge::OpDescPtr atomic_op_desc = atomic_clean_node->GetOpDesc(); | |||
GE_CHECK_NOTNULL(atomic_op_desc); | |||
TBEKernelPtr tbe_kernel = atomic_op_desc->TryGetExtAttr(ge::OP_EXTATTR_NAME_TBE_KERNEL, TBEKernelPtr()); | |||
if (tbe_kernel == nullptr) { | |||
std::string kernel_name; | |||
GeAttrValue::BYTES kernel_buffer; | |||
(void) AttrUtils::GetStr(atomic_op_desc, ATTR_NAME_TBE_KERNEL_NAME, kernel_name); | |||
(void) AttrUtils::GetBytes(atomic_op_desc, ATTR_NAME_TBE_KERNEL_BUFFER, kernel_buffer); | |||
if (!kernel_name.empty() && (kernel_buffer.GetSize() > 0)) { | |||
GE_CHECK_NOTNULL(kernel_buffer.GetData()); | |||
std::vector<char> data(kernel_buffer.GetData(), kernel_buffer.GetData() + kernel_buffer.GetSize()); | |||
tbe_kernel = MakeShared<OpKernelBin>(kernel_name, std::move(data)); | |||
GE_CHECK_NOTNULL(tbe_kernel); | |||
} | |||
} | |||
if (tbe_kernel == nullptr) { | |||
GELOGD("Atomic_clean_node doesn't have tbe_kernel."); | |||
return SUCCESS; | |||
} | |||
tbe_kernel_store_.AddTBEKernel(tbe_kernel); | |||
GELOGD("Atomic_clean_node tbe_kernel_name %s!", tbe_kernel->GetName().c_str()); | |||
(void) AttrUtils::SetStr(op_desc, ATOMIC_ATTR_TBE_KERNEL_NAME, tbe_kernel->GetName()); | |||
std::string kernel_name; | |||
(void) AttrUtils::GetStr(atomic_op_desc, atomic_op_desc->GetName() + "_kernelname", kernel_name); | |||
(void) AttrUtils::SetStr(op_desc, op_desc->GetName() + "_atomic_kernelname", kernel_name); | |||
std::string meta_data; | |||
(void) AttrUtils::GetStr(atomic_op_desc, TVM_ATTR_NAME_METADATA, meta_data); | |||
(void) AttrUtils::SetStr(op_desc, ATOMIC_ATTR_TVM_METADATA, meta_data); | |||
std::string json_string; | |||
(void) AttrUtils::GetStr(atomic_op_desc, TVM_ATTR_NAME_MAGIC, json_string); | |||
(void) AttrUtils::SetStr(op_desc, ATOMIC_ATTR_TVM_MAGIC, json_string); | |||
return SUCCESS; | |||
} | |||
Status ModelBuilder::SaveDataToModel(ge::Model &model, ge::GeModel &ge_model) { | |||
// Add weight | |||
ge_model.SetWeight(weight_buffer_); | |||
@@ -607,6 +651,8 @@ Status ModelBuilder::SaveDataToModel(ge::Model &model, ge::GeModel &ge_model) { | |||
} | |||
tbe_name_set.insert(tbe_kernel->GetName()); | |||
tbe_kernel_store_.AddTBEKernel(tbe_kernel); | |||
GE_CHK_STATUS_RET(SaveAtomicTBEKernel(node_op_desc), "[Save][TBEKernel] save atomic tbekernel failed!"); | |||
} | |||
SetModelCheckAicpuAttr(model, aicpu_op_types, aicpu_tf_op_types); | |||
@@ -89,6 +89,8 @@ class ModelBuilder { | |||
void SetModelCheckAicpuAttr(ge::Model &model, std::set<std::string> &aicpu_op_types, | |||
std::set<std::string> &aicpu_tf_op_types); | |||
Status SaveAtomicTBEKernel(const OpDescPtr &op_desc); | |||
uint64_t session_id_; | |||
map<int64_t, size_t> mem_type_to_mem_offset_; | |||
@@ -3067,9 +3067,8 @@ Status DavinciModel::DistributeTask() { | |||
task_def.kernel_ex().op_index()); | |||
OpDescPtr op = GetOpByIndex(op_index); | |||
GE_CHECK_NOTNULL(op); | |||
if (reinterpret_cast<void *>(task->GetDumpArgs()) != nullptr) { | |||
bool call_dump = GetDumpProperties().IsLayerNeedDump(name_, om_name_, op->GetName()) && task->CallSaveDumpInfo(); | |||
bool call_dump = OpNeedDump(op->GetName()) && task->CallSaveDumpInfo(); | |||
if (call_dump || is_op_debug_reg_) { | |||
SaveDumpTask(task->GetTaskID(), task->GetStreamId(), op, task->GetDumpArgs()); | |||
} | |||
@@ -3089,11 +3088,16 @@ Status DavinciModel::DistributeTask() { | |||
return SUCCESS; | |||
} | |||
void DavinciModel::SetEndGraphId(uint32_t task_id, uint32_t stream_id) { | |||
bool DavinciModel::ModelNeedDump() { | |||
auto all_dump_model = GetDumpProperties().GetAllDumpModel(); | |||
bool findByOmName = all_dump_model.find(om_name_) != all_dump_model.end(); | |||
bool findByModelName = all_dump_model.find(name_) != all_dump_model.end(); | |||
if (all_dump_model.find(ge::DUMP_ALL_MODEL) != all_dump_model.end() || findByOmName || findByModelName) { | |||
bool ret = all_dump_model.find(ge::DUMP_ALL_MODEL) != all_dump_model.end() || | |||
all_dump_model.find(dump_model_name_) != all_dump_model.end() || | |||
all_dump_model.find(om_name_) != all_dump_model.end(); | |||
return ret; | |||
} | |||
void DavinciModel::SetEndGraphId(uint32_t task_id, uint32_t stream_id) { | |||
if (ModelNeedDump()) { | |||
GELOGI("start save end_graph_info to dumper, task_id is %u, stream_id is %u", task_id, stream_id); | |||
data_dumper_.SaveEndGraphId(task_id, stream_id); | |||
} | |||
@@ -3893,7 +3897,10 @@ Status DavinciModel::TransAllVarData(ComputeGraphPtr &graph, uint32_t graph_id) | |||
} | |||
void DavinciModel::SetDataDumperArgs(const ComputeGraphPtr &graph, const map<string, OpDescPtr> &variable_by_name) { | |||
data_dumper_.SetModelName(name_); | |||
if(dump_model_name_.empty()) { | |||
dump_model_name_ = name_; | |||
} | |||
data_dumper_.SetModelName(dump_model_name_); | |||
data_dumper_.SetModelId(model_id_); | |||
data_dumper_.SetOmName(om_name_); | |||
data_dumper_.SetComputeGraph(graph); | |||
@@ -4082,7 +4089,7 @@ int64_t DavinciModel::GetFixedAddrsSize(string tensor_name) { | |||
Status DavinciModel::InitL1DataDumperArgs() { | |||
auto all_dump_model = GetDumpProperties().GetAllDumpModel(); | |||
bool find_by_om_name = all_dump_model.find(om_name_) != all_dump_model.end(); | |||
bool find_by_model_name = all_dump_model.find(name_) != all_dump_model.end(); | |||
bool find_by_model_name = all_dump_model.find(dump_model_name_) != all_dump_model.end(); | |||
bool dump_l1fusion_op = | |||
(all_dump_model.find(ge::DUMP_ALL_MODEL) != all_dump_model.end()) || find_by_om_name || find_by_model_name; | |||
if (dump_l1fusion_op) { | |||
@@ -248,7 +248,10 @@ class DavinciModel { | |||
string Name() const { return name_; } | |||
// om_name | |||
string OmName() const { return om_name_; } | |||
const string &OmName() const { return om_name_; } | |||
// dump_model_name | |||
const string &DumpModelName() const { return dump_model_name_; } | |||
// version | |||
uint32_t Version() const { return version_; } | |||
@@ -483,6 +486,12 @@ class DavinciModel { | |||
data_dumper_.DumpShrink(); | |||
} | |||
bool OpNeedDump(const string &op_name) { | |||
return GetDumpProperties().IsLayerNeedDump(dump_model_name_, om_name_, op_name); | |||
} | |||
bool ModelNeedDump(); | |||
void SetEndGraphId(uint32_t task_id, uint32_t stream_id); | |||
DavinciModel &operator=(const DavinciModel &model) = delete; | |||
@@ -542,6 +551,7 @@ class DavinciModel { | |||
// om file name | |||
void SetOmName(const string &om_name) { om_name_ = om_name; } | |||
void SetDumpModelName(const string &dump_model_name) { dump_model_name_ = dump_model_name; } | |||
void SetDumpProperties(const DumpProperties &dump_properties) { data_dumper_.SetDumpProperties(dump_properties); } | |||
const DumpProperties &GetDumpProperties() const { return data_dumper_.GetDumpProperties(); } | |||
@@ -888,6 +898,7 @@ class DavinciModel { | |||
// used for inference data dump | |||
string om_name_; | |||
string dump_model_name_; | |||
uint32_t version_; | |||
GeModelPtr ge_model_; // release after DavinciModel::Init | |||
@@ -271,7 +271,7 @@ ge::Status ModelManager::SetDynamicSize(uint32_t model_id, const std::vector<uin | |||
return SUCCESS; | |||
} | |||
ge::Status ModelManager::DoLoadHybridModelOnline(uint32_t model_id, const string &model_name, | |||
