Browse Source

!1300 Update GE commit id

From: @shenwei41
Reviewed-by: @xsmq,@liucunwei
Signed-off-by: @liucunwei
tags/v1.2.0
mindspore-ci-bot Gitee 4 years ago
parent
commit
d9d99c3cf5
81 changed files with 2149 additions and 1438 deletions
  1. +2
    -2
      .gitmodules
  2. +4
    -0
      ge/CMakeLists.txt
  3. +6
    -6
      ge/client/ge_api.cc
  4. +1
    -0
      ge/executor/CMakeLists.txt
  5. +1
    -0
      ge/ge_local_engine/ops_kernel_store/op/ge_deleted_op.cc
  6. +57
    -10
      ge/ge_runtime/task/label_goto_task.cc
  7. +6
    -2
      ge/ge_runtime/task/label_goto_task.h
  8. +31
    -13
      ge/generator/ge_generator.cc
  9. +4
    -0
      ge/graph/build/graph_builder.cc
  10. +35
    -25
      ge/graph/build/logical_stream_allocator.cc
  11. +12
    -3
      ge/graph/build/memory/binary_block_mem_assigner.cc
  12. +111
    -32
      ge/graph/build/memory/block_mem_assigner.cc
  13. +230
    -108
      ge/graph/build/memory/graph_mem_assigner.cc
  14. +3
    -3
      ge/graph/load/model_manager/data_dumper.cc
  15. +25
    -13
      ge/graph/load/model_manager/data_dumper.h
  16. +44
    -5
      ge/graph/load/model_manager/davinci_model.cc
  17. +5
    -0
      ge/graph/load/model_manager/davinci_model.h
  18. +4
    -6
      ge/graph/load/model_manager/model_manager.cc
  19. +33
    -9
      ge/graph/load/model_manager/task_info/label_goto_ex_task_info.cc
  20. +8
    -6
      ge/graph/load/model_manager/task_info/label_goto_ex_task_info.h
  21. +3
    -3
      ge/graph/load/model_manager/task_info/label_set_task_info.h
  22. +8
    -16
      ge/graph/load/model_manager/task_info/label_switch_by_index_task_info.cc
  23. +9
    -11
      ge/graph/load/model_manager/task_info/label_switch_by_index_task_info.h
  24. +32
    -31
      ge/graph/manager/graph_caching_allocator.cc
  25. +28
    -5
      ge/graph/manager/graph_manager.cc
  26. +3
    -1
      ge/graph/manager/graph_manager_utils.h
  27. +11
    -7
      ge/graph/manager/graph_var_manager.cc
  28. +2
    -0
      ge/graph/passes/net_output_pass.cc
  29. +25
    -20
      ge/graph/preprocess/graph_preprocess.cc
  30. +6
    -6
      ge/host_kernels/concat_offset_kernel.cc
  31. +14
    -14
      ge/host_kernels/gather_v2_kernel.cc
  32. +1
    -0
      ge/host_kernels/identity_kernel.cc
  33. +9
    -9
      ge/host_kernels/strided_slice_kernel.cc
  34. +10
    -21
      ge/hybrid/executor/hybrid_model_async_executor.cc
  35. +35
    -6
      ge/hybrid/executor/node_state.cc
  36. +2
    -0
      ge/hybrid/executor/node_state.h
  37. +1
    -1
      ge/hybrid/executor/worker/shape_inference_engine.cc
  38. +14
    -15
      ge/hybrid/model/hybrid_model.cc
  39. +1
    -0
      ge/hybrid/model/hybrid_model.h
  40. +70
    -60
      ge/hybrid/model/hybrid_model_builder.cc
  41. +1
    -0
      ge/hybrid/model/hybrid_model_builder.h
  42. +1
    -0
      ge/hybrid/model/node_item.h
  43. +1
    -0
      ge/hybrid/node_executor/ge_local/ge_local_node_executor.cc
  44. +1
    -1
      ge/hybrid/node_executor/task_context.cc
  45. +226
    -1
      ge/ir_build/atc_ir_common.cc
  46. +9
    -2
      ge/ir_build/atc_ir_common.h
  47. +24
    -18
      ge/ir_build/ge_ir_build.cc
  48. +8
    -2
      ge/offline/main.cc
  49. +7
    -0
      ge/session/omg.cc
  50. +41
    -48
      inc/external/acl/acl_base.h
  51. +166
    -190
      inc/external/acl/acl_mdl.h
  52. +37
    -82
      inc/external/acl/acl_op.h
  53. +19
    -28
      inc/external/acl/acl_op_compiler.h
  54. +23
    -23
      inc/external/acl/acl_prof.h
  55. +62
    -80
      inc/external/acl/acl_rt.h
  56. +12
    -19
      inc/external/acl/acl_tdt.h
  57. +68
    -68
      inc/external/acl/error_codes/rt_error_codes.h
  58. +41
    -138
      inc/external/acl/ops/acl_cblas.h
  59. +8
    -6
      inc/external/acl/ops/acl_fv.h
  60. +4
    -0
      inc/external/ge/ge_api_types.h
  61. +17
    -16
      inc/external/hccl/hccl.h
  62. +42
    -42
      inc/external/hccl/hccl_types.h
  63. +68
    -68
      inc/external/runtime/rt_error_codes.h
  64. +5
    -3
      inc/framework/common/debug/ge_log.h
  65. +4
    -4
      inc/framework/common/debug/log.h
  66. +65
    -63
      inc/framework/common/util.h
  67. +1
    -1
      metadef
  68. +1
    -1
      parser
  69. +7
    -1
      tests/depends/error_manager/src/error_manager_stub.cc
  70. +1
    -1
      tests/depends/mmpa/src/mmpa_stub.cc
  71. +3
    -2
      tests/ut/common/graph/CMakeLists.txt
  72. +6
    -2
      tests/ut/ge/CMakeLists.txt
  73. +17
    -17
      tests/ut/ge/common/format_transfer_fractal_nz_unittest.cc
  74. +8
    -8
      tests/ut/ge/common/format_transfer_nhwc_fractalz_unittest.cc
  75. +29
    -29
      tests/ut/ge/common/format_transfer_unittest.cc
  76. +2
    -2
      tests/ut/ge/common/opdebug_register_unittest.cc
  77. +39
    -0
      tests/ut/ge/generator/ge_generator_unittest.cc
  78. +1
    -1
      tests/ut/ge/graph/load/data_dumper_unittest.cc
  79. +14
    -0
      tests/ut/ge/graph/preprocess/graph_preprocess_unittest.cc
  80. +100
    -0
      tests/ut/ge/graph_ir/ge_ir_build_unittest.cc
  81. +54
    -2
      tests/ut/ge/hybrid/ge_hybrid_unittest.cc

+ 2
- 2
.gitmodules View File

@@ -1,8 +1,8 @@
[submodule "parser"] [submodule "parser"]
path = parser path = parser
url = https://gitee.com/ascend/parser.git url = https://gitee.com/ascend/parser.git
branch = master
branch = r1.3.0
[submodule "metadef"] [submodule "metadef"]
path = metadef path = metadef
url = https://gitee.com/ascend/metadef.git url = https://gitee.com/ascend/metadef.git
branch = master
branch = r1.3.0

+ 4
- 0
ge/CMakeLists.txt View File

@@ -937,6 +937,10 @@ add_library(atc_stub_ge_compiler SHARED


add_dependencies(atc_stub_ge_compiler ge_stub) add_dependencies(atc_stub_ge_compiler ge_stub)


target_compile_options(atc_stub_ge_compiler PRIVATE
-fno-common
)

target_link_libraries(atc_stub_ge_compiler PRIVATE target_link_libraries(atc_stub_ge_compiler PRIVATE
$<BUILD_INTERFACE:intf_pub> $<BUILD_INTERFACE:intf_pub>
) )


+ 6
- 6
ge/client/ge_api.cc View File

@@ -171,17 +171,17 @@ Status GEInitialize(const std::map<AscendString, AscendString> &options) {


// GE finalize, releasing all resources // GE finalize, releasing all resources
Status GEFinalize() { Status GEFinalize() {
ErrorManager::GetInstance().SetStage(ErrorMessage::kFinalize, ErrorMessage::kFinalize);
GELOGT(TRACE_INIT, "GEFinalize start");

ErrorManager::GetInstance().GenWorkStreamIdDefault();
std::lock_guard<std::mutex> lock(g_ge_release_mutex);
// check init status // check init status
if (!g_ge_initialized) { if (!g_ge_initialized) {
GELOGW("GEFinalize is called before GEInitialize");
GELOGW("[FINAL][FINAL]GEFinalize is called before GEInitialize");
return SUCCESS; return SUCCESS;
} }


std::lock_guard<std::mutex> lock(g_ge_release_mutex);
ErrorManager::GetInstance().SetStage(ErrorMessage::kFinalize, ErrorMessage::kFinalize);
ErrorManager::GetInstance().GenWorkStreamIdDefault();
GELOGT(TRACE_INIT, "GEFinalize start");

// call Finalize // call Finalize
Status ret = SUCCESS; Status ret = SUCCESS;
Status middle_ret; Status middle_ret;


+ 1
- 0
ge/executor/CMakeLists.txt View File

@@ -212,6 +212,7 @@ target_link_libraries(ge_executor PRIVATE
add_library(ge_executor_shared SHARED ${SRC_LIST} ${PROTO_HDRS}) add_library(ge_executor_shared SHARED ${SRC_LIST} ${PROTO_HDRS})


target_compile_options(ge_executor_shared PRIVATE target_compile_options(ge_executor_shared PRIVATE
-fno-common
-Werror -Werror
-O2 -O2
-Wno-deprecated-declarations -Wno-deprecated-declarations


+ 1
- 0
ge/ge_local_engine/ops_kernel_store/op/ge_deleted_op.cc View File

@@ -38,6 +38,7 @@ REGISTER_OP_CREATOR(ExpandDims, GeDeletedOp);
REGISTER_OP_CREATOR(Reshape, GeDeletedOp); REGISTER_OP_CREATOR(Reshape, GeDeletedOp);
REGISTER_OP_CREATOR(ReFormat, GeDeletedOp); REGISTER_OP_CREATOR(ReFormat, GeDeletedOp);
REGISTER_OP_CREATOR(Squeeze, GeDeletedOp); REGISTER_OP_CREATOR(Squeeze, GeDeletedOp);
REGISTER_OP_CREATOR(Unsqueeze, GeDeletedOp);
REGISTER_OP_CREATOR(Size, GeDeletedOp); REGISTER_OP_CREATOR(Size, GeDeletedOp);
REGISTER_OP_CREATOR(Shape, GeDeletedOp); REGISTER_OP_CREATOR(Shape, GeDeletedOp);
REGISTER_OP_CREATOR(ShapeN, GeDeletedOp); REGISTER_OP_CREATOR(ShapeN, GeDeletedOp);


+ 57
- 10
ge/ge_runtime/task/label_goto_task.cc View File

@@ -16,14 +16,12 @@


#include "ge_runtime/task/label_goto_task.h" #include "ge_runtime/task/label_goto_task.h"
#include "ge_runtime/task/task_factory.h" #include "ge_runtime/task/task_factory.h"
#include "framework/common/util.h"


namespace ge { namespace ge {
namespace model_runner { namespace model_runner {
LabelGotoTask::LabelGotoTask(const ModelContext &model_context, const std::shared_ptr<LabelGotoTaskInfo> &task_info) LabelGotoTask::LabelGotoTask(const ModelContext &model_context, const std::shared_ptr<LabelGotoTaskInfo> &task_info)
: TaskRepeater<LabelGotoTaskInfo>(model_context, task_info),
task_info_(task_info),
stream_(nullptr),
label_(nullptr) {
: TaskRepeater<LabelGotoTaskInfo>(model_context, task_info), task_info_(task_info) {
if (task_info_ == nullptr) { if (task_info_ == nullptr) {
GELOGW("task_info_ is null!"); GELOGW("task_info_ is null!");
return; return;
@@ -42,29 +40,78 @@ LabelGotoTask::LabelGotoTask(const ModelContext &model_context, const std::share
label_ = label_list[label_id]; label_ = label_list[label_id];
} }


LabelGotoTask::~LabelGotoTask() {}
LabelGotoTask::~LabelGotoTask() {
GE_FREE_RT_LOG(label_info_);
GE_FREE_RT_LOG(index_value_);
}


bool LabelGotoTask::Distribute() { bool LabelGotoTask::Distribute() {
GELOGI("LabelGotoTask Distribute start."); GELOGI("LabelGotoTask Distribute start.");
if (!CheckParamValid()) {
return false;
}

const std::vector<void *> label_list = { label_ };
rtError_t rt_ret = rtMalloc(&index_value_, sizeof(uint64_t), RT_MEMORY_HBM);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rt api failed, ret: %#x", rt_ret);
return false;
}

uint64_t branch_index = 0;
rt_ret = rtMemcpy(index_value_, sizeof(uint64_t), &branch_index, sizeof(uint64_t), RT_MEMCPY_HOST_TO_DEVICE);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rt api failed, ret: %#x", rt_ret);
return false;
}

uint32_t label_info_size = sizeof(rtLabelDevInfo) * label_list.size();
rt_ret = rtMalloc(&label_info_, label_info_size, RT_MEMORY_HBM);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rt api failed, ret: %#x", rt_ret);
return false;
}

rt_ret = rtLabelListCpy(label_list.data(), label_list.size(), label_info_, label_info_size);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rt api failed, ret: %#x", rt_ret);
return false;
}

rt_ret = rtLabelSwitchByIndex(index_value_, label_list.size(), label_info_, stream_);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rt api failed, ret: %#x", rt_ret);
return false;
}

GELOGI("DistributeTask end.");
return true;
}

bool LabelGotoTask::CheckParamValid() {
if (stream_ == nullptr) { if (stream_ == nullptr) {
GELOGE(PARAM_INVALID, "stream is null!"); GELOGE(PARAM_INVALID, "stream is null!");
return false; return false;
} }

if (label_ == nullptr) { if (label_ == nullptr) {
GELOGE(PARAM_INVALID, "label is null!"); GELOGE(PARAM_INVALID, "label is null!");
return false; return false;
} }
rtError_t rt_ret = rtLabelGotoEx(label_, stream_);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret);

if (label_info_ != nullptr) {
GELOGE(PARAM_INVALID, "label_info_ has dirty data.");
return false;
}

if (index_value_ != nullptr) {
GELOGE(PARAM_INVALID, "index_value_ has dirty data.");
return false; return false;
} }


GELOGI("DistributeTask end.");
return true; return true;
} }


REGISTER_TASK(TaskInfoType::LABEL_GOTO, LabelGotoTask, LabelGotoTaskInfo); REGISTER_TASK(TaskInfoType::LABEL_GOTO, LabelGotoTask, LabelGotoTaskInfo);

} // namespace model_runner } // namespace model_runner
} // namespace ge } // namespace ge

+ 6
- 2
ge/ge_runtime/task/label_goto_task.h View File

@@ -31,9 +31,13 @@ class LabelGotoTask : public TaskRepeater<LabelGotoTaskInfo> {
bool Distribute() override; bool Distribute() override;


private: private:
bool CheckParamValid();

std::shared_ptr<LabelGotoTaskInfo> task_info_; std::shared_ptr<LabelGotoTaskInfo> task_info_;
void *stream_;
void *label_;
void *stream_{nullptr};
void *label_{nullptr};
void *label_info_{nullptr};
void *index_value_{nullptr};
}; };
} // namespace model_runner } // namespace model_runner
} // namespace ge } // namespace ge


+ 31
- 13
ge/generator/ge_generator.cc View File

@@ -50,9 +50,13 @@ const char *const kFileNameSuffix = "online";
const char *const kAicpuAllshape = "_AllShape"; const char *const kAicpuAllshape = "_AllShape";
constexpr char const *kAttrSupportDynamicShape = "support_dynamicshape"; constexpr char const *kAttrSupportDynamicShape = "support_dynamicshape";
const int64_t kDynamicDimValue = -2; const int64_t kDynamicDimValue = -2;
const int kDefaultDeviceId = 0;
const int kDefaultJobId = 0;


std::map<ge::OpEngineType, std::string> engine_type_map{ std::map<ge::OpEngineType, std::string> engine_type_map{
{ge::ENGINE_SYS, kEngineNameDefault}, {ge::ENGINE_AICORE, kAIcoreEngine}, {ge::ENGINE_VECTOR, kVectorEngine}};
{ge::ENGINE_SYS, kEngineNameDefault},
{ge::ENGINE_AICORE, kAIcoreEngine},
{ge::ENGINE_VECTOR, kVectorEngine}};


bool ContainsDynamicInpus(const ge::OpDesc &op_desc) { bool ContainsDynamicInpus(const ge::OpDesc &op_desc) {
for (auto &tensor_desc : op_desc.GetAllInputsDescPtr()) { for (auto &tensor_desc : op_desc.GetAllInputsDescPtr()) {
@@ -83,8 +87,9 @@ static Status CheckEngineTypeSupport(const NodePtr &node, OpEngineType engine_ty
} else { } else {
ErrorManager::GetInstance().ATCReportErrMessage("E14001", {"opname", "optype", "value", "reason"}, ErrorManager::GetInstance().ATCReportErrMessage("E14001", {"opname", "optype", "value", "reason"},
{op_desc->GetName(), op_desc->GetType(), "engine type", {op_desc->GetName(), op_desc->GetType(), "engine type",
"it only support kEngineNameDefault/kAIcoreEngine/kVectorEngine"});
GELOGE(FAILED, "CheckEngineType: engine type: %d not support", static_cast<int>(engine_type));
"it only support default/AIcoreEngine/VectorEngine"});
GELOGE(FAILED, "[Check][EngineType]value:%d not support, "
"only support default/AIcoreEngine/VectorEngine now", static_cast<int>(engine_type));
return FAILED; return FAILED;
} }


@@ -188,17 +193,20 @@ static Status AddInputs(const ComputeGraphPtr &graph, const NodePtr &node, const


(void)AttrUtils::SetBool(data_op, "_is_single_op", true); (void)AttrUtils::SetBool(data_op, "_is_single_op", true);


GE_CHK_BOOL_EXEC(data_op->AddInputDesc(tensor) == GRAPH_SUCCESS, return FAILED, "Add input desc fail.");
GE_CHK_BOOL_EXEC(data_op->AddOutputDesc(tensor) == GRAPH_SUCCESS, return FAILED, "Add output desc fail.");
GE_CHK_BOOL_EXEC(data_op->AddInputDesc(tensor) == GRAPH_SUCCESS, return FAILED,
"[Add][InputDesc]fail for node:%s", data_op->GetName().c_str());
GE_CHK_BOOL_EXEC(data_op->AddOutputDesc(tensor) == GRAPH_SUCCESS, return FAILED,
"[Add][OutputDesc]fail for node:%s", data_op->GetName().c_str());
if (attr) { if (attr) {
GE_CHK_BOOL_EXEC(AttrUtils::SetInt(data_op, ATTR_NAME_INDEX, index), return FAILED, "Set index fail.");
GE_CHK_BOOL_EXEC(AttrUtils::SetInt(data_op, ATTR_NAME_INDEX, index), return FAILED,
"[Set][Attr:%s]fail for node:%s", ATTR_NAME_INDEX.c_str(), data_op->GetName().c_str());
} }


ge::NodePtr arg_node = graph->AddNode(data_op); ge::NodePtr arg_node = graph->AddNode(data_op);
GE_CHK_BOOL_EXEC(arg_node != nullptr, return FAILED, "Insert Data node fail.");
GE_CHK_BOOL_EXEC(arg_node != nullptr, return FAILED, "Insert Data node fail");


GE_CHK_STATUS(GraphUtils::AddEdge(arg_node->GetOutDataAnchor(0), node->GetInDataAnchor(index)), GE_CHK_STATUS(GraphUtils::AddEdge(arg_node->GetOutDataAnchor(0), node->GetInDataAnchor(index)),
"Add edge[%s->%s] fail.", data_op->GetName().c_str(), node->GetName().c_str());
"[Add][Edge]fail from node:%s to node:%s", data_op->GetName().c_str(), node->GetName().c_str());


return SUCCESS; return SUCCESS;
} }
@@ -213,20 +221,23 @@ static Status AddOutputs(const ComputeGraphPtr &graph, const NodePtr &node, cons
for (const auto &out_desc : outputs) { for (const auto &out_desc : outputs) {
GeTensorDesc tensor = out_desc.GetTensorDesc(); GeTensorDesc tensor = out_desc.GetTensorDesc();
TensorUtils::SetInputTensor(tensor, true); TensorUtils::SetInputTensor(tensor, true);
GE_CHK_BOOL_EXEC(op_desc->AddInputDesc(tensor) == GRAPH_SUCCESS, return FAILED, "Add input desc fail");
GE_CHK_BOOL_EXEC(op_desc->AddInputDesc(tensor) == GRAPH_SUCCESS, return FAILED,
"[Add][InputDesc]fail for node:%s", op_desc->GetName().c_str());


TensorUtils::SetInputTensor(tensor, false); TensorUtils::SetInputTensor(tensor, false);
TensorUtils::SetOutputTensor(tensor, true); TensorUtils::SetOutputTensor(tensor, true);
GE_CHK_BOOL_EXEC(op_desc->AddOutputDesc(tensor) == GRAPH_SUCCESS, return FAILED, "Add output desc fail");
GE_CHK_BOOL_EXEC(op_desc->AddOutputDesc(tensor) == GRAPH_SUCCESS, return FAILED,
"[Add][OutputDesc]fail for node:%s", op_desc->GetName().c_str());
count++; count++;
} }
GE_CHECK_NOTNULL_EXEC(graph, return PARAM_INVALID); GE_CHECK_NOTNULL_EXEC(graph, return PARAM_INVALID);
ge::NodePtr out_node = graph->AddNode(op_desc); ge::NodePtr out_node = graph->AddNode(op_desc);
GE_CHK_BOOL_EXEC(out_node != nullptr, return FAILED, "Insert Output node fail.");
GE_CHK_BOOL_EXEC(out_node != nullptr, return FAILED,
"[Add][Node:%s]fail in graph:%u", op_desc->GetName().c_str(), graph->GetGraphID());
GE_CHECK_NOTNULL_EXEC(node, return PARAM_INVALID); GE_CHECK_NOTNULL_EXEC(node, return PARAM_INVALID);
for (int32_t i = 0; i < count; ++i) { for (int32_t i = 0; i < count; ++i) {
GE_CHK_STATUS(GraphUtils::AddEdge(node->GetOutDataAnchor(i), out_node->GetInDataAnchor(i)), GE_CHK_STATUS(GraphUtils::AddEdge(node->GetOutDataAnchor(i), out_node->GetInDataAnchor(i)),
"Add edge[%s->%s] fail.", node->GetName().c_str(), out_node->GetName().c_str());
"[Add][Edge]fail from node:%s to node:%s", node->GetName().c_str(), out_node->GetName().c_str());
} }


return SUCCESS; return SUCCESS;
@@ -710,7 +721,7 @@ Status GeGenerator::BuildSingleOp(OpDescPtr &op_desc, const vector<GeTensor> &in
auto node = comp_graph->FindNode(op_desc->GetName()); auto node = comp_graph->FindNode(op_desc->GetName());
Status ret = CheckEngineTypeSupport(node, engine_type); Status ret = CheckEngineTypeSupport(node, engine_type);
if (ret != SUCCESS) { if (ret != SUCCESS) {
GELOGE(ret, "check engine type failed.");
GELOGE(ret, "[Check][EngineType]value:%d for node:%s not support", engine_type, node->GetName().c_str());
return ret; return ret;
} }
} }
@@ -915,6 +926,13 @@ Status GeGenerator::Impl::BuildModel(const Graph &graph, const vector<GeTensor>


static std::atomic<uint64_t> atomic_session_id(0); static std::atomic<uint64_t> atomic_session_id(0);
auto session_id = atomic_session_id.fetch_add(1); auto session_id = atomic_session_id.fetch_add(1);
// This is a temporary add for graph with variable
auto version = static_cast<int32_t>(SessionVersion::ClOUD_VERSION);
ret = VarManager::Instance(session_id)->Init(version, session_id, kDefaultDeviceId, kDefaultJobId);
GELOGI("Start init var instance, session_id %lu", session_id);
if (ret != SUCCESS) {
GELOGW("Failed init var instance, session_id %lu", session_id);
}
if (is_singleop_unregistered_) { if (is_singleop_unregistered_) {
ret = graph_manager_.BuildGraphForUnregisteredOp(graph_id, inputs, ge_root_model, session_id); ret = graph_manager_.BuildGraphForUnregisteredOp(graph_id, inputs, ge_root_model, session_id);
} else { } else {


