@@ -31,9 +31,7 @@ | |||||
#include "functional_ops.h" | #include "functional_ops.h" | ||||
#include "get_data_ops.h" | #include "get_data_ops.h" | ||||
#include "hcom_ops.h" | #include "hcom_ops.h" | ||||
#include "hvd_ops.h" | |||||
#include "image_ops.h" | #include "image_ops.h" | ||||
#include "internal_ops.h" | |||||
#include "linalg_ops.h" | #include "linalg_ops.h" | ||||
#include "logging_ops.h" | #include "logging_ops.h" | ||||
#include "lookup_ops.h" | #include "lookup_ops.h" | ||||
@@ -1084,43 +1084,6 @@ REG_OP(TransShape) | |||||
.ATTR(outShape,ListInt ,{}) | .ATTR(outShape,ListInt ,{}) | ||||
.OP_END_FACTORY_REG(TransShape); | .OP_END_FACTORY_REG(TransShape); | ||||
/** | |||||
*@brief Computes the (possibly normalized) Levenshtein Edit Distance. | |||||
*@par Inputs: | |||||
*@li hypothesis_indices: The indices of the hypothesis list SparseTensor.\n | |||||
This is an N x R int64 matrix. | |||||
*@li hypothesis_shape: The values of the hypothesis list SparseTensor.\n | |||||
This is an N-length vector. | |||||
*@li hypothesis_shape: The shape of the hypothesis list SparseTensor.\n | |||||
This is an R-length vector. | |||||
*@li truth_indices: The indices of the truth list SparseTensor.\n | |||||
This is an M x R int64 matrix. | |||||
*@li truth_shape: The values of the truth list SparseTensor.\n | |||||
This is an M-length vector. | |||||
*@li truth_shape: The shape of the truth list SparseTensor.\n | |||||
This is an R-length vector | |||||
*@par Attributes: | |||||
*@li normalize: boolean (if true, edit distances are normalized by length of truth). | |||||
*@par Outputs: | |||||
*@li output: A dense float tensor with rank R - 1. | |||||
*@par Third-party framework compatibility | |||||
* Compatible with TensorFlow EditDistance operator. | |||||
*/ | |||||
REG_OP(EditDistance) | |||||
.INPUT(hypothesis_indices, TensorType({DT_INT64})) | |||||
.INPUT(hypothesis_values, TensorType::BasicType()) | |||||
.INPUT(hypothesis_shape, TensorType({DT_INT64})) | |||||
.INPUT(truth_indices, TensorType({DT_INT64})) | |||||
.INPUT(truth_values, TensorType::BasicType()) | |||||
.INPUT(truth_shape, TensorType({DT_INT64})) | |||||
.ATTR(normalize, Bool, true) | |||||
.OUTPUT(output, TensorType({DT_FLOAT})) | |||||
.OP_END_FACTORY_REG(EditDistance) | |||||
} // namespace ge | } // namespace ge | ||||
#endif // GE_OP_ARRAY_OPS_H_ | #endif // GE_OP_ARRAY_OPS_H_ |
@@ -50,6 +50,7 @@ If not specified, defaults to true | |||||
*@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
* Compatible with TensorFlow CTCLoss operator. | * Compatible with TensorFlow CTCLoss operator. | ||||
*/ | */ | ||||
REG_OP(CTCLoss) | REG_OP(CTCLoss) | ||||
.INPUT(inputs, TensorType({DT_FLOAT, DT_DOUBLE})) | .INPUT(inputs, TensorType({DT_FLOAT, DT_DOUBLE})) | ||||
.INPUT(labels_indices, TensorType({DT_INT64})) | .INPUT(labels_indices, TensorType({DT_INT64})) | ||||
@@ -62,77 +63,6 @@ REG_OP(CTCLoss) | |||||
.ATTR(ignore_longer_outputs_than_inputs, Bool, false) | .ATTR(ignore_longer_outputs_than_inputs, Bool, false) | ||||
.OP_END_FACTORY_REG(CTCLoss) | .OP_END_FACTORY_REG(CTCLoss) | ||||
/** | |||||
*@brief Performs greedy decoding on the logits given in inputs. | |||||
*@par Inputs: | |||||
*@li inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. | |||||
*@li sequence_length: A vector containing sequence lengths, size `(batch_size)`. | |||||
*@par Attributes: | |||||
*@li merge_repeated: If True, merge repeated classes in output. | |||||
*@par Outputs: | |||||
*@li decoded_indices: Indices matrix, size `(total_decoded_outputs x 2)`,\n | |||||
of a `SparseTensor<int64, 2>`. The rows store: [batch, time]. | |||||
*@li decoded_values: Values vector, size: `(total_decoded_outputs)`,\n | |||||
of a `SparseTensor<int64, 2>`. The vector stores the decoded classes. | |||||
*@li decoded_shape: Shape vector, size `(2)`, of the decoded SparseTensor.\n | |||||
Values are: `[batch_size, max_decoded_length]`. | |||||
*@li log_probability: Matrix, size `(batch_size x 1)`, containing sequence\n | |||||
log-probabilities. | |||||
*@par Third-party framework compatibility | |||||
* Compatible with TensorFlow CTCGreedyDecoder operator. | |||||
*/ | |||||
REG_OP(CTCGreedyDecoder) | |||||
.INPUT(inputs, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
.INPUT(sequence_length, TensorType({DT_INT32})) | |||||
.ATTR(merge_repeated, Bool, false) | |||||
.OUTPUT(decoded_indices, TensorType({DT_INT64})) | |||||
.OUTPUT(decoded_values, TensorType({DT_INT64})) | |||||
.OUTPUT(decoded_shape, TensorType({DT_INT64})) | |||||
.OUTPUT(log_probability, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
.OP_END_FACTORY_REG(CTCGreedyDecoder) | |||||
/** | |||||
*@brief Performs beam search decoding on the logits given in input. | |||||
*@par Inputs: | |||||
*@li inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. | |||||
*@li sequence_length: A vector containing sequence lengths, size `(batch_size)`. | |||||
*@par Attributes: | |||||
*@li merge_repeated: If True, merge repeated classes in output. | |||||
*@par Outputs: | |||||
*@li decoded_indices: A list (length: top_paths) of indices matrices. Matrix j,\n | |||||
size `(total_decoded_outputs[j] x 2)`, has indices of a\n | |||||
`SparseTensor<int64, 2>`. The rows store: [batch, time]. | |||||
*@li decoded_values: A list (length: top_paths) of values vectors. Vector j,\n | |||||
size `(length total_decoded_outputs[j])`, has the values of a\n | |||||
`SparseTensor<int64, 2>`. The vector stores the decoded classes for beam j. | |||||
*@li decoded_shape: A list (length: top_paths) of shape vector. Vector j,\n | |||||
size `(2)`, stores the shape of the decoded `SparseTensor[j]`.\n | |||||
Its values are: `[batch_size, max_decoded_length[j]]`. | |||||
*@li log_probability: A matrix, shaped: `(batch_size x top_paths)`. The\n | |||||
sequence log-probabilities. | |||||
*@par Third-party framework compatibility | |||||
* Compatible with TensorFlow CTCBeamSearchDecoder operator. | |||||
*/ | |||||
REG_OP(CTCBeamSearchDecoder) | |||||
.INPUT(inputs, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
.INPUT(sequence_length, TensorType({DT_INT32})) | |||||
.REQUIRED_ATTR(beam_width, Int) | |||||
.REQUIRED_ATTR(top_paths, Int) | |||||
.ATTR(merge_repeated, Bool, true) | |||||
.DYNAMIC_OUTPUT(decoded_indices, TensorType({DT_INT64})) | |||||
.DYNAMIC_OUTPUT(decoded_values, TensorType({DT_INT64})) | |||||
.DYNAMIC_OUTPUT(decoded_shape, TensorType({DT_INT64})) | |||||
.OUTPUT(log_probability, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
.OP_END_FACTORY_REG(CTCBeamSearchDecoder) | |||||
} // namespace ge | } // namespace ge | ||||
#endif //GE_OP_CTC_OPS_H | #endif //GE_OP_CTC_OPS_H |
@@ -483,9 +483,9 @@ REG_OP(Equal) | |||||
*x: A Tensor. Must be one of the following types: float16, float32, double, complex64, complex128. | *x: A Tensor. Must be one of the following types: float16, float32, double, complex64, complex128. | ||||
*@par Attributes: | *@par Attributes: | ||||
*@li base: An optional attribute of type float32, specifying the base gamma. Defaults to "-1.0". | |||||
*@li scale: An optional attribute of type float32, specifying the scale alpha. Defaults to "1.0". | |||||
*@li shift: An optional attribute of type float32, specifying the shift beta. Defaults to "0.0". | |||||
*@li base: An optional attribute of type float32, specifying the base gamma. Defaults to "-1". | |||||
*@li scale: An optional attribute of type float32, specifying the scale alpha. Defaults to "1". | |||||
*@li shift: An optional attribute of type float32, specifying the shift beta. Defaults to "0". | |||||
*@par Outputs: | *@par Outputs: | ||||
*y: A Tensor of the same type as "x". | *y: A Tensor of the same type as "x". | ||||
@@ -1016,17 +1016,17 @@ REG_OP(BesselI1e) | |||||
* y = log_base(shift + scale * x), with "base" > 0. | * y = log_base(shift + scale * x), with "base" > 0. | ||||
* @par Inputs: | * @par Inputs: | ||||
* @li x: A Tensor of type complex64, complex128, float16, float32 or double. | |||||
* @li x: A Tensor of type UnaryDataType. | |||||
* @par Attributes: | * @par Attributes: | ||||
* @li base: An optional float32, specifying the base "e". Defaults to "-1.0" | |||||
* @li base: An optional float32, specifying the base "e". Defaults to "-1" | |||||
* @li scale: An optional float32, specifying the scale of input "x". Defaults | * @li scale: An optional float32, specifying the scale of input "x". Defaults | ||||
* to "1.0" | |||||
* @li shift: An optional float32, specifying the shift. Defaults to "0.0" | |||||
* to "1" | |||||
* @li shift: An optional float32, specifying the shift. Defaults to "0" | |||||
* @par Outputs: | * @par Outputs: | ||||
* y: A Tensor has same type as "x". | |||||
* y: A Tensor of type UnaryDataType. | |||||
* @attention Constraints: | * @attention Constraints: | ||||
* @li "base" is supposed to be greater than 0. Retaining the default | * @li "base" is supposed to be greater than 0. Retaining the default | ||||
@@ -2262,7 +2262,7 @@ REG_OP(ArgMinD) | |||||
*dtype: The output type, either "int32" or "int64". Defaults to "int64". | *dtype: The output type, either "int32" or "int64". Defaults to "int64". | ||||
*@par Outputs: | *@par Outputs: | ||||
*y: A multi-dimensional Tensor of type int32 or int64, specifying the index with the largest value. The dimension is one less than that of "x". | |||||
*y: A multi-dimensional Tensor of type int32, specifying the index with the largest value. The dimension is one less than that of "x". | |||||
*@attention Constraints: | *@attention Constraints: | ||||
*@li x: If there are multiple maximum values, the index of the first maximum value is used. | *@li x: If there are multiple maximum values, the index of the first maximum value is used. | ||||
@@ -2398,8 +2398,8 @@ REG_OP(ArgMinWithValue) | |||||
*y: A Tensor. Has the same type and format as "x". | *y: A Tensor. Has the same type and format as "x". | ||||
*@par Attributes: | *@par Attributes: | ||||
*@li N: A required attribute. the number of input x, max size is 32. Type is int. | |||||
*@li model: An optional attribute. Type is int. Defaults to "1". | |||||
*@li N: A required attribute. the number of input x, max size is 32. | |||||
*@li model: An optional attribute. Defaults to "1". | |||||
* "0": product, "1": sum, "2": max. | * "0": product, "1": sum, "2": max. | ||||
*@li coeff: A required attribute. Must met all of following rules: | *@li coeff: A required attribute. Must met all of following rules: | ||||
* size of "coeff" must be equal to len("x") or is null. | * size of "coeff" must be equal to len("x") or is null. | ||||
@@ -2693,86 +2693,6 @@ REG_OP(AdamApplyOne) | |||||
.OP_END_FACTORY_REG(AdamApplyOne) | .OP_END_FACTORY_REG(AdamApplyOne) | ||||
/** | /** | ||||
*@brief A fusion operator for bert lamb. | |||||
*@par Inputs: | |||||
*Eleven inputs, including: | |||||
* @li input0: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li input1: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li input2: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li input3: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li input4: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li mul0_x: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li mul1_x: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li mul2_x: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li mul3_x: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li mul4_x: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li add2_y: A Tensor. Must be one of the following types: float16, float32. | |||||
*@par Outputs: | |||||
*Three outputs, including: | |||||
* @li output0: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li output1: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li output2: A Tensor. Must be one of the following types: float16, float32. | |||||
*/ | |||||
REG_OP(AdamApplyOneWithDecayAssign) | |||||
.INPUT(input0, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(input1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(input2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(input3, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(input4, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(mul0_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(mul1_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(mul2_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(mul3_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(mul4_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(add2_y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(output0, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(output1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(output2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OP_END_FACTORY_REG(AdamApplyOneWithDecayAssign) | |||||
/** | |||||
*@brief A fusion operator for bert lamb. | |||||
*@par Inputs: | |||||
*Ten inputs, including: | |||||