ge::Status ModelManager::DoLoadHybridModelOnline(uint32_t model_id, const string &om_name, | |||
const shared_ptr<ge::GeRootModel> &ge_root_model, | |||
const shared_ptr<ModelListener> &listener) { | |||
auto hybrid_model = hybrid::HybridDavinciModel::Create(ge_root_model); | |||
@@ -279,7 +279,7 @@ ge::Status ModelManager::DoLoadHybridModelOnline(uint32_t model_id, const string | |||
hybrid_model->SetListener(listener); | |||
hybrid_model->SetModelId(model_id); | |||
hybrid_model->SetDeviceId(GetContext().DeviceId()); | |||
hybrid_model->SetModelName(model_name); | |||
hybrid_model->SetOmName(om_name); | |||
GE_CHK_STATUS_RET(hybrid_model->Init(), "Failed to init hybrid model. model_id = %u", model_id); | |||
auto shared_model = std::shared_ptr<hybrid::HybridDavinciModel>(hybrid_model.release()); | |||
InsertModel(model_id, shared_model); | |||
@@ -309,9 +309,9 @@ Status ModelManager::LoadModelOnline(uint32_t &model_id, const shared_ptr<ge::Ge | |||
GenModelId(&model_id); | |||
} | |||
auto name_to_model = ge_root_model->GetSubgraphInstanceNameToModel(); | |||
string model_name = ""; | |||
string om_name; | |||
if (IsNeedHybridLoad(*ge_root_model)) { | |||
return DoLoadHybridModelOnline(model_id, model_name, ge_root_model, listener); | |||
return DoLoadHybridModelOnline(model_id, om_name, ge_root_model, listener); | |||
} | |||
mmTimespec timespec = mmGetTickCount(); | |||
@@ -45,10 +45,7 @@ Status EndGraphTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davin | |||
Status EndGraphTaskInfo::Distribute() { | |||
GELOGI("EndGraphTaskInfo Distribute Start."); | |||
GE_CHECK_NOTNULL(davinci_model_); | |||
auto all_dump_model = davinci_model_->GetDumpProperties().GetAllDumpModel(); | |||
if (all_dump_model.find(ge::DUMP_ALL_MODEL) != all_dump_model.end() || | |||
all_dump_model.find(davinci_model_->Name()) != all_dump_model.end() || | |||
all_dump_model.find(davinci_model_->OmName()) != all_dump_model.end()) { | |||
if (davinci_model_->ModelNeedDump()) { | |||
GELOGI("Start to call rtEndGraphEx"); | |||
rtError_t rt_ret = rtEndGraphEx(model_, stream_, kDumpFlag); | |||
if (rt_ret != RT_ERROR_NONE) { | |||
@@ -238,8 +238,7 @@ Status KernelExTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davin | |||
} | |||
void KernelExTaskInfo::InitDumpTask(void *addr, const OpDescPtr &op_desc) { | |||
if (davinci_model_->GetDumpProperties().IsLayerNeedDump(davinci_model_->Name(), davinci_model_->OmName(), | |||
op_desc->GetName())) { | |||
if (davinci_model_->OpNeedDump(op_desc->GetName())) { | |||
dump_flag_ = RT_KERNEL_DUMPFLAG; | |||
dump_args_ = addr; | |||
} | |||
@@ -409,10 +409,7 @@ Status KernelTaskInfo::Distribute() { | |||
call_skt, task_id_, skt_id_, skt_info.last_task_id, stub_func_name_.c_str(), stub_func_, block_dim_, stream_); | |||
// l1 fusion enable and env flag open (kCloseSkt for skt debug) | |||
bool open_dump = false; | |||
auto all_dump_model = davinci_model_->GetDumpProperties().GetAllDumpModel(); | |||
if (all_dump_model.find(ge::DUMP_ALL_MODEL) != all_dump_model.end() || | |||
all_dump_model.find(davinci_model_->Name()) != all_dump_model.end() || | |||
all_dump_model.find(davinci_model_->OmName()) != all_dump_model.end()) { | |||
if (davinci_model_->ModelNeedDump()) { | |||
open_dump = true; | |||
} | |||
if (call_skt && (env_flag != kCloseSkt) && !open_dump) { | |||
@@ -980,8 +977,7 @@ Status KernelTaskInfo::InitAicpuTask(uint32_t op_index, const domi::KernelDef &k | |||
} | |||
void KernelTaskInfo::InitDumpTask(uint32_t offset) { | |||
if (davinci_model_->GetDumpProperties().IsLayerNeedDump(davinci_model_->Name(), davinci_model_->OmName(), | |||
op_desc_->GetName())) { | |||
if (davinci_model_->OpNeedDump(op_desc_->GetName())) { | |||
if (IsL1FusionOp(op_desc_)) { | |||
dump_flag_ = RT_FUSION_KERNEL_DUMPFLAG; | |||
} else { | |||
@@ -222,6 +222,39 @@ Status AtomicAddrCleanPass::HandleNormalGraph(ComputeGraphPtr &graph, const vect | |||
} | |||
} | |||
} | |||
return LinkToPotentialPrecedenceNode(graph, clean_addr_node); | |||
} | |||
// Add control edges from atomic clean node to all potential precedence nodes which may execute before atomic clean | |||
// node. We hope that atomic clean node can execute with the highest priority in the entire graph. Because of stream | |||
// concurrency mechanism, only placing it at the head can not ensure that priority. Therefore, we need to add control | |||
// edges from atomic clean node to the nodes that may be the first node on each stream. Generally, the first nodes on | |||
// each stream are successors of Data/Variable, and Data/Variable won't generate task or execute, so we link to the | |||
// successors of Data/Variable. | |||
Status AtomicAddrCleanPass::LinkToPotentialPrecedenceNode(ComputeGraphPtr &graph, NodePtr &atomic_clean_node) { | |||
GELOGD("Start to add control edges from %s to all second-nodes behind first-nodes which have no input.", | |||
atomic_clean_node->GetName().c_str()); | |||
auto out_ctrl_anchor = atomic_clean_node->GetOutControlAnchor(); | |||
GE_CHECK_NOTNULL(out_ctrl_anchor); | |||
for (const auto &node : graph->GetDirectNode()) { | |||
GE_CHECK_NOTNULL(node); | |||
bool need_handle = (node->GetType() == DATA || node->GetType() == VARIABLE) && node->GetInAllNodes().empty(); | |||
if (!need_handle) { | |||
continue; | |||
} | |||
auto second_nodes = node->GetOutAllNodes(); | |||
for (const auto &second_node : second_nodes) { | |||
GE_CHECK_NOTNULL(second_node); | |||
auto in_ctrl_anchor = second_node->GetInControlAnchor(); | |||
GE_CHECK_NOTNULL(in_ctrl_anchor); | |||
if (!out_ctrl_anchor->IsLinkedWith(in_ctrl_anchor)) { | |||
GE_CHK_STATUS_RET(out_ctrl_anchor->LinkTo(in_ctrl_anchor)); | |||
GELOGD("Add control edge from %s to %s.", atomic_clean_node->GetName().c_str(), second_node->GetName().c_str()); | |||
} | |||
} | |||
} | |||
return SUCCESS; | |||
} | |||
@@ -68,6 +68,14 @@ class AtomicAddrCleanPass : public GraphPass { | |||
Status LinkToAtomicNode(const NodePtr &atomic_node, NodePtr &atomic_clean_node); | |||
/** | |||
* Link atomic clean node to all potential precedence nodes which may execute before atomic clean node | |||
* @param graph | |||
* @param atomic_clean_node | |||
* @return | |||
*/ | |||
Status LinkToPotentialPrecedenceNode(ComputeGraphPtr &graph, NodePtr &atomic_clean_node); | |||
/** | |||
* Check if this node is atomic op. | |||
* @param node | |||
* @return | |||
@@ -428,7 +428,8 @@ Status AippOp::ConvertRelatedInputNameToRank() { | |||
if (!convert_flag) { | |||
string error_msg = "Top name " + related_input_name + "convert rank failed, Please" | |||
" ensure top name in aipp config is the top name of data node."; | |||
GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error_msg.c_str()); | |||
GELOGE(PARAM_INVALID, "[Check][InputParam]%s", error_msg.c_str()); | |||
REPORT_INPUT_ERROR("E19021", std::vector<std::string>({"reason"}), std::vector<std::string>({error_msg})); | |||
return PARAM_INVALID; | |||
} | |||
@@ -124,13 +124,15 @@ Status InsertNewOpUtil::CheckInputNamePositionNotRepeat() { | |||
if (another_item->related_input_name().empty()) { | |||
string error_msg = "Can not both set related_input_name and related_input_rank!" | |||
" Please ensure param is the same with the first aipp config(related_input_name)."; | |||
GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error_msg.c_str()); | |||
GELOGE(PARAM_INVALID, "[Check][InputParam]%s", error_msg.c_str()); | |||
REPORT_INPUT_ERROR("E19021", std::vector<std::string>({"reason"}), std::vector<std::string>({error_msg})); | |||
return PARAM_INVALID; | |||
} | |||
if (item->related_input_name() == another_item->related_input_name()) { | |||
string error_msg = "Can not insert aipp to the same postion! Please ensure related_input_name" | |||
" param is different in different aipp config."; | |||
GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error_msg.c_str()); | |||
GELOGE(PARAM_INVALID, "[Check][InputParam]%s", error_msg.c_str()); | |||
REPORT_INPUT_ERROR("E19021", std::vector<std::string>({"reason"}), std::vector<std::string>({error_msg})); | |||
return PARAM_INVALID; | |||
} | |||
} | |||
@@ -150,13 +152,15 @@ Status InsertNewOpUtil::CheckInputRankPositionNoRepeat() { | |||
if (!another_item->related_input_name().empty()) { | |||
string error_msg = "Can not both set related_input_rank and related_input_name!" | |||
" Please ensure param is the same with the first aipp config(related_input_rank)."; | |||
GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error_msg.c_str()); | |||
GELOGE(PARAM_INVALID, "[Check][InputParam]%s", error_msg.c_str()); | |||
REPORT_INPUT_ERROR("E19021", std::vector<std::string>({"reason"}), std::vector<std::string>({error_msg})); | |||
return PARAM_INVALID; | |||
} | |||
if (item->related_input_rank() == another_item->related_input_rank()) { | |||
string error_msg = "Can not insert aipp to the same postion! Please ensure related_input_rank" | |||
" param is different in different aipp config."; | |||
GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error_msg.c_str()); | |||
GELOGE(PARAM_INVALID, "[Check][InputParam]%s", error_msg.c_str()); | |||
REPORT_INPUT_ERROR("E19021", std::vector<std::string>({"reason"}), std::vector<std::string>({error_msg})); | |||
return PARAM_INVALID; | |||
} | |||
} | |||
@@ -68,7 +68,7 @@ struct GraphExecutionContext { | |||
DumpProperties dump_properties; | |||
bool trace_enabled = false; | |||
bool dump_enabled = false; | |||
std::atomic_bool is_eos_; | |||
std::atomic_bool is_eos_{false}; | |||
long profiling_level = 0; | |||
long iteration = 0; | |||
void *global_step = nullptr; | |||
@@ -46,10 +46,6 @@ void HybridModelAsyncExecutor::SetModelId(uint32_t model_id) { | |||
model_id_ = model_id; | |||
} | |||
void HybridModelAsyncExecutor::SetModelName(const string &model_name) { | |||
om_name_ = model_name; | |||
} | |||
Status HybridModelAsyncExecutor::EnqueueData(const shared_ptr<InputDataWrapper> &data) { | |||
GE_CHK_STATUS_EXEC(data_inputer_->Push(data), return domi::DATA_QUEUE_ISFULL, | |||
"Data queue is full, please call again later, model_id %u ", model_id_); | |||
@@ -51,8 +51,6 @@ class HybridModelAsyncExecutor { | |||
void SetModelId(uint32_t model_id); | |||
void SetModelName(const string &model_name); | |||
Status Stop(); | |||
Status EnqueueData(const std::shared_ptr<InputDataWrapper> &data); | |||
@@ -97,7 +95,6 @@ class HybridModelAsyncExecutor { | |||
std::map<uint32_t, GeTensorDescPtr> input_tensor_desc_; | |||
std::vector<bool> is_input_dynamic_; | |||
std::shared_ptr<ModelListener> listener_; | |||
string om_name_; | |||
DataDumper data_dumper_; | |||
bool is_op_debug_reg_ = false; | |||
OpdebugRegister op_debug_register_; | |||
@@ -33,9 +33,6 @@ HybridModelExecutor::~HybridModelExecutor() { | |||
if (context_.rt_gen_context != nullptr) { | |||
(void) rtCtxDestroy(context_.rt_gen_context); | |||
} | |||
if (context_.global_step != nullptr) { | |||
(void) rtFree(context_.global_step); | |||
} | |||
} | |||
Status HybridModelExecutor::Init() { | |||
@@ -49,9 +46,10 @@ Status HybridModelExecutor::Execute(HybridModelExecutor::ExecuteArgs &args) { | |||
GELOGD("Start to execute model."); | |||
auto root_graph_item = model_->GetRootGraphItem(); | |||
GE_CHECK_NOTNULL(root_graph_item); | |||
GE_CHK_RT_RET(rtMemcpyAsync(context_.global_step, sizeof(uint64_t), &context_.iteration, | |||
sizeof(uint64_t), RT_MEMCPY_HOST_TO_DEVICE_EX, context_.stream)); | |||
if (context_.global_step != nullptr) { | |||
GE_CHK_RT_RET(rtMemcpyAsync(context_.global_step, sizeof(uint64_t), &context_.iteration, | |||
sizeof(uint64_t), RT_MEMCPY_HOST_TO_DEVICE_EX, context_.stream)); | |||
} | |||
SubgraphExecutor executor(model_->GetRootGraphItem(), &context_); | |||
auto ret = ExecuteGraphInternal(executor, args); | |||
Cleanup(); | |||
@@ -102,8 +100,8 @@ Status HybridModelExecutor::InitExecutionContext() { | |||
GE_CHK_RT_RET(rtCtxGetCurrent(&context_.rt_context)); | |||
GE_CHK_RT_RET(rtCtxCreate(&context_.rt_gen_context, RT_CTX_GEN_MODE, 0)); | |||
GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context)); | |||
GE_CHK_RT_RET(rtMalloc(&context_.global_step, sizeof(uint64_t), RT_MEMORY_HBM)); | |||
context_.global_step = model_->GetGlobalStep(); | |||
context_.stream = stream_; | |||
context_.model = model_; | |||
context_.is_eos_ = false; | |||
@@ -136,6 +134,16 @@ Status HybridModelExecutor::ResetExecutionContext(GraphExecutionContext &context | |||
string ctx_id = std::to_string(context.context_id); | |||
RuntimeInferenceContext::DestroyContext(ctx_id); | |||
GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::CreateContext(ctx_id), "Failed to Destroy RuntimeInferenceContext"); | |||
RuntimeInferenceContext *ctx = nullptr; | |||
GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(ctx_id, &ctx), "Failed to get context"); | |||
for (auto &host_tensor : context.model->GetHostTensors()) { | |||
auto node_id = host_tensor.first; | |||
for (const auto &output_idx_and_tensor : host_tensor.second) { | |||
auto output_idx = output_idx_and_tensor.first; | |||
GELOGD("Preload const host tensor, node_id = %ld, output id = %d", node_id, output_idx); | |||
ctx->SetTensor(node_id, output_idx, output_idx_and_tensor.second.Clone()); | |||
} | |||
} | |||
return SUCCESS; | |||
} | |||
} // namespace hybrid | |||
@@ -38,6 +38,16 @@ Status StageExecutor::ResetExecutionContext(GraphExecutionContext &context) { | |||
string ctx_id = std::to_string(context.context_id); | |||
RuntimeInferenceContext::DestroyContext(ctx_id); | |||
GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::CreateContext(ctx_id), "Failed to Destroy RuntimeInferenceContext"); | |||
RuntimeInferenceContext *ctx = nullptr; | |||
GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(ctx_id, &ctx), "Failed to get context"); | |||
for (auto &host_tensor : context.model->GetHostTensors()) { | |||
auto node_id = host_tensor.first; | |||
for (const auto &output_idx_and_tensor : host_tensor.second) { | |||
auto output_idx = output_idx_and_tensor.first; | |||
GELOGD("Preload const host tensor, node_id = %ld, output id = %d", node_id, output_idx); | |||
ctx->SetTensor(node_id, output_idx, output_idx_and_tensor.second.Clone()); | |||
} | |||
} | |||
return SUCCESS; | |||
} | |||
@@ -206,31 +206,35 @@ Status NodeDoneCallback::DumpDynamicNode() { | |||
return PARAM_INVALID; | |||
} | |||
auto op_desc = node->GetOpDesc(); | |||
GE_CHECK_NOTNULL(graph_context_); | |||
const HybridModel *model = graph_context_->model; | |||
GE_CHECK_NOTNULL(model); | |||
std::string dynamic_model_name = model->GetModelName(); | |||