+ 4
- 0
ge/graph/build/graph_builder.cc View File

@@ -400,6 +400,10 @@ static Status InsertMemcpyNode(const ComputeGraphPtr &graph, const OutDataAnchor
} }


static Status GenerateTaskForConstant(const std::shared_ptr<ComputeGraph> &graph) { static Status GenerateTaskForConstant(const std::shared_ptr<ComputeGraph> &graph) {
if (graph->GetGraphUnknownFlag()) {
GELOGI("Graph %s is unknown graph, ignore gen_task for constant.", graph->GetName().c_str());
return SUCCESS;
}
for (auto &node : graph->GetDirectNode()) { for (auto &node : graph->GetDirectNode()) {
// CONSTANT not generate task, so insert IDENTITY between CONSTANT and NETOUTPUT // CONSTANT not generate task, so insert IDENTITY between CONSTANT and NETOUTPUT
auto op_desc = node->GetOpDesc(); auto op_desc = node->GetOpDesc();


+ 35
- 25
ge/graph/build/logical_stream_allocator.cc View File

@@ -33,13 +33,21 @@ using std::queue;
namespace ge { namespace ge {
LogicalStreamPass::LogicalStreamPass(const string &name) : name_(name) {} LogicalStreamPass::LogicalStreamPass(const string &name) : name_(name) {}


const string &LogicalStreamPass::GetName() const { return name_; }
const string &LogicalStreamPass::GetName() const {
return name_;
}


bool LogicalStreamPass::IsEngineSkip(const Subgraph &subgraph) const { return subgraph.engine_conf.skip_assign_stream; }
bool LogicalStreamPass::IsEngineSkip(const Subgraph &subgraph) const {
return subgraph.engine_conf.skip_assign_stream;
}


bool LogicalStreamPass::IsEngineAttach(const Subgraph &subgraph) const { return subgraph.engine_conf.attach; }
bool LogicalStreamPass::IsEngineAttach(const Subgraph &subgraph) const {
return subgraph.engine_conf.attach;
}


bool LogicalStreamPass::IsEngineIndependent(const Subgraph &subgraph) const { return subgraph.engine_conf.independent; }
bool LogicalStreamPass::IsEngineIndependent(const Subgraph &subgraph) const {
return subgraph.engine_conf.independent;
}


bool LogicalStreamPass::HasStreamLabel(const Subgraph &subgraph) const { bool LogicalStreamPass::HasStreamLabel(const Subgraph &subgraph) const {
return !subgraph.subgraph_info.GetStreamLabel().empty(); return !subgraph.subgraph_info.GetStreamLabel().empty();
@@ -60,14 +68,14 @@ Status AssignByLabelPass::Run(ComputeGraphPtr graph, const vector<SubgraphPtr> &
// Subgraphs of the same stream_label are assigned to the same stream, // Subgraphs of the same stream_label are assigned to the same stream,
// and different stream_labels are assigned new streams. // and different stream_labels are assigned new streams.
auto iter = label_streams.find(stream_label); auto iter = label_streams.find(stream_label);
if (iter != label_streams.end()) {
subgraph->stream_id = iter->second;
} else {
if (iter == label_streams.end()) {
subgraph->stream_id = next_stream; subgraph->stream_id = next_stream;
GELOGI("Assign new stream %ld for label %s.", next_stream, stream_label.c_str()); GELOGI("Assign new stream %ld for label %s.", next_stream, stream_label.c_str());


label_streams.emplace(stream_label, next_stream); label_streams.emplace(stream_label, next_stream);
++next_stream;
next_stream++;
} else {
subgraph->stream_id = iter->second;
} }
changed = true; changed = true;
} }
@@ -92,15 +100,15 @@ Status IndependentStreamPass::Run(ComputeGraphPtr graph, const vector<SubgraphPt
const string &stream_label = subgraph->subgraph_info.GetStreamLabel(); const string &stream_label = subgraph->subgraph_info.GetStreamLabel();
auto &label_streams = engine_streams[engine]; auto &label_streams = engine_streams[engine];
auto iter = label_streams.find(stream_label); auto iter = label_streams.find(stream_label);
if (iter != label_streams.end()) {
subgraph->stream_id = iter->second;
} else {
if (iter == label_streams.end()) {
subgraph->stream_id = next_stream; subgraph->stream_id = next_stream;
GELOGI("Assign new independent stream %ld for engine %s (label: %s).", next_stream, engine.c_str(), GELOGI("Assign new independent stream %ld for engine %s (label: %s).", next_stream, engine.c_str(),
stream_label.c_str()); stream_label.c_str());


label_streams.emplace(stream_label, next_stream); label_streams.emplace(stream_label, next_stream);
++next_stream;
next_stream++;
} else {
subgraph->stream_id = iter->second;
} }
changed = true; changed = true;
} }
@@ -121,7 +129,9 @@ Status AssignByDependencyPass::Run(ComputeGraphPtr graph, const vector<SubgraphP
} }


SubgraphPtr reusable_subgraph = GetReusableSubgraph(subgraph, end_subgraph_map, pld_subgraph_map); SubgraphPtr reusable_subgraph = GetReusableSubgraph(subgraph, end_subgraph_map, pld_subgraph_map);
if (reusable_subgraph != nullptr) {
if (reusable_subgraph == nullptr) {
(void)AssignNewStream(subgraph);
} else {
if (HasAssignedStream(*reusable_subgraph)) { if (HasAssignedStream(*reusable_subgraph)) {
subgraph->stream_id = reusable_subgraph->stream_id; subgraph->stream_id = reusable_subgraph->stream_id;
} else { } else {
@@ -140,8 +150,6 @@ Status AssignByDependencyPass::Run(ComputeGraphPtr graph, const vector<SubgraphP
GELOGI("Subgraph %s of engine %s reuses stream of subgraph %s of engine %s.", subgraph->name.c_str(), GELOGI("Subgraph %s of engine %s reuses stream of subgraph %s of engine %s.", subgraph->name.c_str(),
subgraph->engine_conf.id.c_str(), reusable_subgraph->name.c_str(), subgraph->engine_conf.id.c_str(), reusable_subgraph->name.c_str(),
reusable_subgraph->engine_conf.id.c_str()); reusable_subgraph->engine_conf.id.c_str());
} else {
(void)AssignNewStream(subgraph);
} }
changed = true; changed = true;
} }
@@ -191,13 +199,15 @@ bool AssignByDependencyPass::CouldReuse(const SubgraphPtr &subgraph, const Subgr
auto iter = pld_subgraph_map.find(end_pld_pair.second); auto iter = pld_subgraph_map.find(end_pld_pair.second);
if (iter != pld_subgraph_map.end()) { if (iter != pld_subgraph_map.end()) {
const SubgraphPtr &pred_subgraph_succ = iter->second; const SubgraphPtr &pred_subgraph_succ = iter->second;
if (pred_subgraph_succ != subgraph && pred_subgraph_succ->engine_conf.id == pred_subgraph->engine_conf.id) {
if ((pred_subgraph_succ != subgraph) &&
(pred_subgraph_succ->engine_conf.id == pred_subgraph->engine_conf.id)) {
return false; return false;
} }
} }
} }


if ((subgraph->engine_conf.id == pred_subgraph->engine_conf.id) || IsEngineAttach(*subgraph)) {
if ((subgraph->engine_conf.id == pred_subgraph->engine_conf.id) ||
IsEngineAttach(*subgraph)) {
return true; return true;
} }


@@ -406,7 +416,7 @@ Status UpdateForSkippedEnginePass::Run(ComputeGraphPtr graph, const vector<Subgr
auto op_desc = node->GetOpDesc(); auto op_desc = node->GetOpDesc();
GE_CHECK_NOTNULL(op_desc); GE_CHECK_NOTNULL(op_desc);
auto stream_id = op_desc->GetStreamId(); auto stream_id = op_desc->GetStreamId();
if (stream_id != kInvalidStream && !HasStreamLabel(*subgraph)) {
if ((stream_id != kInvalidStream) && !HasStreamLabel(*subgraph)) {
ops_without_label.emplace(op_desc); ops_without_label.emplace(op_desc);
} }
} }
@@ -463,7 +473,7 @@ Status AllReduceParallelPass::Run(ComputeGraphPtr graph, const vector<SubgraphPt


for (const NodePtr &node : graph->GetDirectNode()) { for (const NodePtr &node : graph->GetDirectNode()) {
if (!IsHcomNode(node->GetType()) || if (!IsHcomNode(node->GetType()) ||
node->GetInDataNodes().size() <= 1) {
(node->GetInDataNodes().size() <= 1)) {
continue; continue;
} }


@@ -575,7 +585,7 @@ Status LogicalStreamAllocator::DoAssign(const ComputeGraphPtr &graph, const Grap
GE_CHECK_NOTNULL(graph); GE_CHECK_NOTNULL(graph);


NodePtr parent_node = graph->GetParentNode(); NodePtr parent_node = graph->GetParentNode();
if (parent_node == nullptr || parent_node->GetOpDesc() == nullptr) {
if ((parent_node == nullptr) || (parent_node->GetOpDesc() == nullptr)) {
context_.default_stream = kInvalidStream; context_.default_stream = kInvalidStream;
} else { } else {
context_.default_stream = parent_node->GetOpDesc()->GetStreamId(); context_.default_stream = parent_node->GetOpDesc()->GetStreamId();
@@ -597,7 +607,7 @@ Status LogicalStreamAllocator::DoAssign(const ComputeGraphPtr &graph, const Grap
return status; return status;
} }


GELOGD("Subgraphs of graph %s:", graph->GetName().c_str());
GELOGD("Subgraphs of graph %s", graph->GetName().c_str());
for (const auto &subgraph : subgraphs) { for (const auto &subgraph : subgraphs) {
if (subgraph != nullptr) { if (subgraph != nullptr) {
GELOGD("subgraph: %s", subgraph->name.c_str()); GELOGD("subgraph: %s", subgraph->name.c_str());
@@ -686,7 +696,7 @@ void LogicalStreamAllocator::RefreshContinuousStreams(const ComputeGraphPtr &gra
auto op_desc = node->GetOpDesc(); auto op_desc = node->GetOpDesc();
if (op_desc != nullptr) { if (op_desc != nullptr) {
int64_t stream_id = op_desc->GetStreamId(); int64_t stream_id = op_desc->GetStreamId();
if (stream_id != kInvalidStream && stream_id < stream_num) {
if ((stream_id != kInvalidStream) && (stream_id < stream_num)) {
stream_has_node[stream_id] = true; stream_has_node[stream_id] = true;
} }
} }
@@ -695,10 +705,10 @@ void LogicalStreamAllocator::RefreshContinuousStreams(const ComputeGraphPtr &gra


context_.next_stream = 0; context_.next_stream = 0;
vector<int64_t> old_to_new_streams(stream_num, kInvalidStream); vector<int64_t> old_to_new_streams(stream_num, kInvalidStream);
for (size_t old_stream = 0; old_stream < stream_has_node.size(); ++old_stream) {
for (size_t old_stream = 0; old_stream < stream_has_node.size(); old_stream++) {
if (stream_has_node[old_stream]) { if (stream_has_node[old_stream]) {
old_to_new_streams[old_stream] = context_.next_stream; old_to_new_streams[old_stream] = context_.next_stream;
++context_.next_stream;
context_.next_stream++;
} }
} }


@@ -706,7 +716,7 @@ void LogicalStreamAllocator::RefreshContinuousStreams(const ComputeGraphPtr &gra
auto op_desc = node->GetOpDesc(); auto op_desc = node->GetOpDesc();
if (op_desc != nullptr) { if (op_desc != nullptr) {
int64_t stream_id = op_desc->GetStreamId(); int64_t stream_id = op_desc->GetStreamId();
if (stream_id != kInvalidStream && stream_id < stream_num) {
if ((stream_id != kInvalidStream) && (stream_id < stream_num)) {
op_desc->SetStreamId(old_to_new_streams[stream_id]); op_desc->SetStreamId(old_to_new_streams[stream_id]);
} }
} }


+ 12
- 3
ge/graph/build/memory/binary_block_mem_assigner.cc View File

@@ -70,7 +70,10 @@ Status BinaryBlockMemAssigner::GetMemoryRanges(vector<int64_t> &range_ceils) {
return SUCCESS; return SUCCESS;
} }
if ((all_memory_size.front() <= 0) || (log(kLogBase) == 0)) { if ((all_memory_size.front() <= 0) || (log(kLogBase) == 0)) {
GELOGE(FAILED, "Memory size:%ld is invalid.", all_memory_size.front());
GELOGE(FAILED, "[Check][MemRangeStep]first mem_range_step:%ld less than 0,invalid,"
"maybe has dynamic shape in graph", all_memory_size.front());
REPORT_INNER_ERROR("E19999", "first mem_range_step:%ld less than 0,invalid,"
"maybe has dynamic shape in graph", all_memory_size.front());
return FAILED; return FAILED;
} }
// Memory size is 512 aligned, so it is not necessary to take less than 512 // Memory size is 512 aligned, so it is not necessary to take less than 512
@@ -81,12 +84,18 @@ Status BinaryBlockMemAssigner::GetMemoryRanges(vector<int64_t> &range_ceils) {
GELOGD("Range number: %zu", range_number); GELOGD("Range number: %zu", range_number);


vector<vector<int64_t>> ranges(range_number); vector<vector<int64_t>> ranges(range_number);
GE_CHK_BOOL_EXEC((range_number != 0), return PARAM_INVALID, "range_number can't be 0.");
GE_CHK_BOOL_EXEC((range_number != 0),
REPORT_INNER_ERROR("E19999", "inner data[range_number] is 0, judge invalid");
return PARAM_INVALID,
"[Check][RangeNumber]inner data is 0, judge invalid.");
size_t range_number_limit = all_memory_size.size() / range_number; size_t range_number_limit = all_memory_size.size() / range_number;
int64_t range_ceil = min_memory_size; int64_t range_ceil = min_memory_size;
for (size_t i = 1; i <= range_number; i++) { for (size_t i = 1; i <= range_number; i++) {
GE_IF_BOOL_EXEC(TypeUtils::CheckUint64MulOverflow(static_cast<uint64_t>(range_ceil), kRangeCeilInterval), GE_IF_BOOL_EXEC(TypeUtils::CheckUint64MulOverflow(static_cast<uint64_t>(range_ceil), kRangeCeilInterval),
GELOGE(FAILED, "Multiply result is out of range.");
GELOGE(FAILED, "[Check][MemRangeCeil]Multiply result is out of range,"
"range_ceil:%ld, interval:%u", range_ceil, kRangeCeilInterval);
REPORT_INNER_ERROR("E19999", "process mem_range_ceil,multiply result out of range,"
"range_ceil:%ld, interval:%u", range_ceil, kRangeCeilInterval);
return FAILED); return FAILED);
range_ceil *= kRangeCeilInterval; // The block size of each interval is doubled every time. range_ceil *= kRangeCeilInterval; // The block size of each interval is doubled every time.
for (auto iter = all_memory_size.begin(); iter != all_memory_size.end();) { for (auto iter = all_memory_size.begin(); iter != all_memory_size.end();) {


+ 111
- 32
ge/graph/build/memory/block_mem_assigner.cc View File

@@ -30,6 +30,7 @@
#include "graph/utils/node_utils.h" #include "graph/utils/node_utils.h"
#include "graph/utils/op_desc_utils.h" #include "graph/utils/op_desc_utils.h"
#include "graph/utils/tensor_utils.h" #include "graph/utils/tensor_utils.h"
#include "graph/utils/type_utils.h"


#include "graph/debug/ge_attr_define.h" #include "graph/debug/ge_attr_define.h"


@@ -457,7 +458,16 @@ Status GetNoAlignSize(const ge::OpDesc &desc, uint32_t index, size_t &size) {
DataType data_type = output_op_desc->GetDataType(); DataType data_type = output_op_desc->GetDataType();
graphStatus graph_status = TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size); graphStatus graph_status = TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size);
if (graph_status != GRAPH_SUCCESS) { if (graph_status != GRAPH_SUCCESS) {
GELOGE(graph_status, "CalcTensorMemSize failed!");
GELOGE(graph_status, "[Calculate][TensorSize]shape:%s, format:%s, data_type:%s, op:%s, out_index:%u",
shape.ToString().c_str(),
TypeUtils::FormatToSerialString(format).c_str(),
TypeUtils::DataTypeToSerialString(data_type).c_str(),
desc.GetName().c_str(), index);
REPORT_CALL_ERROR("E19999", "CalcTensorMemSize fail, shape:%s, format:%s, data_type:%s, op:%s, out_index:%u",
shape.ToString().c_str(),
TypeUtils::FormatToSerialString(format).c_str(),
TypeUtils::DataTypeToSerialString(data_type).c_str(),
desc.GetName().c_str(), index);
return FAILED; return FAILED;
} }
size = static_cast<size_t>(tensor_size); size = static_cast<size_t>(tensor_size);
@@ -586,9 +596,12 @@ void BlockMemAssigner::GetOutAndWorkSpaceMem(vector<int64_t> &all_memory_size) {
GeTensorDesc output_desc = node_op_desc->GetOutputDesc(out_anchor->GetIdx()); GeTensorDesc output_desc = node_op_desc->GetOutputDesc(out_anchor->GetIdx());
int64_t size = 0; int64_t size = 0;
GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(output_desc, size) != SUCCESS, GELOGI("Get size failed")); GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(output_desc, size) != SUCCESS, GELOGI("Get size failed"));
GE_IF_BOOL_EXEC(size < 0, GELOGE(FAILED, "Node:%s size:%ld is invalid, maybe it is unknown shape node.",
node_op_desc->GetName().c_str(), size);
return;);
GE_IF_BOOL_EXEC(size < 0,
GELOGE(FAILED, "[Check][TensorSize]tensor_size:%ld is invalid, maybe it is unknown shape node, Node_name:%s",
size, node_op_desc->GetName().c_str());
REPORT_INNER_ERROR("E19999", "tensor_size:%ld is invalid, maybe it is unknown shape node, Node_name:%s",
size, node_op_desc->GetName().c_str());
return;);
batch_all_memory_size[batch_label].emplace_back(size); batch_all_memory_size[batch_label].emplace_back(size);
if (batch_total_size.find(batch_label) == batch_total_size.end()) { if (batch_total_size.find(batch_label) == batch_total_size.end()) {
batch_total_size[batch_label] = size; batch_total_size[batch_label] = size;
@@ -678,22 +691,34 @@ bool BlockMemAssigner::IsOutNodeSetContinuousInput(const NodePtr &n, uint32_t ou
if (static_cast<size_t>(out_index) < n->GetAllOutDataAnchors().size()) { if (static_cast<size_t>(out_index) < n->GetAllOutDataAnchors().size()) {
auto out_anchor = n->GetOutDataAnchor(out_index); auto out_anchor = n->GetOutDataAnchor(out_index);
GE_IF_BOOL_EXEC(out_anchor == nullptr, GE_IF_BOOL_EXEC(out_anchor == nullptr,
GELOGE(FAILED, "Node[%s] output[%u] anchor is null.", n->GetName().c_str(), out_index);
GELOGE(FAILED, "[Check][Anchor]Node[%s] output[%u] anchor is null.",
n->GetName().c_str(), out_index);
REPORT_INNER_ERROR("E19999", "output anchor is null, node_name: %s output_index: %u.",
n->GetName().c_str(), out_index);
return false;); return false;);
for (auto const &peer_in_anchor : out_anchor->GetPeerInDataAnchors()) { for (auto const &peer_in_anchor : out_anchor->GetPeerInDataAnchors()) {
GE_IF_BOOL_EXEC(peer_in_anchor == nullptr, GE_IF_BOOL_EXEC(peer_in_anchor == nullptr,
GELOGE(FAILED, "Node[%s] output[%u] peer_in_anchor 0 is null.", n->GetName().c_str(), out_index);
GELOGE(FAILED, "[Check][Anchor]Node[%s] output[%u] peer_in_anchor 0 is null.",
n->GetName().c_str(), out_index);
REPORT_INNER_ERROR("E19999", "output anchor peer is null, node_name: %s output_index: %u.",
n->GetName().c_str(), out_index);
return false;); return false;);
auto peer_node = peer_in_anchor->GetOwnerNode(); auto peer_node = peer_in_anchor->GetOwnerNode();
GE_IF_BOOL_EXEC(peer_node == nullptr, GE_IF_BOOL_EXEC(peer_node == nullptr,
GELOGE(FAILED, "Node[%s] output[%u] node is null.", n->GetName().c_str(), out_index);
GELOGE(FAILED, "[Check][Node]Node[%s] output[%u] peer node is null.",
n->GetName().c_str(), out_index);
REPORT_INNER_ERROR("E19999", "output anchor peer node is null, node_name: %s output_index: %u.",
n->GetName().c_str(), out_index);
return false;); return false;);