* @li input0: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li input1: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li input2: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li input3: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li input4: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li mul0_x: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li mul1_x: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li mul2_x: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li mul3_x: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li add2_y: A Tensor. Must be one of the following types: float16, float32. | |||||
*@par Outputs: | |||||
*Three outputs, including: | |||||
* @li output0: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li output1: A Tensor. Must be one of the following types: float16, float32. | |||||
* @li output2: A Tensor. Must be one of the following types: float16, float32. | |||||
*/ | |||||
REG_OP(AdamApplyOneAssign) | |||||
.INPUT(input0, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(input1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(input2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(input3, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(input4, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(mul0_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(mul1_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(mul2_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(mul3_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(add2_y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(output0, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(output1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(output2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OP_END_FACTORY_REG(AdamApplyOneAssign) | |||||
/** | |||||
*@brief Confuse select, maximum, greater and sqrt. | *@brief Confuse select, maximum, greater and sqrt. | ||||
*@par Inputs: | *@par Inputs: | ||||
@@ -3122,22 +3042,6 @@ REG_OP(KLDiv) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | ||||
.OP_END_FACTORY_REG(KLDiv) | .OP_END_FACTORY_REG(KLDiv) | ||||
/** | |||||
*@brief copy data from x to y.. | |||||
*@par Inputs: | |||||
*One inputs, including: | |||||
* @li x: A Tensor. Must be one of the following types: float16, float32, int8, uint8, int32, bool. | |||||
*@par Outputs: | |||||
*y: A Tensor. Has the same type as "x". | |||||
*@par Third-party framework compatibility | |||||
*/ | |||||
REG_OP(TensorMove) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8, DT_BOOL})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8, DT_BOOL})) | |||||
.OP_END_FACTORY_REG(TensorMove) | |||||
} // namespace ge | } // namespace ge | ||||
@@ -934,7 +934,6 @@ REG_OP(EncodeJpeg) | |||||
/** | /** | ||||
*@brief PNG-encode an image. | *@brief PNG-encode an image. | ||||
*@par Inputs: | *@par Inputs: | ||||
*Input image must be unit8 or uint16 type. Inputs include: \n | *Input image must be unit8 or uint16 type. Inputs include: \n | ||||
*image: is a 3-D uint8 or uint16 Tensor of shape [height, width, channels] \n | *image: is a 3-D uint8 or uint16 Tensor of shape [height, width, channels] \n | ||||
@@ -1224,6 +1223,16 @@ REG_OP(CombinedNonMaxSuppression) | |||||
.ATTR(clip_boxes, Bool, true) | .ATTR(clip_boxes, Bool, true) | ||||
.OP_END_FACTORY_REG(CombinedNonMaxSuppression) | .OP_END_FACTORY_REG(CombinedNonMaxSuppression) | ||||
REG_OP(SpatialTransformerD) | |||||
.INPUT(x, TensorType({DT_FLOAT,DT_FLOAT16})) | |||||
.OPTIONAL_INPUT(theta, TensorType({DT_FLOAT,DT_FLOAT16})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT,DT_FLOAT16})) | |||||
.ATTR(output_size, ListInt, {-1, -1}) | |||||
.ATTR(default_theta, ListFloat, {}) | |||||
.ATTR(align_corners, Bool, false) | |||||
.ATTR(use_default_theta, ListBool, {}) | |||||
.OP_END_FACTORY_REG(SpatialTransformerD) | |||||
} // namespace ge | } // namespace ge | ||||
#endif // GE_OP_MAGE_OPS_H_ | #endif // GE_OP_MAGE_OPS_H_ |
@@ -29,9 +29,9 @@ namespace ge { | |||||
* x: A Tensor of type float16 or float32. | * x: A Tensor of type float16 or float32. | ||||
*@par Attributes: | *@par Attributes: | ||||
*@li power: Optional. Must be one of the following types: float32. Defaults to 1.0. | |||||
*@li scale: Optional. Must be one of the following types: float32. Defaults to 1.0. | |||||
*@li shift: Optional. Must be one of the following types: float32. Defaults to 0.0. | |||||
*@li power: Optional. Defaults to 1.0. | |||||
*@li scale: Optional. Defaults to 1.0. | |||||
*@li shift: Optional. Defaults to 0.0. | |||||
*@par Outputs: | *@par Outputs: | ||||
* y: A Tensor. Has the same type and shape as "x". | * y: A Tensor. Has the same type and shape as "x". | ||||
@@ -699,45 +699,6 @@ REG_OP(FullyConnection) | |||||
.OP_END_FACTORY_REG(FullyConnection) | .OP_END_FACTORY_REG(FullyConnection) | ||||
/** | /** | ||||
*@brief Also known as a "fully-connected-compress" layer, computes an inner product with a set of learned weights, and (optionally) adds biases. | |||||
*@par Inputs: | |||||
* Four inputs, including: | |||||
*@li x: A Tensor of type uint8, int8. | |||||
*@li w: A weight matrix of type int8, int8. | |||||
*@li w: A compress index matrix of type int8, int8. | |||||
*@li b: A Tensor of type float16, int32, int32. | |||||
*@li offset_w: A Tensor of type int8.i | |||||
*@par Attributes: | |||||
*@li num_output: Reserved. | |||||
*@li transpose: A bool, specifying whether to transpose, either "true" or "false". Defaults to "false". | |||||
*@li axis: Reserved. | |||||
*@li offset_x: Reserved. | |||||
*@par Outputs: | |||||
*y: The result tensor of type int32. | |||||
*@par Third-party framework compatibility | |||||
* Compatible with the Caffe operator InnerProduct. | |||||
*@par Quantization supported or not | |||||
* Yes | |||||
*/ | |||||
REG_OP(FullyConnectionCompress) | |||||
.INPUT(x, TensorType({DT_UINT8, DT_INT8})) | |||||
.INPUT(w, TensorType({DT_INT8})) | |||||
.INPUT(comress_index, TensorType({DT_INT8})) | |||||
.OPTIONAL_INPUT(b, TensorType({DT_INT32})) | |||||
.OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | |||||
.OUTPUT(y, TensorType({DT_INT32})) | |||||
.REQUIRED_ATTR(num_output, Int) | |||||
.ATTR(transpose, Bool, false) | |||||
.ATTR(axis, Int, 1) | |||||
.ATTR(offset_x, Int, 0) | |||||
.OP_END_FACTORY_REG(FullyConnectionCompress) | |||||
/** | |||||
*@brief Computes the confusion matrix from predictions and labels. | *@brief Computes the confusion matrix from predictions and labels. | ||||
*@par Inputs: | *@par Inputs: | ||||
@@ -33,12 +33,12 @@ namespace ge { | |||||
* @li variance: A Tensor. Must be one of the following types: float32. | * @li variance: A Tensor. Must be one of the following types: float32. | ||||
*@par Attributes: | *@par Attributes: | ||||
* @li mode: A Tensor. Must be one of the following types: int. defaults: 1. | |||||
* @li epsilon: A Tensor. Must be one of the following types: float32. Defaults to 0.000001. | |||||
* @li momentum: A Tensor. Must be one of the following types: float32. Defaults to 0.9. | |||||
* @li is_training: A Tensor. Must be one of the following types: bool. Defaults to true. | |||||
* @li is_training_fusion: A Tensor. Must be one of the following types: bool. Defaults to true. | |||||
* @li moving_average_fraction: A Tensor. Must be one of the following types: float32. Defaults to 0.00300002098. | |||||
* @li mode: A Tensor. Must be one of the following types: int. | |||||
* @li epsilon: A Tensor. Must be one of the following types: float32. | |||||
* @li momentum: A Tensor. Must be one of the following types: float32. | |||||
* @li is_training: A Tensor. Must be one of the following types: bool. | |||||
* @li is_training_fusion: A Tensor. Must be one of the following types: bool. | |||||
* @li moving_average_fraction: A Tensor. Must be one of the following types: float32. | |||||
*@par Outputs: | *@par Outputs: | ||||
*Three outputs, including: | *Three outputs, including: | ||||
@@ -83,8 +83,8 @@ REG_OP(FusedBatchNorm) | |||||
* @li save_inv_variance1: A Tensor. Must be one of the following types: float32. | * @li save_inv_variance1: A Tensor. Must be one of the following types: float32. | ||||
*@par Attributes: | *@par Attributes: | ||||
* @li epsilon: A Tensor. Must be one of the following types: float32. Defaults to 0.0. | |||||
* @li momentum: A Tensor. Must be one of the following types: float32. Defaults to 0.0. | |||||
* @li epsilon: A Tensor. Must be one of the following types: float32. | |||||
* @li momentum: A Tensor. Must be one of the following types: float32. | |||||
*@par Outputs: | *@par Outputs: | ||||
*Three outputs, including: | *Three outputs, including: | ||||
@@ -361,14 +361,14 @@ REG_OP(BatchNormGradExt2) | |||||
*@par Inputs: | *@par Inputs: | ||||
*@li x: A 4D or 5D Tensor of type float16 or float32, with format NHWC or NCHW for 4D or NC1HWC0 for 5D. | *@li x: A 4D or 5D Tensor of type float16 or float32, with format NHWC or NCHW for 4D or NC1HWC0 for 5D. | ||||
*@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | *@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | ||||
*@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | |||||
*@li momentum: A Tensor,represents the mean and the variance's scale factor | |||||
*@li variance: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the variance used for inference. | |||||
*@li momentum: A Tensor of type float32 or float16, represents the mean and the variance's scale factor | |||||
*@li scale: An optional tensor of type float16 or float32, no use | *@li scale: An optional tensor of type float16 or float32, no use | ||||
*@li offset: An optional tensor of type float16 or float32, no use | *@li offset: An optional tensor of type float16 or float32, no use | ||||
*@par Attributes: | *@par Attributes: | ||||
*@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.00001". | *@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.00001". | ||||
*@li use_global_stats: mean inference mode , only can be "True". | *@li use_global_stats: mean inference mode , only can be "True". | ||||
*@li mode: An optional input, not use | |||||
*@li mode: An optional attr, not use | |||||
*@par Outputs:\n | *@par Outputs:\n | ||||
*@li y: A 4D or 5D Tensor of type float16 or float32 for the normalized "x" | *@li y: A 4D or 5D Tensor of type float16 or float32 for the normalized "x" | ||||
*/ | */ | ||||
@@ -391,11 +391,11 @@ REG_OP(BNInference) | |||||
*@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | *@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | ||||
*@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | *@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | ||||
*@li momentum: An optional float, mean and variance's Scale factor | |||||
*@li momentum: A Tensor of type float32 or float16, the mean and the variance's Scale factor | |||||
*@par Attributes: | *@par Attributes: | ||||
*@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.00001". | *@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.00001". | ||||
*@li use_global_stats: mean inference mode , only can be "True". | *@li use_global_stats: mean inference mode , only can be "True". | ||||
*@li mode: An optional attr, not use | |||||
*@li mode: An optional inpout, not use | |||||
*@par Outputs: | *@par Outputs: | ||||
*@li alpha: A Tensor of type float16 or float32 for the cpu calculate mean | *@li alpha: A Tensor of type float16 or float32 for the cpu calculate mean | ||||
*@li beta: A Tensor of type float16 or float32 for the cpu calculate variance | *@li beta: A Tensor of type float16 or float32 for the cpu calculate variance | ||||
@@ -418,8 +418,8 @@ REG_OP(BnHost) | |||||
*@par Inputs: | *@par Inputs: | ||||
*@li x: A 4D or 5D Tensor of type float16 or float32, with format NHWC or NCHW for 4D or NC1HWC0 for 5D. | *@li x: A 4D or 5D Tensor of type float16 or float32, with format NHWC or NCHW for 4D or NC1HWC0 for 5D. | ||||
*@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | |||||
*@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | |||||
*@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | |||||
*@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | |||||
*@li scale: An optional tensor of type float16 or float32, no use | *@li scale: An optional tensor of type float16 or float32, no use | ||||
*@li offset: An optional tensor of type float16 or float32, no use | *@li offset: An optional tensor of type float16 or float32, no use | ||||
*@par Attributes: | *@par Attributes: | ||||
@@ -143,29 +143,31 @@ REG_OP(DepthwiseConv2DBackpropFilterD) | |||||
* @par Inputs: | * @par Inputs: | ||||
* Three inputs include: \n | * Three inputs include: \n | ||||
* @li input_size: 4D shape of input tensor [N, C, H, W] or [N, H, W, C], | * @li input_size: 4D shape of input tensor [N, C, H, W] or [N, H, W, C], | ||||
* support int32, int64 | |||||
* @li filter: 4D filter tensor with shape of [H, W, C, K], support float16. | |||||
* support int32 | |||||
* @li filter: 4D filter tensor with shape of [H, W, C, K], support float16, | |||||