std::string dynamic_om_name = model->GetOmName(); | |||
uint32_t model_id = model->GetModelId(); | |||
if (!context_->GetDumpProperties().IsLayerNeedDump(dynamic_model_name, dynamic_om_name, op_desc->GetName())) { | |||
GELOGI("[%s] is not in dump list, no need dump", op_desc->GetName().c_str()); | |||
return SUCCESS; | |||
} | |||
dump_op_.SetDynamicModelInfo(dynamic_model_name, dynamic_om_name, model_id); | |||
auto stream = context_->GetStream(); | |||
vector<uintptr_t> input_addrs; | |||
vector<uintptr_t> output_addrs; | |||
for (int i = 0; i < context_->NumInputs(); i++) { | |||
auto tensor_value = context_->GetInput(i); | |||
GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "Tensor value is nullptr"); | |||
uint64_t input_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData()); | |||
uintptr_t input_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData()); | |||
input_addrs.emplace_back(input_addr); | |||
} | |||
for (int j = 0; j < context_->NumOutputs(); j++) { | |||
auto tensor_value = context_->GetOutput(j); | |||
GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "Tensor value is nullptr"); | |||
uint64_t output_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData()); | |||
uintptr_t output_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData()); | |||
output_addrs.emplace_back(output_addr); | |||
} | |||
dump_op_.SetDumpInfo(context_->GetDumpProperties(), op_desc, input_addrs, output_addrs, stream); | |||
GE_CHECK_NOTNULL(graph_context_); | |||
const HybridModel *model = graph_context_->model; | |||
GE_CHECK_NOTNULL(model); | |||
std::string dynamic_model_name = model->GetModelName(); | |||
uint32_t model_id = model->GetModelId(); | |||
dump_op_.SetDynamicModelInfo(dynamic_model_name, model_id); | |||
void *loop_per_iter = nullptr; | |||
TensorValue *varible_loop_per_iter = context_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_PER_ITER); | |||
if (varible_loop_per_iter != nullptr) { | |||
@@ -76,9 +76,8 @@ class HybridDavinciModel::Impl { | |||
executor_.SetDeviceId(device_id); | |||
} | |||
void SetModelName(const string &model_name) { | |||
model_.SetModelName(model_name); | |||
executor_.SetModelName(model_name); | |||
void SetOmName(const string &model_name) { | |||
model_.SetOmName(model_name); | |||
} | |||
uint64_t GetSessionId() { | |||
@@ -181,9 +180,9 @@ void HybridDavinciModel::SetDeviceId(uint32_t device_id) { | |||
} | |||
} | |||
void HybridDavinciModel::SetModelName(const string &model_name) { | |||
void HybridDavinciModel::SetOmName(const string &om_name) { | |||
if (impl_ != nullptr) { | |||
impl_->SetModelName(model_name); | |||
impl_->SetOmName(om_name); | |||
} | |||
} | |||
@@ -57,7 +57,7 @@ class HybridDavinciModel { | |||
void SetDeviceId(uint32_t device_id); | |||
void SetModelName(const string &model_name); | |||
void SetOmName(const string &om_name); | |||
uint64_t GetSessionId(); | |||
@@ -61,7 +61,7 @@ void HybridDavinciModel::SetModelId(uint32_t model_id) { | |||
void HybridDavinciModel::SetDeviceId(uint32_t device_id) { | |||
} | |||
void HybridDavinciModel::SetModelName(const string &model_name) { | |||
void HybridDavinciModel::SetOmName(const string &om_name) { | |||
} | |||
uint64_t HybridDavinciModel::GetSessionId() { | |||
@@ -357,5 +357,25 @@ TensorValue *HybridModel::GetTensor(const NodePtr &node) const { | |||
return GetVariable(node->GetName()); | |||
} | |||
const map<int64_t, std::vector<std::pair<int, Tensor>>> &HybridModel::GetHostTensors() const { | |||
return host_tensors_; | |||
} | |||
void *HybridModel::GetGlobalStep() const { | |||
if (global_step_ == nullptr) { | |||
return nullptr; | |||
} | |||
return global_step_->GetData(); | |||
} | |||
TensorBuffer *HybridModel::GetModelWeight(const string &subgraph_name) const { | |||
auto it = weight_buffer_map_.find(subgraph_name); | |||
if (it == weight_buffer_map_.end()) { | |||
GELOGD("Model weight not found, subgraph name = %s", subgraph_name.c_str()); | |||
return nullptr; | |||
} | |||
return it->second.get(); | |||
} | |||
} // namespace hybrid | |||
} // namespace ge |
@@ -45,6 +45,8 @@ class HybridModel { | |||
return root_runtime_param_.session_id; | |||
} | |||
void *GetGlobalStep() const; | |||
GeModelPtr GetGeModel(const NodePtr &node) const; | |||
NodeItem *MutableNodeItem(const NodePtr &node); | |||
@@ -69,8 +71,8 @@ class HybridModel { | |||
model_id_ = model_id; | |||
} | |||
void SetModelName(const string &model_name) { | |||
om_name_ = model_name; | |||
void SetOmName(const string &om_name) { | |||
om_name_ = om_name; | |||
} | |||
const std::string &GetOmName() const { | |||
@@ -91,6 +93,10 @@ class HybridModel { | |||
TensorValue* GetTensor(const NodePtr &node) const; | |||
TensorBuffer* GetModelWeight(const std::string &subgraph_name) const; | |||
const std::map<int64_t, std::vector<std::pair<int, Tensor>>> &GetHostTensors() const; | |||
const std::vector<domi::TaskDef>* GetTaskDefs(const NodePtr &node) const; | |||
const GraphItem *GetRootGraphItem() const; | |||
@@ -146,6 +152,7 @@ class HybridModel { | |||
std::unique_ptr<GraphItem> root_graph_item_; | |||
std::map<std::string, std::unique_ptr<GraphItem>> subgraph_items_; | |||
std::map<NodePtr, std::unique_ptr<NodeItem>> node_items_; | |||
std::map<int64_t, std::vector<std::pair<int, Tensor>>> host_tensors_; | |||
bool is_new_model_desc_ = false; // support aipp | |||
bool is_single_op_ = false; | |||
@@ -154,10 +161,10 @@ class HybridModel { | |||
uint32_t device_id_ = 0; | |||
uint32_t model_id_ = 0; | |||
uint8_t *var_mem_base_ = nullptr; | |||
std::unique_ptr<TensorBuffer> weight_buffer_; | |||
std::map<string, std::unique_ptr<TensorBuffer>> weight_buffer_map_; | |||
RuntimeParam root_runtime_param_; | |||
string om_name_; | |||
std::unique_ptr<TensorBuffer> global_step_; | |||
}; | |||
} // namespace hybrid | |||
} // namespace ge | |||
@@ -145,6 +145,9 @@ Status HybridModelBuilder::Build() { | |||
GE_CHK_STATUS_RET(InitConstantOps(), "[%s] Failed to init constant op", GetGraphName()); | |||
GE_CHK_STATUS_RET(InitVariableTensors(), "[%s] Failed to init variables", GetGraphName()); | |||
GE_CHK_STATUS_RET(LoadTasks(), "[%s] Failed to load tasks", GetGraphName()); | |||
GE_CHK_STATUS_RET(OptimizeDependenciesForConstantInputs(), | |||
"[%s] Failed to optimize dependencies for constant inputs", | |||
GetGraphName()); | |||
GELOGI("[%s] Done building hybrid model successfully.", GetGraphName()); | |||
return SUCCESS; | |||
} | |||
@@ -315,6 +318,18 @@ Status HybridModelBuilder::ParseDependentInputNodes(NodeItem &node_item, const s | |||
} | |||
} | |||
for (const auto &src_node : ge_node->GetInControlNodes()) { | |||
auto src_node_item = MutableNodeItem(src_node); | |||
if ((src_node_item != nullptr) && (is_hccl_op || src_node_item->IsHcclOp())) { | |||
GELOGD("[%s](%s) Add input control dependent node [%s](%s)", | |||
ge_node->GetName().c_str(), | |||
ge_node->GetType().c_str(), | |||
src_node->GetName().c_str(), | |||
src_node->GetType().c_str()); | |||
dependent_for_execution.emplace(src_node); | |||
} | |||
} | |||
// cond or branch need to be prepared before the execution of IF or CASE | |||
if (node_item.node_type == IF || node_item.node_type == STATELESSIF || node_item.node_type == CASE) { | |||
auto src_node = NodeUtils::GetInDataNodeByIndex(*ge_node, 0); // cond input | |||