// Get the continuous input type of the node, default is false // Get the continuous input type of the node, default is false
bool is_input_continuous = false; bool is_input_continuous = false;
auto peer_in_node_desc = peer_node->GetOpDesc(); auto peer_in_node_desc = peer_node->GetOpDesc();
GE_IF_BOOL_EXEC(peer_in_node_desc == nullptr, GE_IF_BOOL_EXEC(peer_in_node_desc == nullptr,
GELOGE(FAILED, "Node[%s] output[%u] nodedesc is null.", n->GetName().c_str(), out_index);
GELOGE(FAILED, "[Check][OpDesc]Node[%s] output[%u] nodedesc is null.",
n->GetName().c_str(), out_index);
REPORT_INNER_ERROR("E19999", "output anchor peer op_desc is null, node_name:%s output_index:%u.",
n->GetName().c_str(), out_index);
return false;); return false;);


// If GetBool fail, is_input_continuous is false. // If GetBool fail, is_input_continuous is false.
@@ -793,7 +818,10 @@ bool BlockMemAssigner::IsContinuousMemoryReuse(const NodePtr &n, const NodePtr &
if ((in_anchor == nullptr) || (in_anchor->GetPeerOutAnchor() == nullptr) || if ((in_anchor == nullptr) || (in_anchor->GetPeerOutAnchor() == nullptr) ||
(in_anchor->GetPeerOutAnchor()->GetOwnerNode() == nullptr) || (in_anchor->GetPeerOutAnchor()->GetOwnerNode() == nullptr) ||
(in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetOpDesc() == nullptr)) { (in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetOpDesc() == nullptr)) {
GELOGE(FAILED, "Node[%s] output[%u] peer input node desc is null.", n->GetName().c_str(), out_index);
GELOGE(FAILED, "[Check][OpDesc]Node[%s] output[%u] peer input node desc is null.",
n->GetName().c_str(), out_index);
REPORT_INNER_ERROR("E19999", "get output anchor peer op_desc fail, node_name: %s output_index: %u.",
n->GetName().c_str(), out_index);
return false; return false;
} }
auto peer_out_node_desc = in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetOpDesc(); auto peer_out_node_desc = in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetOpDesc();
@@ -1077,7 +1105,9 @@ MemoryBlock *BlockMemAssigner::ApplyMemory(size_t block_size, size_t real_size,
OpMemoryType mem_type, const NodePtr &n, uint32_t out_index, OpMemoryType mem_type, const NodePtr &n, uint32_t out_index,
const vector<bool> &workspace_reuse_flag, const bool is_op_reuse_mem, const vector<bool> &workspace_reuse_flag, const bool is_op_reuse_mem,
const bool continuous, int64_t memory_type) { const bool continuous, int64_t memory_type) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(n == nullptr, return nullptr, "Input parameter n is null.");
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(n == nullptr,
REPORT_INNER_ERROR("E19999", "Input parameter n(type:node_ptr) is null, apply memory failed");
return nullptr, "[Check][Param]Input parameter n(type:node_ptr) is null.");
auto node_op_desc = n->GetOpDesc(); auto node_op_desc = n->GetOpDesc();
GE_IF_BOOL_EXEC(node_op_desc == nullptr, return nullptr); GE_IF_BOOL_EXEC(node_op_desc == nullptr, return nullptr);
std::string batch_label; std::string batch_label;
@@ -1129,7 +1159,10 @@ MemoryBlock *BlockMemAssigner::ApplyMemory(size_t block_size, size_t real_size,
} }


auto block = new (std::nothrow) MemoryBlock(block_size, node_op_desc->GetStreamId(), is_reuse_memory, memory_type); auto block = new (std::nothrow) MemoryBlock(block_size, node_op_desc->GetStreamId(), is_reuse_memory, memory_type);
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(block == nullptr, return nullptr, "new an object failed.");
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(block == nullptr,
REPORT_INNER_ERROR("E19999", "new a memoryblock object failed. node_name:%s out_index:%u",
n->GetName().c_str(), out_index);
return nullptr, "[New][Object]new MemoryBlock failed, node_name:%s out_index:%u", n->GetName().c_str(), out_index);


// Data and netoutput need zero copy block // Data and netoutput need zero copy block
block->is_zero_copy_ = IsZeroCopyBlock(n, continuous); block->is_zero_copy_ = IsZeroCopyBlock(n, continuous);
@@ -1188,9 +1221,13 @@ void BlockMemAssigner::ContinuousOutRefCheck(bool &isAllOutputRef, bool &isOutpu


Status BlockMemAssigner::ApplyContinuousMemory(const NodePtr &n, const vector<int64_t> &ranges, Status BlockMemAssigner::ApplyContinuousMemory(const NodePtr &n, const vector<int64_t> &ranges,
const bool is_op_reuse_mem) { const bool is_op_reuse_mem) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(n == nullptr, return INTERNAL_ERROR, "input node is null.");
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(n == nullptr,
REPORT_INNER_ERROR("E19999", "Input parameter n(type:node_ptr) is null");
return INTERNAL_ERROR, "[check][param]Input parameter n(type:NodePtr) is null.");
auto node_op_desc = n->GetOpDesc(); auto node_op_desc = n->GetOpDesc();
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(node_op_desc == nullptr, return INTERNAL_ERROR, "node_op_desc is null.");
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(node_op_desc == nullptr,
REPORT_INNER_ERROR("E19999", "Input parameter n(type:OpDescPtr) is null");
return INTERNAL_ERROR, "[Check][Param]Input parameter n(type:OpDescPtr) is null");


// continuous output support ref only when all output ref input // continuous output support ref only when all output ref input
bool isAllOutputRef = true; bool isAllOutputRef = true;
@@ -1204,7 +1241,9 @@ Status BlockMemAssigner::ApplyContinuousMemory(const NodePtr &n, const vector<in
} }


if (!isAllOutputRef && isOutputHasRef) { if (!isAllOutputRef && isOutputHasRef) {
GELOGE(INTERNAL_ERROR, "continuous output node ref part input, not support this situation, node_name:%s",
REPORT_INNER_ERROR("E19999", "continuous output node ref part input, not support now. node_name:%s",
n->GetName().c_str());
GELOGE(INTERNAL_ERROR, "[Check][OutRefStatus]continuous output node ref part input, not support, node_name:%s",
n->GetName().c_str()); n->GetName().c_str());
return INTERNAL_ERROR; return INTERNAL_ERROR;
} }
@@ -1215,7 +1254,9 @@ Status BlockMemAssigner::ApplyContinuousMemory(const NodePtr &n, const vector<in
for (uint32_t index = 0; index < static_cast<uint32_t>(node_op_desc->GetOutputsSize()); index++) { for (uint32_t index = 0; index < static_cast<uint32_t>(node_op_desc->GetOutputsSize()); index++) {
auto output_op_desc = node_op_desc->GetOutputDescPtr(index); auto output_op_desc = node_op_desc->GetOutputDescPtr(index);
if (output_op_desc == nullptr) { if (output_op_desc == nullptr) {
GELOGE(INTERNAL_ERROR, "Get output desc failed, node_name:%s, output_index:%u", n->GetName().c_str(), index);
REPORT_INNER_ERROR("E19999", "get output_desc failed, node_name:%s, output_index:%u",
n->GetName().c_str(), index);
GELOGE(INTERNAL_ERROR, "[Get][OutputDesc]node_name:%s, output_index:%u", n->GetName().c_str(), index);
return INTERNAL_ERROR; return INTERNAL_ERROR;
} }


@@ -1226,7 +1267,9 @@ Status BlockMemAssigner::ApplyContinuousMemory(const NodePtr &n, const vector<in


int64_t size = 0; int64_t size = 0;
if (ge::TensorUtils::GetSize(*output_op_desc, size) != SUCCESS) { if (ge::TensorUtils::GetSize(*output_op_desc, size) != SUCCESS) {
GELOGE(INTERNAL_ERROR, "Get size failed, node_name:%s, output_index:%u", n->GetName().c_str(), index);
REPORT_CALL_ERROR("E19999", "get tensor_size failed, node_name:%s, output_index:%u",
n->GetName().c_str(), index);
GELOGE(INTERNAL_ERROR, "[Get][TensorSize]node_name:%s, output_index:%u", n->GetName().c_str(), index);
return INTERNAL_ERROR; return INTERNAL_ERROR;
} }
size_t align_size = static_cast<size_t>(size); size_t align_size = static_cast<size_t>(size);
@@ -1266,7 +1309,9 @@ Status BlockMemAssigner::ApplyContinuousMemory(const NodePtr &n, const vector<in
block->last_continuous_block_ = true; block->last_continuous_block_ = true;
++(block->ref_count_); ++(block->ref_count_);
} else { } else {
GELOGE(INTERNAL_ERROR, "node apply continuous output memory failed. node_name:%s", n->GetName().c_str());
REPORT_CALL_ERROR("E19999", "apply continuousMemory failed, node_name:%s, total_size:%ld",
n->GetName().c_str(), total_size);
GELOGE(INTERNAL_ERROR, "[Apply][ContinuousMemory]node_name:%s, total_size:%ld", n->GetName().c_str(), total_size);
return INTERNAL_ERROR; return INTERNAL_ERROR;
} }
return SUCCESS; return SUCCESS;
@@ -1274,25 +1319,37 @@ Status BlockMemAssigner::ApplyContinuousMemory(const NodePtr &n, const vector<in


MemoryBlock *BlockMemAssigner::ApplyOutMemory(const NodePtr &n, uint32_t index, const vector<int64_t> &ranges, MemoryBlock *BlockMemAssigner::ApplyOutMemory(const NodePtr &n, uint32_t index, const vector<int64_t> &ranges,
const bool is_op_reuse_mem, const bool continuous) { const bool is_op_reuse_mem, const bool continuous) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(n == nullptr, return nullptr, "input node is null.");
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(n == nullptr,
REPORT_INNER_ERROR("E19999", "Input parameter n(type:NodePtr) is null");
return nullptr, "[Check][Param]Input parameter n(type:NodePtr) is null");
auto node_op_desc = n->GetOpDesc(); auto node_op_desc = n->GetOpDesc();
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(node_op_desc == nullptr, return nullptr, "node_op_desc is null.");
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(node_op_desc == nullptr,
REPORT_INNER_ERROR("E19999", "Input parameter n(type:OpDescPtr) is null");
return nullptr, "[Check][Param]Input parameter n(type:OpDescPtr) is null");
MemoryBlock *block = nullptr; MemoryBlock *block = nullptr;
NodeIndexIO node_index_io(n, index, kOut); NodeIndexIO node_index_io(n, index, kOut);
int64_t size = 0; int64_t size = 0;
auto output_op_desc = node_op_desc->GetOutputDescPtr(index); auto output_op_desc = node_op_desc->GetOutputDescPtr(index);
GE_IF_BOOL_EXEC(output_op_desc == nullptr, return nullptr);
GE_IF_BOOL_EXEC(output_op_desc == nullptr,
REPORT_INNER_ERROR("E19999", "get output_desc failed, node_name:%s, output_index:%u", n->GetName().c_str(), index);
GELOGE(FAILED, "[Get][OutputDesc]node_name:%s, output_index:%u", n->GetName().c_str(), index);
return nullptr);
GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(*output_op_desc, size) != SUCCESS, GELOGI("Get size failed")); GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(*output_op_desc, size) != SUCCESS, GELOGI("Get size failed"));
size_t no_align_size = 0; size_t no_align_size = 0;
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(GetNoAlignSize(*node_op_desc, index, no_align_size) != SUCCESS, GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(GetNoAlignSize(*node_op_desc, index, no_align_size) != SUCCESS,
return nullptr, "Get no align size failed");
REPORT_CALL_ERROR("E19999", "Get no align size failed, node_name:%s, output_index:%u", n->GetName().c_str(), index);
return nullptr, "[Get][TensorSize]Get no align size, node_name:%s, output_index:%u", n->GetName().c_str(), index);


std::string symbol; std::string symbol;
bool reuse_input = false; bool reuse_input = false;
if (IsSymbolExist(node_index_io, symbol)) { if (IsSymbolExist(node_index_io, symbol)) {
block = symbol_blocks_[symbol]; block = symbol_blocks_[symbol];
GE_IF_BOOL_EXEC(block == nullptr, GELOGE(FAILED, "Node %s ref block is nullptr.", node_op_desc->GetName().c_str());
return nullptr);
GE_IF_BOOL_EXEC(block == nullptr,
REPORT_INNER_ERROR("E19999", "get ref block failed, node_name:%s, symbol:%s",
node_op_desc->GetName().c_str(), node_index_io.ToString().c_str());
GELOGE(FAILED, "[Get][RefBlock]node_name:%s, symbol:%s",
node_op_desc->GetName().c_str(), node_index_io.ToString().c_str());
return nullptr);
// reduce old size // reduce old size
size_t align_size = block->Size(); size_t align_size = block->Size();
AlignMemOffset(align_size); AlignMemOffset(align_size);
@@ -1335,12 +1392,24 @@ MemoryBlock *BlockMemAssigner::ApplyOutMemory(const NodePtr &n, uint32_t index,
vector<bool> workspace_reuse_flag; vector<bool> workspace_reuse_flag;
block = ApplyMemory(block_size, size, no_align_size, kOutput, n, index, block = ApplyMemory(block_size, size, no_align_size, kOutput, n, index,
workspace_reuse_flag, is_op_reuse_mem, continuous, memory_type); workspace_reuse_flag, is_op_reuse_mem, continuous, memory_type);
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(block == nullptr,
REPORT_CALL_ERROR("E19999", "apply out Memory failed, node_name:%s, block_size:%ld, out_index:%u",
n->GetName().c_str(), block_size, index);
return nullptr, "[Apply][Memory]node_name:%s, block_size:%ld, out_index:%u",
n->GetName().c_str(), block_size, index);
} }
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(block == nullptr, return nullptr, "Block is nullptr.");
int out_count = 0; int out_count = 0;
GE_IF_BOOL_EXEC(index >= n->GetAllOutDataAnchors().size(), GELOGE(FAILED, "index is out of range."); return nullptr);
GE_IF_BOOL_EXEC(index >= n->GetAllOutDataAnchors().size(),
REPORT_INNER_ERROR("E19999", "out index:%u exceed out_size:%lu, node_name:%s",
index, n->GetAllOutDataAnchors().size(), n->GetName().c_str());
GELOGE(FAILED, "[Check][OutIndex]index:%u exceed out_size:%lu, node_name:%s",
index, n->GetAllOutDataAnchors().size(), n->GetName().c_str());
return nullptr);
auto out_data_anchor = n->GetOutDataAnchor(index); auto out_data_anchor = n->GetOutDataAnchor(index);
GE_IF_BOOL_EXEC(out_data_anchor == nullptr, GELOGE(FAILED, "Out data anchor is nullptr."); return nullptr);
GE_IF_BOOL_EXEC(out_data_anchor == nullptr,
REPORT_INNER_ERROR("E19999", "out anchor is null, index:%u, node_name:%s", index, n->GetName().c_str());
GELOGE(FAILED, "[Check][OutAnchor]is null, index:%u, node_name:%s", index, n->GetName().c_str());
return nullptr);
for (const auto &in_anchor : out_data_anchor->GetPeerInDataAnchors()) { for (const auto &in_anchor : out_data_anchor->GetPeerInDataAnchors()) {
auto owner_node = in_anchor->GetOwnerNode(); auto owner_node = in_anchor->GetOwnerNode();
auto op_desc = owner_node->GetOpDesc(); auto op_desc = owner_node->GetOpDesc();
@@ -1546,8 +1615,13 @@ Status BlockMemAssigner::AssignOutputMemoryWithReuse(const NodePtr &node, vector
GELOGD("Assign memory node[%s], output size[%zu], output memory type size[%zu]", op_desc->GetName().c_str(), GELOGD("Assign memory node[%s], output size[%zu], output memory type size[%zu]", op_desc->GetName().c_str(),
op_desc->GetOutputsSize(), memorys_type.size()); op_desc->GetOutputsSize(), memorys_type.size());
if (has_mem_type_attr && (memorys_type.size() != op_desc->GetOutputsSize())) { if (has_mem_type_attr && (memorys_type.size() != op_desc->GetOutputsSize())) {
GELOGE(INTERNAL_ERROR, "fusion: node[%s], output memory size err[outputsize:%zu, memorysize:%zu]",
op_desc->GetName().c_str(), op_desc->GetOutputsSize(), memorys_type.size());
REPORT_INNER_ERROR("E19999", "Attr[%s] size:%zu not equal to node output size:%zu, node_name:%s",
ATTR_NAME_OUTPUT_MEM_TYPE_LIST.c_str(), memorys_type.size(),
op_desc->GetOutputsSize(), op_desc->GetName().c_str());
GELOGE(INTERNAL_ERROR,
"[Check][MemTypeAttr]Attr %s size:%zu not equal to node output size:%zu, node_name:%s",
ATTR_NAME_OUTPUT_MEM_TYPE_LIST.c_str(), memorys_type.size(),
op_desc->GetOutputsSize(), op_desc->GetName().c_str());
return INTERNAL_ERROR; return INTERNAL_ERROR;
} }


@@ -1673,8 +1747,10 @@ void BlockMemAssigner::AssignMemoryWithReuse(vector<int64_t> &ranges) {
temp.size(), tvm_workspace_memory_type.size()); temp.size(), tvm_workspace_memory_type.size());


if (has_tvm_workspace_mem_type_attr && (temp.size() != tvm_workspace_memory_type.size())) { if (has_tvm_workspace_mem_type_attr && (temp.size() != tvm_workspace_memory_type.size())) {
GELOGE(INTERNAL_ERROR, "fusion: node[%s], tvm workspace memory size error![v_temp:%zu, workspace:%zu]",
n->GetName().c_str(), temp.size(), tvm_workspace_memory_type.size());
REPORT_INNER_ERROR("E19999", "Attr[%s]size:%zu is not equal to workspace size:%zu, node_name:%s",
TVM_ATTR_NAME_WORKSPACE_TYPE.c_str(), tvm_workspace_memory_type.size(), temp.size(), n->GetName().c_str());
GELOGE(INTERNAL_ERROR, "[Check][Attr]Attr %s size:%zu is not equal to workspace size:%zu, node_name:%s",
TVM_ATTR_NAME_WORKSPACE_TYPE.c_str(), tvm_workspace_memory_type.size(), temp.size(), n->GetName().c_str());
return; return;
} }
for (size_t i = 0; i < temp.size(); i++) { for (size_t i = 0; i < temp.size(); i++) {
@@ -2083,8 +2159,11 @@ bool BlockMemAssigner::GetWorkSpaceMemoryType(const NodePtr &node, size_t index,
bool has_workspace_mem_type_attr = bool has_workspace_mem_type_attr =
ge::AttrUtils::GetListInt(op_desc, TVM_ATTR_NAME_WORKSPACE_TYPE, workspace_memory_type); ge::AttrUtils::GetListInt(op_desc, TVM_ATTR_NAME_WORKSPACE_TYPE, workspace_memory_type);
if (has_workspace_mem_type_attr && (workspace_memory_type.size() <= index)) { if (has_workspace_mem_type_attr && (workspace_memory_type.size() <= index)) {
GELOGE(INTERNAL_ERROR, "node[%s], workspace_memory size error![index:%zu, workspace:%zu]",
node->GetName().c_str(), index, workspace_memory_type.size());
REPORT_INNER_ERROR("E19999", "get workspace mem_type failed, "
"index %zu invalid, bigger than attr %s size:%zu, node_name:%s",
index, TVM_ATTR_NAME_WORKSPACE_TYPE.c_str(), workspace_memory_type.size(), node->GetName().c_str());
GELOGE(INTERNAL_ERROR, "[Get][WorkspaceMemType]index %zu invalid, bigger than attr %s size:%zu, node_name:%s",
index, TVM_ATTR_NAME_WORKSPACE_TYPE.c_str(), workspace_memory_type.size(), node->GetName().c_str());
return false; return false;
} }
memory_type = has_workspace_mem_type_attr ? workspace_memory_type[index] : RT_MEMORY_HBM; memory_type = has_workspace_mem_type_attr ? workspace_memory_type[index] : RT_MEMORY_HBM;


+ 230
- 108
ge/graph/build/memory/graph_mem_assigner.cc View File

@@ -99,7 +99,8 @@ Status VariableMemoryAssigner::AssignMemory2HasRefAttrNode() {
Status GraphMemoryAssigner::AssignMemory() { Status GraphMemoryAssigner::AssignMemory() {
ge::HybridMemAssignerPtr mem_assigner(new(std::nothrow) HybridMemAssigner(compute_graph_)); ge::HybridMemAssignerPtr mem_assigner(new(std::nothrow) HybridMemAssigner(compute_graph_));
if (mem_assigner->Assign() != ge::SUCCESS) { if (mem_assigner->Assign() != ge::SUCCESS) {
GELOGE(ge::FAILED, "Memory assigner failed");
GELOGE(ge::FAILED, "[Assign][GraphMem]graph_id:%u, graph_name:%s",
compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return ge::FAILED; return ge::FAILED;
} }
MemoryOffset memory_offset(RT_MEMORY_HBM, mem_assigner->GetMemOffset()); MemoryOffset memory_offset(RT_MEMORY_HBM, mem_assigner->GetMemOffset());
@@ -115,7 +116,10 @@ Status GraphMemoryAssigner::AssignMemory() {
auto variable_assigner = auto variable_assigner =
std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_)); std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
if (variable_assigner == nullptr) { if (variable_assigner == nullptr) {
GELOGE(ge::FAILED, "Alloc VariableMemoryAssigner failed.");
GELOGE(ge::FAILED, "[New][Object:VariableMemoryAssigner]graph_id:%u, graph_name:%s",
compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
REPORT_INNER_ERROR("E19999", "New Object:VariableMemoryAssigner failed when assign graph memory, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return ge::FAILED; return ge::FAILED;
} }