* float32, double | |||||
* @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C]. | * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C]. | ||||
* Must be one of the following types: float16. | |||||
* Must be one of the following types: float16, float32, double. | |||||
* @par Attributes: | * @par Attributes: | ||||
* @li strides: A required list or tuple of int32. The stride of the sliding window for | |||||
* @li strides: A required list or tuple. The stride of the sliding window for | |||||
* height and width of input "x" of the convolution. | * height and width of input "x" of the convolution. | ||||
* Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height, | * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height, | ||||
* stride_width, 1]. | * stride_width, 1]. | ||||
* @li dilations: An optional list or tuple of int32. The dilation factor for each | |||||
* dimension of input "x". Defaults to "[1, 1, 1, 1]". | |||||
* @li dilations: An optional list or tuple. The dilation factor for each | |||||
* dimension of input "x". | |||||
* If set to k > 1, there will be k-1 skipped cells between each filter element | * If set to k > 1, there will be k-1 skipped cells between each filter element | ||||
* on that dimension. Must be with shape [1, 1, dilation_height, dilation_width] | * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width] | ||||
* or [1, dilation_height, dilation_width, 1]. | * or [1, dilation_height, dilation_width, 1]. | ||||
* @li pads: A required list or tuple of int32. Padding added to each dimension of the | |||||
* @li pads: A required list or tuple. Padding added to each dimension of the | |||||
* input. | * input. | ||||
* @li data_format: An optional string. Input data format, either "NHWC" or | * @li data_format: An optional string. Input data format, either "NHWC" or | ||||
* "NCHW". Defaults to "NHWC". | |||||
* "NCHW". | |||||
* @par Outputs: | * @par Outputs: | ||||
* input_grad: Gradient of the deep convolution relative to the input with shape | * input_grad: Gradient of the deep convolution relative to the input with shape | ||||
* [N, C, H, W] or [N, H, W, C] Must be one of the following types: float16. | |||||
* [N, C, H, W] or [N, H, W, C] Must be one of the following types: float16, | |||||
* float32, double. | |||||
* @attention Constraints:\n | * @attention Constraints:\n | ||||
* The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but | * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but | ||||
@@ -257,8 +259,8 @@ REG_OP(DepthwiseConv2DBackpropInputD) | |||||
*@par Inputs: | *@par Inputs: | ||||
*Two required inputs and two optional inputs, including: \n | *Two required inputs and two optional inputs, including: \n | ||||
* @li x: A 4D tensor of type float16 or int8, with shape [N, C, H, W] or [N, H, W, C] | |||||
* @li filter: A 4D tensor of type float16 or int8, with shape [H, W, C, K] | |||||
* @li x: A 4D tensor of type float16, with shape [N, C, H, W] or [N, H, W, C] | |||||
* @li filter: A 4D tensor of type float16, with shape [H, W, C, K] | |||||
* @li bias: An optional tensor of type float16 or int32 | * @li bias: An optional tensor of type float16 or int32 | ||||
* @li offset_w: An optional float16 or int8, used for quantized inference | * @li offset_w: An optional float16 or int8, used for quantized inference | ||||
@@ -271,8 +273,8 @@ REG_OP(DepthwiseConv2DBackpropInputD) | |||||
* dimension of input "x". | * dimension of input "x". | ||||
* If set to k > 1, there will be k-1 skipped cells between each filter element | * If set to k > 1, there will be k-1 skipped cells between each filter element | ||||
* on that dimension. Must be with shape [1, 1, dilation_height, dilation_width] | * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width] | ||||
* or [1, dilation_height, dilation_width, 1]. Defaults to "[1, 1, 1, 1]". | |||||
* @li pads: A required list or tuple of int32. Padding added to each dimension of the | |||||
* or [1, dilation_height, dilation_width, 1]. | |||||
* @li pads: A required list or tuple. Padding added to each dimension of the | |||||
* input. | * input. | ||||
* @li data_format: An optional string. Input data format, either "NHWC" or | * @li data_format: An optional string. Input data format, either "NHWC" or | ||||
* "NCHW". Defaults to "NHWC". | * "NCHW". Defaults to "NHWC". | ||||
@@ -280,7 +282,7 @@ REG_OP(DepthwiseConv2DBackpropInputD) | |||||
* Defaults to 0. | * Defaults to 0. | ||||
* @par Outputs: | * @par Outputs: | ||||
* y: 4D tensor of type float16 or int32, with shape [N, C, H, W] or [N, H, W, C] | |||||
* y: 4D tensor of type float16, with shape [N, C, H, W] or [N, H, W, C] | |||||
* @attention Constraints:\n | * @attention Constraints:\n | ||||
* The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but | * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but | ||||
@@ -460,24 +462,24 @@ REG_OP(Conv2DBackpropInputD) | |||||
* @li x: A Tensor. Must have the same type as "filter". 4D with shape | * @li x: A Tensor. Must have the same type as "filter". 4D with shape | ||||
* [batch, out_channels, out_height, out_width]. Gradients with respect | * [batch, out_channels, out_height, out_width]. Gradients with respect | ||||
* to the output of the convolution. | * to the output of the convolution. | ||||
* @li filter: A Tensor of type float16, float32, double or int8. | |||||
* @li filter: A Tensor of type float16. | |||||
* 4D with shape [out_channels, in_channel, filter_height, filter_width].\n | * 4D with shape [out_channels, in_channel, filter_height, filter_width].\n | ||||
* Two optional inputs: | * Two optional inputs: | ||||
* @li bias: An optional tensor of type float16, float32, int32 or int64. | |||||
* @li offset_w: An optional 1D tensor for quantized deconvolution. Type is int8. Reserved.\n | |||||
* @li bias: An optional tensor of type float16 | |||||
* @li offset_w: An optional 1D tensor for quantized deconvolution. Reserved.\n | |||||
*@par Attributes: | *@par Attributes: | ||||
* Six attributes: | * Six attributes: | ||||
* @li strides: A tuple or list of 2 integers. The stride of the sliding window | * @li strides: A tuple or list of 2 integers. The stride of the sliding window | ||||
* for H/W dimension. Defaults to [1, 1, 1, 1]. | |||||
* for H/W dimension. | |||||
* @li pads: A tuple or list of 4 integers. The [top, bottom, left, right] | * @li pads: A tuple or list of 4 integers. The [top, bottom, left, right] | ||||
* padding on the feature map. Defaults to [0, 0, 0, 0]. | |||||
* padding on the feature map | |||||
* @li dilations: A tuple or list of 4 integers. The dilation factor for each | * @li dilations: A tuple or list of 4 integers. The dilation factor for each | ||||
* dimension of input. Must be [1, 1, 1, 1]. | * dimension of input. Must be [1, 1, 1, 1]. | ||||
* @li groups: Number of blocked connections from input channels to | * @li groups: Number of blocked connections from input channels to | ||||
output channels. Defaults to "1". | |||||
* @li data_format: An optional string from: "NCHW". Defaults to "NCHW". \n | |||||
* output channels. | |||||
* @li data_format: An optional string from: "NCHW". Defaults to "NCHW".\n | |||||
Specify the data format of the input and output data. | Specify the data format of the input and output data. | ||||
* @li offset_x: An optional integer for quantized deconvolution. Defaults to "0". | |||||
* @li offset_x: An optional integer for quantized deconvolution. | |||||
*@par Outputs: | *@par Outputs: | ||||
* y: A Tensor. Has the same type as "filter". 4D tensor with shape | * y: A Tensor. Has the same type as "filter". 4D tensor with shape | ||||
* [batch, channels, height, width]. | * [batch, channels, height, width]. | ||||
@@ -575,19 +577,17 @@ REG_OP(Conv2DBackpropFilterD) | |||||
* | * | ||||
* The input and output tensor attributes are listed as follows: | * The input and output tensor attributes are listed as follows: | ||||
* @verbatim | * @verbatim | ||||
|Tensor | x | filter | bias | offset_w | y | |||||
Tensor | x | filter | bias | offset_w | y | |||||
-----------|---------|---------|---------|----------|-------- | -----------|---------|---------|---------|----------|-------- | ||||
|Data Type | float16 | float16 | float16 | _ | float16 | |||||
| |---------|---------|---------|----------|-------- | |||||
| | float32 | float32 | float32 | _ | float32 | |||||
| |---------|---------|---------|----------|-------- | |||||
| | float64 | float64 | float64 | _ | float64 | |||||
| |---------|---------|---------|----------|-------- | |||||
| | int8 | int8 | int32 | int8 | int32 | |||||
Data Type | float16 | float16 | float16 | _ | float16 | |||||
|---------|---------|---------|----------|-------- | |||||
| float32 | float32 | float32 | _ | float32 | |||||
|---------|---------|---------|----------|-------- | |||||
| int8 | int8 | int32 | int8 | int32 | |||||
-----------|---------|---------|---------|----------|-------- | -----------|---------|---------|---------|----------|-------- | ||||
|Format | NCHW | NCHW | ND | ND | NCHW | |||||
| | NHWC | NHWC | | | NHWC | |||||
| | | HWCN | | | | |||||
Format | NCHW | NCHW | ND | ND | NCHW | |||||
| NHWC | NHWC | | | NHWC | |||||
| | HWCN | | | | |||||
@endverbatim | @endverbatim | ||||
* It should be noted that the data types must correspond to each other, but the | * It should be noted that the data types must correspond to each other, but the | ||||
* format does not need to. | * format does not need to. | ||||
@@ -602,10 +602,10 @@ REG_OP(Conv2DBackpropFilterD) | |||||
* for dilated convolution. Has the same dimension order and value as "strides". | * for dilated convolution. Has the same dimension order and value as "strides". | ||||
* @li groups: Number of blocked connections from input channels to output | * @li groups: Number of blocked connections from input channels to output | ||||
* channels. Input channels and output channels must both be divisible by | * channels. Input channels and output channels must both be divisible by | ||||
* "groups".Type is int32. Must be set to 1. | |||||
* @li offset_x: An optional integer for quantized convolution. Type is int32. Defaults to "0". | |||||
* "groups". | |||||
* @li offset_x: An optional integer for quantized convolution. | |||||
* @li data_format: An optional string from: "NHWC", "NCHW". Specifying the | * @li data_format: An optional string from: "NHWC", "NCHW". Specifying the | ||||
* data format of the input and output images. Type is string. Defaults to "NHWC". Reserved. | |||||
* data format of the input and output images. Reserved. | |||||
*@par Outputs: | *@par Outputs: | ||||
* @li y: A 4D Tensor of output images. | * @li y: A 4D Tensor of output images. | ||||
@@ -613,23 +613,23 @@ REG_OP(Conv2DBackpropFilterD) | |||||
*@attention | *@attention | ||||
* @li The parameter scope is listed as follows: | * @li The parameter scope is listed as follows: | ||||
* @verbatim | * @verbatim | ||||
|Name | Field | Scope | |||||
Name | Field | Scope | |||||
------------------|--------------|---------- | ------------------|--------------|---------- | ||||
|Input Image Size | H dimension | [1, 4096] | |||||
| | W dimension | [1, 4096] | |||||
Input Image Size | H dimension | [1, 4096] | |||||
| W dimension | [1, 4096] | |||||
------------------|--------------|---------- | ------------------|--------------|---------- | ||||
|Filter Size | H dimension | [1, 255] | |||||
| | W dimension | [1, 255] | |||||
Filter Size | H dimension | [1, 255] | |||||
| W dimension | [1, 255] | |||||
------------------|--------------|---------- | ------------------|--------------|---------- | ||||
|Stride Size | H dimension | [1, 63] | |||||
| | W dimension | [1, 63] | |||||
Stride Size | H dimension | [1, 63] | |||||
| W dimension | [1, 63] | |||||
------------------|--------------|---------- | ------------------|--------------|---------- | ||||
|Padding Size | top side | [0, 255] | |||||
| | bottom side | [0, 255] | |||||
| | left side | [0, 255] | |||||
| | right side | [0, 255] | |||||
Padding Size | top side | [0, 255] | |||||
| bottom side | [0, 255] | |||||
| left side | [0, 255] | |||||
| right side | [0, 255] | |||||
------------------|--------------|---------- | ------------------|--------------|---------- | ||||
|Dilation Size | H dimension | [1, 255] | |||||
Dilation Size | H dimension | [1, 255] | |||||
| W dimension | [1, 255] | | W dimension | [1, 255] | ||||
@endverbatim | @endverbatim | ||||
@@ -654,11 +654,11 @@ REG_OP(Conv2DBackpropFilterD) | |||||
*@li Compatible with the Caffe operator 2D "Convolution". | *@li Compatible with the Caffe operator 2D "Convolution". | ||||
*/ | */ | ||||
REG_OP(Conv2D) | REG_OP(Conv2D) | ||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8})) | |||||
.INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8})) | |||||
.OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32})) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8})) | |||||
.INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8})) | |||||
.OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
.OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | ||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
.REQUIRED_ATTR(strides, ListInt) | .REQUIRED_ATTR(strides, ListInt) | ||||
.REQUIRED_ATTR(pads, ListInt) | .REQUIRED_ATTR(pads, ListInt) | ||||
.ATTR(dilations, ListInt, {1, 1, 1, 1}) | .ATTR(dilations, ListInt, {1, 1, 1, 1}) | ||||
@@ -710,8 +710,8 @@ REG_OP(Conv3D) | |||||
.INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | ||||
.OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | ||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | ||||
.REQUIRED_ATTR(strides, ListInt) | |||||
.REQUIRED_ATTR(pads, ListInt) | |||||
.ATTR(strides, ListInt, {1, 1, 1, 1, 1}) | |||||
.ATTR(pads, ListInt, {0, 0, 0, 0, 0, 0}) | |||||
.ATTR(data_format, String, "NDHWC") | .ATTR(data_format, String, "NDHWC") | ||||
.ATTR(dilations, ListInt, {1, 1, 1, 1, 1}) | .ATTR(dilations, ListInt, {1, 1, 1, 1, 1}) | ||||
.OP_END_FACTORY_REG(Conv3D) | .OP_END_FACTORY_REG(Conv3D) | ||||
@@ -742,7 +742,7 @@ REG_OP(Conv3DBackpropInput) | |||||
.INPUT(grads, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | .INPUT(grads, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | ||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | ||||
.REQUIRED_ATTR(strides, ListInt) | .REQUIRED_ATTR(strides, ListInt) | ||||
.REQUIRED_ATTR(pads, ListInt) | |||||
.ATTR(pads, ListInt, {0, 0, 0, 0, 0, 0}) | |||||
.ATTR(data_format, String, "NDHWC") | .ATTR(data_format, String, "NDHWC") | ||||
.ATTR(dilations, ListInt, {1, 1, 1, 1, 1}) | .ATTR(dilations, ListInt, {1, 1, 1, 1, 1}) | ||||
.OP_END_FACTORY_REG(Conv3DBackpropInput) | .OP_END_FACTORY_REG(Conv3DBackpropInput) | ||||
@@ -771,7 +771,7 @@ REG_OP(Conv3DBackpropInputD) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16})) | .OUTPUT(y, TensorType({DT_FLOAT16})) | ||||
.REQUIRED_ATTR(input_size, ListInt) | .REQUIRED_ATTR(input_size, ListInt) | ||||
.REQUIRED_ATTR(strides, ListInt) | .REQUIRED_ATTR(strides, ListInt) | ||||
.REQUIRED_ATTR(pads, ListInt) | |||||
.ATTR(pads, ListInt, {0, 0, 0, 0, 0, 0}) | |||||
.ATTR(data_format, String, "NDHWC") | .ATTR(data_format, String, "NDHWC") | ||||
.ATTR(dilations, ListInt, {1, 1, 1, 1, 1}) | .ATTR(dilations, ListInt, {1, 1, 1, 1, 1}) | ||||
.OP_END_FACTORY_REG(Conv3DBackpropInputD) | .OP_END_FACTORY_REG(Conv3DBackpropInputD) | ||||
@@ -187,15 +187,14 @@ REG_OP(ROIAlignGrad) | |||||
*@li features: A 5HD Tensor of type float32 or float16. | *@li features: A 5HD Tensor of type float32 or float16. | ||||
*@li rois: ROI position. A 2D Tensor of float32 or float16 with shape (N, 5). "N" indicates the number of ROIs, the value "5" indicates the indexes of images where the ROIs are located, | *@li rois: ROI position. A 2D Tensor of float32 or float16 with shape (N, 5). "N" indicates the number of ROIs, the value "5" indicates the indexes of images where the ROIs are located, | ||||
* "x0", "y0", "x1", and "y1". | * "x0", "y0", "x1", and "y1". | ||||
*@li rois_n: An optional input of type int32, specifying the number of valid ROIs. This parameter is reserved. | |||||
*@li rois_n: An optional input, specifying the number of valid ROIs. This parameter is reserved. | |||||
*@par Attributes: | *@par Attributes: | ||||
*@li spatial_scale: A required attribute of type float32, specifying the scaling ratio of "features" to the original image. | |||||
*@li pooled_height: A required attribute of type int32, specifying the H dimension. | |||||
*@li pooled_width: A required attribute of type int32, specifying the W dimension. | |||||
*@li sample_num: An optional attribute of type int32, specifying the horizontal and vertical sampling frequency of each output. If this attribute is set to "0", | |||||
*@li spatial_scale: A required attribute of type float, specifying the scaling ratio of "features" to the original image. | |||||
*@li pooled_height: A required attribute of type int, specifying the H dimension. | |||||
*@li pooled_width: A required attribute of type int, specifying the W dimension. | |||||
*@li sample_num: An optional attribute of type int, specifying the horizontal and vertical sampling frequency of each output. If this attribute is set to "0", | |||||
* the sampling frequency is equal to the rounded up value of "rois", which is a floating point number. Defaults to "2". | * the sampling frequency is equal to the rounded up value of "rois", which is a floating point number. Defaults to "2". | ||||
*@li roi_end_mode: An optional attribute of type int32. Defaults to "1". | |||||
*@par Outputs: | *@par Outputs: | ||||
* output: Outputs the feature sample of each ROI position. The format is 5HD Tensor of type float32 or float16. The axis N is the number of input ROIs. Axes H, W, and C are consistent | * output: Outputs the feature sample of each ROI position. The format is 5HD Tensor of type float32 or float16. The axis N is the number of input ROIs. Axes H, W, and C are consistent | ||||
@@ -363,15 +362,15 @@ REG_OP(PSROIPooling) | |||||
*@li im_info: An ND tensor of type float16 or float32, specifying the Image information. | *@li im_info: An ND tensor of type float16 or float32, specifying the Image information. | ||||
*@li actual_rois_num: An optional NCHW tensor of type int32, specifying the number of valid boxes per batch. | *@li actual_rois_num: An optional NCHW tensor of type int32, specifying the number of valid boxes per batch. | ||||
*@par Attributes: | *@par Attributes: | ||||
*@li batch_rois: An optional int32, specifying the number of images to be predicted. Defaults to "1". | |||||
*@li batch_rois: An optional int32, specifying the number of images to be predicted. | |||||
*@li num_classes: An required int32, specifying the number of classes to be predicted. The value must be greater than 0. | *@li num_classes: An required int32, specifying the number of classes to be predicted. The value must be greater than 0. | ||||
*@li score_threshold: An required float32, specifying the threshold for box filtering. The value range is [0.0, 1.0]. | *@li score_threshold: An required float32, specifying the threshold for box filtering. The value range is [0.0, 1.0]. | ||||
*@li iou_threshold: An required float32, specifying the confidence threshold for box filtering, which is the output "obj" of operator Region. The value range is (0.0, 1.0). | *@li iou_threshold: An required float32, specifying the confidence threshold for box filtering, which is the output "obj" of operator Region. The value range is (0.0, 1.0). | ||||
*@par Outputs: | *@par Outputs: | ||||
*@li box: A tensor of type float16 or float32 for proposal of actual output, with output shape [batch, numBoxes,8]. | |||||
* 8 means [x1, y1, x2, y2, score, label, batchID, NULL], the maximum value of numBoxes is 1024. | |||||
*@li box: An NCHW tensor of type float16 or float32, describing the information of each output box, including the coordinates, class, and confidence. | |||||
Proposal of actual output, with output shape [batch, numBoxes,8], 8 means [x1, y1, x2, y2, score, label, batchID, NULL], the maximum value of numBoxes is 1024. | |||||
That is, take min (the maximum number of input boxes, 1024) | That is, take min (the maximum number of input boxes, 1024) | ||||
*@li actual_bbox_num: A tensor of type int32 With shape [bacth, num_classes], specifying the number of output boxes. | |||||
*@li actual_bbox_num: An NCHW tensor of type int32 With shape [bacth, num_classes], specifying the number of output boxes. | |||||
*@attention Constraints:\n | *@attention Constraints:\n | ||||
*@li totalnum < max_rois_num * batch_rois. | *@li totalnum < max_rois_num * batch_rois. | ||||
@@ -415,9 +414,9 @@ REG_OP(FSRDetectionOutput) | |||||
*@li confidence_threshold: An optional float32, specify the topk filter threshold. Only consider detections with confidence greater than the threshold | *@li confidence_threshold: An optional float32, specify the topk filter threshold. Only consider detections with confidence greater than the threshold | ||||
*@li kernel_name: An optional string, specifying the operator name. Defaults to "ssd_detection_output". | *@li kernel_name: An optional string, specifying the operator name. Defaults to "ssd_detection_output". | ||||
*@par Outputs: | *@par Outputs: | ||||
*@li out_boxnum: A tensor of type int32, specifying the number of output boxes. | |||||
*@li y: A tensor of type float16 or float32 with shape [batch,keep_top_k, 8], describing the information of each output box. | |||||
* In output shape, 8 means (batchID, label(classID), score (class probability), xmin, ymin, xmax, ymax, null) | |||||
*@li out_boxnum: An NCHW tensor of type int32, specifying the number of output boxes. | |||||
*@li y: An NCHW tensor of type float16 or float32 with shape [batch,keep_top_k, 8], describing the information of each output box, including the coordinates, | |||||
* class, and confidence. In output shape, 8 means (batchID, label(classID), score (class probability), xmin, ymin, xmax, ymax, null) | |||||
* It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
*/ | */ | ||||
REG_OP(SSDDetectionOutput) | REG_OP(SSDDetectionOutput) | ||||
@@ -448,10 +447,10 @@ REG_OP(SSDDetectionOutput) | |||||
*@li boxes: A required int32, specifying the number of anchor boxes. Defaults to "5" for V2 or "3" for V3. | *@li boxes: A required int32, specifying the number of anchor boxes. Defaults to "5" for V2 or "3" for V3. | ||||
*@li coords: An int32, specifying the number of parameters required for locating an object. The value is fixed at "4", corresponding to (x,y,w,h). | *@li coords: An int32, specifying the number of parameters required for locating an object. The value is fixed at "4", corresponding to (x,y,w,h). | ||||
*@li classes: An int32, specifying the number of prediction classes. Defaults to "80". The value range is [1, 1024]. | *@li classes: An int32, specifying the number of prediction classes. Defaults to "80". The value range is [1, 1024]. | ||||
*@li yolo_version: A string, specifying the YOLO version, either "V2" or "V3".Defaults to "V3" | |||||
*@li softmax: A bool, specifying whether to perform softmax, valid only when "yolo_version = V2". Defaults to "false". | |||||
*@li background: A bool, specifying the operation types of the obj and classes, used in conjunction with "softmax" and valid only when "yolo_version = V2". Defaults to "false". | |||||
*@li softmaxtree: A bool, Fixed to False, defined in Lite, but not used. Defaults to "false". | |||||
*@li yolo_version: A string, specifying the YOLO version, either "V2" or "V3". | |||||
*@li softmax: A bool, specifying whether to perform softmax, valid only when "yolo_version = V2". | |||||
*@li background: A bool, specifying the operation types of the obj and classes, used in conjunction with "softmax" and valid only when "yolo_version = V2". | |||||
*@li softmaxtree: A bool, Fixed to False, defined in Lite, but not used. | |||||
*@par Outputs: | *@par Outputs: | ||||
*@li coord_data: A float16 or float32 with shape [N, boxes*coords, ceilx(height*width*2+32, 32)/2], where "ceil" indicates that a detected box is aligned upwards with the second parameter. Specifies the coordinates of a detected box. | *@li coord_data: A float16 or float32 with shape [N, boxes*coords, ceilx(height*width*2+32, 32)/2], where "ceil" indicates that a detected box is aligned upwards with the second parameter. Specifies the coordinates of a detected box. | ||||
@@ -502,10 +501,10 @@ and the actual image height and width. | |||||
*@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | *@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | ||||
* | * | ||||
*@par Outputs: | *@par Outputs: | ||||
*@li boxout: A tensor of type float16 or float32 with shape [batch,6,post_nms_topn]. describing the information of each output box, | |||||
* In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||||
*@li boxoutnum: A tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. It means only the first one of the 8 numbers is valid, | |||||
* the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||||
*@li boxout: An NCHW tensor of type float16 or float32 with shape [batch,6,post_nms_topn]. describing the information of each output box, including the coordinates, class, | |||||
and confidence. In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||||
*@li boxoutnum: An NCHW tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. It means only the first one of the 8 numbers is valid, | |||||
the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||||
* | * | ||||
*@attention Constraints:\n | *@attention Constraints:\n | ||||
*@li This operator applies only to the YOLO v2 network. | *@li This operator applies only to the YOLO v2 network. | ||||
@@ -562,10 +561,10 @@ and the actual image height and width. | |||||
*@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | *@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | ||||