@@ -346,6 +361,7 @@ Status HybridModelBuilder::ParseDependentInputNodes(NodeItem &node_item, const s | |||
auto src_node_item = MutableNodeItem(src_node); | |||
src_node_item->to_const_output_id_list.emplace(peer_out_anchor->GetIdx()); | |||
dependent_for_shape_inference.emplace(src_node); | |||
host_input_value_dependencies_[&node_item].emplace_back(peer_out_anchor->GetIdx(), src_node_item); | |||
GELOGD("[%s] Dependent added from output of [%s:%d]", | |||
node_item.NodeName().c_str(), | |||
src_node_item->NodeName().c_str(), | |||
@@ -1494,7 +1510,7 @@ Status HybridModelBuilder::IdentifyVariableOutputs(NodeItem &node_item) { | |||
src_node->GetName().c_str(), | |||
src_op_type.c_str()); | |||
if (src_op_type != CONSTANTOP && src_op_type != VARIABLE) { | |||
if (src_op_type != CONSTANTOP && src_op_type != CONSTANT && src_op_type != VARIABLE) { | |||
continue; | |||
} | |||
@@ -1503,6 +1519,9 @@ Status HybridModelBuilder::IdentifyVariableOutputs(NodeItem &node_item) { | |||
GELOGD("Got parent output index = %u", parent_index); | |||
GE_CHECK_LE(parent_index, INT32_MAX); | |||
node_item.ref_outputs.emplace(static_cast<int>(parent_index), src_node); | |||
if (src_op_type == CONSTANTOP || src_op_type == CONSTANT) { | |||
known_subgraph_constant_output_refs_[&node_item].emplace(parent_index, src_node); | |||
} | |||
} | |||
// Data nodes marked with REF_VAR_SRC_VAR_NAME | |||
@@ -1568,6 +1587,10 @@ Status HybridModelBuilder::InitModelMem() { | |||
} | |||
runtime_param_.var_base = hybrid_model_.var_mem_base_; | |||
auto allocator = NpuMemoryAllocator::GetAllocator(); | |||
GE_CHECK_NOTNULL(allocator); | |||
hybrid_model_.global_step_ = TensorBuffer::Create(allocator, sizeof(int64_t)); | |||
GE_CHECK_NOTNULL(hybrid_model_.global_step_); | |||
return SUCCESS; | |||
} | |||
@@ -2044,8 +2067,9 @@ Status HybridModelBuilder::CollectParallelGroups(NodeItem *node_item) { | |||
const auto &node = node_item->node; | |||
auto executor_type = NodeExecutorManager::GetInstance().ResolveExecutorType(*node); | |||
if (executor_type == NodeExecutorManager::ExecutorType::HCCL) { | |||
std::string parallel_group; | |||
if (AttrUtils::GetStr(node->GetOpDesc(), ATTR_NAME_PARALLEL_GROUP, parallel_group)) { | |||
int64_t parallel_group_val = -1; | |||
if (AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_PARALLEL_GROUP, parallel_group_val)) { | |||
std::string parallel_group = std::to_string(parallel_group_val); | |||
GELOGD("[%s] Got parallel group = [%s]", node_item->NodeName().c_str(), parallel_group.c_str()); | |||
parallel_group_to_nodes_[parallel_group].emplace(node_item); | |||
std::set<std::string> group{parallel_group}; | |||
@@ -2061,8 +2085,9 @@ Status HybridModelBuilder::CollectParallelGroups(NodeItem *node_item) { | |||
auto subgraph = hybrid_model_.root_graph_->GetSubgraph(subgraph_name); | |||
GE_CHECK_NOTNULL(subgraph); | |||
for (const auto &sub_node : subgraph->GetAllNodes()) { | |||
std::string parallel_group; | |||
if (AttrUtils::GetStr(sub_node->GetOpDesc(), ATTR_NAME_PARALLEL_GROUP, parallel_group)) { | |||
int64_t parallel_group_val = -1; | |||
if (AttrUtils::GetInt(sub_node->GetOpDesc(), ATTR_NAME_PARALLEL_GROUP, parallel_group_val)) { | |||
std::string parallel_group = std::to_string(parallel_group_val); | |||
GELOGD("[%s::%s] Got parallel group = %s", | |||
subgraph_name.c_str(), | |||
sub_node->GetName().c_str(), | |||
@@ -2127,5 +2152,88 @@ Status HybridModelBuilder::ParseDependentByParallelGroup() { | |||
} | |||
return SUCCESS; | |||
} | |||
Status HybridModelBuilder::OptimizeDependenciesForConstantInputs() { | |||
std::map<NodePtr, std::set<uint32_t>> converted; | |||
for (auto &it : host_input_value_dependencies_) { | |||
auto node_item = it.first; | |||
std::map<NodeItem *, int> ref_counts; | |||
bool changed = false; | |||
for (auto output_idx_and_node : it.second) { | |||
auto output_idx = output_idx_and_node.first; | |||
auto src_node_item = output_idx_and_node.second; | |||
++ref_counts[src_node_item]; | |||
NodePtr constant_node; | |||
if (src_node_item->node_type == CONSTANT || src_node_item->node_type == CONSTANTOP) { | |||
constant_node = src_node_item->node; | |||
GELOGD("src node [%s] is a constant", src_node_item->NodeName().c_str()); | |||
} else { | |||
auto iter = known_subgraph_constant_output_refs_.find(src_node_item); | |||
if (iter != known_subgraph_constant_output_refs_.end()) { | |||
constant_node = iter->second[output_idx]; | |||
if (constant_node != nullptr) { | |||
GELOGD("Output[%u] of subgraph [%s] is a constant", output_idx, src_node_item->NodeName().c_str()); | |||
} | |||
} | |||
} | |||
if (constant_node == nullptr) { | |||
GELOGD("Output[%u] of [%s] is not a constant", output_idx, src_node_item->NodeName().c_str()); | |||
continue; | |||
} | |||
if (converted[constant_node].count(output_idx) == 0) { | |||
GE_CHK_STATUS_RET(Convert2HostTensor(constant_node, src_node_item->node_id, output_idx), | |||
"[%s] Failed to convert constant to host tensor", constant_node->GetName().c_str()); | |||
converted[constant_node].emplace(output_idx); | |||
} | |||
src_node_item->to_const_output_id_list.erase(output_idx); | |||
--ref_counts[src_node_item]; | |||
changed = true; | |||
} | |||
if (changed) { | |||
std::vector<NodePtr> depends_to_keep; | |||
for (auto &ref_count_it : ref_counts) { | |||
if (ref_count_it.second == 0) { | |||
GELOGD("[%s] no longer depends on [%s] for shape inference", | |||
node_item->NodeName().c_str(), | |||
ref_count_it.first->NodeName().c_str()); | |||
} else { | |||
depends_to_keep.emplace_back(ref_count_it.first->node); | |||
} | |||
} | |||
node_item->dependents_for_shape_inference.swap(depends_to_keep); | |||
} | |||
} | |||
return SUCCESS; | |||
} | |||
Status HybridModelBuilder::Convert2HostTensor(const NodePtr &node, int node_id, uint32_t output_idx) { | |||
auto tensor_value = hybrid_model_.GetTensor(node); | |||
GE_CHECK_NOTNULL(tensor_value); | |||
auto tensor_desc = node->GetOpDesc()->MutableOutputDesc(0); | |||
GE_CHECK_NOTNULL(tensor_desc); | |||
Tensor tensor(TensorAdapter::GeTensorDesc2TensorDesc(*tensor_desc)); | |||
int64_t tensor_size = -1; | |||
GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorSizeInBytes(*tensor_desc, tensor_size), | |||
"[%s] Failed to get tensor size", node->GetName().c_str()); | |||
if (tensor_size > 0) { | |||
auto copy_size = static_cast<size_t>(tensor_size); | |||
GE_CHECK_GE(tensor_value->GetSize(), copy_size); | |||
std::vector<uint8_t> buffer(copy_size); | |||
GE_CHK_RT_RET(rtMemcpy(buffer.data(), | |||
copy_size, | |||
tensor_value->GetData(), | |||
copy_size, | |||
RT_MEMCPY_DEVICE_TO_HOST)); | |||
tensor.SetData(std::move(buffer)); | |||
GELOGD("[%s] Copy constant tensor to host successfully, size = %zu", node->GetName().c_str(), copy_size); | |||
} | |||
hybrid_model_.host_tensors_[node_id].emplace_back(output_idx, std::move(tensor)); | |||
return SUCCESS; | |||
} | |||
} // namespace hybrid | |||
} // namespace ge |
@@ -91,6 +91,8 @@ class HybridModelBuilder { | |||
Status GenerateBpProfilingTask(const OpDescPtr &op_desc, vector<domi::TaskDef> &task_def_list); | |||
Status GenerateEndProfilingTask(const OpDescPtr &op_desc, vector<domi::TaskDef> &task_def_list); | |||