@@ -134,7 +138,10 @@ ge::Status GraphMemoryAssigner::AssignVarAttr2Nodes() {
auto variable_assigner = auto variable_assigner =
std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_)); std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
if (variable_assigner == nullptr) { if (variable_assigner == nullptr) {
GELOGE(ge::FAILED, "Alloc VariableMemoryAssigner failed.");
GELOGE(ge::FAILED, "[New][Object:VariableMemoryAssigner]graph_id:%u, graph_name:%s",
compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
REPORT_INNER_ERROR("E19999", "New Object:VariableMemoryAssigner failed when assign graph memory, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return ge::FAILED; return ge::FAILED;
} }
if (variable_assigner->AssignVarAttr2Nodes() != ge::SUCCESS) { if (variable_assigner->AssignVarAttr2Nodes() != ge::SUCCESS) {
@@ -147,8 +154,10 @@ ge::Status GraphMemoryAssigner::AssignMemory2HasRefAttrNode() {
auto variable_assigner = auto variable_assigner =
std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_)); std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
if (variable_assigner == nullptr) { if (variable_assigner == nullptr) {
GELOGE(ge::FAILED, "Alloc VariableMemoryAssigner failed.");
return ge::FAILED;
GELOGE(ge::FAILED, "[New][Object:VariableMemoryAssigner]graph_id:%u, graph_name:%s",
compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
REPORT_INNER_ERROR("E19999", "New Object:VariableMemoryAssigner failed when assign graph memory, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
} }
if (variable_assigner->AssignMemory2HasRefAttrNode() != ge::SUCCESS) { if (variable_assigner->AssignMemory2HasRefAttrNode() != ge::SUCCESS) {
return ge::FAILED; return ge::FAILED;
@@ -161,17 +170,18 @@ ge::Status CalculateTensorRealSizeAndOutSize(const ge::ConstGeTensorDescPtr &out
int64_t &batch_dim_num, int64_t &out_size) { int64_t &batch_dim_num, int64_t &out_size) {
graphStatus graph_status = ge::TensorUtils::GetSize(*output_desc, out_size); graphStatus graph_status = ge::TensorUtils::GetSize(*output_desc, out_size);
if (graph_status != GRAPH_SUCCESS) { if (graph_status != GRAPH_SUCCESS) {
GELOGE(FAILED, "Opdesc GetSize failed!");
GELOGE(FAILED, "[Get][TensorSize]");
REPORT_INNER_ERROR("E19999", "New Object:VariableMemoryAssigner failed when assign graph memory");
return FAILED; return FAILED;
} }


GeShape output_shape = output_desc->GetShape(); GeShape output_shape = output_desc->GetShape();
std::vector<int64_t> output_dims = output_shape.GetDims(); std::vector<int64_t> output_dims = output_shape.GetDims();
if (dim_index >= static_cast<int64_t>(output_dims.size())) { if (dim_index >= static_cast<int64_t>(output_dims.size())) {
std::string error = "Invaild value" + FmtToStr(dim_index) +
" of attr _reuse_input_on_dim_index, which is out of data range [0,"
+ std::to_string(output_dims.size()) + ")";
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "Inner param dim_index value:%ld invalid, bigger than dim size:%lu in shape:%s",
dim_index, output_dims.size(), output_shape.ToString().c_str());
GELOGE(FAILED, "[Check][Param:dim_index]value:%ld invalid, bigger than dim size:%lu in shape:%s",
dim_index, output_dims.size(), output_shape.ToString().c_str());
return FAILED; return FAILED;
} }


@@ -187,14 +197,23 @@ ge::Status CalculateTensorRealSizeAndOutSize(const ge::ConstGeTensorDescPtr &out


graph_status = ge::TensorUtils::CalcTensorMemSize(output_shape, out_format, data_type, output_mem_size); graph_status = ge::TensorUtils::CalcTensorMemSize(output_shape, out_format, data_type, output_mem_size);
if (graph_status != GRAPH_SUCCESS) { if (graph_status != GRAPH_SUCCESS) {
GELOGE(graph_status, "Opdesc CalcTensorMemSize failed!");
GELOGE(graph_status, "[Calc][TensorSize]");
return FAILED; return FAILED;
} }


if (output_mem_size < 0) { if (output_mem_size < 0) {
std::string error = "After calculating tensor memory size, output_mem_size" + FmtToStr(output_mem_size) +
" is out of data range [0," + std::to_string(INT64_MAX) + "]";
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "After calculating, tensor memory size:%ld invalid, less than 0. "
"shape:%s, format:%s, dtype:%s, maybe has dynamic shape",
output_mem_size,
output_shape.ToString().c_str(),
TypeUtils::FormatToSerialString(out_format).c_str(),
TypeUtils::DataTypeToSerialString(data_type).c_str());
GELOGE(FAILED, "[Check][TensorSize]value:%ld invalid after calc, less than 0. shape:%s, format:%s, dtype:%s, "
"maybe has dynamic shape",
output_mem_size,
output_shape.ToString().c_str(),
TypeUtils::FormatToSerialString(out_format).c_str(),
TypeUtils::DataTypeToSerialString(data_type).c_str());
return FAILED; return FAILED;
} }


@@ -203,7 +222,10 @@ ge::Status CalculateTensorRealSizeAndOutSize(const ge::ConstGeTensorDescPtr &out


Status GraphMemoryAssigner::ReAssignMemory(bool is_loop_graph, map<int64_t, size_t> &mem_type_to_offset) { Status GraphMemoryAssigner::ReAssignMemory(bool is_loop_graph, map<int64_t, size_t> &mem_type_to_offset) {
if (memory_offset_.empty()) { if (memory_offset_.empty()) {
GELOGE(FAILED, "memory_offset_ is empty.");
REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ empty, not expected when ReAssignMemory, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
GELOGE(FAILED, "[Check][InnerData:memory_offset_]empty is not expected, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return ge::FAILED; return ge::FAILED;
} }


@@ -218,8 +240,10 @@ Status GraphMemoryAssigner::ReAssignMemory(bool is_loop_graph, map<int64_t, size


auto session_id = compute_graph_->GetSessionID(); auto session_id = compute_graph_->GetSessionID();
if (total_mem_offset > VarManager::Instance(session_id)->GetGraphMemoryMaxSize()) { if (total_mem_offset > VarManager::Instance(session_id)->GetGraphMemoryMaxSize()) {
GELOGE(ge::FAILED, "Current memoffset %zu is greater than memory manager malloc max size %zu", total_mem_offset,
VarManager::Instance(session_id)->GetGraphMemoryMaxSize());
GELOGE(ge::FAILED, "[Check][TotalMemOffset] %zu is greater than memory manager malloc max size %zu, "
"graph_id:%u, graph_name:%s, reduce your batchsize or scale your model may solve problem",
total_mem_offset, VarManager::Instance(session_id)->GetGraphMemoryMaxSize(),
compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
for (auto iter : mem_type_to_offset) { for (auto iter : mem_type_to_offset) {
ErrorManager::GetInstance().ATCReportErrMessage("E19022", {"memType", "size", "item", "maxsize"}, ErrorManager::GetInstance().ATCReportErrMessage("E19022", {"memType", "size", "item", "maxsize"},
{std::to_string(iter.first), std::to_string(iter.second), "featuremap", {std::to_string(iter.first), std::to_string(iter.second), "featuremap",
@@ -234,7 +258,13 @@ Status GraphMemoryAssigner::ReAssignMemory(bool is_loop_graph, map<int64_t, size


Status GraphMemoryAssigner::AssignZeroCopyMemory(map<int64_t, size_t> &mem_offset, size_t &zero_mem_copy_size) { Status GraphMemoryAssigner::AssignZeroCopyMemory(map<int64_t, size_t> &mem_offset, size_t &zero_mem_copy_size) {
BlockMemAssignerPtr priority_assigner = std::move(mem_assigner_->GetPriorityAssinger()); BlockMemAssignerPtr priority_assigner = std::move(mem_assigner_->GetPriorityAssinger());
GE_IF_BOOL_EXEC(priority_assigner == nullptr, GELOGE(FAILED, "Get priority_assigner failed."); return ge::FAILED;);
if (priority_assigner == nullptr) {
REPORT_INNER_ERROR("E19999", "InnerData priority_assigner nullptr, not expected when AssignZeroCopyMemory, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
GELOGE(FAILED, "[Check][InnerData:priority_assigner]nullptr is invalid, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return ge::FAILED;
}


size_t mem_offset_tmp = mem_offset[RT_MEMORY_HBM]; size_t mem_offset_tmp = mem_offset[RT_MEMORY_HBM];


@@ -254,8 +284,11 @@ Status GraphMemoryAssigner::AssignZeroCopyMemory(map<int64_t, size_t> &mem_offse
zero_mem_copy_size = mem_offset[RT_MEMORY_HBM] - mem_offset_tmp; zero_mem_copy_size = mem_offset[RT_MEMORY_HBM] - mem_offset_tmp;
auto iter = memory_offset_.find(RT_MEMORY_HBM); auto iter = memory_offset_.find(RT_MEMORY_HBM);
if (iter == memory_offset_.end()) { if (iter == memory_offset_.end()) {
std::string error = "Memory offset does not have memory type[HBM]";
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], "
"not expected when AssignZeroCopyMemory, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return FAILED; return FAILED;
} }
iter->second.mem_offset_ = mem_offset[RT_MEMORY_HBM]; iter->second.mem_offset_ = mem_offset[RT_MEMORY_HBM];
@@ -304,7 +337,7 @@ uint32_t GetContinuousMemoryType(const OpDescPtr &op_desc) {
} }


if (continuous_type != 0) { if (continuous_type != 0) {
GELOGI("Current node %s continuous type %d.", op_desc->GetName().c_str(), continuous_type);
GELOGI("Current node %s continuous type %d", op_desc->GetName().c_str(), continuous_type);
} }
return continuous_type; return continuous_type;
} }
@@ -312,8 +345,9 @@ uint32_t GetContinuousMemoryType(const OpDescPtr &op_desc) {
Status GetMemorySize(const OpDescPtr &op_desc, const ge::ConstGeTensorDescPtr &output_desc, uint32_t continuous_type, Status GetMemorySize(const OpDescPtr &op_desc, const ge::ConstGeTensorDescPtr &output_desc, uint32_t continuous_type,
int64_t &tensor_size, int64_t &nopadding_size) { int64_t &tensor_size, int64_t &nopadding_size) {
if ((op_desc == nullptr) || (output_desc == nullptr)) { if ((op_desc == nullptr) || (output_desc == nullptr)) {
GELOGE(FAILED, "Input para is nullptr.");
return FAILED;
REPORT_INNER_ERROR("E19999", "InnerData param op_desc or output_desc is nullptr, "
"not expected when GetMemorySize");
GELOGE(FAILED, "[Check][Param]op_desc or output_desc is nullptr");
} }
tensor_size = 0; tensor_size = 0;
nopadding_size = 0; nopadding_size = 0;
@@ -322,7 +356,10 @@ Status GetMemorySize(const OpDescPtr &op_desc, const ge::ConstGeTensorDescPtr &o
int64_t attr_dim_index; int64_t attr_dim_index;
bool get_attr_dim_flag = ge::AttrUtils::GetInt(op_desc, ATTR_NAME_REUSE_INPUT_ON_DIM_INDEX, attr_dim_index); bool get_attr_dim_flag = ge::AttrUtils::GetInt(op_desc, ATTR_NAME_REUSE_INPUT_ON_DIM_INDEX, attr_dim_index);
if (!get_attr_dim_flag) { if (!get_attr_dim_flag) {
GELOGE(FAILED, "Get attr _reuse_input_on_dim_index failed.");
REPORT_INNER_ERROR("E19999", "Get Attr:%s failed when GetMemorySize, op_name:%s",
ATTR_NAME_REUSE_INPUT_ON_DIM_INDEX.c_str(), op_desc->GetName().c_str());
GELOGE(FAILED, "[Get][Attr:%s]fail for op_name:%s",
ATTR_NAME_REUSE_INPUT_ON_DIM_INDEX.c_str(), op_desc->GetName().c_str());
return FAILED; return FAILED;
} }


@@ -330,17 +367,25 @@ Status GetMemorySize(const OpDescPtr &op_desc, const ge::ConstGeTensorDescPtr &o
int64_t batch_dim_num = 1; int64_t batch_dim_num = 1;
if (CalculateTensorRealSizeAndOutSize(output_desc, attr_dim_index, nopadding_size, batch_dim_num, tensor_size) != if (CalculateTensorRealSizeAndOutSize(output_desc, attr_dim_index, nopadding_size, batch_dim_num, tensor_size) !=
SUCCESS) { SUCCESS) {
GELOGE(FAILED, "CalculateTensorRealSizeAndOutSize failed for node %s.", op_desc->GetName().c_str());
REPORT_CALL_ERROR("E19999", "CalculateTensorRealSizeAndOutSize failed, attr_dim_index:%ld, op_name:%s",
attr_dim_index, op_desc->GetName().c_str());
GELOGE(FAILED, "[Calculate][NopaddingSize]failed for node %s, attr_dim_index:%ld",
op_desc->GetName().c_str(), attr_dim_index);
return FAILED; return FAILED;
} }
} else { } else {
if (ge::TensorUtils::GetSize(*output_desc, tensor_size) != ge::SUCCESS) { if (ge::TensorUtils::GetSize(*output_desc, tensor_size) != ge::SUCCESS) {
GELOGE(FAILED, "GetSize failed.");
REPORT_INNER_ERROR("E19999", "Get Tensor Size failed, op_name:%s", op_desc->GetName().c_str());
GELOGE(FAILED, "[Get][TensorSize]failed in padding case, op_name:%s", op_desc->GetName().c_str());
return FAILED; return FAILED;
} }
} }
if ((tensor_size < 0) || (nopadding_size < 0)) { if ((tensor_size < 0) || (nopadding_size < 0)) {
GELOGE(FAILED, "GetMemorySize for node %s failed.", op_desc->GetName().c_str());
REPORT_INNER_ERROR("E19999", "GetMemorySize fail, "
"tensor_size:%ld or nopadding_size:%ld less than 0, invalid, op_name:%s",
tensor_size, nopadding_size, op_desc->GetName().c_str());
GELOGE(FAILED, "[Get][MemorySize]tensor_size:%ld or nopadding_size:%ld less than 0, invalid, op_name:%s",
tensor_size, nopadding_size, op_desc->GetName().c_str());
return FAILED; return FAILED;
} }
return SUCCESS; return SUCCESS;
@@ -374,7 +419,7 @@ bool IsContinuousInputConflict(const ge::NodePtr &node, const OpDescPtr &peer_op
// If GetBool fail, is_peer_reference is false. // If GetBool fail, is_peer_reference is false.
(void) AttrUtils::GetBool(peer_op_desc, ATTR_NAME_REFERENCE, is_peer_reference); (void) AttrUtils::GetBool(peer_op_desc, ATTR_NAME_REFERENCE, is_peer_reference);
GE_IF_BOOL_EXEC(is_peer_reference, GE_IF_BOOL_EXEC(is_peer_reference,
std::string warning = "Current op" + FmtToStr(node->GetOpDesc()->GetName()) +
std::string warning = "[Check][Continuous]Current op" + FmtToStr(node->GetOpDesc()->GetName()) +
" requires continuous input, while the previous op" + FmtToStr(peer_op_desc->GetName()) + " requires continuous input, while the previous op" + FmtToStr(peer_op_desc->GetName()) +
" is ref. There may be conflict between the two."; " is ref. There may be conflict between the two.";
GELOGW("%s", warning.c_str()); GELOGW("%s", warning.c_str());
@@ -404,7 +449,7 @@ Status GraphMemoryAssigner::ReAssignContinuousMemory(bool is_loop_graph) {
if (continuous_input) { if (continuous_input) {
if (AssignContinuousInputMemoryWithAtomicProcessDirectly(node, node_2_continuous_type)) { if (AssignContinuousInputMemoryWithAtomicProcessDirectly(node, node_2_continuous_type)) {
GE_CHK_STATUS_RET(AssignContinuousInputMemoryWithAtomicProcess(node, continuous_type), GE_CHK_STATUS_RET(AssignContinuousInputMemoryWithAtomicProcess(node, continuous_type),
"Assign node %s continuous input memory failed.", node->GetName().c_str())
"[Assign][Memory:Continuous:Input]fail for node:%s", node->GetName().c_str())
} else { } else {
nodes_stack.push_back(node); nodes_stack.push_back(node);
} }
@@ -413,10 +458,11 @@ Status GraphMemoryAssigner::ReAssignContinuousMemory(bool is_loop_graph) {
int64_t memory_type = RT_MEMORY_HBM; int64_t memory_type = RT_MEMORY_HBM;
bool continuous_output = ((continuous_type & kTypeOutput) != 0) || ((continuous_type & kTypeOutputNoPadding) != 0); bool continuous_output = ((continuous_type & kTypeOutput) != 0) || ((continuous_type & kTypeOutputNoPadding) != 0);
if (continuous_output) { if (continuous_output) {
GE_CHK_STATUS_RET(GetNodeMemoryType(node, memory_type, "output"), "Get node memory type failed.");
GE_CHK_STATUS_RET(GetNodeMemoryType(node, memory_type, "output"),
"[Get][MemType]fail for node:%s", node->GetName().c_str());
ret = AssignContinuousOutputMemory(node, memory_type, continuous_type); ret = AssignContinuousOutputMemory(node, memory_type, continuous_type);
if (ret != ge::SUCCESS) { if (ret != ge::SUCCESS) {
GELOGE(ret, "Assign continuous output memory failed!");
GELOGE(ret, "[Assign][Memory:Continuous:Ouput]fail for node:%s", node->GetName().c_str());
return ret; return ret;
} }
} }
@@ -427,14 +473,16 @@ Status GraphMemoryAssigner::ReAssignContinuousMemory(bool is_loop_graph) {
nodes_stack.pop_back(); nodes_stack.pop_back();
auto iter = node_2_continuous_type.find(node); auto iter = node_2_continuous_type.find(node);
if (iter == node_2_continuous_type.end()) { if (iter == node_2_continuous_type.end()) {
GELOGE(FAILED, "node %s has no continuous type!", node->GetName().c_str());
REPORT_INNER_ERROR("E19999", "Inner data error when process continuous memory alloc for node:%s, "
"but has no continuous type", node->GetName().c_str());
GELOGE(FAILED, "[Get][ContinuousType] find fail for node:%s", node->GetName().c_str());
return FAILED; return FAILED;
} }
GE_CHK_STATUS_RET(AssignContinuousInputMemoryWithAtomicProcess(node, iter->second, true), GE_CHK_STATUS_RET(AssignContinuousInputMemoryWithAtomicProcess(node, iter->second, true),
"Assign node %s continuous input memory failed.", node->GetName().c_str())
"[Assign][Memory:Continuous:Input]fail for node:%s.", node->GetName().c_str())
} }
for (auto pair : memory_offset_) { for (auto pair : memory_offset_) {
GELOGD("After reassign continuous memory, memory type = %ld, mem_offset = %zu.", pair.first,
GELOGD("After reassign continuous memory, memory type = %ld, mem offset = %zu.", pair.first,
pair.second.mem_offset_); pair.second.mem_offset_);
} }
return ge::SUCCESS; return ge::SUCCESS;
@@ -442,11 +490,13 @@ Status GraphMemoryAssigner::ReAssignContinuousMemory(bool is_loop_graph) {


Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node, int64_t &continuous_mem_start, Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node, int64_t &continuous_mem_start,
int64_t &continuous_mem_size, int64_t memory_type, uint32_t continuous_type, bool reverse_refresh) { int64_t &continuous_mem_size, int64_t memory_type, uint32_t continuous_type, bool reverse_refresh) {
GELOGI("Current node %s needs continuous input.", node->GetName().c_str());
GELOGI("Current node %s needs continuous input", node->GetName().c_str());
auto iter = memory_offset_.find(memory_type); auto iter = memory_offset_.find(memory_type);
if (iter == memory_offset_.end()) { if (iter == memory_offset_.end()) {
std::string error = "Memory offset does not have memory type" + FmtToStr(memory_type);
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "find memory offset fail for mem_type:%ld, "
"when assign continuous input memory for node:%s, ", memory_type, node->GetName().c_str());
GELOGE(FAILED, "[Find][MemOffset]fail for mem_type:%ld, when AssignContinuousInputMemory for node:%s",
memory_type, node->GetName().c_str());
return FAILED; return FAILED;
} }
// The head and tail of hcom continuous input should be added 512 // The head and tail of hcom continuous input should be added 512
@@ -459,8 +509,9 @@ Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node,
GE_CHECK_NOTNULL(op_desc); GE_CHECK_NOTNULL(op_desc);
vector<int64_t> output_list_this = op_desc->GetOutputOffset(); vector<int64_t> output_list_this = op_desc->GetOutputOffset();
if (output_list_this.empty()) { if (output_list_this.empty()) {
std::string error = "node:" + FmtToStr(op_desc->GetName()) + "has no output offset";
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "No output offset in node :%s, not expected when assign continuous input memory",
node->GetName().c_str());
GELOGE(FAILED, "[Get][OutputOffset] empty is invalid, node:%s", node->GetName().c_str());
return FAILED; return FAILED;
} }
(void) ge::AttrUtils::GetBool(op_desc, ATTR_NAME_CONTINUOUS_INPUT_ALLOC, is_continuous_input_allocated); (void) ge::AttrUtils::GetBool(op_desc, ATTR_NAME_CONTINUOUS_INPUT_ALLOC, is_continuous_input_allocated);
@@ -480,8 +531,9 @@ Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node,
lx_fusion = lx_fusion && !offsets_of_fusion.empty(); lx_fusion = lx_fusion && !offsets_of_fusion.empty();
if (lx_fusion) { if (lx_fusion) {
if (peer_out_data_anchor->GetIdx() >= static_cast<int>(offsets_of_fusion.size())) { if (peer_out_data_anchor->GetIdx() >= static_cast<int>(offsets_of_fusion.size())) {
std::string error = "fusion: peer node" + FmtToStr(peer_op_desc->GetName()) +
" index" + FmtToStr(peer_out_data_anchor->GetIdx()) + " is out of range.";
std::string error = "fusion: peer node:" + FmtToStr(peer_op_desc->GetName()) +
" anchor_index:" + FmtToStr(peer_out_data_anchor->GetIdx()) +
" is out of range:" + FmtToStr(offsets_of_fusion.size());
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str()); GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
return FAILED; return FAILED;
} }
@@ -497,7 +549,9 @@ Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node,
bool is_nopadding = ((continuous_type & kTypeInputNoPadding) != 0) || lx_fusion; bool is_nopadding = ((continuous_type & kTypeInputNoPadding) != 0) || lx_fusion;
vector<int64_t> output_list = peer_op_desc->GetOutputOffset(); vector<int64_t> output_list = peer_op_desc->GetOutputOffset();
if (peer_out_data_anchor->GetIdx() >= static_cast<int>(output_list.size())) { if (peer_out_data_anchor->GetIdx() >= static_cast<int>(output_list.size())) {
std::string error = "index" + FmtToStr(peer_out_data_anchor->GetIdx()) + " is out of range.";
std::string error = "peer node:" + FmtToStr(peer_op_desc->GetName()) +
" anchor_index:" + FmtToStr(peer_out_data_anchor->GetIdx()) +
" is out of range:" + FmtToStr(output_list.size());
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str()); GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
return FAILED; return FAILED;
} }
@@ -506,13 +560,13 @@ Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node,
bool is_allocated_first_input = is_continuous_input_allocated && (in_data_anchor->GetIdx() == 0); bool is_allocated_first_input = is_continuous_input_allocated && (in_data_anchor->GetIdx() == 0);
if (is_allocated_first_input) { if (is_allocated_first_input) {
std::map<int32_t, int32_t> out2ins; std::map<int32_t, int32_t> out2ins;
GE_CHK_STATUS_RET(GetAllRef(node, out2ins), "Node: %s get all ref failed", node->GetName().c_str());
GE_CHK_STATUS_RET(GetAllRef(node, out2ins), "[Get][AllRef]fail for node: %s", node->GetName().c_str());
// output is beginning offset, set offset for input; only support this case now // output is beginning offset, set offset for input; only support this case now
if ((out2ins.size() == 1) && (out2ins.begin()->second == 0) && (reverse_refresh)) { if ((out2ins.size() == 1) && (out2ins.begin()->second == 0) && (reverse_refresh)) {
auto peer_output_offset = output_list.at(peer_out_data_anchor->GetIdx()); auto peer_output_offset = output_list.at(peer_out_data_anchor->GetIdx());
output_list.at(peer_out_data_anchor->GetIdx()) = output_list_this.at(out2ins.begin()->first); output_list.at(peer_out_data_anchor->GetIdx()) = output_list_this.at(out2ins.begin()->first);
peer_op_desc->SetOutputOffset(output_list); peer_op_desc->SetOutputOffset(output_list);
GELOGI("Node %s out %d ref in %d input node %s, use output offset %ld update %ld.", node->GetName().c_str(),
GELOGI("Node %s out %d ref in %d input node %s, use output offset %ld update %ld", node->GetName().c_str(),
out2ins.begin()->first, out2ins.begin()->second, peer_op_desc->GetName().c_str(), out2ins.begin()->first, out2ins.begin()->second, peer_op_desc->GetName().c_str(),
output_list_this.at(out2ins.begin()->first), peer_output_offset); output_list_this.at(out2ins.begin()->first), peer_output_offset);
} else { } else {
@@ -542,7 +596,7 @@ Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node,
} }