* | * | ||||
*@par Outputs: | *@par Outputs: | ||||
*@li boxout: A tensor of type float16 or float32 with shape [batch,6,post_nms_topn]. describing the information of each output box, | |||||
* In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||||
*@li boxoutnum: A tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. It means only the first one of the 8 numbers is valid, | |||||
* the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||||
*@li boxout: An NCHW tensor of type float16, describing the information of each output box, including the coordinates, class, and confidence. | |||||
With shape [batch,6,post_nms_topn], 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||||
*@li boxoutnum: An NCHW tensor of type int32, specifying the number of output boxes. | |||||
With shape [batch,8,1,1], means only the first one of the 8 numbers is valid, the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||||
* | * | ||||
*@attention Constraints:\n | *@attention Constraints:\n | ||||
*@li This operator applies only to the YOLO v2 network. | *@li This operator applies only to the YOLO v2 network. | ||||
@@ -622,11 +621,11 @@ and the actual image height and width. | |||||
*@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | *@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | ||||
* | * | ||||
*@par Outputs: | *@par Outputs: | ||||
*@li boxout: A tensor of type float16 or float32 with shape [batch,6,post_nms_topn], describing the information of each output box. | |||||
* In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||||
*@li boxoutnum: A tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. | |||||
* The output shape means only the first one of the 8 numbers is valid, the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||||
* | |||||
*@li boxout: An NCHW tensor of type float16 or float32 with shape [batch,6,post_nms_topn], describing the information of each output box, including the coordinates, class, and confidence. | |||||
In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||||
*@li boxoutnum: An NCHW tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. | |||||
The output shape means only the first one of the 8 numbers is valid, the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||||
*@attention Constraints:\n | *@attention Constraints:\n | ||||
*@li This operator applies only to the YOLO v3 network. | *@li This operator applies only to the YOLO v3 network. | ||||
*@li The preceding layer of operator Yolov3DetectionOutput must be three Yolo operators. | *@li The preceding layer of operator Yolov3DetectionOutput must be three Yolo operators. | ||||
@@ -689,11 +688,12 @@ and the actual image height and width. | |||||
*@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | *@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | ||||
* | * | ||||
*@par Outputs: | *@par Outputs: | ||||
*@li boxout: A tensor of type float16 or float32 with shape [batch,6,post_nms_topn], describing the information of each output box. | |||||
* In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||||
*@li boxoutnum: A tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. | |||||
* The output shape means only the first one of the 8 numbers is valid, the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||||
*@li boxout: An NCHW tensor of type float16, describing the information of each output box, including the coordinates, class, and confidence. | |||||
With shape [batch,6,post_nms_topn], 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||||
*@li boxoutnum: An NCHW tensor of type int32, specifying the number of output boxes. | |||||
With shape [batch,8,1,1], means only the first one of the 8 numbers is valid, the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||||
* | * | ||||
*@attention Constraints:\n | *@attention Constraints:\n | ||||
*@li This operator applies only to the YOLO v3 network. | *@li This operator applies only to the YOLO v3 network. | ||||
*@li The preceding layer of operator Yolov3DetectionOutput must be three Yolo operators. | *@li The preceding layer of operator Yolov3DetectionOutput must be three Yolo operators. | ||||
@@ -291,8 +291,8 @@ REG_OP(BinaryCrossEntropyGrad) | |||||
* double. Should be a Variable Tensor. | * double. Should be a Variable Tensor. | ||||
*@par Attributes: | *@par Attributes: | ||||
*axes: A list of int. The dimension softmax would be performed on. Defaults | |||||
* to "[-1]". | |||||
*axes: A list of ints. The dimension softmax would be performed on. Defaults | |||||
* to "{-1}". | |||||
*@par Outputs: | *@par Outputs: | ||||
*y: A Tensor. Has the same dimensionality and shape as the "x" with values in | *y: A Tensor. Has the same dimensionality and shape as the "x" with values in | ||||
@@ -632,7 +632,7 @@ REG_OP(DropOutDoMask) | |||||
* Three inputs, including: | * Three inputs, including: | ||||
*@li x: An ND tensor of type float16 or float32. | *@li x: An ND tensor of type float16 or float32. | ||||
*@li scale: An ND tensor of type float16 or float32. | *@li scale: An ND tensor of type float16 or float32. | ||||
*@li bias: An optional ND tensor of type float16 or float32. | |||||
*@li bias: An ND tensor of type float16 or float32. | |||||
*@par Attributes: | *@par Attributes: | ||||
*@li axis: An optional int32 used to compute the shape of scale and bias input from the online bottoms. Defaults to "1". | *@li axis: An optional int32 used to compute the shape of scale and bias input from the online bottoms. Defaults to "1". | ||||
@@ -679,9 +679,9 @@ REG_OP(Scale) | |||||
* depth_radius = (local_size - 1) / 2. local_size is the number of channels to sum over (for ACROSS_CHANNELS) | * depth_radius = (local_size - 1) / 2. local_size is the number of channels to sum over (for ACROSS_CHANNELS) | ||||
* or the side length of the square region to sum over (for WITHIN_CHANNEL). | * or the side length of the square region to sum over (for WITHIN_CHANNEL). | ||||
*@li bias: An optional float32. An offset, usually > 0 to avoid dividing by 0. | *@li bias: An optional float32. An offset, usually > 0 to avoid dividing by 0. | ||||
* Defaults to "1.0". | |||||
* Defaults to "1". | |||||
*@li alpha: An optional float32. A scaling factor, usually positive. | *@li alpha: An optional float32. A scaling factor, usually positive. | ||||
* Defaults to "1.0". | |||||
* Defaults to "1". | |||||
*@li beta: An optional float32. An exponent. Defaults to "0.75" for the caffe framework, Defaults to "0.5" for others. | *@li beta: An optional float32. An exponent. Defaults to "0.75" for the caffe framework, Defaults to "0.5" for others. | ||||
*@li norm_region: An optional string. A mode option. "ACROSS_CHANNELS":0, "WITHIN_CHANNEL":1. Defaults to "ACROSS_CHANNELS". | *@li norm_region: An optional string. A mode option. "ACROSS_CHANNELS":0, "WITHIN_CHANNEL":1. Defaults to "ACROSS_CHANNELS". | ||||
@@ -836,56 +836,6 @@ REG_OP(GroupNorm) | |||||
.ATTR(num_groups, Int, 2) | .ATTR(num_groups, Int, 2) | ||||
.OP_END_FACTORY_REG(GroupNorm) | .OP_END_FACTORY_REG(GroupNorm) | ||||
/** | |||||
*@brief Performs instance normalization. | |||||
*@par Inputs:\n | |||||
* Five inputs, including: (NC1HWC0, supported) | |||||
*@li x: A 5D Tensor of type float16 or float32, NC1HWC0. | |||||
*@li gamma: A Tensor of type float32. | |||||
A 5D Tensor for scaling factor, to scale the normalized x. | |||||
*@li beta: A Tensor of type float32. | |||||
A 5D Tensor for offset, to shift to the normalized x. | |||||
*@li mean: A Tensor of type float32. | |||||
A 5D Tensor Specifies the mean used for inference. Reserved. | |||||
*@li variance: A Tensor of type float32. | |||||
A 5D Tensor Specifies the variance used for inference. Reserved. | |||||
*@par Attributes: | |||||
*@li is_training: An optional bool, specifying if the operation is used for \n | |||||
training or inference. Defaults to "True". | |||||
*@li momentum: An optional float32, \n | |||||
the value used for the running_mean and running_var computation. Default: "0.1". | |||||
*@li epsilon: An optional float32, specifying the small value added to \n | |||||
variance to avoid dividing by zero. Defaults to "0.00001". | |||||
*@par Outputs:\n | |||||
* Three outputs, including: (NHWC, NCHW NC1HWC0 supported) | |||||
*@li y: A 5D tensor of type float16 or float32 for the normalized "x", \n | |||||
*@li batch_mean: A Tensor of type float32. | |||||
Specifies the mean of "x". | |||||
*@li batch_variance: A Tensor of type float32. | |||||
Specifies the variance of "x". | |||||
*@par Third-party framework compatibility | |||||
*@li Compatible with the PyTorch operator InstanceNorm. | |||||
*/ | |||||
REG_OP(InstanceNormV2) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OPTIONAL_INPUT(gamma, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(beta, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(mean, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(variance, TensorType({DT_FLOAT})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
.OUTPUT(batch_mean, TensorType({DT_FLOAT})) | |||||
.OUTPUT(batch_variance, TensorType({DT_FLOAT})) | |||||
.ATTR(is_training, Bool, true) | |||||
.ATTR(momentum, Float, 0.1) | |||||
.ATTR(epsilon, Float, 0.00001) | |||||
.OP_END_FACTORY_REG(InstanceNormV2) | |||||
} // namespace ge | } // namespace ge | ||||
#endif //GE_OP_NN_NORM_OPS_H | #endif //GE_OP_NN_NORM_OPS_H |
@@ -102,42 +102,6 @@ REG_OP(AvgPool) | |||||
.OP_END_FACTORY_REG(AvgPool) | .OP_END_FACTORY_REG(AvgPool) | ||||
/** | /** | ||||
*@brief Performs average pooling on the input. | |||||
*@par Inputs: | |||||
*x: A 5-D Tensor of shape [batch, depth, height, width, channels] and type float16, float32, double. | |||||
*@par Attributes: | |||||
*@li ksize: List of ints that has length 1, 3 or 5. The size of the window for each dimension of the input tensor. | |||||
*@li strides:List of ints that has length 1, 3 or 5. The stride of the sliding window for each dimension of the input tensor. | |||||
*@li pads: List of ints, implicit zero paddings on both sides of the input. | |||||
*@li ceil_mode: When true, will use ceil instead of floor in the formula to compute the output shape. | |||||
*@li count_include_pad: When true, will include the zero-padding in the averaging calculation. | |||||
*@li divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used. | |||||
*@li data_format: A string, format of input data. | |||||
*@par Outputs: | |||||
*y: The average pooled output tensor. | |||||
*@attention Constraints: | |||||
*@li "ksize" is in the range [1, 255]. "strides" is in the range [1, 63] | |||||
*@par Third-party framework compatibility | |||||
* Compatible with the TensorFlow operator AvgPool3D. | |||||
*/ | |||||
REG_OP(AvgPool3D) | |||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
.REQUIRED_ATTR(ksize, ListInt) | |||||
.REQUIRED_ATTR(strides, ListInt) | |||||
.REQUIRED_ATTR(pads, ListInt) | |||||
.ATTR(ceil_mode, Bool, false) | |||||
.ATTR(count_include_pad, Bool, true) | |||||
.ATTR(divisor_override, Int, 0) | |||||
.ATTR(data_format, String, "NDHWC") | |||||
.OP_END_FACTORY_REG(AvgPool3D) | |||||
/** | |||||
*@brief Performs max_pool_ext2 on the input. | *@brief Performs max_pool_ext2 on the input. | ||||
*@par Inputs: | *@par Inputs: | ||||
@@ -220,62 +184,17 @@ REG_OP(MaxPool) | |||||
.OP_END_FACTORY_REG(MaxPool) | .OP_END_FACTORY_REG(MaxPool) | ||||
REG_OP(MaxPool3D) | REG_OP(MaxPool3D) | ||||
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
.INPUT(x, TensorType({DT_FLOAT16})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16})) | |||||
.REQUIRED_ATTR(ksize, ListInt) | .REQUIRED_ATTR(ksize, ListInt) | ||||
.REQUIRED_ATTR(strides, ListInt) | .REQUIRED_ATTR(strides, ListInt) | ||||
.REQUIRED_ATTR(padding, String) | .REQUIRED_ATTR(padding, String) | ||||
.ATTR(pads, ListInt, {0,0,0}) | .ATTR(pads, ListInt, {0,0,0}) | ||||
.ATTR(dilation, ListInt, {1,1,1}) | |||||
.ATTR(dilation, ListInt, {0,0,0}) | |||||
.ATTR(ceil_mode, Int, 0) | .ATTR(ceil_mode, Int, 0) | ||||
.ATTR(data_format, String, "NDHWC") | .ATTR(data_format, String, "NDHWC") | ||||
.OP_END_FACTORY_REG(MaxPool3D) | .OP_END_FACTORY_REG(MaxPool3D) | ||||
/** | |||||
* @brief Computes second-order gradients of the maxpooling3d function. | |||||
* @par Inputs: | |||||
* @li orig_x: Original forward input tensor(NDC1HWC0) of type float16 | |||||
* @li orig_y: Original forward output tensor(NDC1HWC0) of type float16 | |||||
* @li grads: Gradient tensor(NDC1HWC0) of type float16 | |||||
* @li assist: Assist tensor(NDC1HWC0) of type float16 | |||||
* @par Attributes: | |||||
* @li ksize: A required list or tuple, | |||||
* specifying the size of the sliding window. | |||||
* @li strides: A required list or tuple, | |||||
* specifying the stride of the sliding window. | |||||
* @li pads: A required list or tuple | |||||
* @li padding: A required string, window sliding mode. Either SAME or VALID. | |||||
* @li data_format: An optional string. | |||||