Status GenerateArProfilingTask(const OpDescPtr &op_desc, int64_t log_id, vector<domi::TaskDef> &task_def_list); | |||
Status OptimizeDependenciesForConstantInputs(); | |||
Status Convert2HostTensor(const NodePtr &node, int node_id, uint32_t output_idx); | |||
const char* GetGraphName() const { | |||
return hybrid_model_.model_name_.c_str(); | |||
@@ -110,6 +112,12 @@ class HybridModelBuilder { | |||
RuntimeParam &runtime_param_; | |||
VarManager *var_manager_ = nullptr; | |||
// map<known_node_item, map<output_idx, constant_node>> | |||
std::map<NodeItem *, std::map<uint32_t, NodePtr>> known_subgraph_constant_output_refs_; | |||
// map<dst_node_item, vector<output_idx, src_node_item>> | |||
std::map<NodeItem *, std::vector<std::pair<uint32_t, NodeItem *>>> host_input_value_dependencies_; | |||
}; | |||
} // namespace hybrid | |||
} // namespace ge | |||
@@ -71,22 +71,22 @@ Status AiCoreOpTask::Init(const OpDesc &op_desc, const domi::TaskDef &task_def) | |||
} | |||
Status AiCoreOpTask::RegisterTbeHandle(const OpDesc &op_desc) { | |||
auto op_desc_ptr = std::make_shared<OpDesc>(op_desc); | |||
GE_CHECK_NOTNULL(op_desc_ptr); | |||
auto tbe_kernel = op_desc_ptr->TryGetExtAttr(OP_EXTATTR_NAME_TBE_KERNEL, TBEKernelPtr()); | |||
if (tbe_kernel == nullptr) { | |||
GELOGE(INTERNAL_ERROR, "TBE: %s can't find tvm bin file!", op_desc_ptr->GetName().c_str()); | |||
return INTERNAL_ERROR; | |||
} | |||
TBEHandleStore &kernel_store = TBEHandleStore::GetInstance(); | |||
rtError_t rt_ret = rtQueryFunctionRegistered(stub_name_.c_str()); | |||
if (rt_ret != RT_ERROR_NONE || is_single_op_) { | |||
auto op_desc_ptr = MakeShared<OpDesc>(op_desc); | |||
GE_CHECK_NOTNULL(op_desc_ptr); | |||
auto tbe_kernel = op_desc_ptr->TryGetExtAttr(GetKeyForTbeKernel(), TBEKernelPtr()); | |||
if (tbe_kernel == nullptr) { | |||
GELOGE(INTERNAL_ERROR, "TBE: %s can't find tvm bin file!", op_desc_ptr->GetName().c_str()); | |||
return INTERNAL_ERROR; | |||
} | |||
TBEHandleStore &kernel_store = TBEHandleStore::GetInstance(); | |||
void *bin_handle = nullptr; | |||
if (!kernel_store.FindTBEHandle(stub_name_.c_str(), bin_handle)) { | |||
GELOGI("TBE: can't find the binfile_key[%s] in HandleMap", stub_name_.c_str()); | |||
rtDevBinary_t binary; | |||
std::string json_string; | |||
GE_IF_BOOL_EXEC(AttrUtils::GetStr(op_desc_ptr, TVM_ATTR_NAME_MAGIC, json_string), | |||
GE_IF_BOOL_EXEC(AttrUtils::GetStr(op_desc_ptr, GetKeyForTvmMagic(), json_string), | |||
GELOGI("Get original type of session_graph_id.")); | |||
if (json_string == "RT_DEV_BINARY_MAGIC_ELF_AICPU") { | |||
binary.magic = RT_DEV_BINARY_MAGIC_ELF_AICPU; | |||
@@ -104,7 +104,7 @@ Status AiCoreOpTask::RegisterTbeHandle(const OpDesc &op_desc) { | |||
GELOGI("TBE: binary.length: %lu", binary.length); | |||
GE_CHK_RT_RET(rtDevBinaryRegister(&binary, &bin_handle)); | |||
std::string meta_data; | |||
GE_IF_BOOL_EXEC(AttrUtils::GetStr(op_desc_ptr, TVM_ATTR_NAME_METADATA, meta_data), | |||
GE_IF_BOOL_EXEC(AttrUtils::GetStr(op_desc_ptr, GetKeyForTvmMetaData(), meta_data), | |||
GELOGI("Get original type of json_string")); | |||
GELOGI("TBE: meta data: %s", meta_data.empty() ? "null" : meta_data.c_str()); | |||
GE_IF_BOOL_EXEC(!meta_data.empty(), GE_CHK_RT_RET(rtMetadataRegister(bin_handle, meta_data.c_str()))); | |||
@@ -114,7 +114,7 @@ Status AiCoreOpTask::RegisterTbeHandle(const OpDesc &op_desc) { | |||
kernel_store.ReferTBEHandle(stub_name_.c_str()); | |||
} | |||
std::string kernel_name; | |||
GE_IF_BOOL_EXEC(AttrUtils::GetStr(op_desc_ptr, op_desc_ptr->GetName() + "_kernelname", kernel_name), | |||
GE_IF_BOOL_EXEC(AttrUtils::GetStr(op_desc_ptr, GetKeyForKernelName(op_desc), kernel_name), | |||
GELOGI("Get original type of kernel_name")); | |||
GELOGI("TBE: binfile_key=%s, kernel_name=%s", stub_name_.c_str(), kernel_name.c_str()); | |||
GE_CHK_RT_RET(rtFunctionRegister(bin_handle, stub_name_.c_str(), stub_name_.c_str(), kernel_name.c_str(), 0)); | |||
@@ -349,9 +349,6 @@ Status AiCoreOpTask::CalcTilingInfo(const NodePtr &node, OpRunInfo &tiling_info) | |||
GE_CHK_STATUS_RET(OpParaCalculate(*node, tiling_info), | |||
"Failed calc tiling data of node %s.", | |||
node->GetName().c_str()); | |||
if (is_single_op_) { | |||
tiling_info.clear_atomic = false; | |||
} | |||
GELOGD("[%s] Done invoking OpParaCalculate successfully.", node->GetName().c_str()); | |||
return SUCCESS; | |||
} | |||
@@ -468,6 +465,22 @@ std::string AiCoreOpTask::GetKeyForOpParamSize() const { | |||
return kAttrOpParamSize; | |||
} | |||
std::string AiCoreOpTask::GetKeyForTbeKernel() const { | |||
return OP_EXTATTR_NAME_TBE_KERNEL; | |||
} | |||
std::string AiCoreOpTask::GetKeyForTvmMagic() const { | |||
return TVM_ATTR_NAME_MAGIC; | |||
} | |||
std::string AiCoreOpTask::GetKeyForTvmMetaData() const { | |||
return TVM_ATTR_NAME_METADATA; | |||
} | |||
std::string AiCoreOpTask::GetKeyForKernelName(const OpDesc &op_desc) const { | |||
return op_desc.GetName() + "_kernelname"; | |||
} | |||
Status AtomicAddrCleanOpTask::Init(const OpDesc &op_desc, const domi::TaskDef &task_def) { | |||
GE_CHK_STATUS_RET_NOLOG(AiCoreOpTask::Init(op_desc, task_def)); | |||
return InitAtomicAddrCleanIndices(op_desc); | |||
@@ -524,6 +537,22 @@ std::string AtomicAddrCleanOpTask::GetKeyForOpParamSize() const { | |||
return kAttrAtomicOpParamSize; | |||
} | |||
std::string AtomicAddrCleanOpTask::GetKeyForTbeKernel() const { | |||
return EXT_ATTR_ATOMIC_TBE_KERNEL; | |||
} | |||
std::string AtomicAddrCleanOpTask::GetKeyForTvmMagic() const { | |||
return ATOMIC_ATTR_TVM_MAGIC; | |||
} | |||
std::string AtomicAddrCleanOpTask::GetKeyForTvmMetaData() const { | |||
return ATOMIC_ATTR_TVM_METADATA; | |||
} | |||
std::string AtomicAddrCleanOpTask::GetKeyForKernelName(const OpDesc &op_desc) const { | |||
return op_desc.GetName() + "_atomic_kernelname"; | |||
} | |||
Status AtomicAddrCleanOpTask::CalcTilingInfo(const NodePtr &node, OpRunInfo &tiling_info) { | |||
GELOGD("[%s] Start to invoke OpAtomicCalculate.", node->GetName().c_str()); | |||
GE_CHK_STATUS_RET(OpAtomicCalculate(*node, tiling_info), | |||
@@ -81,6 +81,10 @@ class AiCoreOpTask { | |||
protected: | |||
Status UpdateTilingInfo(TaskContext &context); | |||
virtual std::string GetKeyForOpParamSize() const; | |||
virtual std::string GetKeyForTbeKernel() const; | |||
virtual std::string GetKeyForTvmMagic() const; | |||
virtual std::string GetKeyForTvmMetaData() const; | |||
virtual std::string GetKeyForKernelName(const OpDesc &op_desc) const; | |||
virtual Status CalcTilingInfo(const NodePtr &node, optiling::OpRunInfo &tiling_info); | |||
std::unique_ptr<TensorBuffer> tiling_buffer_ = nullptr; | |||
@@ -119,6 +123,10 @@ class AtomicAddrCleanOpTask : public AiCoreOpTask { | |||
protected: | |||
std::string GetKeyForOpParamSize() const override; | |||
std::string GetKeyForTbeKernel() const override; | |||
std::string GetKeyForTvmMagic() const override; | |||
std::string GetKeyForTvmMetaData() const override; | |||
std::string GetKeyForKernelName(const OpDesc &op_desc) const override; | |||
Status CalcTilingInfo(const NodePtr &node, optiling::OpRunInfo &tiling_info) override; | |||
private: | |||
@@ -70,6 +70,7 @@ Status AiCoreTaskBuilder::BuildTask(std::unique_ptr<AiCoreNodeTask> &node_task, | |||
auto atomic_task = | |||
std::unique_ptr<AtomicAddrCleanOpTask>(new(std::nothrow)AtomicAddrCleanOpTask()); | |||