GELOGI("[IMAS]Continuous input : Set %s name[%s] optype[%s] output[%d] offset to [%zu] stream_id[%ld] memtype[%ld] " GELOGI("[IMAS]Continuous input : Set %s name[%s] optype[%s] output[%d] offset to [%zu] stream_id[%ld] memtype[%ld] "
"size[%zu] realsize[%ld] nopadding size[%d].", node->GetOwnerComputeGraph()->GetName().c_str(),
"size[%zu] realsize[%ld] nopadding size[%d]", node->GetOwnerComputeGraph()->GetName().c_str(),
peer_op_desc->GetName().c_str(), node->GetType().c_str(), peer_out_data_anchor->GetIdx(), peer_op_desc->GetName().c_str(), node->GetType().c_str(), peer_out_data_anchor->GetIdx(),
output_list.at(peer_out_data_anchor->GetIdx()), peer_op_desc->GetStreamId(), memory_type, output_list.at(peer_out_data_anchor->GetIdx()), peer_op_desc->GetStreamId(), memory_type,
is_continuous_input_allocated ? 0UL : align_size, real_size, is_nopadding); is_continuous_input_allocated ? 0UL : align_size, real_size, is_nopadding);
@@ -563,17 +617,32 @@ Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node,
Status GetFirstInputPeerOutOutputOffset(const ge::NodePtr &node, int64_t &mem_offset) { Status GetFirstInputPeerOutOutputOffset(const ge::NodePtr &node, int64_t &mem_offset) {
auto in_data_anchor_list = node->GetAllInDataAnchors(); auto in_data_anchor_list = node->GetAllInDataAnchors();
if (in_data_anchor_list.empty()) { if (in_data_anchor_list.empty()) {
GELOGE(FAILED, "Node %s's in data anchor is empty.", node->GetName().c_str());
REPORT_INNER_ERROR("E19999", "InAnchor list empty in node:%s, not expect when GetFirstInputPeerOutOutputOffset",
node->GetName().c_str());
GELOGE(FAILED, "[Get][InAnchor]empty is invalid, node:%s", node->GetName().c_str());
return FAILED; return FAILED;
} }
auto peer_out_data_anchor = in_data_anchor_list.at(0)->GetPeerOutAnchor(); auto peer_out_data_anchor = in_data_anchor_list.at(0)->GetPeerOutAnchor();
GE_IF_BOOL_EXEC(peer_out_data_anchor == nullptr, GELOGE(ge::FAILED, "peer_out_data_anchor is null.");
GE_IF_BOOL_EXEC(peer_out_data_anchor == nullptr,
REPORT_INNER_ERROR("E19999", "PeerAcnhor is null, "
"not expect when GetFirstInputPeerOutOutputOffset for node:%s",
node->GetName().c_str());
GELOGE(ge::FAILED, "[Check][PeerAnchor]null is invalid, node:%s", node->GetName().c_str());
return ge::FAILED); return ge::FAILED);
auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc(); auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
GE_IF_BOOL_EXEC(peer_op_desc == nullptr, GELOGE(ge::FAILED, "peer_op_desc is null."); return ge::FAILED);
GE_IF_BOOL_EXEC(peer_op_desc == nullptr,
REPORT_INNER_ERROR("E19999", "PeerOpDesc is null, "
"not expect when GetFirstInputPeerOutOutputOffset for node:%s",
node->GetName().c_str());
GELOGE(ge::FAILED, "[Check][PeerOpDesc]null is invalid, node:%s", node->GetName().c_str());
return ge::FAILED);
vector<int64_t> in_node_output_offsets = peer_op_desc->GetOutputOffset(); vector<int64_t> in_node_output_offsets = peer_op_desc->GetOutputOffset();
if (peer_out_data_anchor->GetIdx() >= static_cast<int>(in_node_output_offsets.size())) { if (peer_out_data_anchor->GetIdx() >= static_cast<int>(in_node_output_offsets.size())) {
GELOGE(FAILED, "Index : %d is out of range.", peer_out_data_anchor->GetIdx());
REPORT_INNER_ERROR("E19999", "PeerAnchorIndex:%d bigger than in_offset size:%lu, "
"judge invalid when GetFirstInputPeerOutOutputOffset for node:%s",
peer_out_data_anchor->GetIdx(), in_node_output_offsets.size(), node->GetName().c_str());
GELOGE(FAILED, "[Check][Index:PeerOutDataAnchor]PeerIndex:%d bigger than in_offset size:%lu, node:%s",
peer_out_data_anchor->GetIdx(), in_node_output_offsets.size(), node->GetName().c_str());
return FAILED; return FAILED;
} }
mem_offset = in_node_output_offsets.at(peer_out_data_anchor->GetIdx()); mem_offset = in_node_output_offsets.at(peer_out_data_anchor->GetIdx());
@@ -584,11 +653,18 @@ Status GraphMemoryAssigner::AssignContinuousOutputMemory(const ge::NodePtr &node
uint32_t continuous_type) { uint32_t continuous_type) {
GELOGI("Current node %s needs continuous output.", node->GetName().c_str()); GELOGI("Current node %s needs continuous output.", node->GetName().c_str());
auto out_op_desc = node->GetOpDesc(); auto out_op_desc = node->GetOpDesc();
GE_IF_BOOL_EXEC(out_op_desc == nullptr, GELOGE(ge::FAILED, "out_op_desc is null."); return ge::FAILED);
GE_IF_BOOL_EXEC(out_op_desc == nullptr,
REPORT_INNER_ERROR("E19999", "OpDesc is null, "
"not expect when AssignContinuousOutputMemory for node:%s",
node->GetName().c_str());
GELOGE(ge::FAILED, "[Check][OpDesc]null is invalid, node:%s", node->GetName().c_str()));
vector<int64_t> output_list = out_op_desc->GetOutputOffset(); vector<int64_t> output_list = out_op_desc->GetOutputOffset();
if ((out_op_desc->GetOutputsSize() > output_list.size()) || (output_list.size() == 0)) { if ((out_op_desc->GetOutputsSize() > output_list.size()) || (output_list.size() == 0)) {
GELOGE(ge::FAILED, "The size %zu of node output desc is more than output_list's size %zu.",
out_op_desc->GetOutputsSize(), output_list.size());
REPORT_INNER_ERROR("E19999", "Output size:%zu more than output offset size:%zu, invalid in node:%s, "
"when AssignContinuousOutputMemory",
out_op_desc->GetOutputsSize(), output_list.size(), node->GetName().c_str());
GELOGE(ge::FAILED, "[Check][InnerData]Output size:%zu more than output offset size:%zu, invalid in node:%s",
out_op_desc->GetOutputsSize(), output_list.size(), node->GetName().c_str());
return ge::FAILED; return ge::FAILED;
} }


@@ -647,14 +723,18 @@ Status GraphMemoryAssigner::ReAssignAtomicMemory(bool is_loop_graph) {
map<string, vector<NodePtr>> connecting_output_atomic_nodes; map<string, vector<NodePtr>> connecting_output_atomic_nodes;
Status status = FilterAtomicNodesForMemoryAssign(normal_atomic_and_clean_nodes_map, connecting_output_atomic_nodes); Status status = FilterAtomicNodesForMemoryAssign(normal_atomic_and_clean_nodes_map, connecting_output_atomic_nodes);
if (status != SUCCESS) { if (status != SUCCESS) {
GELOGE(status, "Failed to filter atomic nodes for memory assignment.");
GELOGE(status, "[Filter][AtomicNode]failed in graph_id:%u, graph_name:%s",
compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return status; return status;
} }


auto mem_iter = memory_offset_.find(RT_MEMORY_HBM); auto mem_iter = memory_offset_.find(RT_MEMORY_HBM);
if (mem_iter == memory_offset_.end()) { if (mem_iter == memory_offset_.end()) {
std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], "
"not expected when ReAssignAtomicMemory, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return FAILED; return FAILED;
} }


@@ -670,7 +750,7 @@ Status GraphMemoryAssigner::ReAssignAtomicMemory(bool is_loop_graph) {
vector<int64_t> mem_offset_end; vector<int64_t> mem_offset_end;
status = AssignAtomicOutputAndWorkspaceMemory(atomic_node, mem_offset_end); status = AssignAtomicOutputAndWorkspaceMemory(atomic_node, mem_offset_end);
if (status != SUCCESS) { if (status != SUCCESS) {
GELOGE(status, "Assign atomic output and workspace memory failed, node name is %s.",
GELOGE(status, "[Assign][Memory]output atomic mem and workspace mem, fail for node name is %s.",
atomic_node->GetName().c_str()); atomic_node->GetName().c_str());
return status; return status;
} }
@@ -679,7 +759,7 @@ Status GraphMemoryAssigner::ReAssignAtomicMemory(bool is_loop_graph) {
int64_t atomic_mem_size = static_cast<int64_t>(mem_iter->second.mem_offset_) - atomic_mem_start; int64_t atomic_mem_size = static_cast<int64_t>(mem_iter->second.mem_offset_) - atomic_mem_start;
if (atomic_mem_size != 0) { if (atomic_mem_size != 0) {
GE_CHK_STATUS_RET(SetAtomicCleanAttr(iter.first, {atomic_mem_start}, {atomic_mem_size}, RT_MEMORY_HBM), GE_CHK_STATUS_RET(SetAtomicCleanAttr(iter.first, {atomic_mem_start}, {atomic_mem_size}, RT_MEMORY_HBM),
"Failed to set attr for atomic addr clean node %s.", iter.first->GetName().c_str());
"[Set][Attr]fail for atomic addr clean node %s.", iter.first->GetName().c_str());
} }
} }
batch_max_mem_offset = std::max(batch_max_mem_offset, static_cast<int64_t>(mem_iter->second.mem_offset_)); batch_max_mem_offset = std::max(batch_max_mem_offset, static_cast<int64_t>(mem_iter->second.mem_offset_));
@@ -690,7 +770,8 @@ Status GraphMemoryAssigner::ReAssignAtomicMemory(bool is_loop_graph) {
for (auto &iter_batch : connecting_output_atomic_nodes) { for (auto &iter_batch : connecting_output_atomic_nodes) {
mem_iter->second.mem_offset_ = batch_atomic_mem_start; mem_iter->second.mem_offset_ = batch_atomic_mem_start;
if (AssignConnectNetOutputAtomicMemory(iter_batch.second) != SUCCESS) { if (AssignConnectNetOutputAtomicMemory(iter_batch.second) != SUCCESS) {
GELOGE(FAILED, "Failed to assign memory of nodes that connect to netoutput.");
GELOGE(FAILED, "[Assign][Memory]for nodes that connect to netoutput failed."
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return FAILED; return FAILED;
} }
batch_max_mem_offset = std::max(batch_max_mem_offset, static_cast<int64_t>(mem_iter->second.mem_offset_)); batch_max_mem_offset = std::max(batch_max_mem_offset, static_cast<int64_t>(mem_iter->second.mem_offset_));
@@ -721,9 +802,10 @@ Status GraphMemoryAssigner::FilterAtomicNodesForMemoryAssign(
// If GetBool fail, is_reference is false. // If GetBool fail, is_reference is false.
(void) ge::AttrUtils::GetBool(peer_in_node_desc, ATTR_NAME_REFERENCE, is_reference); (void) ge::AttrUtils::GetBool(peer_in_node_desc, ATTR_NAME_REFERENCE, is_reference);
if (is_reference) { if (is_reference) {
std::string error = "Op" + FmtToStr(peer_in_node_desc->GetName()) +
" cannot have both atomic and is_reference attribute.";
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "Op:%s cannot have both atomic and is_reference attribute, "
"not support now", peer_in_node_desc->GetName().c_str());
GELOGE(FAILED, "[Check][Attr]Op:%s cannot have both atomic and is_reference attribute, "
"not support now", peer_in_node_desc->GetName().c_str());
return ge::PARAM_INVALID; return ge::PARAM_INVALID;
} }


@@ -761,7 +843,7 @@ Status GraphMemoryAssigner::AssignAtomicOutputAndWorkspaceMemory(const ge::NodeP
// Assign atomic node output memory // Assign atomic node output memory
Status ret = AssignAtomicOutputMemory(node, mem_offset_end); Status ret = AssignAtomicOutputMemory(node, mem_offset_end);
if (ret != SUCCESS) { if (ret != SUCCESS) {
GELOGE(ret, "Failed to assign atomic output memory, node is %s.", node_op_desc->GetName().c_str());
GELOGE(ret, "[Assign][Memory:Ouput:Atomic]Failed for node:%s.", node_op_desc->GetName().c_str());
return ret; return ret;
} }


@@ -781,7 +863,7 @@ Status GraphMemoryAssigner::AssignAtomicOutputAndWorkspaceMemory(const ge::NodeP
ret = AssignOrdinaryAtomicWorkspaceMemory(node_op_desc, atomic_workspace_info, mem_offset_end); ret = AssignOrdinaryAtomicWorkspaceMemory(node_op_desc, atomic_workspace_info, mem_offset_end);
} }
if (ret != SUCCESS) { if (ret != SUCCESS) {
GELOGE(ret, "Assign atomic workspace memory failed, node is %s.", node_op_desc->GetName().c_str());
GELOGE(ret, "[Assign][Memory:Atomic:Workspace]fail for node:%s.", node_op_desc->GetName().c_str());
return ret; return ret;
} }
} else { } else {
@@ -794,8 +876,11 @@ Status GraphMemoryAssigner::AssignAtomicOutputAndWorkspaceMemory(const ge::NodeP
Status GraphMemoryAssigner::AssignConnectNetOutputAtomicMemory(vector<NodePtr> &connect_netoutput_nodes) { Status GraphMemoryAssigner::AssignConnectNetOutputAtomicMemory(vector<NodePtr> &connect_netoutput_nodes) {
auto iter = memory_offset_.find(RT_MEMORY_HBM); auto iter = memory_offset_.find(RT_MEMORY_HBM);
if (iter == memory_offset_.end()) { if (iter == memory_offset_.end()) {
std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], "
"not expected when AssignConnectNetOutputAtomicMemory, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return FAILED; return FAILED;
} }
for (auto &node : connect_netoutput_nodes) { for (auto &node : connect_netoutput_nodes) {
@@ -811,13 +896,14 @@ Status GraphMemoryAssigner::AssignConnectNetOutputAtomicMemory(vector<NodePtr> &
node->GetName().c_str(), node->GetOpDesc()->GetType().c_str(), original_atomic_mem_start); node->GetName().c_str(), node->GetOpDesc()->GetType().c_str(), original_atomic_mem_start);
vector<int64_t> mem_offset_end; vector<int64_t> mem_offset_end;
if (AssignAtomicOutputAndWorkspaceMemory(node, mem_offset_end) != SUCCESS) { if (AssignAtomicOutputAndWorkspaceMemory(node, mem_offset_end) != SUCCESS) {
GELOGE(FAILED, "Assign atomic output and workspace memory failed, node is %s.", node->GetName().c_str());
GELOGE(FAILED, "[Assign][Memory]output atomic mem and workspace mem, fail for node name is %s.",
node->GetName().c_str());
return FAILED; return FAILED;
} }


// All atomic nodes use atomic_addr_clean op independently, so we need to set the attr separately. // All atomic nodes use atomic_addr_clean op independently, so we need to set the attr separately.
if (SetIndependentAtomicAttr(node, original_atomic_mem_start, mem_offset_end, RT_MEMORY_HBM) != SUCCESS) { if (SetIndependentAtomicAttr(node, original_atomic_mem_start, mem_offset_end, RT_MEMORY_HBM) != SUCCESS) {
GELOGE(FAILED, "Failed to set atomic attr separately.");
GELOGE(FAILED, "[Set][Attr:IndependentAtomic]fail for node:%s", node->GetName().c_str());
return FAILED; return FAILED;
} }
} }
@@ -842,8 +928,11 @@ Status GraphMemoryAssigner::AssignReferenceMemory() {
vector<int64_t> output_list = out_op_desc->GetOutputOffset(); vector<int64_t> output_list = out_op_desc->GetOutputOffset();


if (out_op_desc->GetOutputsSize() > output_list.size()) { if (out_op_desc->GetOutputsSize() > output_list.size()) {
GELOGE(ge::FAILED, "The size %zu of node output desc is more than output_list's size %zu.",
out_op_desc->GetOutputsSize(), output_list.size());
REPORT_INNER_ERROR("E19999", "Output size:%zu more than output offset size:%zu, judge invalid in node:%s "
"when AssignReferenceMemory",
out_op_desc->GetOutputsSize(), output_list.size(), node->GetName().c_str());
GELOGE(ge::FAILED, "[Check][InnerData]Output size:%zu more than output offset size:%zu, invalid in node:%s",
out_op_desc->GetOutputsSize(), output_list.size(), node->GetName().c_str());
return ge::FAILED; return ge::FAILED;
} }


@@ -896,9 +985,12 @@ bool GraphMemoryAssigner::CheckInputIsSupportAtomic(const ge::NodePtr &node) {
} }
if ((peer_op_desc->GetType() == CONSTANTOP) || (peer_op_desc->GetType() == AIPP_DATA_TYPE) || if ((peer_op_desc->GetType() == CONSTANTOP) || (peer_op_desc->GetType() == AIPP_DATA_TYPE) ||
(peer_op_desc->GetType() == VARIABLE)) { (peer_op_desc->GetType() == VARIABLE)) {
std::string error = "Op" + FmtToStr(node->GetName()) + "'s peer out node" +
FmtToStr(peer_op_desc->GetName()) + " is invalid, Constant/AippData/Variable is not supported";
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "node(type:%s, name:%s) link to atomic node(name:%s), "
"this situation not supported now",
peer_op_desc->GetType().c_str(), peer_op_desc->GetName().c_str(), node->GetName().c_str());
GELOGE(ge::FAILED, "[Check][Link]node(type:%s, name:%s) link to atomic node(name:%s), "
"this situation not supported now",
peer_op_desc->GetType().c_str(), peer_op_desc->GetName().c_str(), node->GetName().c_str());
return false; return false;
} }
} }
@@ -918,22 +1010,27 @@ Status GraphMemoryAssigner::AssignAtomicOutputMemory(const ge::NodePtr &node, ve
// Check atomic output // Check atomic output
vector<int64_t> output_list = op_desc->GetOutputOffset(); vector<int64_t> output_list = op_desc->GetOutputOffset();
if (atomic_output_index.size() > output_list.size()) { if (atomic_output_index.size() > output_list.size()) {
std::string error = "Op" + FmtToStr(node->GetName()) +
"'s size of atomic_output_index is more than the size of output_list";
std::string error =
"Op:" + FmtToStr(node->GetName()) + "'s size:" + FmtToStr(atomic_output_index.size()) +
" of atomic_output_index is more than the size:" + FmtToStr(output_list.size()) + " of output_list";
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str()); GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
return ge::FAILED; return ge::FAILED;
} }
auto output_list_size = static_cast<int64_t>(output_list.size()); auto output_list_size = static_cast<int64_t>(output_list.size());
auto iter = memory_offset_.find(RT_MEMORY_HBM); auto iter = memory_offset_.find(RT_MEMORY_HBM);
if (iter == memory_offset_.end()) { if (iter == memory_offset_.end()) {
std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], "
"not expected when AssignAtomicOutputMemory, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return FAILED; return FAILED;
} }
for (auto &output_index : atomic_output_index) { for (auto &output_index : atomic_output_index) {
if (output_index >= output_list_size) { if (output_index >= output_list_size) {
std::string error = "Op" + FmtToStr(node->GetName()) + "'s output index" + FmtToStr(output_index) +
" is more than the size" + FmtToStr(output_list_size) + " of output_list.";
std::string error =
"Op:" + FmtToStr(node->GetName()) + "'s atomic_output index:" + FmtToStr(output_index) +
" is more than the size:" + FmtToStr(output_list_size) + " of output_list.";
GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str()); GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
return ge::PARAM_INVALID; return ge::PARAM_INVALID;
} }
@@ -941,7 +1038,8 @@ Status GraphMemoryAssigner::AssignAtomicOutputMemory(const ge::NodePtr &node, ve
// If the input of the cascade op needs to clear the atomic addr, there is no need to clear it separately here // If the input of the cascade op needs to clear the atomic addr, there is no need to clear it separately here
bool is_assigned_mem = false; bool is_assigned_mem = false;
if (GetMemoryAssignmentStatus(node, output_index, is_assigned_mem) != SUCCESS) { if (GetMemoryAssignmentStatus(node, output_index, is_assigned_mem) != SUCCESS) {
GELOGE(ge::FAILED, "Failed to get memory assignment of node %s.", node->GetName().c_str());
GELOGE(ge::FAILED, "[Get][MemoryAssignmentStatus]fail for node %s, out_index:%ld",
node->GetName().c_str(), output_index);
return ge::FAILED; return ge::FAILED;
} }