* Format of the original input, either NCDHW or NDHWC. Defaults to NDHWC. | |||||
* @attention Constraints: | |||||
* @li Only the Ascend 910 platform is supported. | |||||
* @li "orig_x" and "grads" must have the same shape. | |||||
* @li "orig_y" and "y" must have the same shape. Otherwise, an error is reported. | |||||
* @li "orig_x", "orig_y", "grads", and "y" must be NDC1HWC0 tensors. | |||||
* @par Outputs: | |||||
* @li y: Result tensor of type float16 | |||||
* @par Third-party framework compatibility | |||||
* @li Compatible with the TensorFlow operator MaxPool3DGradGrad. | |||||
*/ | |||||
REG_OP(MaxPool3DGradGrad) | |||||
.INPUT(orig_x, TensorType::RealNumberType()) | |||||
.INPUT(orig_y, TensorType::RealNumberType()) | |||||
.INPUT(grads, TensorType::RealNumberType()) | |||||
.OUTPUT(y, TensorType::RealNumberType()) | |||||
.REQUIRED_ATTR(ksize, ListInt) | |||||
.REQUIRED_ATTR(strides, ListInt) | |||||
.REQUIRED_ATTR(pads, ListInt) | |||||
.ATTR(data_format, String, "NDHWC") | |||||
.OP_END_FACTORY_REG(MaxPool3DGradGrad) | |||||
/** | /** | ||||
* @brief Computes gradients of the maxpooling function. | * @brief Computes gradients of the maxpooling function. | ||||
@@ -320,10 +239,9 @@ REG_OP(MaxPoolGrad) | |||||
* @brief Computes second-order gradients of the maxpooling function. | * @brief Computes second-order gradients of the maxpooling function. | ||||
* @par Inputs: | * @par Inputs: | ||||
* @li x1: Original forward input tensor. Supported type:float, double, int32, | |||||
* uint8, int16, int8, int64, uint16, half, uint32, uint64. | |||||
* @li x2: Has the same type and format as input "x1". | |||||
* @li grad:Has the same type and format as input "x1". | |||||
* @li x1: Original forward input tensor of type RealNumberType | |||||
* @li x2: Original forward output tensor of type RealNumberType | |||||
* @li grad: Gradient tensor of type RealNumberType | |||||
* @par Attributes: | * @par Attributes: | ||||
* @li ksize: A required list or tuple, | * @li ksize: A required list or tuple, | ||||
@@ -344,7 +262,7 @@ REG_OP(MaxPoolGrad) | |||||
* @li Other dimensions of ksize and strides is 1. | * @li Other dimensions of ksize and strides is 1. | ||||
* @par Outputs: | * @par Outputs: | ||||
* @li y: Has the same type and format as input "x1". | |||||
* @li y: Result tensor of type RealNumberType | |||||
* @par Third-party framework compatibility | * @par Third-party framework compatibility | ||||
* @li Compatible with the TensorFlow operator MaxPoolGradGrad. | * @li Compatible with the TensorFlow operator MaxPoolGradGrad. | ||||
@@ -480,55 +398,18 @@ REG_OP(MaxPoolGradWithArgmax) | |||||
.OP_END_FACTORY_REG(MaxPoolGradWithArgmax) | .OP_END_FACTORY_REG(MaxPoolGradWithArgmax) | ||||
/** | /** | ||||
*@brief Performs transform mask to argmax. | |||||
*@par Inputs: | |||||
* Two input: | |||||
*x: An NC1HWC0 Tensor of type float16. | |||||
*mask: An NC1HWC0 Tensor of type uint16. | |||||
*@par Attributes: | |||||
*@li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for each dimension of the input tensor. No default value. | |||||
*@li strides: A required list of int8, int16, int32, or int64 values, specifying the stride of the sliding window for each dimension of the input tensor. No default value. | |||||
*@li padding: A required string. No default value. | |||||
*@par Outputs: | |||||
*argmax: An NC1HWC0 Tensor of type int32. | |||||
*@attention Constraints: | |||||
*@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, ksize[1] * ksize[2] <= 255. | |||||
*@li "stride is a list that has length 4: strides[0] = 1 or strides[3] = 1, strides[1] <= 63, strides[0] >= 1, strides[2] <= 63, strides[2] >= 1. | |||||
*@li "padding" is either "SAME" or "VALID". | |||||
*@par Third-party framework compatibility | |||||
* Compatible with the TensorFlow operator Mask2Argmax. | |||||
*/ | |||||
REG_OP(Mask2Argmax) | |||||
.INPUT(x, TensorType::RealNumberType()) | |||||
.INPUT(mask, TensorType::IndexNumberType()) | |||||
.OUTPUT(argmax, TensorType::IndexNumberType()) | |||||
.REQUIRED_ATTR(ksize, ListInt) | |||||
.REQUIRED_ATTR(strides, ListInt) | |||||
.REQUIRED_ATTR(padding, String) | |||||
.REQUIRED_ATTR(originshape, ListInt) | |||||
.OP_END_FACTORY_REG(Mask2Argmax) | |||||
/** | |||||
* @brief Computes second-order gradients of the maxpooling function. | * @brief Computes second-order gradients of the maxpooling function. | ||||
* @par Inputs: | * @par Inputs: | ||||
* @li x: Original forward input tensor. Supported type: float, double, int32, | |||||
* uint8, int16, int8, int64, uint16, half, uint32, uint64. | |||||
* @li grad: Gradient tensor. Supported type: float, double, int32, | |||||
* uint8, int16, int8, int64, uint16, half, uint32, uint64. | |||||
* @li argmax: An tensor of type int32 or int64. | |||||
* @li x: Original forward input tensor of type RealNumberType | |||||
* @li grad: Gradient tensor of type RealNumberType | |||||
* @li argmax: An tensor of type IndexNumberType | |||||
* @par Attributes: | * @par Attributes: | ||||
* @li ksize: A required list, specifying the size of the sliding window. | * @li ksize: A required list, specifying the size of the sliding window. | ||||
* @li strides: A required list, specifying the stride of the sliding window. | * @li strides: A required list, specifying the stride of the sliding window. | ||||
* @li padding: A required string, window sliding mode. Either SAME or VALID. | * @li padding: A required string, window sliding mode. Either SAME or VALID. | ||||
* @par Outputs: | * @par Outputs: | ||||
* @li y:Result tensor. Supported type: float, double, int32, | |||||
* uint8, int16, int8, int64, uint16, half, uint32, uint64 | |||||
* @li y:Result tensor of type RealNumberType | |||||
* @attention Constraints: | * @attention Constraints: | ||||
* @li Only the cloud platform is supported. | * @li Only the cloud platform is supported. | ||||
@@ -650,7 +531,7 @@ REG_OP(MaxPoolGradWithArgmaxCCE) | |||||
* one input, including: | * one input, including: | ||||
*@li x: A tensor of type float16 or float32. | *@li x: A tensor of type float16 or float32. | ||||
*@par Attributes: | *@par Attributes: | ||||
*@li scale: A optional float32, scale factor of x. Defaults to "1.0". | |||||
*@li scale: A optional float, scale factor of x. Defaults to "1.0". | |||||
*@li stride_h: An optional int32, broadcast the axis of h. Defaults to "2". | *@li stride_h: An optional int32, broadcast the axis of h. Defaults to "2". | ||||
*@li stride_w: An optional int32, broadcast the axis of w. Defaults to "2". | *@li stride_w: An optional int32, broadcast the axis of w. Defaults to "2". | ||||
*@par Outputs: | *@par Outputs: | ||||
@@ -868,186 +749,7 @@ REG_OP(DataFormatVecPermute) | |||||
.ATTR(dst_format, String, "NCHW") | .ATTR(dst_format, String, "NCHW") | ||||
.OP_END_FACTORY_REG(DataFormatVecPermute) | .OP_END_FACTORY_REG(DataFormatVecPermute) | ||||
/** | |||||
* @brief Computes gradients of the MaxPool3D function. | |||||
* @par Inputs: | |||||
* @li orig_x: A mutable NDC1HWC0 tensor of type float16. | |||||
* @li orig_y: A mutable NDC1HWC0 tensor of type float16. | |||||
* @li grads: A mutable NDC1HWC0 tensor of type float16. | |||||
* @par Attributes: | |||||
* @li ksize: A required tuple or list, specifying the size of the window for | |||||
* each dimension of the input tensor. | |||||
* @li strides: A required tuple or list, specifying the stride of the sliding | |||||
* window for each dimension of the input tensor. | |||||
* @li pads: A list of 6 ints. Supports only padding along the D, | |||||
* H and W dimensions in sequence of head, tail, top, bottom, left and right. | |||||
* to use. | |||||
* @li data_format: An optional string, Specify the data format of the input and | |||||
* output data. With the default format "NDHWC". | |||||
* @par Outputs: | |||||
* y: A mutable tensor. Has the same shape as "orig_x", but type is float32. | |||||
* @par Third-party framework compatibility | |||||
* Compatible with the TensorFlow operator MaxPool3DGrad. | |||||
*/ | |||||
REG_OP(MaxPool3DGrad) | |||||
.INPUT(orig_x, TensorType::RealNumberType()) | |||||
.INPUT(orig_y, TensorType::RealNumberType()) | |||||
.INPUT(grads, TensorType::RealNumberType()) | |||||
.OUTPUT(y, TensorType::RealNumberType()) | |||||
.REQUIRED_ATTR(ksize, ListInt) | |||||
.REQUIRED_ATTR(strides, ListInt) | |||||
.REQUIRED_ATTR(pads, ListInt) | |||||
.ATTR(data_format, String, "NDHWC") | |||||
.OP_END_FACTORY_REG(MaxPool3DGrad) | |||||
/** | |||||
*@brief Performs AvgPool1D on the input. | |||||
*@par Inputs: | |||||
*x: A Tensor. Must be one of the following types: int8, uint8, int16, int32, int64, float16, float32, float64. | |||||
*@par Attributes: | |||||
*@li ksize: An required int, specifying the size of the window. | |||||
*@li strides: An required int. | |||||
*@li pads: A required tuple or list. | |||||
*@li ceil_mode: An optional bool. Defaults to False. | |||||
*@li count_include_pad: An optional bool. Defaults to False. | |||||
*@par Outputs: | |||||
*y: A Tensor. Has the same type as x. | |||||
*@par Third-party framework compatibility | |||||
*@li compatible with pytorch AvgPool1D operator. | |||||
*/ | |||||
REG_OP(AvgPool1D) | |||||
.INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
.OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
.REQUIRED_ATTR(ksize, Int) | |||||
.REQUIRED_ATTR(strides, Int) | |||||
.REQUIRED_ATTR(pads, ListInt) | |||||
.ATTR(ceil_mode, Bool, false) | |||||
.ATTR(count_include_pad, Bool, false) | |||||
.OP_END_FACTORY_REG(AvgPool1D) | |||||
/** | |||||
*@brief Performs AvgPool1D on the input. | |||||
*@par Inputs: | |||||
*x: A Tensor. Must be one of the following types: int8, uint8, int16, int32, int64, float16, float32, float64. | |||||
*@par Attributes: | |||||
*@li ksize: An required int, specifying the size of the window. | |||||
*@li strides: An required int. | |||||
*@li pads: A required tuple or list. | |||||
*@li ceil_mode: An optional bool. Defaults to False. | |||||
*@li count_include_pad: An optional bool. Defaults to False. | |||||
*@par Outputs: | |||||
*y: A Tensor. Has the same type as x. | |||||
*@par Third-party framework compatibility | |||||
*@li compatible with pytorch AvgPool1D operator. | |||||
*/ | |||||
REG_OP(AvgPool1DD) | |||||
.INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
.INPUT(assist_matrix, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
.OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
.REQUIRED_ATTR(ksize, Int) | |||||
.REQUIRED_ATTR(strides, Int) | |||||
.REQUIRED_ATTR(pads, ListInt) | |||||
.ATTR(ceil_mode, Bool, false) | |||||
.ATTR(count_include_pad, Bool, false) | |||||
.OP_END_FACTORY_REG(AvgPool1DD) | |||||
/** | |||||
*@brief Performs max pooling on the input and outputs both max values and indices. | |||||
*@par Inputs: | |||||
* One input: | |||||
*x: An NC1HWC0 Tensor of type float16. | |||||
*@par Attributes: | |||||
*@li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for | |||||
* each dimension of the input tensor. No default value. | |||||
*@li strides: A required list of int8, int16, int32, or int64 values, specifying the stride of the sliding window for | |||||
* each dimension of the input tensor. No default value. | |||||
*@li pads: A required string. No default value. | |||||
*@li dtype: A optional int. default value is 3. | |||||
*@li dilation: A optional list of int8, int16, int32, or int64 values. | |||||
*@li ceil_mode: A optional bool. default value is false. | |||||
*@par Outputs: | |||||
*y: A Tensor. Has the same type and format as input "x". | |||||
*argmax: A Tensor. type:uint16, format:NC1HWC0. | |||||
*@attention Constraints: | |||||
*@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, ksize[1] * ksize[2] <= 255. | |||||
*@li "strides is a list that has length 4: strides[0] = 1 or strides[3] = 1, strides[1] <= 63, strides[0] >= 1, | |||||
* strides[2] <= 63, strides[2] >= 1. | |||||
*@li "dilation" is a list that has length 4. | |||||
*@li "ceil_mode" is a bool, default is false. | |||||
*@par Third-party framework compatibility | |||||
* Compatible with the TensorFlow operator MaxPoolWithArgmax. | |||||
*/ | |||||
REG_OP(MaxPoolWithArgmaxV2) | |||||
.INPUT(x, TensorType({DT_FLOAT16})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16})) | |||||
.OUTPUT(argmax, TensorType({DT_UINT16})) | |||||
.REQUIRED_ATTR(ksize, ListInt) | |||||
.REQUIRED_ATTR(strides, ListInt) | |||||
.REQUIRED_ATTR(pads, ListInt) | |||||
.ATTR(dtype, Int, 3) | |||||
.ATTR(dilation, ListInt, {1, 1, 1, 1}) | |||||
.ATTR(ceil_mode, Bool, false) | |||||
.OP_END_FACTORY_REG(MaxPoolWithArgmaxV2) | |||||
/** | |||||
*@brief Performs the backpropagation of MaxPoolWithArgmaxV2. | |||||
*@par Inputs: | |||||
* Three inputs, including: | |||||
*@li x: An NC1HWC0 tensor of type float16. | |||||
*@li grad: An NC1HWC0 tensor of type float16. | |||||
*@li argmx: An NC1HWC0 tensor of type uint16 or int64. | |||||
*@par Attributes: | |||||