GE_CHECK_NOTNULL(atomic_task); | |||
atomic_task->SetSingleOp(is_single_op); | |||
GE_CHK_STATUS_RET(atomic_task->Init(*op_desc_, task_defs_.front()), | |||
"[%s] Failed to init task for AtomicAddrClean", | |||
op_desc_->GetName().c_str()); | |||
@@ -18,6 +18,7 @@ | |||
#include "cce/aicpu_engine_struct.h" | |||
#include "framework/common/debug/ge_log.h" | |||
#include "framework/common/fmk_error_codes.h" | |||
#include "common/dump/dump_manager.h" | |||
#include "common/ge/ge_util.h" | |||
#include "graph/attr_value.h" | |||
#include "graph/debug/ge_attr_define.h" | |||
@@ -110,15 +111,6 @@ Status KnownNodeTask::Init(TaskContext &context) { | |||
GELOGI("KnownNodeTask::Init mem base is %p, size %lu.", | |||
davinci_model_->GetRuntimeParam().mem_base, davinci_model_->GetRuntimeParam().mem_size); | |||
} | |||
if (!load_flag_) { | |||
auto dump_properties = context.GetDumpProperties(); | |||
if (dump_properties.IsDumpOpen() || dump_properties.IsOpDebugOpen()) { | |||
davinci_model_->SetDumpProperties(dump_properties); | |||
void *global_step = context.GetExecutionContext()->global_step; | |||
davinci_model_->SetKnownShapeGlobalStep(global_step); | |||
} | |||
load_flag_ = true; | |||
} | |||
GE_CHK_STATUS_RET(ModelManager::GetInstance()->DestroyAicpuKernel(davinci_model_->GetSessionId(), | |||
davinci_model_->Id(), davinci_model_->SubModelId()), | |||
"KnownNodeTask::Init destroy aicpu kernel failed."); | |||
@@ -126,20 +118,35 @@ Status KnownNodeTask::Init(TaskContext &context) { | |||
return SUCCESS; | |||
} | |||
Status KnownNodeTask::InitDavinciModel() { | |||
GELOGD("[Init][Model] start"); | |||
Status KnownNodeTask::InitDavinciModel(const HybridModel &model, TensorBuffer *weight_buffer) { | |||
GELOGD("[Init][DavinciModel] start"); | |||
davinci_model_->InitRuntimeParams(); | |||
GE_CHK_STATUS_RET(davinci_model_->InitVariableMem(), "init variable mem failed"); | |||
int32_t device_id = 0; | |||
GE_CHK_RT_RET(rtGetDevice(&device_id)); | |||
davinci_model_->SetDeviceId(static_cast<uint32_t>(device_id)); | |||
GE_CHK_STATUS_RET(DoInitDavinciModel(), "[Init][Model] Failed to init davinci model."); | |||
auto dump_properties = DumpManager::GetInstance().GetDumpProperties(model.GetSessionId()); | |||
if (dump_properties.IsDumpOpen() || dump_properties.IsOpDebugOpen()) { | |||
davinci_model_->SetDumpProperties(dump_properties); | |||
void *global_step = model.GetGlobalStep(); | |||
davinci_model_->SetKnownShapeGlobalStep(global_step); | |||
} | |||
void *weight = nullptr; | |||
size_t weight_size = 0; | |||
if (weight_buffer != nullptr) { | |||
weight = weight_buffer->GetData(); | |||
weight_size = weight_buffer->GetSize(); | |||
} | |||
GELOGD("Start to init davinci model, weight size = %zu", weight_size); | |||
GE_CHK_STATUS_RET(DoInitDavinciModel(weight, weight_size), "[Init][Model] Failed to init davinci model."); | |||
GELOGD("[Init][Model] success"); | |||
return SUCCESS; | |||
} | |||
Status KnownNodeTask::DoInitDavinciModel() { | |||
return davinci_model_->Init(); | |||
Status KnownNodeTask::DoInitDavinciModel(void *weight, size_t weight_size) { | |||
return davinci_model_->Init(nullptr, 0, weight, weight_size); | |||
} | |||
Status KnownNodeExecutor::PrepareTask(NodeTask &task, TaskContext &context) const { | |||
@@ -165,12 +172,17 @@ Status KnownNodeExecutor::LoadTask(const HybridModel &model, const NodePtr &node | |||
const GeModelPtr ge_model = model.GetGeModel(node); | |||
GE_CHECK_NOTNULL(ge_model); | |||
AscendString graph_name; | |||
GE_CHK_GRAPH_STATUS_RET(ge_model->GetGraph().GetName(graph_name), "Failed to get graph name"); | |||
auto weight_buffer = model.GetModelWeight(graph_name.GetString()); | |||
std::shared_ptr<DavinciModel> davinci_model = MakeShared<DavinciModel>(0, nullptr); | |||
GE_CHECK_NOTNULL(davinci_model); | |||
// set known node flag as true | |||
davinci_model->SetKnownNode(true); | |||
davinci_model->SetId(model.GetModelId()); | |||
davinci_model->SetDumpModelName(model.GetModelName()); | |||
davinci_model->SetOmName(model.GetOmName()); | |||
// set model id as root node's node id | |||
davinci_model->SetSubModelId(node->GetOpDesc()->GetId()); | |||
@@ -180,7 +192,7 @@ Status KnownNodeExecutor::LoadTask(const HybridModel &model, const NodePtr &node | |||
auto known_node_task = MakeShared<KnownNodeTask>(davinci_model); | |||
GE_CHECK_NOTNULL(known_node_task); | |||
GE_CHK_STATUS_RET_NOLOG(known_node_task->InitDavinciModel()); | |||
GE_CHK_STATUS_RET_NOLOG(known_node_task->InitDavinciModel(model, weight_buffer)); | |||
GELOGI("[%s] KnownNodeExecutor::LoadTask success.", node->GetName().c_str()); | |||
task = std::move(known_node_task); | |||
return SUCCESS; | |||
@@ -36,13 +36,12 @@ class KnownNodeTask : public NodeTask { | |||
Status UpdateArgs(TaskContext &context) override; | |||
Status ExecuteAsync(TaskContext &context, std::function<void()> done_callback) override; | |||
Status Init(TaskContext &context) override; | |||
Status InitDavinciModel(); | |||
Status InitDavinciModel(const HybridModel &model, TensorBuffer *weight_buffer); | |||
protected: | |||
virtual Status DoInitDavinciModel(); | |||
virtual Status DoInitDavinciModel(void *weight, size_t weight_size); | |||
private: | |||
std::shared_ptr<DavinciModel> davinci_model_ = nullptr; | |||
bool load_flag_ = false; | |||
}; | |||
class KnownNodeExecutor : public NodeExecutor { | |||
@@ -127,7 +127,7 @@ void SingleOpModel::ParseOpModelParams(ModelHelper &model_helper, SingleOpModelP | |||
ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_CORE_TYPE, value); | |||
param.core_type = ret ? value : 0; | |||
GELOGI("ParseOpModelParams(), total_memory_size:%lu, zero_copy_size:%lu, weight_size:%lu. core_type = %lu", | |||
GELOGI("ParseOpModelParams(), total_memory_size:%lu, zero_copy_size:%lu, weight_size:%lu, core_type = %lu", | |||
param.memory_size, param.zero_copy_mem_size, param.weight_size, param.core_type); | |||
} | |||
@@ -454,7 +454,7 @@ Status SingleOpModel::BuildModelTaskKernel(const TaskDef &task_def, DynamicSingl | |||
auto kernel_type = static_cast<ccKernelType>(context.kernel_type()); | |||
if (kernel_type == ccKernelType::TE) { | |||
GELOGD("Building TBE task"); | |||
GELOGD("Building TBE task."); | |||
TbeOpTask *tbe_task = nullptr; | |||
GE_CHK_STATUS_RET_NOLOG(BuildKernelTask(task_def, &tbe_task)); | |||
tbe_task->SetModelArgs(model_name_, model_id_); | |||
@@ -482,7 +482,7 @@ Status SingleOpModel::BuildTaskListForDynamicOp(DynamicSingleOp &single_op) { | |||
auto tasks = ge_model->GetModelTaskDefPtr()->task(); | |||
for (int i = 0; i < tasks.size(); ++i) { | |||
const TaskDef &task_def = tasks[i]; | |||
GELOGI("[%s] Task[%d], type = %u, DebugString = %s", model_name_.c_str(), i, task_def.type(), | |||
GELOGI("[%s] Task[%d], type = [%u], DebugString = [%s]", model_name_.c_str(), i, task_def.type(), | |||
task_def.DebugString().c_str()); | |||
auto task_type = static_cast<rtModelTaskType_t>(task_def.type()); | |||
if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) { | |||
@@ -121,7 +121,7 @@ Status OpTask::GetProfilingArgs(TaskDescInfo &task_desc_info, uint32_t &model_id | |||
} | |||
GE_CHECK_NOTNULL(op_desc_); | |||
string op_name = op_desc_->GetName(); | |||
GELOGD("Get profiling args of op [%s] end, task_id[%u], stream_id[%u]", op_name.c_str(), task_id, stream_id); | |||