@@ -981,8 +1079,9 @@ Status GraphMemoryAssigner::AssignAtomicOutputMemory(const ge::NodePtr &node, ve
Status GraphMemoryAssigner::GetMemoryAssignmentStatus(const ge::NodePtr &node, int64_t output_index, Status GraphMemoryAssigner::GetMemoryAssignmentStatus(const ge::NodePtr &node, int64_t output_index,
bool &is_mem_assigned) { bool &is_mem_assigned) {
if (static_cast<size_t>(output_index) >= node->GetAllOutDataAnchors().size()) { if (static_cast<size_t>(output_index) >= node->GetAllOutDataAnchors().size()) {
std::string error = "Op" + FmtToStr(node->GetName()) + "'s output index" + FmtToStr(output_index) +
" is more than the size of node's AllOutDataAnchors.";
std::string error =
"Op:" + FmtToStr(node->GetName()) + "'s output index:" + FmtToStr(output_index) +
" is more than the size:" + FmtToStr(node->GetAllOutDataAnchors().size()) + " of node's AllOutDataAnchors.";
GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str()); GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
return ge::PARAM_INVALID; return ge::PARAM_INVALID;
} }
@@ -1010,8 +1109,11 @@ Status GraphMemoryAssigner::AssignOrdinaryAtomicWorkspaceMemory(const ge::OpDesc
GELOGI("Begin to reassign normal atomic memory, node = %s.", op_desc->GetName().c_str()); GELOGI("Begin to reassign normal atomic memory, node = %s.", op_desc->GetName().c_str());
auto mem_type_iter = memory_offset_.find(RT_MEMORY_HBM); auto mem_type_iter = memory_offset_.find(RT_MEMORY_HBM);
if (mem_type_iter == memory_offset_.end()) { if (mem_type_iter == memory_offset_.end()) {
std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], "
"not expected when AssignOrdinaryAtomicWorkspaceMemory, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return FAILED; return FAILED;
} }
vector<int64_t> workspace_vector = op_desc->GetWorkspace(); vector<int64_t> workspace_vector = op_desc->GetWorkspace();
@@ -1032,8 +1134,9 @@ Status GraphMemoryAssigner::AssignOrdinaryAtomicWorkspaceMemory(const ge::OpDesc
auto workspace_index = static_cast<uint64_t>(info_iter.first); auto workspace_index = static_cast<uint64_t>(info_iter.first);
auto workspace_size = info_iter.second; auto workspace_size = info_iter.second;
if (workspace_index >= workspace_vector.size()) { if (workspace_index >= workspace_vector.size()) {
std::string error = "The workspace index" + FmtToStr(workspace_index) +
" is more than the size" + FmtToStr(workspace_vector.size()) + " of workspace vector.";
std::string error = "The workspace index:" + FmtToStr(workspace_index) +
" is more than the size:" + FmtToStr(workspace_vector.size()) + " of workspace vector in op:" +
op_desc->GetName().c_str();
GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str()); GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
return ge::PARAM_INVALID; return ge::PARAM_INVALID;
} }
@@ -1063,8 +1166,11 @@ Status GraphMemoryAssigner::AssignFusionAtomicWorkspaceMemory(const ge::OpDescPt
GELOGI("Begin to reassign fusion atomic memory, node = %s.", op_desc->GetName().c_str()); GELOGI("Begin to reassign fusion atomic memory, node = %s.", op_desc->GetName().c_str());
auto mem_type_iter = memory_offset_.find(RT_MEMORY_HBM); auto mem_type_iter = memory_offset_.find(RT_MEMORY_HBM);
if (mem_type_iter == memory_offset_.end()) { if (mem_type_iter == memory_offset_.end()) {
std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], "
"not expected when AssignFusionAtomicWorkspaceMemory, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
return FAILED; return FAILED;
} }
map<string, map<int64_t, int64_t>> sub_node_workspace_offset; map<string, map<int64_t, int64_t>> sub_node_workspace_offset;
@@ -1095,7 +1201,10 @@ Status GraphMemoryAssigner::AssignFusionAtomicWorkspaceMemory(const ge::OpDescPt
sub_node_workspace_offset.insert(std::make_pair(iter.first, index_offset)); sub_node_workspace_offset.insert(std::make_pair(iter.first, index_offset));
} }
if (!(op_desc->SetExtAttr(EXT_ATTR_ATOMIC_WORKSPACE_OFFSET, sub_node_workspace_offset))) { if (!(op_desc->SetExtAttr(EXT_ATTR_ATOMIC_WORKSPACE_OFFSET, sub_node_workspace_offset))) {
GELOGE(FAILED, "Set EXT_ATTR_ATOMIC_WORKSPACE_OFFSET failed, op name:%s.", op_desc->GetName().c_str());
REPORT_INNER_ERROR("E19999", "Set Attr:%s fail for node:%s when AssignFusionAtomicWorkspaceMemory",
EXT_ATTR_ATOMIC_WORKSPACE_OFFSET.c_str(), op_desc->GetName().c_str());
GELOGE(FAILED, "[Set][Attr:%s]fail for node:%s.",
EXT_ATTR_ATOMIC_WORKSPACE_OFFSET.c_str(), op_desc->GetName().c_str());
return FAILED; return FAILED;
} }


@@ -1106,7 +1215,7 @@ Status GraphMemoryAssigner::CheckOffset() {
std::map<std::string, std::string> anchor_to_symbol; std::map<std::string, std::string> anchor_to_symbol;
std::map<std::string, std::list<NodeIndexIO>> symbol_to_anchors; std::map<std::string, std::list<NodeIndexIO>> symbol_to_anchors;
if (GraphUtils::GetRefMapping(compute_graph_, symbol_to_anchors, anchor_to_symbol) != GRAPH_SUCCESS) { if (GraphUtils::GetRefMapping(compute_graph_, symbol_to_anchors, anchor_to_symbol) != GRAPH_SUCCESS) {
GELOGE(FAILED, "Get ref-mapping for graph %s failed.", compute_graph_->GetName().c_str());
GELOGE(FAILED, "[Get][RefMapping]fail for graph %s", compute_graph_->GetName().c_str());
return FAILED; return FAILED;
} }
for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) { for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) {
@@ -1148,7 +1257,6 @@ Status GraphMemoryAssigner::CheckOffset() {
std::string error = "Invalid workspace" + FmtToStr(ge::kInvalidOffset) + std::string error = "Invalid workspace" + FmtToStr(ge::kInvalidOffset) +
+ " in node" + FmtToStr(node->GetName()); + " in node" + FmtToStr(node->GetName());
GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str()); GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
GELOGE(FAILED, "Invalid workspace in node: %s workspace: %ld.", node->GetName().c_str(), ge::kInvalidOffset);
return FAILED; return FAILED;
} }
} }
@@ -1158,8 +1266,10 @@ Status GraphMemoryAssigner::CheckOffset() {


ge::Status GraphMemoryAssigner::SetInputOffset() { ge::Status GraphMemoryAssigner::SetInputOffset() {
if (memory_offset_.empty()) { if (memory_offset_.empty()) {
GELOGE(FAILED, "memory_offset_ is empty.");
return FAILED;
REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ empty, not expected when SetInputOffset, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
GELOGE(FAILED, "[Check][InnerData:memory_offset_]empty is not expected, "
"graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
} }
for (auto pair : memory_offset_) { for (auto pair : memory_offset_) {
GEEVENT("[IMAS]AfterAssignMemory : %s memoffset[%zu], memtype[%ld]", compute_graph_->GetName().c_str(), GEEVENT("[IMAS]AfterAssignMemory : %s memoffset[%zu], memtype[%ld]", compute_graph_->GetName().c_str(),
@@ -1168,7 +1278,7 @@ ge::Status GraphMemoryAssigner::SetInputOffset() {


for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) { for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) {
if (UpdateOpInputOffset(node) != ge::SUCCESS) { if (UpdateOpInputOffset(node) != ge::SUCCESS) {
GELOGE(ge::FAILED, "Update op input offset failed");
GELOGE(ge::FAILED, "[Update][Offset:Input]fail for op:%s", node->GetName().c_str());
return ge::FAILED; return ge::FAILED;
} }
} }
@@ -1316,12 +1426,12 @@ ge::Status GraphMemoryAssigner::UpdateOpInputOffset(const NodePtr &node) const {
} }
} else if (node->GetType() == DATA_TYPE) { } else if (node->GetType() == DATA_TYPE) {
if (UpdateConstArgsOffset(node, input_list) != SUCCESS) { if (UpdateConstArgsOffset(node, input_list) != SUCCESS) {
GELOGE(FAILED, "Update data: %s args offset failed.", node->GetName().c_str());
GELOGE(FAILED, "[Update][Offset:Input:Const]fail for node:%s ", node->GetName().c_str());
return FAILED; return FAILED;
} }
} else { } else {
if (UpdateOpInputOffset(node, input_list) != SUCCESS) { if (UpdateOpInputOffset(node, input_list) != SUCCESS) {
GELOGE(FAILED, "Update node: %s input offset failed.", node->GetName().c_str());
GELOGE(FAILED, "[Update][Offset:Input]fail for node:%s", node->GetName().c_str());
return FAILED; return FAILED;
} }
} }
@@ -1361,7 +1471,7 @@ Status GraphMemoryAssigner::SetIndependentAtomicAttr(const ge::NodePtr &node, in
peer_out_node_desc->GetName().c_str(), peer_out_node_desc->GetType().c_str()); peer_out_node_desc->GetName().c_str(), peer_out_node_desc->GetType().c_str());
if (peer_out_node_desc->GetType() == ATOMICADDRCLEAN) { if (peer_out_node_desc->GetType() == ATOMICADDRCLEAN) {
if (SetAtomicCleanAttr(peer_out_node, memory_offset_start, memory_offset_size, memory_type) != SUCCESS) { if (SetAtomicCleanAttr(peer_out_node, memory_offset_start, memory_offset_size, memory_type) != SUCCESS) {
GELOGE(FAILED, "Set atomic clean attr failed.");
GELOGE(FAILED, "[Set][AtomicCleanAttr]fail for node:%s", peer_out_node->GetName().c_str());
return FAILED; return FAILED;
} }
} }
@@ -1387,7 +1497,10 @@ ge::Status GraphMemoryAssigner::SetAtomicCleanAttr(const NodePtr &node, const ve
(void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector); (void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector);
mem_start_vector.insert(mem_start_vector.end(), atomic_mem_start.begin(), atomic_mem_start.end()); mem_start_vector.insert(mem_start_vector.end(), atomic_mem_start.begin(), atomic_mem_start.end());
GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector), GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector),
GELOGE(FAILED, "SetListInt failed.");
REPORT_INNER_ERROR("E19999", "Set Attr:%s failed when SetAtomicCleanAttr, op_name:%s",
ATTR_NAME_AUTOMIC_ADD_START.c_str(), node_op_desc->GetName().c_str());
GELOGE(FAILED, "[Set][Attr:%s]fail for op_name:%s",
ATTR_NAME_AUTOMIC_ADD_START.c_str(), node_op_desc->GetName().c_str());
return FAILED); return FAILED);


std::vector<int64_t> mem_size_vector; std::vector<int64_t> mem_size_vector;
@@ -1395,7 +1508,10 @@ ge::Status GraphMemoryAssigner::SetAtomicCleanAttr(const NodePtr &node, const ve
(void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector); (void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector);
mem_size_vector.insert(mem_size_vector.end(), atomic_mem_size.begin(), atomic_mem_size.end()); mem_size_vector.insert(mem_size_vector.end(), atomic_mem_size.begin(), atomic_mem_size.end());
GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector), GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector),
GELOGE(FAILED, "SetListInt failed.");
REPORT_INNER_ERROR("E19999", "Set Attr:%s failed when SetAtomicCleanAttr, op_name:%s",
ATTR_NAME_AUTOMIC_ADD_MEM_SIZE.c_str(), node_op_desc->GetName().c_str());
GELOGE(FAILED, "[Set][Attr:%s]fail for op_name:%s",
ATTR_NAME_AUTOMIC_ADD_MEM_SIZE.c_str(), node_op_desc->GetName().c_str());
return FAILED); return FAILED);


std::stringstream ss; std::stringstream ss;
@@ -1437,12 +1553,14 @@ ge::Status GraphMemoryAssigner::GetNodeListMemoryType(const vector<NodePtr> &nod
// In the dynamic batch scenario, the memory attributes of nodes are the same. // In the dynamic batch scenario, the memory attributes of nodes are the same.
for (auto &n : nodes) { for (auto &n : nodes) {
if (mem_reuse_model == kVirtualInputNodeMemoryReuse) { if (mem_reuse_model == kVirtualInputNodeMemoryReuse) {
GE_CHK_STATUS_RET(GetNodeMemoryType(n, memory_type, "input"), "Get node memory type failed.")
GE_CHK_STATUS_RET(GetNodeMemoryType(n, memory_type, "input"),
"[Get][MemType:input]fail for node:%s", n->GetName().c_str())
break; break;
} }


if (mem_reuse_model == kVirtualOutputNodeMemoryReuse) { if (mem_reuse_model == kVirtualOutputNodeMemoryReuse) {
GE_CHK_STATUS_RET(GetNodeMemoryType(n, memory_type, "output"), "Get node memory type failed.");
GE_CHK_STATUS_RET(GetNodeMemoryType(n, memory_type, "output"),
"[Get][MemType:output]fail for node:%s", n->GetName().c_str())
break; break;
} }
} }
@@ -1478,7 +1596,7 @@ ge::Status GraphMemoryAssigner::GetNodeMemoryType(const NodePtr &node, int64_t &
} }


if (!CheckContinuousMemType(mem_type_list)) { if (!CheckContinuousMemType(mem_type_list)) {
GELOGE(FAILED, "Check continuous memory type failed.");
GELOGE(FAILED, "[Check][MemType:Continuous]fail for node:%s", node->GetName().c_str());
return FAILED; return FAILED;
} }
// It is continuous memory and memory type is the same, so use the first memory. // It is continuous memory and memory type is the same, so use the first memory.
@@ -1526,7 +1644,11 @@ ge::Status GraphMemoryAssigner::GetAllRef(const NodePtr &node, map<int32_t, int3
if (node->GetInDataAnchor(reuse_in_index) != nullptr) { if (node->GetInDataAnchor(reuse_in_index) != nullptr) {
out2ins.emplace(out_data_anchor->GetIdx(), reuse_in_index); out2ins.emplace(out_data_anchor->GetIdx(), reuse_in_index);
} else { } else {
GELOGE(FAILED, "Invalid reuse_input value %d on output %d of node %s, please check attr reuse_input",
REPORT_INNER_ERROR("E19999", "Invalid reuse_input value %d on output %d of node %s, "
"please check attr reuse_input",
reuse_in_index, out_data_anchor->GetIdx(), node->GetName().c_str());
GELOGE(FAILED, "[Check][Attr]Invalid reuse_input value %d on output %d of node %s, "
"please check attr reuse_input",
reuse_in_index, out_data_anchor->GetIdx(), node->GetName().c_str()); reuse_in_index, out_data_anchor->GetIdx(), node->GetName().c_str());
return FAILED; return FAILED;
} }
@@ -1549,7 +1671,7 @@ bool GraphMemoryAssigner::AssignContinuousInputMemoryWithAtomicProcessDirectly(
auto continuous_type = iter->second; auto continuous_type = iter->second;
bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0); bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0);
if (continuous_input) { if (continuous_input) {
GELOGI("Node %s 's precursor node %s need assign continuous input memory, store node firstly.",
GELOGI("Node %s 's precursor node %s need assign continuous input memory, store node firstly",
input_continuous_node->GetName().c_str(), in_node->GetName().c_str()); input_continuous_node->GetName().c_str(), in_node->GetName().c_str());
return false; return false;
} }
@@ -1559,7 +1681,7 @@ bool GraphMemoryAssigner::AssignContinuousInputMemoryWithAtomicProcessDirectly(
node_2_continuous_type.emplace(out_node, continuous_type); node_2_continuous_type.emplace(out_node, continuous_type);
bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0); bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0);
if (continuous_input) { if (continuous_input) {
GELOGI("Node %s 's succeed node %s need assign continuous input memory, store node firstly.",
GELOGI("Node %s 's succeed node %s need assign continuous input memory, store node firstly",
input_continuous_node->GetName().c_str(), out_node->GetName().c_str()); input_continuous_node->GetName().c_str(), out_node->GetName().c_str());
return false; return false;
} }
@@ -1575,11 +1697,12 @@ ge::Status GraphMemoryAssigner::AssignContinuousInputMemoryWithAtomicProcess(con
int64_t mem_clean_size = 0; int64_t mem_clean_size = 0;
int64_t memory_type = RT_MEMORY_HBM; int64_t memory_type = RT_MEMORY_HBM;


GE_CHK_STATUS_RET(GetNodeMemoryType(input_continuous_node, memory_type, "input"), "Get node memory type failed.");
GE_CHK_STATUS_RET(GetNodeMemoryType(input_continuous_node, memory_type, "input"),
"[Get][MemType]fail for node:%s", input_continuous_node->GetName().c_str());
auto ret = AssignContinuousInputMemory(input_continuous_node, mem_clean_start, mem_clean_size, memory_type, auto ret = AssignContinuousInputMemory(input_continuous_node, mem_clean_start, mem_clean_size, memory_type,
continuous_type, reverse_refresh); continuous_type, reverse_refresh);
if (ret != ge::SUCCESS) { if (ret != ge::SUCCESS) {
GELOGE(ret, "Assign continuous input memory failed!");
GELOGE(ret, "[Assign][Memory:Input:continuous]fail for node:%s", input_continuous_node->GetName().c_str());
return ret; return ret;
} }


@@ -1590,7 +1713,6 @@ ge::Status GraphMemoryAssigner::AssignContinuousInputMemoryWithAtomicProcess(con
if (!input_indexes.empty() && input_indexes[0] == kAllInputAddrIsAtomic) { if (!input_indexes.empty() && input_indexes[0] == kAllInputAddrIsAtomic) {
// check whether there is an atomic conflict between the current node and the peer out node // check whether there is an atomic conflict between the current node and the peer out node
if (!CheckInputIsSupportAtomic(input_continuous_node)) { if (!CheckInputIsSupportAtomic(input_continuous_node)) {
GELOGE(ge::FAILED, "There is an atomic conflict between the current node and the peer out node, not supported!");
return ge::FAILED; return ge::FAILED;
} }


@@ -1602,7 +1724,7 @@ ge::Status GraphMemoryAssigner::AssignContinuousInputMemoryWithAtomicProcess(con
if (peer_out_node->GetType() == ATOMICADDRCLEAN) { if (peer_out_node->GetType() == ATOMICADDRCLEAN) {
ret = SetAtomicCleanAttr(peer_out_node, {mem_clean_start}, {mem_clean_size}, memory_type); ret = SetAtomicCleanAttr(peer_out_node, {mem_clean_start}, {mem_clean_size}, memory_type);
if (ret != SUCCESS) { if (ret != SUCCESS) {
GELOGE(ret, "Failed to set attr for atomic addr clean node %s.", peer_out_node->GetName().c_str());
GELOGE(ret, "[Set][AtomicCleanAttr]fail for node:%s", peer_out_node->GetName().c_str());
return ret; return ret;
} }
} }


+ 3
- 3
ge/graph/load/model_manager/data_dumper.cc View File

@@ -385,7 +385,7 @@ Status DataDumper::DumpRefOutput(const DataDumper::InnerDumpInfo &inner_dump_inf


Status DataDumper::DumpOutputWithTask(const InnerDumpInfo &inner_dump_info, aicpu::dump::Task &task) { Status DataDumper::DumpOutputWithTask(const InnerDumpInfo &inner_dump_info, aicpu::dump::Task &task) {
const auto &output_descs = inner_dump_info.op->GetAllOutputsDesc(); const auto &output_descs = inner_dump_info.op->GetAllOutputsDesc();
const std::vector<void *> output_addrs = ModelUtils::GetOutputDataAddrs(runtime_param_, inner_dump_info.op);
const std::vector<void *> output_addrs = ModelUtils::GetOutputDataAddrs(*runtime_param_, inner_dump_info.op);
if (output_descs.size() != output_addrs.size()) { if (output_descs.size() != output_addrs.size()) {
GELOGE(PARAM_INVALID, "Invalid output desc addrs size %zu, op %s has %zu output desc.", output_addrs.size(), GELOGE(PARAM_INVALID, "Invalid output desc addrs size %zu, op %s has %zu output desc.", output_addrs.size(),
inner_dump_info.op->GetName().c_str(), output_descs.size()); inner_dump_info.op->GetName().c_str(), output_descs.size());
@@ -436,7 +436,7 @@ Status DataDumper::DumpOutput(const InnerDumpInfo &inner_dump_info, aicpu::dump:
// else data, const or variable op // else data, const or variable op
aicpu::dump::Output output; aicpu::dump::Output output;
auto output_tensor = inner_dump_info.op->GetOutputDescPtr(inner_dump_info.output_anchor_index); auto output_tensor = inner_dump_info.op->GetOutputDescPtr(inner_dump_info.output_anchor_index);
const std::vector<void *> output_addrs = ModelUtils::GetOutputDataAddrs(runtime_param_, inner_dump_info.op);
const std::vector<void *> output_addrs = ModelUtils::GetOutputDataAddrs(*runtime_param_, inner_dump_info.op);
if (output_tensor == nullptr) { if (output_tensor == nullptr) {
GELOGE(PARAM_INVALID, "output_tensor is null, index: %d, size: %zu.", inner_dump_info.output_anchor_index, GELOGE(PARAM_INVALID, "output_tensor is null, index: %d, size: %zu.", inner_dump_info.output_anchor_index,
inner_dump_info.op->GetOutputsSize()); inner_dump_info.op->GetOutputsSize());
@@ -540,7 +540,7 @@ Status DataDumper::DumpRefInput(const DataDumper::InnerDumpInfo &inner_dump_info
Status DataDumper::DumpInput(const InnerDumpInfo &inner_dump_info, aicpu::dump::Task &task) { Status DataDumper::DumpInput(const InnerDumpInfo &inner_dump_info, aicpu::dump::Task &task) {
GELOGI("Start dump input"); GELOGI("Start dump input");
const auto &input_descs = inner_dump_info.op->GetAllInputsDesc(); const auto &input_descs = inner_dump_info.op->GetAllInputsDesc();
const std::vector<void *> input_addrs = ModelUtils::GetInputDataAddrs(runtime_param_, inner_dump_info.op);
const std::vector<void *> input_addrs = ModelUtils::GetInputDataAddrs(*runtime_param_, inner_dump_info.op);
if (input_descs.size() != input_addrs.size()) { if (input_descs.size() != input_addrs.size()) {
GELOGE(PARAM_INVALID, "Invalid input desc addrs size %zu, op %s has %zu input desc.", input_addrs.size(), GELOGE(PARAM_INVALID, "Invalid input desc addrs size %zu, op %s has %zu input desc.", input_addrs.size(),
inner_dump_info.op->GetName().c_str(), input_descs.size()); inner_dump_info.op->GetName().c_str(), input_descs.size());


+ 25
- 13
ge/graph/load/model_manager/data_dumper.h View File

@@ -36,9 +36,21 @@
namespace ge { namespace ge {
class DataDumper { class DataDumper {
public: public:
DataDumper() : runtime_param_{} {}

explicit DataDumper(const RuntimeParam &rsh) : runtime_param_(rsh) {}
explicit DataDumper(RuntimeParam *rsh)
: model_name_(),
model_id_(0),
runtime_param_(rsh),
dev_mem_load_(nullptr),
dev_mem_unload_(nullptr),
op_list_(),
input_map_(),
load_flag_(false),
device_id_(0),
global_step_(0),
loop_per_iter_(0),
loop_cond_(0),
compute_graph_(nullptr),
ref_info_() {}