*@li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for | |||||
* each dimension of the input tensor. No default value. | |||||
*@li strides: A required list of int8, int16, int32, or int64 values, specifying the stride of the sliding window for | |||||
* each dimension of the input tensor. No default value. | |||||
*@li pads: A required string. No default value. | |||||
*@li dtype: A optional int. default value is 3. | |||||
*@li dilation: A optional list of int8, int16, int32, or int64 values. | |||||
*@li ceil_mode: A optional bool. default value is false. | |||||
*@par Outputs: | |||||
*y: A Tensor. Has the same type and format as input "x". | |||||
*@attention Constraints: | |||||
*@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, ksize[1] * ksize[2] <= 255. | |||||
*@li "strides" is a list that has length 4: strides[0] = 1 or strides[3] = 1 | |||||
*@li "dilation" is a list that has length 4. | |||||
*@li "ceil_mode" is a bool, default is false. | |||||
*@see max_pool_grad_with_argmaxv2 | |||||
*@par Third-party framework compatibility | |||||
* Compatible with the TensorFlow operator MaxPoolGradWithArgmaxV2. | |||||
*/ | |||||
REG_OP(MaxPoolGradWithArgmaxV2) | |||||
.INPUT(x, TensorType({DT_FLOAT16})) | |||||
.INPUT(grad, TensorType({DT_FLOAT16})) | |||||
.INPUT(argmax, TensorType({DT_UINT16})) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16})) | |||||
.REQUIRED_ATTR(ksize, ListInt) | |||||
.REQUIRED_ATTR(strides, ListInt) | |||||
.REQUIRED_ATTR(pads, ListInt) | |||||
.ATTR(dtype, Int, 3) | |||||
.ATTR(dilation, ListInt, {1,1,1,1}) | |||||
.ATTR(ceil_mode, Bool, false) | |||||
.OP_END_FACTORY_REG(MaxPoolGradWithArgmaxV2) | |||||
} // namespace ge | } // namespace ge | ||||
#endif // GE_OP_NN_POOLING_OPS_H | #endif // GE_OP_NN_POOLING_OPS_H |
@@ -1508,7 +1508,7 @@ REG_OP(ApplyProximalAdagradD) | |||||
*@par Attributes: | *@par Attributes: | ||||
*use_locking: An optional bool. Defaults to "False".\n | *use_locking: An optional bool. Defaults to "False".\n | ||||
* If "True", updating of the var and accum tensors will be protected by a lock; \n | * If "True", updating of the var and accum tensors will be protected by a lock; \n | ||||
* If "False", the behavior is undefined, but may exhibit less contention. | |||||
* If "False", the behavior is undefined, but may exhibit less contention. | |||||
*@par Outputs: | *@par Outputs: | ||||
*var: A mutable Tensor. Has the same type as "var". | *var: A mutable Tensor. Has the same type as "var". | ||||
@@ -83,7 +83,7 @@ REG_OP(TanhGrad) | |||||
*@par Inputs: | *@par Inputs: | ||||
*One input: | *One input: | ||||
*x: A Tensor. Must be one of the following types: float16, float32, complex64, complex128, double. | |||||
*x: A Tensor. Must be one of the following types: float16, float32, complex64, complex128, int32, int64 | |||||
*@par Outputs: | *@par Outputs: | ||||
*y: A Tensor. Has the same type as "x". | *y: A Tensor. Has the same type as "x". | ||||
@@ -184,7 +184,7 @@ REG_OP(Relu6Grad) | |||||
* @brief Compute sigmoid of "x" element-wise. | * @brief Compute sigmoid of "x" element-wise. | ||||
* @par Inputs: | * @par Inputs: | ||||
* A Tensor of type complex64, complex128, float16, float32 or double. | |||||
* A Tensor of type UnaryDataType. | |||||
* @par Outputs: | * @par Outputs: | ||||
* A Tensor. Has the same type as "x". | * A Tensor. Has the same type as "x". | ||||
@@ -220,7 +220,7 @@ REG_OP(SigmoidGrad) | |||||
*if x>0, x+log(1+exp(-x)); otherwise log(1+exp(x)). | *if x>0, x+log(1+exp(-x)); otherwise log(1+exp(x)). | ||||
*@par Inputs: | *@par Inputs: | ||||
*x: A Tensor of type double, float16 or float32. | |||||
*x: A Tensor of type float16 or float32. | |||||
*@par Outputs: | *@par Outputs: | ||||
*y: A tensor. Has the same type and format as input "x". | *y: A tensor. Has the same type and format as input "x". | ||||
@@ -442,7 +442,7 @@ REG_OP(PReluGrad) | |||||
*x: A float16, float32 or double, for the input data type. | *x: A float16, float32 or double, for the input data type. | ||||
*@par Attributes: | *@par Attributes: | ||||
*alpha: A float32. Defines at which negative value the ELU saturates. Defaults to "1.0". | |||||
*alpha: A float. Defines at which negative value the ELU saturates. Defaults to "1.0". | |||||
*@par Outputs: | *@par Outputs: | ||||
*y: A float16, float32 or double, for the normalized result. | *y: A float16, float32 or double, for the normalized result. | ||||
@@ -673,7 +673,7 @@ REG_OP(ReduceAnyD) | |||||
*@par Attributes: | *@par Attributes: | ||||
*@li operation: An optional int32 from 1(SUM), 2(ASUM), 3(SUMSQ), and 4(MEAN), | *@li operation: An optional int32 from 1(SUM), 2(ASUM), 3(SUMSQ), and 4(MEAN), | ||||
*specifying the reduction algorithm. Defaults to "1". | |||||
*specifying the reduction algorithm. Defaults to 1. | |||||
*@li axis: An optional int32, specifying the first axis to reduce. Defaults to "0". | *@li axis: An optional int32, specifying the first axis to reduce. Defaults to "0". | ||||
*The value range is [-N, N-1], where N is the input tensor rank. | *The value range is [-N, N-1], where N is the input tensor rank. | ||||
*@li coeff: An optional float32, specifying the scale coefficient. Defaults to "1.0". | *@li coeff: An optional float32, specifying the scale coefficient. Defaults to "1.0". | ||||
@@ -745,190 +745,7 @@ REG_OP(EuclideanNormD) | |||||
.ATTR(keep_dims, Bool, false) | .ATTR(keep_dims, Bool, false) | ||||
.OP_END_FACTORY_REG(EuclideanNormD) | .OP_END_FACTORY_REG(EuclideanNormD) | ||||
/** | |||||
*@brief Performs instance normalization for inference. | |||||
*@par Inputs:\n | |||||
* Five inputs, including: (NC1HWC0 supported) | |||||
*@li x: A Tensor of type float16 or float32. | |||||
*@li gamma: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling gamma. | |||||
*@li beta: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling beta. | |||||
*@li mean: A [N, C1, 1, 1, C0] ensor of type float32, for the mean. | |||||
*@li variance: A [N, C1, 1, 1, C0] Tensor of type float32, for the variance. | |||||
*@par Attributes: | |||||
*epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. | |||||
Defaults to "0.00001". | |||||
*@par Outputs:\n | |||||
*y: A Tensor of type float16 or float32 for the normalized "x". | |||||
*batch_mean: A Tensor of type float32 for the result mean. | |||||
*batch_ variance: A Tensor of type float32 for the result variance. | |||||
*@attention Constraints: | |||||
*For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. | |||||
*/ | |||||
REG_OP(INInferV2) | |||||
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OPTIONAL_INPUT(gamma, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(beta, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(mean, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(variance, TensorType({DT_FLOAT})) | |||||
.ATTR(epsilon, Float, 0.00001) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(batch_mean, TensorType({DT_FLOAT})) | |||||
.OUTPUT(batch_variance, TensorType({DT_FLOAT})) | |||||
.OP_END_FACTORY_REG(INInferV2) | |||||
/** | |||||
*@brief Performs reduced instance normalization. | |||||
*@par Inputs:\n | |||||
*x: A Tensor of type float16 or float32, with format NC1HWC0. | |||||
*@par Outputs: | |||||
*@li sum: A Tensor of type float32 for SUM reduced "x". | |||||
*@li square_sum: A Tensor of type float32 for SUMSQ reduced "x". | |||||
*@attention Constraints:\n | |||||
* This operator is a InstanceNorm fusion operator for updating the moving averages for training. \n | |||||
* This operator is used in conjunction with INTrainingUpdateV2. | |||||
*/ | |||||
REG_OP(INTrainingReduceV2) | |||||
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(sum, TensorType({DT_FLOAT})) | |||||
.OUTPUT(square_sum, TensorType({DT_FLOAT})) | |||||
.OP_END_FACTORY_REG(INTrainingReduceV2) | |||||
/** | |||||
*@brief Performs update instance normalization. | |||||
*@par Inputs:\n | |||||
* Seven inputs, including: (NC1HWC0supported) | |||||
*@li x: A Tensor of type float16 or float32. | |||||
*@li sum: A T [N, C1, 1, 1, C0] ensor of type float32 for the output of operator INTrainingReduceV2. | |||||
*@li square_sum: A [N, C1, 1, 1, C0] Tensor of type float32 for the output of operator INTrainingReduceV2. | |||||
*@li gamma: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling gamma. | |||||
*@li beta: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling beta. | |||||
*@li mean: A [N, C1, 1, 1, C0] Tensor of type float32, for the updated mean. | |||||
*@li variance: A [N, C1, 1, 1, C0] Tensor of type float32, for the updated variance. | |||||
*@par Attributes: | |||||
*@li momentum: A required float32, specifying the momentum to update mean and var. | |||||
*@li epsilon: A required float32, specifying the small value added to variance to avoid dividing by zero. | |||||
*@par Outputs:\n | |||||
* Three outputs, including: (NC1HWC0 supported) | |||||
*@li y: A Tensor of type float16 or float32, for normalized "x". | |||||
*@li batch_mean: A Tensor of type float32, for the updated mean. | |||||
*@li batch_variance: A Tensor of type float32, for the updated variance. | |||||
*@attention Constraints: | |||||
*@li This operator is a InstanceNorm fusion operator for updating the moving averages for training. \n | |||||
* This operator is used in conjunction with INTrainingReduceV2. | |||||
*@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. | |||||
*/ | |||||
REG_OP(INTrainingUpdateV2) | |||||
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(sum, TensorType({DT_FLOAT})) | |||||
.INPUT(square_sum, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(gamma, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(beta, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(mean, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(variance, TensorType({DT_FLOAT})) | |||||
.ATTR(momentum, Float, 0.1) | |||||
.ATTR(epsilon, Float, 0.00001) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(batch_mean, TensorType({DT_FLOAT})) | |||||
.OUTPUT(batch_variance, TensorType({DT_FLOAT})) | |||||
.OP_END_FACTORY_REG(INTrainingUpdateV2) | |||||
/** | |||||
*@brief Performs reduced group normalization. | |||||
*@par Inputs:\n | |||||
*x: A Tensor of type float16 or float32, with format NCHW NHWC. | |||||
*@par Outputs: | |||||
*@li sum: A Tensor of type float32 for SUM reduced "x". | |||||
*@li square_sum: A Tensor of type float32 for SUMSQ reduced "x". | |||||
*@par Attributes: | |||||
*@li num_groups: Int, specifying the num of groups. required, same to GNTrainingUpdate. | |||||
*@attention Constraints:\n | |||||
* This operator is a GroupNorm fusion operator for updating the moving averages for training. \n | |||||
* This operator is used in conjunction with GNTrainingUpdate. | |||||
*/ | |||||
REG_OP(GNTrainingReduce) | |||||
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(sum, TensorType({DT_FLOAT})) | |||||
.OUTPUT(square_sum, TensorType({DT_FLOAT})) | |||||
.ATTR(num_groups, Int, 2) | |||||
.OP_END_FACTORY_REG(GNTrainingReduce) | |||||
/** | |||||
*@brief Performs update group normalization. | |||||
*@par Inputs:\n | |||||
* Eight inputs, including: (NCHW NHWC supported) | |||||
*@li x: A Tensor of type float16 or float32. | |||||
*@li sum: A 5D Tensor of type float32, | |||||
shape is [N, G, D, 1, 1] for NCHW, [N, 1, 1, G, D] for NHWC | |||||
for the output of operator GNTrainingReduce. | |||||
*@li square_sum: A 5D Tensor of type float32, | |||||
shape is [N, G, D, 1, 1] for NCHW, [N, 1, 1, G, D] for NHWC | |||||
for the output of operator GNTrainingReduce. | |||||
*@li scale: A 5D Tensor of type float32, | |||||
shape is [1, G, D, 1, 1] for NCHW, [1, 1, 1, G, D] for NHWC | |||||
is for the scaling gamma. | |||||
*@li offset: A 5D Tensor of type float32, | |||||
shape is [1, G, D, 1, 1] for NCHW, [1, 1, 1, G, D] for NHWC | |||||
for the scaling beta. | |||||
*@li mean: A 5D Tensor of type float32, | |||||
shape is [N, G, D, 1, 1] for NCHW, [N, 1, 1, G, D] for NHWC | |||||
for the updated mean. | |||||
*@li variance: A 5D Tensor of type float32, | |||||
shape is [N, G, D, 1, 1] for NCHW, [N, 1, 1, G, D] for NHWC | |||||
for the updated variance. | |||||
*@par Attributes: | |||||
*@li epsilon: A float32, specifying the small value added to variance to avoid dividing by zero. | |||||
*@li num_groups: Int, specifying the num of groups. required, same to GNTrainingReduce | |||||
*@par Outputs:\n | |||||
* Three outputs, including: (NC1HWC0 supported) | |||||
*@li y: A Tensor of type float16 or float32, for normalized "x". | |||||
*@li batch_mean: A Tensor of type float32, for the updated mean. | |||||
*@li batch_variance: A Tensor of type float32, for the updated variance. | |||||
*@attention Constraints: | |||||
*@li This operator is a InstanceNorm fusion operator for updating the moving averages for training. \n | |||||
* This operator is used in conjunction with GNTrainingUpdate. | |||||
*@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. | |||||
*/ | |||||