GELOGD("Get profiling args of op [%s] end, task_id[%u], stream_id[%u].", op_name.c_str(), task_id, stream_id); | |||
model_id = model_id_; | |||
task_desc_info.model_name = model_name_; | |||
task_desc_info.block_dim = block_dim_; | |||
@@ -459,10 +459,14 @@ Status AiCpuBaseTask::UpdateExtInfo(const std::vector<GeTensorDesc> &input_desc, | |||
continue; | |||
} | |||
GE_CHK_BOOL_RET_STATUS(non_const_index < input_desc.size(), ACL_ERROR_GE_PARAM_INVALID, | |||
"Input_desc size is %zu, but get non_const_index is %zu", | |||
input_desc.size(), non_const_index); | |||
"Input_desc size is %zu, but get non_const_index is %zu", input_desc.size(), | |||
non_const_index); | |||
GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateInputShapeAndType(input_index, input_desc[non_const_index]), | |||
"Input[%zu] update input shape failed.", input_index); | |||
if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) { | |||
GE_CHK_STATUS_RET(op_desc_->UpdateInputDesc(input_index, input_desc[non_const_index]), | |||
"AicpuTask Update [%zu]th input desc failed", input_index); | |||
} | |||
non_const_index++; | |||
} | |||
@@ -470,6 +474,10 @@ Status AiCpuBaseTask::UpdateExtInfo(const std::vector<GeTensorDesc> &input_desc, | |||
for (size_t j = 0; j < num_outputs_; ++j) { | |||
GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateOutputShapeAndType(j, output_desc[j]), | |||
"Output[%zu] UpdateOutputShapeAndType failed.", j); | |||
if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) { | |||
GE_CHK_STATUS_RET(op_desc_->UpdateOutputDesc(j, output_desc[j]), "AicpuTask Update [%zu]th output desc failed", | |||
j); | |||
} | |||
} | |||
} | |||
@@ -98,6 +98,7 @@ class GE_FUNC_VISIBILITY GeGenerator { | |||
Status BuildSingleOp(OpDescPtr &op_desc, const vector<GeTensor> &inputs, const vector<GeTensor> &outputs, | |||
const string &model_file_name, OpEngineType engine_type, ModelBufferData &model_buff, | |||
bool is_offline = true); | |||
void RemoveConst(const vector<GeTensor> &inputs, vector<GeTensor> &outputs); | |||
Status CheckForSingleOp(OpDescPtr &op_desc, const vector<GeTensor> &inputs, const vector<GeTensor> &outputs); | |||
using GeRootModelPtr = std::shared_ptr<ge::GeRootModel>; | |||
@@ -1 +1 @@ | |||
Subproject commit 8cf3c51d53a9f4ebd6d601a2383f62788e3b8176 | |||
Subproject commit 7aa912ab473b780c3d2f9c907760e4cb32dc0fb6 |
@@ -1 +1 @@ | |||
Subproject commit d851e1d467768b6cefd8f5f44745be1c5312121a | |||
Subproject commit d4587c1c33d2d50ef157bbc0449484a196e91429 |
@@ -166,6 +166,7 @@ set(COMMON_SRC_FILES | |||
"${GE_CODE_DIR}/ge/common/helper/model_helper.cc" | |||
"${GE_CODE_DIR}/ge/common/dump/dump_manager.cc" | |||
"${GE_CODE_DIR}/ge/common/dump/opdebug_register.cc" | |||
"${GE_CODE_DIR}/ge/common/dump/dump_op.cc" | |||
"${GE_CODE_DIR}/ge/common/helper/om_file_helper.cc" | |||
"${GE_CODE_DIR}/ge/model/ge_root_model.cc" | |||
"${GE_CODE_DIR}/ge/common/model_parser/model_parser.cc" | |||
@@ -742,6 +743,7 @@ set(MULTI_PARTS_TEST_FILES | |||
"graph/transop_util_unittest.cc" | |||
"common/datatype_transfer_unittest.cc" | |||
"common/dump_manager_unittest.cc" | |||
"common/dump_op_unittest.cc" | |||
"common/opdebug_register_unittest.cc" | |||
"common/format_transfer_unittest.cc" | |||
"common/format_transfer_transpose_unittest.cc" | |||
@@ -0,0 +1,61 @@ | |||
/** | |||
* Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
* | |||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||
* you may not use this file except in compliance with the License. | |||
* You may obtain a copy of the License at | |||
* | |||
* http://www.apache.org/licenses/LICENSE-2.0 | |||
* | |||
* Unless required by applicable law or agreed to in writing, software | |||
* distributed under the License is distributed on an "AS IS" BASIS, | |||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* See the License for the specific language governing permissions and | |||
* limitations under the License. | |||
*/ | |||
#include <gtest/gtest.h> | |||
#define protected public | |||
#define private public | |||
#include "common/dump/dump_op.h" | |||
#include "common/debug/log.h" | |||
#include "common/ge_inner_error_codes.h" | |||
#include "common/dump/dump_properties.h" | |||
#undef private | |||
#undef protected | |||
namespace ge { | |||
class UTEST_dump_op : public testing::Test { | |||
protected: | |||
void SetUp() {} | |||
void TearDown() {} | |||
}; | |||
TEST_F(UTEST_dump_op, launch_dump_op_success) { | |||
DumpOp dump_op; | |||
DumpProperties dump_properties; | |||
OpDescPtr op_desc = std::make_shared<OpDesc>("GatherV2", "GatherV2"); | |||
std::set<std::string> temp; | |||
dump_properties.model_dump_properties_map_.emplace("model1", temp); | |||
dump_properties.enable_dump_ = "1"; | |||
dump_op.SetDynamicModelInfo("model1", "model2", 1); | |||
dump_op.SetDumpInfo(dump_properties, op_desc, {}, {}, nullptr); | |||
auto ret = dump_op.LaunchDumpOp(); | |||
EXPECT_EQ(ret, ge::SUCCESS); | |||
} | |||
TEST_F(UTEST_dump_op, launch_dump_op_success_2) { | |||
DumpOp dump_op; | |||
DumpProperties dump_properties; | |||
OpDescPtr op_desc = std::make_shared<OpDesc>("GatherV2", "GatherV2"); | |||
std::set<std::string> temp; | |||
dump_properties.model_dump_properties_map_.emplace("model1", temp); | |||
dump_properties.enable_dump_ = "1"; | |||
dump_op.SetDynamicModelInfo("modle2", "model2", 1); | |||
dump_op.SetDumpInfo(dump_properties, op_desc, {}, {}, nullptr); | |||
auto ret = dump_op.LaunchDumpOp(); | |||
EXPECT_EQ(ret, ge::SUCCESS); | |||
} | |||
} // namespace ge |
@@ -48,18 +48,49 @@ public: | |||
return node; | |||
} | |||
int CountOfAtomicCleanNode() { | |||
int node_num = 0; | |||
for (NodePtr &node : graph_->GetDirectNode()) { | |||
if (node->GetType() == ATOMICADDRCLEAN) { | |||
++node_num; | |||
} | |||
} | |||
return node_num; | |||
} | |||
ComputeGraphPtr graph_; | |||
}; | |||
// node1 -> node2 -> node3 | |||
/* | |||
* Data Data Atomic_clean | |||
* | | / | | |||
* relu relu | | |||
* | ==> | | | |||
* relu(atomic) relu(atomic) | |||
* | | | |||
* netoutput netoutput | |||
*/ | |||
TEST_F(UtestGraphPassesAtomicAddrCleanPass, pass_run_success) { | |||
auto node1 = NewNode("node1", DATA, 0, 1); | |||
auto node2 = NewNode("node2", RELU, 1, 1); | |||
auto node3 = NewNode("node3", NETOUTPUT, 1, 0); | |||
auto node3 = NewNode("node3", RELU, 1, 1); | |||
auto op_desc = node3->GetOpDesc(); | |||
vector<int64_t> atomic_input_index = {123, 456}; | |||
AttrUtils::SetListInt(op_desc, "atomic_input_index", atomic_input_index); | |||
auto node4 = NewNode("node4", NETOUTPUT, 1, 0); | |||
GraphUtils::AddEdge(node1->GetOutDataAnchor(0), node2->GetInDataAnchor(0)); | |||
GraphUtils::AddEdge(node2->GetOutDataAnchor(0), node3->GetInDataAnchor(0)); | |||
GraphUtils::AddEdge(node3->GetOutDataAnchor(0), node4->GetInDataAnchor(0)); | |||
AtomicAddrCleanPass atomi_addr_clean_pass; | |||
Status ret = atomi_addr_clean_pass.Run(graph_); | |||
EXPECT_EQ(ret, SUCCESS); | |||
EXPECT_EQ(1, CountOfAtomicCleanNode()); | |||
auto atomic_clean = graph_->FindNode("atomic_addr_clean"); | |||
EXPECT_NE(atomic_clean, nullptr); | |||
auto out_ctrl_nodes = atomic_clean->GetOutControlNodes(); | |||
EXPECT_EQ(out_ctrl_nodes.size(), 2); | |||
} | |||
} // namespace ge |