~DataDumper(); ~DataDumper();


@@ -93,10 +105,10 @@ class DataDumper {
// for inference data dump // for inference data dump
std::string om_name_; std::string om_name_;


uint32_t model_id_ = 0;
const RuntimeParam &runtime_param_;
void *dev_mem_load_ = nullptr;
void *dev_mem_unload_ = nullptr;
uint32_t model_id_;
RuntimeParam *runtime_param_;
void *dev_mem_load_;
void *dev_mem_unload_;


struct InnerDumpInfo; struct InnerDumpInfo;
struct InnerInputMapping; struct InnerInputMapping;
@@ -107,12 +119,12 @@ class DataDumper {
uint32_t end_graph_stream_id_ = 0; uint32_t end_graph_stream_id_ = 0;
bool is_end_graph_ = false; bool is_end_graph_ = false;
std::multimap<std::string, InnerInputMapping> input_map_; // release after DavinciModel::Init std::multimap<std::string, InnerInputMapping> input_map_; // release after DavinciModel::Init
bool load_flag_ = false;
uint32_t device_id_ = 0;
uintptr_t global_step_ = 0;
uintptr_t loop_per_iter_ = 0;
uintptr_t loop_cond_ = 0;
ComputeGraphPtr compute_graph_ = nullptr; // release after DavinciModel::Init
bool load_flag_;
uint32_t device_id_;
uintptr_t global_step_;
uintptr_t loop_per_iter_;
uintptr_t loop_cond_;
ComputeGraphPtr compute_graph_; // release after DavinciModel::Init
std::map<OpDescPtr, void *> ref_info_; // release after DavinciModel::Init std::map<OpDescPtr, void *> ref_info_; // release after DavinciModel::Init
void *l1_fusion_addr_ = nullptr; void *l1_fusion_addr_ = nullptr;




+ 44
- 5
ge/graph/load/model_manager/davinci_model.cc View File

@@ -31,6 +31,7 @@
#include "common/scope_guard.h" #include "common/scope_guard.h"
#include "common/thread_pool.h" #include "common/thread_pool.h"
#include "framework/common/debug/ge_log.h" #include "framework/common/debug/ge_log.h"
#include "framework/common/util.h"
#include "graph/common/ge_call_wrapper.h" #include "graph/common/ge_call_wrapper.h"
#include "graph/compute_graph.h" #include "graph/compute_graph.h"
#include "graph/debug/ge_attr_define.h" #include "graph/debug/ge_attr_define.h"
@@ -184,7 +185,7 @@ DavinciModel::DavinciModel(int32_t priority, const std::shared_ptr<ModelListener
last_execute_mode_(INITIALIZATION), last_execute_mode_(INITIALIZATION),
session_id_(0), session_id_(0),
device_id_(0), device_id_(0),
maxDumpOpNum_(0), data_dumper_(runtime_param_),
maxDumpOpNum_(0), data_dumper_(&runtime_param_),
iterator_count_(0), iterator_count_(0),
is_l1_fusion_enable_(false), is_l1_fusion_enable_(false),
is_first_execute_(true) { is_first_execute_(true) {
@@ -297,6 +298,11 @@ void DavinciModel::ReleaseTask() {
GE_CHK_STATUS(task->Release(), "Release task failed."); GE_CHK_STATUS(task->Release(), "Release task failed.");
} }
} }

for (auto &item : label_goto_args_) {
GE_FREE_RT_LOG(item.second.first);
}
label_goto_args_.clear();
} }


Status DavinciModel::Assign(const GeModelPtr &ge_model) { Status DavinciModel::Assign(const GeModelPtr &ge_model) {
@@ -654,12 +660,12 @@ Status DavinciModel::Init(void *dev_ptr, size_t mem_size, void *weight_ptr, size
runtime_param_.graph_id = compute_graph->GetGraphID(); runtime_param_.graph_id = compute_graph->GetGraphID();


// op debug register // op debug register
GE_CHK_STATUS_RET(OpDebugRegister(), "OpDebugRegister failed.");
GE_CHK_STATUS_RET(OpDebugRegister(), "OpDebugRegister failed");


GE_TIMESTAMP_START(TransAllVarData); GE_TIMESTAMP_START(TransAllVarData);
GE_CHK_STATUS_RET(TransAllVarData(compute_graph, runtime_param_.graph_id), "TransAllVarData failed.");
GE_CHK_STATUS_RET(TransAllVarData(compute_graph, runtime_param_.graph_id), "TransAllVarData failed");
GE_TIMESTAMP_END(TransAllVarData, "GraphLoader::TransAllVarData"); GE_TIMESTAMP_END(TransAllVarData, "GraphLoader::TransAllVarData");
GE_CHK_STATUS_RET(TransVarDataUtils::CopyVarData(compute_graph, session_id_, device_id_), "copy var data failed.");
GE_CHK_STATUS_RET(TransVarDataUtils::CopyVarData(compute_graph, session_id_, device_id_), "copy var data failed");


GE_TIMESTAMP_START(InitModelMem); GE_TIMESTAMP_START(InitModelMem);
GELOGD("Known node is %d.", known_node_); GELOGD("Known node is %d.", known_node_);
@@ -667,7 +673,7 @@ Status DavinciModel::Init(void *dev_ptr, size_t mem_size, void *weight_ptr, size
if (!known_node_) { if (!known_node_) {
GE_CHK_STATUS_RET_NOLOG(InitFeatureMapAndP2PMem(dev_ptr, mem_size)); GE_CHK_STATUS_RET_NOLOG(InitFeatureMapAndP2PMem(dev_ptr, mem_size));
data_inputer_ = new (std::nothrow) DataInputer(); data_inputer_ = new (std::nothrow) DataInputer();
GE_CHK_BOOL_RET_STATUS(data_inputer_ != nullptr, MEMALLOC_FAILED, "data_inputer_ is nullptr.");
GE_CHK_BOOL_RET_STATUS(data_inputer_ != nullptr, MEMALLOC_FAILED, "data_inputer_ is nullptr");
} }
fixed_mem_base_ = reinterpret_cast<uintptr_t>(mem_base_); fixed_mem_base_ = reinterpret_cast<uintptr_t>(mem_base_);
GE_TIMESTAMP_END(InitModelMem, "GraphLoader::InitModelMem"); GE_TIMESTAMP_END(InitModelMem, "GraphLoader::InitModelMem");
@@ -1334,6 +1340,39 @@ void DavinciModel::ParseDynamicOutShape(const std::vector<std::string> &str_info
} }
} }


Status DavinciModel::GetLabelGotoAddr(uint32_t label_index, rtMemType_t mem_type, void *&arg_addr, uint32_t &arg_size) {
std::lock_guard<std::mutex> lock(label_args_mutex_);
auto it = label_goto_args_.find(label_index);
if (it != label_goto_args_.end()) {
arg_addr = it->second.first;
arg_size = it->second.second;
return SUCCESS;
}

if (label_index >= label_list_.size()) {
GELOGE(INTERNAL_ERROR, "Invalid label id:%u, label size:%zu", label_index, label_list_.size());
return INTERNAL_ERROR;
}
GE_CHECK_NOTNULL(label_list_[label_index]);
vector<rtLabel_t> label_used = { label_list_[label_index] };

arg_size = label_used.size() * sizeof(rtLabelDevInfo);
rtError_t rt_ret = rtMalloc(&arg_addr, arg_size, mem_type);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rtMalloc failed, error: %#x", rt_ret);
return RT_ERROR_TO_GE_STATUS(rt_ret);
}

label_goto_args_[label_index] = { arg_addr, arg_size };
rt_ret = rtLabelListCpy(label_used.data(), label_used.size(), arg_addr, arg_size);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rtLabelListCpy failed, error: %#x", rt_ret);
return RT_ERROR_TO_GE_STATUS(rt_ret);
}

return SUCCESS;
}

/// @ingroup ge /// @ingroup ge
/// @brief LabelSet Op Initialize. /// @brief LabelSet Op Initialize.
/// @param [in] op_desc: LabelSet Op descriptor. /// @param [in] op_desc: LabelSet Op descriptor.


+ 5
- 0
ge/graph/load/model_manager/davinci_model.h View File

@@ -273,6 +273,8 @@ class DavinciModel {


const vector<rtLabel_t> &GetLabelList() const { return label_list_; } const vector<rtLabel_t> &GetLabelList() const { return label_list_; }


Status GetLabelGotoAddr(uint32_t label_index, rtMemType_t memory_type, void *&addr, uint32_t &size);

Status DestroyThread(); Status DestroyThread();


// get Op // get Op
@@ -930,6 +932,9 @@ class DavinciModel {
vector<rtLabel_t> label_list_; vector<rtLabel_t> label_list_;
set<uint32_t> label_id_indication_; set<uint32_t> label_id_indication_;


mutex label_args_mutex_;
map<uint32_t, pair<void *, uint32_t>> label_goto_args_;

mutex outside_addrs_mutex_; mutex outside_addrs_mutex_;
vector<ZeroCopyTask> zero_copy_tasks_; // Task used Data or NetOutput addr. vector<ZeroCopyTask> zero_copy_tasks_; // Task used Data or NetOutput addr.
set<const void *> copy_only_addrs_; // Address need copy to original place. set<const void *> copy_only_addrs_; // Address need copy to original place.


+ 4
- 6
ge/graph/load/model_manager/model_manager.cc View File

@@ -297,12 +297,11 @@ Status ModelManager::LoadModelOnline(uint32_t &model_id, const shared_ptr<ge::Ge
if (model_id == INVALID_MODEL_ID) { if (model_id == INVALID_MODEL_ID) {
GenModelId(&model_id); GenModelId(&model_id);
} }

bool is_shape_unknown = false;
auto name_to_model = ge_root_model->GetSubgraphInstanceNameToModel();
string model_name = ""; string model_name = "";
GE_CHK_STATUS_RET(ge_root_model->CheckIsUnknownShape(is_shape_unknown), "CheckIsUnknownShape failed, model id:%u",
model_id);
if (is_shape_unknown || GetContext().GetHostExecFlag()) {
bool is_shape_unknown = ge_root_model->GetRootGraph()->GetGraphUnknownFlag();
// if multi subgraph is known, do hybrid load process
if (is_shape_unknown || GetContext().GetHostExecFlag() || (name_to_model.size() > 1)) {
return DoLoadHybridModelOnline(model_id, model_name, ge_root_model, listener); return DoLoadHybridModelOnline(model_id, model_name, ge_root_model, listener);
} }


@@ -324,7 +323,6 @@ Status ModelManager::LoadModelOnline(uint32_t &model_id, const shared_ptr<ge::Ge
auto root_graph = ge_root_model->GetRootGraph(); auto root_graph = ge_root_model->GetRootGraph();
GE_CHECK_NOTNULL(root_graph); GE_CHECK_NOTNULL(root_graph);
string root_model_name = root_graph->GetName(); string root_model_name = root_graph->GetName();
auto name_to_model = ge_root_model->GetSubgraphInstanceNameToModel();
GeModelPtr ge_model = name_to_model[root_model_name]; GeModelPtr ge_model = name_to_model[root_model_name];
Status ret = SUCCESS; Status ret = SUCCESS;
do { do {


+ 33
- 9
ge/graph/load/model_manager/task_info/label_goto_ex_task_info.cc View File

@@ -17,9 +17,15 @@
#include "graph/load/model_manager/task_info/label_goto_ex_task_info.h" #include "graph/load/model_manager/task_info/label_goto_ex_task_info.h"


#include "graph/load/model_manager/davinci_model.h" #include "graph/load/model_manager/davinci_model.h"
#include "graph/debug/ge_attr_define.h"


namespace ge { namespace ge {
constexpr uint8_t kGotoBranchMax = 1;

LabelGotoExTaskInfo::~LabelGotoExTaskInfo() {
args_ = nullptr;
GE_FREE_RT_LOG(index_value_);
}

Status LabelGotoExTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davinci_model) { Status LabelGotoExTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davinci_model) {
GELOGI("LabelGotoExTaskInfo Init Start."); GELOGI("LabelGotoExTaskInfo Init Start.");
GE_CHECK_NOTNULL(davinci_model); GE_CHECK_NOTNULL(davinci_model);
@@ -28,7 +34,7 @@ Status LabelGotoExTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *da
return FAILED; return FAILED;
} }


// Get LabelGoto task def
// Get LabelGotoEx task def
const domi::LabelGotoExDef &label_goto = task_def.label_goto_ex(); const domi::LabelGotoExDef &label_goto = task_def.label_goto_ex();
OpDescPtr op_desc = davinci_model->GetOpByIndex(label_goto.op_index()); OpDescPtr op_desc = davinci_model->GetOpByIndex(label_goto.op_index());
if (op_desc == nullptr) { if (op_desc == nullptr) {
@@ -43,20 +49,38 @@ Status LabelGotoExTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *da
return INTERNAL_ERROR; return INTERNAL_ERROR;
} }


const vector<rtLabel_t> &label_list = davinci_model->GetLabelList();
if (label_index >= label_list.size()) {
GELOGE(PARAM_INVALID, "LabelGotoExTaskInfo: Invalid label id:%u, label size:%zu", label_index, label_list.size());
return INTERNAL_ERROR;
rtMemType_t memory_type = op_desc->HasAttr(ATTR_NAME_MEMORY_TYPE_RANGE) ? RT_MEMORY_TS_4G : RT_MEMORY_HBM;
GELOGI("memory_type: %u", memory_type);

GE_CHK_STATUS_RET_NOLOG(davinci_model->GetLabelGotoAddr(label_index, memory_type, args_, args_size_));

rtError_t rt_ret = rtMalloc(&index_value_, sizeof(uint64_t), memory_type);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rtMalloc failed, error: %#x", rt_ret);
return RT_ERROR_TO_GE_STATUS(rt_ret);
} }
label_ = label_list[label_index];


GELOGI("LabelGotoExTaskInfo Init Success, label id:%u, label:%p.", label_index, label_);
uint64_t branch_index = 0;
rt_ret = rtMemcpy(index_value_, sizeof(uint64_t), &branch_index, sizeof(uint64_t), RT_MEMCPY_HOST_TO_DEVICE);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rtMemcpy failed, error: %#x", rt_ret);
return RT_ERROR_TO_GE_STATUS(rt_ret);
}

GELOGI("LabelGotoExTaskInfo Init Success, label id:%u", label_index);
return SUCCESS; return SUCCESS;
} }


Status LabelGotoExTaskInfo::Distribute() { Status LabelGotoExTaskInfo::Distribute() {
GELOGI("LabelGotoExTaskInfo Distribute Start."); GELOGI("LabelGotoExTaskInfo Distribute Start.");
rtError_t rt_ret = rtLabelGotoEx(label_, stream_);
GE_CHECK_NOTNULL(args_);
GE_CHECK_NOTNULL(index_value_);
if (args_size_ == 0) {
GELOGE(PARAM_INVALID, "branch max: %u, args size: %u invalid.", kGotoBranchMax, args_size_);
return PARAM_INVALID;
}

rtError_t rt_ret = rtLabelSwitchByIndex(index_value_, kGotoBranchMax, args_, stream_);
if (rt_ret != RT_ERROR_NONE) { if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret); GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret);
return RT_ERROR_TO_GE_STATUS(rt_ret); return RT_ERROR_TO_GE_STATUS(rt_ret);


+ 8
- 6
ge/graph/load/model_manager/task_info/label_goto_ex_task_info.h View File

@@ -14,24 +14,26 @@
* limitations under the License. * limitations under the License.
*/ */


#ifndef GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_LABEL_GOTO_EX_TASK_INFO_H_
#define GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_LABEL_GOTO_EX_TASK_INFO_H_
#ifndef GE_GRAPH_LOAD_MODEL_MANAGER_TASK_INFO_LABEL_GOTO_EX_TASK_INFO_H_
#define GE_GRAPH_LOAD_MODEL_MANAGER_TASK_INFO_LABEL_GOTO_EX_TASK_INFO_H_


#include "graph/load/model_manager/task_info/task_info.h" #include "graph/load/model_manager/task_info/task_info.h"


namespace ge { namespace ge {
class LabelGotoExTaskInfo : public TaskInfo { class LabelGotoExTaskInfo : public TaskInfo {
public: public:
LabelGotoExTaskInfo() : label_(nullptr) {}
LabelGotoExTaskInfo() = default;


~LabelGotoExTaskInfo() override { label_ = nullptr; }
~LabelGotoExTaskInfo() override;


Status Init(const domi::TaskDef &task_def, DavinciModel *davinci_model) override; Status Init(const domi::TaskDef &task_def, DavinciModel *davinci_model) override;


Status Distribute() override; Status Distribute() override;


private: private:
void *label_;
void *index_value_{nullptr}; // switch index input.
void *args_{nullptr}; // label info memory.
uint32_t args_size_{0}; // label info length.
}; };
} // namespace ge } // namespace ge
#endif // GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_LABEL_GOTO_EX_TASK_INFO_H_
#endif // GE_GRAPH_LOAD_MODEL_MANAGER_TASK_INFO_LABEL_GOTO_EX_TASK_INFO_H_

+ 3
- 3
ge/graph/load/model_manager/task_info/label_set_task_info.h View File

@@ -14,8 +14,8 @@
* limitations under the License. * limitations under the License.
*/ */


#ifndef GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_LABEL_SET_TASK_INFO_H_
#define GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_LABEL_SET_TASK_INFO_H_
#ifndef GE_GRAPH_LOAD_MODEL_MANAGER_TASK_INFO_LABEL_SET_TASK_INFO_H_
#define GE_GRAPH_LOAD_MODEL_MANAGER_TASK_INFO_LABEL_SET_TASK_INFO_H_


#include "graph/load/model_manager/task_info/task_info.h" #include "graph/load/model_manager/task_info/task_info.h"


@@ -34,4 +34,4 @@ class LabelSetTaskInfo : public TaskInfo {
void *label_; void *label_;
}; };
} // namespace ge } // namespace ge
#endif // GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_LABEL_SET_TASK_INFO_H_
#endif // GE_GRAPH_LOAD_MODEL_MANAGER_TASK_INFO_LABEL_SET_TASK_INFO_H_

+ 8
- 16
ge/graph/load/model_manager/task_info/label_switch_by_index_task_info.cc View File

@@ -16,20 +16,13 @@


#include "graph/load/model_manager/task_info/label_switch_by_index_task_info.h" #include "graph/load/model_manager/task_info/label_switch_by_index_task_info.h"


#include "graph/debug/ge_attr_define.h"
#include "graph/load/model_manager/davinci_model.h" #include "graph/load/model_manager/davinci_model.h"


namespace ge { namespace ge {
constexpr uint8_t kLabelSwitchIndexNum = 1; constexpr uint8_t kLabelSwitchIndexNum = 1;


LabelSwitchByIndexTaskInfo::~LabelSwitchByIndexTaskInfo() { LabelSwitchByIndexTaskInfo::~LabelSwitchByIndexTaskInfo() {
if (args_ != nullptr) {
rtError_t ret = rtFree(args_);
if (ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", ret);
}
}
args_ = nullptr;
GE_FREE_RT_LOG(args_);
index_value_ = nullptr; index_value_ = nullptr;
} }


@@ -37,13 +30,12 @@ Status LabelSwitchByIndexTaskInfo::Init(const domi::TaskDef &task_def, DavinciMo
GELOGI("LabelSwitchByIndexTaskInfo Init Start."); GELOGI("LabelSwitchByIndexTaskInfo Init Start.");
GE_CHECK_NOTNULL(davinci_model); GE_CHECK_NOTNULL(davinci_model);


const vector<rtLabel_t> &label_list = davinci_model->GetLabelList();
Status ret = SetStream(task_def.stream_id(), davinci_model->GetStreamList()); Status ret = SetStream(task_def.stream_id(), davinci_model->GetStreamList());
if (ret != SUCCESS) { if (ret != SUCCESS) {
return FAILED; return FAILED;
} }


// Get LabelSwitch task def
// Get LabelSwitchByIndex task def
const domi::LabelSwitchByIndexDef &label_switch = task_def.label_switch_by_index(); const domi::LabelSwitchByIndexDef &label_switch = task_def.label_switch_by_index();
OpDescPtr op_desc = davinci_model->GetOpByIndex(label_switch.op_index()); OpDescPtr op_desc = davinci_model->GetOpByIndex(label_switch.op_index());
if (op_desc == nullptr) { if (op_desc == nullptr) {
@@ -68,7 +60,7 @@ Status LabelSwitchByIndexTaskInfo::Init(const domi::TaskDef &task_def, DavinciMo


davinci_model->DisableZeroCopy(index_value_); davinci_model->DisableZeroCopy(index_value_);


std::vector<uint32_t> label_idx_list;
vector<uint32_t> label_idx_list;
if (!AttrUtils::GetListInt(op_desc, ATTR_NAME_LABEL_SWITCH_LIST, label_idx_list)) { if (!AttrUtils::GetListInt(op_desc, ATTR_NAME_LABEL_SWITCH_LIST, label_idx_list)) {
GELOGE(INTERNAL_ERROR, "LabelSwitchByIndexTaskInfo: %s Get attr %s failed.", op_desc->GetName().c_str(), GELOGE(INTERNAL_ERROR, "LabelSwitchByIndexTaskInfo: %s Get attr %s failed.", op_desc->GetName().c_str(),
ATTR_NAME_LABEL_SWITCH_LIST.c_str()); ATTR_NAME_LABEL_SWITCH_LIST.c_str());
@@ -81,7 +73,8 @@ Status LabelSwitchByIndexTaskInfo::Init(const domi::TaskDef &task_def, DavinciMo
return INTERNAL_ERROR; return INTERNAL_ERROR;
} }


label_list_.resize(branch_max_, nullptr);
vector<rtLabel_t> label_used(branch_max_, nullptr);
const vector<rtLabel_t> &label_list = davinci_model->GetLabelList();
for (size_t idx = 0; idx < label_idx_list.size(); ++idx) { for (size_t idx = 0; idx < label_idx_list.size(); ++idx) {
uint32_t label_id = label_idx_list[idx]; uint32_t label_id = label_idx_list[idx];
if (label_id >= label_list.size()) { if (label_id >= label_list.size()) {
@@ -90,8 +83,7 @@ Status LabelSwitchByIndexTaskInfo::Init(const domi::TaskDef &task_def, DavinciMo
return INTERNAL_ERROR; return INTERNAL_ERROR;
} }
GE_CHECK_NOTNULL(label_list[label_id]); GE_CHECK_NOTNULL(label_list[label_id]);

label_list_[idx] = label_list[label_id];
label_used[idx] = label_list[label_id];
} }


rtMemType_t memory_type = op_desc->HasAttr(ATTR_NAME_MEMORY_TYPE_RANGE) ? RT_MEMORY_TS_4G : RT_MEMORY_HBM; rtMemType_t memory_type = op_desc->HasAttr(ATTR_NAME_MEMORY_TYPE_RANGE) ? RT_MEMORY_TS_4G : RT_MEMORY_HBM;
@@ -103,7 +95,7 @@ Status LabelSwitchByIndexTaskInfo::Init(const domi::TaskDef &task_def, DavinciMo
return RT_ERROR_TO_GE_STATUS(rt_ret); return RT_ERROR_TO_GE_STATUS(rt_ret);
} }


rt_ret = rtLabelListCpy(label_list_.data(), label_list_.size(), args_, args_size_);
rt_ret = rtLabelListCpy(label_used.data(), label_used.size(), args_, args_size_);
if (rt_ret != RT_ERROR_NONE) { if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret); GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret);
return RT_ERROR_TO_GE_STATUS(rt_ret); return RT_ERROR_TO_GE_STATUS(rt_ret);
@@ -125,7 +117,7 @@ Status LabelSwitchByIndexTaskInfo::Distribute() {
rtError_t rt_ret = rtLabelSwitchByIndex(index_value_, branch_max_, args_, stream_); rtError_t rt_ret = rtLabelSwitchByIndex(index_value_, branch_max_, args_, stream_);
if (rt_ret != RT_ERROR_NONE) { if (rt_ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret); GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret);
return RT_FAILED;
return RT_ERROR_TO_GE_STATUS(rt_ret);
} }