REG_OP(GNTrainingUpdate) | |||||
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.INPUT(sum, TensorType({DT_FLOAT})) | |||||
.INPUT(square_sum, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(scale, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(offset, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(mean, TensorType({DT_FLOAT})) | |||||
.OPTIONAL_INPUT(variance, TensorType({DT_FLOAT})) | |||||
.ATTR(num_groups, Int, 2) | |||||
.ATTR(epsilon, Float, 0.0001) | |||||
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
.OUTPUT(batch_mean, TensorType({DT_FLOAT})) | |||||
.OUTPUT(batch_variance, TensorType({DT_FLOAT})) | |||||
.OP_END_FACTORY_REG(GNTrainingUpdate) | |||||
} //namespace ge | } //namespace ge | ||||
#endif /* GE_OP_REDUCE_OPS_H */ | #endif /* GE_OP_REDUCE_OPS_H */ |
@@ -67,13 +67,6 @@ REG_OP(BasicLSTMCell) | |||||
.ATTR(activation, String, "tanh") | .ATTR(activation, String, "tanh") | ||||
.OP_END_FACTORY_REG(BasicLSTMCell) | .OP_END_FACTORY_REG(BasicLSTMCell) | ||||
REG_OP(DynamicLSTM) | |||||
.INPUT(x, TensorType({DT_FLOAT32})) | |||||
.INPUT(w, TensorType({DT_FLOAT32})) | |||||
.INPUT(b, TensorType({DT_FLOAT32})) | |||||
.OUTPUT(output_h, TensorType({DT_FLOAT32})) | |||||
.OP_END_FACTORY_REG(DynamicLSTM) | |||||
/** | /** | ||||
*@brief: Basic LSTM Cell backward calculation.Calculate the gradient of input and hidden state. | *@brief: Basic LSTM Cell backward calculation.Calculate the gradient of input and hidden state. | ||||
*@par Inputs: | *@par Inputs: | ||||
@@ -94,7 +87,7 @@ REG_OP(BasicLSTMCellInputGrad) | |||||
.INPUT(dgate, TensorType({DT_FLOAT16})) | .INPUT(dgate, TensorType({DT_FLOAT16})) | ||||
.INPUT(w, TensorType({DT_FLOAT16})) | .INPUT(w, TensorType({DT_FLOAT16})) | ||||
.OPTIONAL_INPUT(dropout_mask, TensorType({DT_UINT8})) | .OPTIONAL_INPUT(dropout_mask, TensorType({DT_UINT8})) | ||||
.OUTPUT(dxt, TensorType({DT_FLOAT16, DT_FLOAT32})) | |||||
.OUTPUT(dxt, TensorType({DT_FLOAT16})) | |||||
.OUTPUT(dht, TensorType({DT_FLOAT16, DT_FLOAT32})) | .OUTPUT(dht, TensorType({DT_FLOAT16, DT_FLOAT32})) | ||||
.ATTR(keep_prob, Float, 1.0) | .ATTR(keep_prob, Float, 1.0) | ||||
.OP_END_FACTORY_REG(BasicLSTMCellInputGrad) | .OP_END_FACTORY_REG(BasicLSTMCellInputGrad) | ||||
@@ -89,8 +89,7 @@ REG_OP(RangeD) | |||||
*@par Inputs: | *@par Inputs: | ||||
*Two inputs, including: | *Two inputs, including: | ||||
* @li x: A Tensor. | |||||
* Must be one of the following types: float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | |||||
* @li x: A Tensor of type TensorType::BasicType(). | |||||
* @li multiples: A 1D Tensor of type int32 or int64. | * @li multiples: A 1D Tensor of type int32 or int64. | ||||
* The length must be the same as the number of dimensions in "input" | * The length must be the same as the number of dimensions in "input" | ||||
@@ -497,7 +496,7 @@ REG_OP(UnsortedSegmentSumD) | |||||
*@par Inputs: | *@par Inputs: | ||||
* Two inputs, including:\n | * Two inputs, including:\n | ||||
*@li x: An ND Tensor (up to 8D). \n | *@li x: An ND Tensor (up to 8D). \n | ||||
*Must be one of the following types: int8, uint8, int16, uint16, int32, int64, bool, float16, float32, double, complex64, complex128, string. | |||||
*Must be one of the following types: int8, uint8, int16, uint16, int32, int64, bool, float32, double | |||||
*@li axis: A 1D Tensor.\n | *@li axis: A 1D Tensor.\n | ||||
*Must be one of the following types: int32, int64 | *Must be one of the following types: int32, int64 | ||||
@@ -1560,14 +1559,14 @@ REG_OP(ProposalD) | |||||
* If reverse=false: (N, H, W, C)->(N, H/stride, W/stride, C*(stride*stride)) | * If reverse=false: (N, H, W, C)->(N, H/stride, W/stride, C*(stride*stride)) | ||||
*@par Inputs: | *@par Inputs: | ||||
*x: An (N, H, W, C) tensor. Type is float16, float32, int8, uint8, int16, uint16, int32, uint32, int64 or uint64.. | |||||
*x: An (N, H, W, C) tensor. All types except double are supported. | |||||
*@par Attributes: | *@par Attributes: | ||||
*@li stride: An optional int32, specifying the plane or channel scaling factor. Defaults to "2". | *@li stride: An optional int32, specifying the plane or channel scaling factor. Defaults to "2". | ||||
*@li reverse: An optional bool, specifying the conversion mode. If "true", depth to space conversion is performed. If "false", space to depth conversion is performed. Defaults to "false". | *@li reverse: An optional bool, specifying the conversion mode. If "true", depth to space conversion is performed. If "false", space to depth conversion is performed. Defaults to "false". | ||||
*@par Outputs: | *@par Outputs: | ||||
*y: An (N, H, W, C) tensor. Has same type as "x". | |||||
*y: An (N, H, W, C) tensor. All types except double are supported. | |||||
*@attention Constraints: | *@attention Constraints: | ||||
*@li If reverse=true: C/(stride*stride) yields an integer result. If reverse=false: W/stride and H/stride yield integer results. | *@li If reverse=true: C/(stride*stride) yields an integer result. If reverse=false: W/stride and H/stride yield integer results. | ||||
@@ -1594,7 +1593,7 @@ REG_OP(PassThrough) | |||||
* @li x: A required Tensor. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32,int64, uint64. | * @li x: A required Tensor. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32,int64, uint64. | ||||
* @li size: A required Tensor. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64. | * @li size: A required Tensor. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64. | ||||
*@par Attributes: | *@par Attributes: | ||||
*@li axis: A required int32, specifying the first dimension to crop. Defaults to "2". | |||||
*@li axis: A required int32, specifying the first dimension to crop. | |||||
*@li offset: A required array, specifying the shift for all/each dimension to align the cropped bottom with the reference bottom. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64. | *@li offset: A required array, specifying the shift for all/each dimension to align the cropped bottom with the reference bottom. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64. | ||||
*@par Outputs: | *@par Outputs: | ||||
*y: A required Tensor. Has the same type and shape as "size". | *y: A required Tensor. Has the same type and shape as "size". | ||||
@@ -25,11 +25,11 @@ namespace ge { | |||||
*@par Inputs: | *@par Inputs: | ||||
* Two inputs, including: | * Two inputs, including: | ||||
*@li x: An ND Tensor. | *@li x: An ND Tensor. | ||||
*Must be one of the types:float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | |||||
*Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64 | |||||
*@li split_dim: Must be the following type:int32. Specifies the dimension along which to split. | *@li split_dim: Must be the following type:int32. Specifies the dimension along which to split. | ||||
*@par Attributes: | *@par Attributes: | ||||
*num_split: A required int32. Specifies the number of output tensors. No default value. | |||||
*num_split: A required int8, int16, int32, or int64. Specifies the number of output tensors. No default value. | |||||
*@par Outputs: | *@par Outputs: | ||||
*y: Dynamic output.A list of output tensors. Has the same type and format as "x". | *y: Dynamic output.A list of output tensors. Has the same type and format as "x". | ||||
@@ -186,7 +186,6 @@ REG_OP(ParallelConcat) | |||||
*@par Attributes: | *@par Attributes: | ||||
*concat_dim: A required int8, int16, int32, or int64. Specifies the dimension along which to concatenate. No default value. | *concat_dim: A required int8, int16, int32, or int64. Specifies the dimension along which to concatenate. No default value. | ||||
*N: An attribute int8, int16, int32, or int64. Specifies the number of elements in "x". Defaults to "1". | |||||
*@par Outputs: | *@par Outputs: | ||||
*y: A Tensor. Has the same type and format as "x". | *y: A Tensor. Has the same type and format as "x". | ||||
@@ -268,9 +267,7 @@ REG_OP(ConcatD) | |||||
*@par Inputs: | *@par Inputs: | ||||
* Two inputs, including: | * Two inputs, including: | ||||
*@li x: Dynamic input.An NC1HWC0 or ND Tensor. | *@li x: Dynamic input.An NC1HWC0 or ND Tensor. | ||||
*Must be one of the following types: float16, float32, double, int32, | |||||
* uint8, int16, int8, complex64, int64, qint8, quint8, qint32, uint16, | |||||
* complex128, uint32, uint64, qint16, quint16. | |||||
*Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64 | |||||
*@li concat_dim: An int32, or int64. Specifies the dimension along which to concatenate. | *@li concat_dim: An int32, or int64. Specifies the dimension along which to concatenate. | ||||
*@par Attributes: | *@par Attributes: | ||||
@@ -94,13 +94,6 @@ REG_OP(Transpose) | |||||
.OUTPUT(y, TensorType::BasicType()) | .OUTPUT(y, TensorType::BasicType()) | ||||
.OP_END_FACTORY_REG(Transpose) | .OP_END_FACTORY_REG(Transpose) | ||||
REG_OP(TransData) | |||||
.INPUT(src, TensorType::BasicType()) | |||||
.OUTPUT(dst, TensorType::BasicType()) | |||||
.REQUIRED_ATTR(src_format, String) | |||||
.REQUIRED_ATTR(dst_format, String) | |||||
.OP_END_FACTORY_REG(TransData) | |||||
/** | /** | ||||
*@brief Permutes the dimensions according to order.\n | *@brief Permutes the dimensions according to order.\n | ||||
The returned tensor's dimension i will correspond to the input dimension order[i]. | The returned tensor's dimension i will correspond to the input dimension order[i]. | ||||
@@ -109,7 +102,7 @@ REG_OP(TransData) | |||||
*x: A Tensor. Must be one of the following types: float16, float32. | *x: A Tensor. Must be one of the following types: float16, float32. | ||||
*@par Attributes: | *@par Attributes: | ||||
*order: A permutation of the dimensions of "x".Type is int32.support any axis transformation.Defaults to "{0}" | |||||
*order: A permutation of the dimensions of "x".support any axis transformation | |||||
*@par Outputs: | *@par Outputs: | ||||
*y: A Tensor. Has the same type as "x". | *y: A Tensor. Has the same type as "x". | ||||
@@ -298,7 +291,7 @@ REG_OP(DepthToSpace) | |||||
*@brief Permutes data into spatial data blocks and then prunes them. | *@brief Permutes data into spatial data blocks and then prunes them. | ||||
*@par Inputs: | *@par Inputs: | ||||
*@li x: A 4D Tensor with format NHWC. | |||||
*@li x: A 4D Tensor with format NC1HWC0. | |||||
*@li crops: A 1D list or tuple of int32 or int64. | *@li crops: A 1D list or tuple of int32 or int64. | ||||
*Must be one of the following types: float16, float32 | *Must be one of the following types: float16, float32 | ||||
@@ -307,7 +300,7 @@ REG_OP(DepthToSpace) | |||||
*block_size: A required int8, int16, int32, or int64. No default value. | *block_size: A required int8, int16, int32, or int64. No default value. | ||||
*@par Outputs: | *@par Outputs: | ||||
*y: A 4D Tensor with format NHWC, | |||||
*y: A 4D Tensor with format NC1HWC0, | |||||
* of type float16 or float32. | * of type float16 or float32. | ||||
@@ -372,7 +365,7 @@ REG_OP(BatchToSpaceD) | |||||
*@par Inputs: | *@par Inputs: | ||||
* Two inputs, including: | * Two inputs, including: | ||||
*@li x: An NHWC Tensor. Must be one of the following types: | |||||
*@li x: An NC1HWC0 Tensor. Must be one of the following types: | |||||
* float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, | * float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, | ||||
* int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | * int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | ||||
*@li paddings: A 2D tensor of type int, specifying the input. | *@li paddings: A 2D tensor of type int, specifying the input. | ||||
@@ -396,7 +389,7 @@ REG_OP(SpaceToBatch) | |||||
*@brief Outputs a copy of the input tensor where values from the "height" and "width" dimensions are padded and rearranged to the "batch" dimension. | *@brief Outputs a copy of the input tensor where values from the "height" and "width" dimensions are padded and rearranged to the "batch" dimension. | ||||
*@par Inputs: | *@par Inputs: | ||||
*x: An NHWC Tensor. Must be one of the following types: float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | |||||
*x: An NC1HWC0 Tensor. Must be one of the following types: float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | |||||
*@par Attributes: | *@par Attributes: | ||||
@@ -605,13 +598,6 @@ REG_OP(Compress) | |||||
.OUTPUT(compress_index, TensorType({DT_INT8})) | .OUTPUT(compress_index, TensorType({DT_INT8})) | ||||
.REQUIRED_ATTR(compress_parameters, ListInt) | .REQUIRED_ATTR(compress_parameters, ListInt) | ||||
.OP_END_FACTORY_REG(Compress) | .OP_END_FACTORY_REG(Compress) | ||||
REG_OP(CompressFcOp) | |||||
.INPUT(weight, TensorType({DT_INT8})) | |||||
.OUTPUT(weight_compress, TensorType({DT_INT8})) | |||||
.OUTPUT(compress_index, TensorType({DT_INT8})) | |||||
.REQUIRED_ATTR(compress_parameters, ListInt) | |||||
.OP_END_FACTORY_REG(CompressFcOp) | |||||
} // namespace ge | } // namespace ge | ||||
#endif // GE_OP_TRANSFORMATION_OPS_H | #endif // GE_OP_TRANSFORMATION_OPS_H |