GELOGI("LabelSwitchByIndexTaskInfo Distribute Success."); GELOGI("LabelSwitchByIndexTaskInfo Distribute Success.");


+ 9
- 11
ge/graph/load/model_manager/task_info/label_switch_by_index_task_info.h View File

@@ -14,16 +14,15 @@
* limitations under the License. * limitations under the License.
*/ */


#ifndef GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_LABEL_SWITCH_BY_INDEX_TASK_INFO_H_
#define GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_LABEL_SWITCH_BY_INDEX_TASK_INFO_H_
#ifndef GE_GRAPH_LOAD_MODEL_MANAGER_TASK_INFO_LABEL_SWITCH_BY_INDEX_TASK_INFO_H_
#define GE_GRAPH_LOAD_MODEL_MANAGER_TASK_INFO_LABEL_SWITCH_BY_INDEX_TASK_INFO_H_


#include "graph/load/model_manager/task_info/task_info.h" #include "graph/load/model_manager/task_info/task_info.h"


namespace ge { namespace ge {
class LabelSwitchByIndexTaskInfo : public TaskInfo { class LabelSwitchByIndexTaskInfo : public TaskInfo {
public: public:
LabelSwitchByIndexTaskInfo()
: index_value_(nullptr), branch_max_(0), args_(nullptr), args_size_(0), fixed_addr_offset_(0) {}
LabelSwitchByIndexTaskInfo() = default;


~LabelSwitchByIndexTaskInfo() override; ~LabelSwitchByIndexTaskInfo() override;


@@ -34,12 +33,11 @@ class LabelSwitchByIndexTaskInfo : public TaskInfo {
Status CalculateArgs(const domi::TaskDef &task_def, DavinciModel *davinci_model) override; Status CalculateArgs(const domi::TaskDef &task_def, DavinciModel *davinci_model) override;


private: private:
void *index_value_; // switch index input.
uint32_t branch_max_; // max branch count.
void *args_; // label info memory.
uint32_t args_size_; // label info length.
std::vector<rtLabel_t> label_list_;
int64_t fixed_addr_offset_;
void *index_value_{nullptr}; // switch index input.
uint32_t branch_max_{0}; // max branch count.
void *args_{nullptr}; // label info memory.
uint32_t args_size_{0}; // label info length.
int64_t fixed_addr_offset_{0};
}; };
} // namespace ge } // namespace ge
#endif // GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_LABEL_SWITCH_BY_INDEX_TASK_INFO_H_
#endif // GE_GRAPH_LOAD_MODEL_MANAGER_TASK_INFO_LABEL_SWITCH_BY_INDEX_TASK_INFO_H_

+ 32
- 31
ge/graph/manager/graph_caching_allocator.cc View File

@@ -40,7 +40,7 @@ static bool BlockComparator(const Block *left, const Block *right) {
} }


bool CanMerge(Block *block) { bool CanMerge(Block *block) {
if (block == nullptr || block->allocated || !block->IsSplit()) {
if ((block == nullptr) || block->allocated || !block->IsSplit()) {
return false; return false;
} }
return true; return true;
@@ -52,7 +52,7 @@ size_t GetBinIndex(size_t size) {
if (size <= range) { if (size <= range) {
break; break;
} }
++index;
index++;
} }
if (index > kNumBins - 1) { if (index > kNumBins - 1) {
index = kNumBins - 1; index = kNumBins - 1;
@@ -87,15 +87,15 @@ bool ShouldSplit(const Block *block, size_t size) {


void IncreaseCount(std::map<size_t, size_t> &count, size_t size) { void IncreaseCount(std::map<size_t, size_t> &count, size_t size) {
auto it = count.find(size); auto it = count.find(size);
if (it != count.end()) {
it->second++;
} else {
if (it == count.end()) {
count.emplace(size, 1); count.emplace(size, 1);
} else {
it->second++;
} }
} }


CachingAllocator::CachingAllocator(rtMemType_t memory_type) : memory_type_(memory_type), memory_allocator_(nullptr) { CachingAllocator::CachingAllocator(rtMemType_t memory_type) : memory_type_(memory_type), memory_allocator_(nullptr) {
for (uint32_t i = 0; i < kNumBins; ++i) {
for (uint32_t i = 0; i < kNumBins; i++) {
free_block_bins_[i] = nullptr; free_block_bins_[i] = nullptr;
} }
} }
@@ -105,7 +105,7 @@ Status CachingAllocator::Initialize(uint32_t device_id) {
// when redo Initialize free old memory // when redo Initialize free old memory
FreeBlocks(); FreeBlocks();
std::lock_guard<std::recursive_mutex> lock(mutex_); std::lock_guard<std::recursive_mutex> lock(mutex_);
for (uint32_t i = 0; i < kNumBins; ++i) {
for (uint32_t i = 0; i < kNumBins; i++) {
if (free_block_bins_[i] != nullptr) { if (free_block_bins_[i] != nullptr) {
continue; continue;
} }
@@ -132,18 +132,18 @@ void CachingAllocator::Finalize(uint32_t device_id) {


uint8_t *CachingAllocator::Malloc(size_t size, uint8_t *org_ptr, uint32_t device_id) { uint8_t *CachingAllocator::Malloc(size_t size, uint8_t *org_ptr, uint32_t device_id) {
GELOGI("Start malloc pool memory, size = %zu, device id = %u", size, device_id); GELOGI("Start malloc pool memory, size = %zu, device id = %u", size, device_id);
uint8_t *ptr = nullptr;
size = GetBlockSize(size); size = GetBlockSize(size);
uint8_t *ptr = nullptr;
Block *block = FindFreeBlock(size, org_ptr, device_id); Block *block = FindFreeBlock(size, org_ptr, device_id);
if (block != nullptr) {
ptr = block->ptr;
} else {
if (block == nullptr) {
if (ge::SUCCESS == TryExtendCache(size, device_id)) { if (ge::SUCCESS == TryExtendCache(size, device_id)) {
block = FindFreeBlock(size, org_ptr, device_id); block = FindFreeBlock(size, org_ptr, device_id);
if (block != nullptr) { if (block != nullptr) {
ptr = block->ptr; ptr = block->ptr;
} }
} }
} else {
ptr = block->ptr;
} }
if (ptr == nullptr) { if (ptr == nullptr) {
GELOGE(FAILED, "Malloc failed device id = %u, size= %zu", device_id, size); GELOGE(FAILED, "Malloc failed device id = %u, size= %zu", device_id, size);
@@ -171,7 +171,7 @@ Status CachingAllocator::Free(uint8_t *ptr, uint32_t device_id) {
} }


void CachingAllocator::FreeBlock(Block *block) { void CachingAllocator::FreeBlock(Block *block) {
if (block == nullptr || !block->allocated) {
if ((block == nullptr) || !block->allocated) {
return; return;
} }
GELOGI("Free block size = %zu", block->size); GELOGI("Free block size = %zu", block->size);
@@ -187,7 +187,7 @@ void CachingAllocator::FreeBlock(Block *block) {
} }


void CachingAllocator::MergeBlocks(Block *dst, Block *src, BlockBin &bin) { void CachingAllocator::MergeBlocks(Block *dst, Block *src, BlockBin &bin) {
if (!CanMerge(dst) || !CanMerge(src)) {
if (!CanMerge(src) || !CanMerge(dst)) {
return; return;
} }


@@ -316,7 +316,7 @@ size_t CachingAllocator::FreeCachedBlocks() {
GELOGI("Free cached blocks"); GELOGI("Free cached blocks");
std::lock_guard<std::recursive_mutex> lock(mutex_); std::lock_guard<std::recursive_mutex> lock(mutex_);
size_t free_cached_memory_size = 0; size_t free_cached_memory_size = 0;
for (uint32_t i = 0; i < kNumBins; ++i) {
for (uint32_t i = 0; i < kNumBins; i++) {
auto pool = free_block_bins_[i]; auto pool = free_block_bins_[i];
if (pool == nullptr) { if (pool == nullptr) {
continue; continue;
@@ -324,7 +324,8 @@ size_t CachingAllocator::FreeCachedBlocks() {
for (auto it = pool->begin(); it != pool->end();) { for (auto it = pool->begin(); it != pool->end();) {
Block *block = *it; Block *block = *it;
// free block memory that has not been split // free block memory that has not been split
if ((block != nullptr) && (block->ptr != nullptr) && (block->prev == nullptr) && (block->next == nullptr) &&
if ((block != nullptr) && (block->ptr != nullptr) &&
(block->prev == nullptr) && (block->next == nullptr) &&
(memory_allocator_->FreeMemory(block->ptr) == ge::SUCCESS)) { (memory_allocator_->FreeMemory(block->ptr) == ge::SUCCESS)) {
auto itcount = malloced_memory_.find(block->size); auto itcount = malloced_memory_.find(block->size);
free_cached_memory_size += block->size; free_cached_memory_size += block->size;
@@ -345,7 +346,7 @@ size_t CachingAllocator::FreeCachedBlocks() {
} }


void CachingAllocator::FreeBlocks() { void CachingAllocator::FreeBlocks() {
GELOGI("Free blocks");
GELOGI("Free blocks.");
std::lock_guard<std::recursive_mutex> lock(mutex_); std::lock_guard<std::recursive_mutex> lock(mutex_);
// free allocated blocks and put to cache // free allocated blocks and put to cache
for (auto &it : allocated_blocks_) { for (auto &it : allocated_blocks_) {
@@ -356,9 +357,9 @@ void CachingAllocator::FreeBlocks() {
} }


void CachingAllocator::FreeBlockBins() { void CachingAllocator::FreeBlockBins() {
GELOGI("Free block bins");
GELOGI("Free block bins.");
std::lock_guard<std::recursive_mutex> lock(mutex_); std::lock_guard<std::recursive_mutex> lock(mutex_);
for (uint32_t i = 0; i < kNumBins; ++i) {
for (uint32_t i = 0; i < kNumBins; i++) {
if (free_block_bins_[i] != nullptr) { if (free_block_bins_[i] != nullptr) {
delete free_block_bins_[i]; delete free_block_bins_[i];
free_block_bins_[i] = nullptr; free_block_bins_[i] = nullptr;
@@ -367,9 +368,9 @@ void CachingAllocator::FreeBlockBins() {
} }


void PrintCount(std::map<size_t, size_t> &count, const std::string &name, size_t total_size, size_t total_count) { void PrintCount(std::map<size_t, size_t> &count, const std::string &name, size_t total_size, size_t total_count) {
GELOGI("%6s total[size:%10zu count:%10zu]", name.c_str(), total_size, total_count);
GELOGI("%6s total[size:%10zu count:%10zu].", name.c_str(), total_size, total_count);
for (auto &it : count) { for (auto &it : count) {
GELOGI(" |- block[size:%10zu count:%10zu]", it.first, it.second);
GELOGI(" |- block[size:%10zu count:%10zu].", it.first, it.second);
} }
} }


@@ -383,20 +384,20 @@ void CachingAllocator::PrintStatics() {
size_t total_free_count = 0; size_t total_free_count = 0;
size_t total_malloc_size = 0; size_t total_malloc_size = 0;
size_t total_malloc_count = 0; size_t total_malloc_count = 0;
std::map<size_t, size_t> using_block;
std::map<size_t, size_t> free_block;
std::map<size_t, size_t> malloc_block;
std::map<size_t, size_t> using_block_stat;
std::map<size_t, size_t> free_block_stat;
std::map<size_t, size_t> malloc_block_stat;
do { do {
std::lock_guard<std::recursive_mutex> lock(mutex_); std::lock_guard<std::recursive_mutex> lock(mutex_);
for (uint32_t i = 0; i < kNumBins; ++i) {
for (uint32_t i = 0; i < kNumBins; i++) {
auto pool = free_block_bins_[i]; auto pool = free_block_bins_[i];
if (pool == nullptr) { if (pool == nullptr) {
continue; continue;
} }
for (auto it = pool->begin(); it != pool->end(); ++it) {
for (auto it = pool->begin(); it != pool->end(); it++) {
if ((*it) != nullptr) { if ((*it) != nullptr) {
total_free_size += (*it)->size; total_free_size += (*it)->size;
IncreaseCount(free_block, (*it)->size);
IncreaseCount(free_block_stat, (*it)->size);
total_free_count++; total_free_count++;
} }
} }
@@ -405,7 +406,7 @@ void CachingAllocator::PrintStatics() {
for (auto &it : allocated_blocks_) { for (auto &it : allocated_blocks_) {
if (it.second != nullptr) { if (it.second != nullptr) {
total_using_size += it.second->size; total_using_size += it.second->size;
IncreaseCount(using_block, it.second->size);
IncreaseCount(using_block_stat, it.second->size);
total_using_count++; total_using_count++;
} }
} }
@@ -413,12 +414,12 @@ void CachingAllocator::PrintStatics() {
for (auto &it : malloced_memory_) { for (auto &it : malloced_memory_) {
total_malloc_size += it.first * it.second; total_malloc_size += it.first * it.second;
total_malloc_count += it.second; total_malloc_count += it.second;
malloc_block[it.first] = it.second;
malloc_block_stat[it.first] = it.second;
} }
} while (0); } while (0);


PrintCount(malloc_block, "Malloc", total_malloc_size, total_malloc_count);
PrintCount(using_block, "Using", total_using_size, total_using_count);
PrintCount(free_block, "Free", total_free_size, total_free_count);
PrintCount(malloc_block_stat, "Malloc", total_malloc_size, total_malloc_count);
PrintCount(using_block_stat, "Using", total_using_size, total_using_count);
PrintCount(free_block_stat, "Free", total_free_size, total_free_count);
} }
} // namespace ge } // namespace ge

+ 28
- 5
ge/graph/manager/graph_manager.cc View File

@@ -359,7 +359,10 @@ Status GraphManager::AddGraph(const GraphId &graph_id, const Graph &graph,
std::shared_ptr<Graph> graph_ptr = MakeShared<ge::Graph>(graph); std::shared_ptr<Graph> graph_ptr = MakeShared<ge::Graph>(graph);
GE_IF_BOOL_EXEC(graph_ptr == nullptr, GELOGE(FAILED, "GraphPtr make shared failed"); GE_IF_BOOL_EXEC(graph_ptr == nullptr, GELOGE(FAILED, "GraphPtr make shared failed");
return FAILED); return FAILED);

// update option about tuning graph
ParseOption(options, BUILD_MODE, options_.build_mode);
ParseOption(options, BUILD_STEP, options_.build_step);
ParseOption(options, TUNING_PATH, options_.tuning_path);
graph_node->SetGraph(graph_ptr); graph_node->SetGraph(graph_ptr);
graph_node->SetOptions(options); graph_node->SetOptions(options);
AddGraphNode(graph_id, graph_node); AddGraphNode(graph_id, graph_node);
@@ -433,6 +436,10 @@ Status GraphManager::AddGraphWithCopy(const GraphId &graph_id, const Graph &grap
GELOGE(FAILED, "GraphPtr make shared failed"); GELOGE(FAILED, "GraphPtr make shared failed");
return FAILED; return FAILED;
} }
// update option about tuning graph
ParseOption(options, BUILD_MODE, options_.build_mode);
ParseOption(options, BUILD_STEP, options_.build_step);
ParseOption(options, TUNING_PATH, options_.tuning_path);


graph_node->SetGraph(graph_ptr); graph_node->SetGraph(graph_ptr);
graph_node->SetOptions(options); graph_node->SetOptions(options);
@@ -1466,6 +1473,10 @@ Status GraphManager::ParseOptions(const std::map<std::string, std::string> &opti
GE_IF_BOOL_EXEC(ret != SUCCESS, GE_IF_BOOL_EXEC(ret != SUCCESS,
GELOGE(GE_GRAPH_OPTIONS_INVALID, "Key:ge.compressFlag value is invalid, must be 0 or 1."); GELOGE(GE_GRAPH_OPTIONS_INVALID, "Key:ge.compressFlag value is invalid, must be 0 or 1.");
return GE_GRAPH_OPTIONS_INVALID); return GE_GRAPH_OPTIONS_INVALID);
// Set Build model and step
ParseOption(options, BUILD_MODE, options_.build_mode);
ParseOption(options, BUILD_STEP, options_.build_step);
ParseOption(options, BUILD_STEP, options_.tuning_path);


// ge.graphType. // ge.graphType.
options_.run_graph_flag = true; options_.run_graph_flag = true;
@@ -1514,10 +1525,6 @@ Status GraphManager::ParseOptions(const std::map<std::string, std::string> &opti
GELOGD("Dynamic dims params: input shape is %s, dynamic dims is %s, dynamic node type is %d", GELOGD("Dynamic dims params: input shape is %s, dynamic dims is %s, dynamic node type is %d",
options_.input_shape.c_str(), options_.dynamic_dims.c_str(), options_.dynamic_node_type); options_.input_shape.c_str(), options_.dynamic_dims.c_str(), options_.dynamic_node_type);


// Set Build model and step
ParseOption(options, BUILD_MODE, options_.build_mode);
ParseOption(options, BUILD_STEP, options_.build_step);

return SUCCESS; return SUCCESS;
} }


@@ -1549,6 +1556,7 @@ void GraphManager::ParseOption(const std::map<std::string, std::string> &options
std::string &option) { std::string &option) {
auto iter = options.find(key); auto iter = options.find(key);
if (iter != options.end()) { if (iter != options.end()) {
GELOGD("Set option %s from value %s to value%s", key.c_str(), option.c_str(), iter->second.c_str());
option = iter->second; option = iter->second;
} }
} }
@@ -3132,6 +3140,21 @@ Status GraphManager::ConvertGraphToFile(ComputeGraphPtr &compute_graph, GraphPar
non_tuning_subgraphs.push_back(sub_graph_tmp); non_tuning_subgraphs.push_back(sub_graph_tmp);
} }
} }
// for function graphs to tune
for (auto &function_graph : compute_graph->GetAllSubgraphs()) {
auto subgraph_list = sub_graph_map[function_graph];
for (const auto &sub_graph_info_ptr : subgraph_list) {
GE_CHECK_NOTNULL(sub_graph_info_ptr);
ComputeGraphPtr sub_graph_tmp = sub_graph_info_ptr->GetSubGraph();
// need to tuning
if (sub_graph_info_ptr->GetEngineName() == kVectorEngine ||
sub_graph_info_ptr->GetEngineName() == kAIcoreEngine) {
tuning_subgraphs.push_back(sub_graph_tmp);
} else {
non_tuning_subgraphs.push_back(sub_graph_tmp);
}
}
}
return TuningUtils::ConvertGraphToFile(tuning_subgraphs, non_tuning_subgraphs, exe_flag, path); return TuningUtils::ConvertGraphToFile(tuning_subgraphs, non_tuning_subgraphs, exe_flag, path);
} }




+ 3
- 1
ge/graph/manager/graph_manager_utils.h View File

@@ -249,6 +249,7 @@ struct GraphManagerOptions {
std::string save_original_model; std::string save_original_model;
std::string build_mode; std::string build_mode;
std::string build_step; std::string build_step;
std::string tuning_path;
std::string input_shape; std::string input_shape;
std::string dynamic_dims; std::string dynamic_dims;
int32_t dynamic_node_type = -1; int32_t dynamic_node_type = -1;
@@ -275,7 +276,8 @@ struct GraphManagerOptions {
is_single_op(false), is_single_op(false),
save_original_model("false"), save_original_model("false"),
build_mode(""), build_mode(""),
build_step("") {}
build_step(""),
tuning_path(""){}
}; };
} // namespace ge } // namespace ge




+ 11
- 7
ge/graph/manager/graph_var_manager.cc View File

@@ -347,14 +347,18 @@ ge::Status VarManager::Init(const uint32_t &version, const uint64_t &session_id,
const uint64_t &job_id) { const uint64_t &job_id) {
std::lock_guard<std::recursive_mutex> lock(mutex_); std::lock_guard<std::recursive_mutex> lock(mutex_);
GELOGI("VarManager::Init, session id = %lu.", session_id); GELOGI("VarManager::Init, session id = %lu.", session_id);
version_ = version;
device_id_ = device_id;
session_id_ = session_id;
job_id_ = job_id;
var_resource_ = std::unique_ptr<VarResource>(new (std::nothrow) VarResource(session_id_));
if (var_resource_ == nullptr) { if (var_resource_ == nullptr) {
GELOGW("VarManager has not been init.");
return ge::INTERNAL_ERROR;
version_ = version;
device_id_ = device_id;
session_id_ = session_id;
job_id_ = job_id;
var_resource_ = std::unique_ptr<VarResource>(new (std::nothrow) VarResource(session_id_));
if (var_resource_ == nullptr) {
GELOGW("VarManager init failed session id = %lu.", session_id);
return ge::INTERNAL_ERROR;
}
} else {
GELOGW("VarManager::has been inited, session id = %lu.", session_id);
} }
return SUCCESS; return SUCCESS;
} }


+ 2
- 0
ge/graph/passes/net_output_pass.cc View File

@@ -555,6 +555,8 @@ void NetOutputPass::AddInOutForNetOutputOp(const ComputeGraphPtr &graph, OpDescP
return; return;
} }
ge::GeTensorDesc out_desc = src_node->GetOpDesc()->GetOutputDesc(src_index); ge::GeTensorDesc out_desc = src_node->GetOpDesc()->GetOutputDesc(src_index);
out_desc.SetFormat(FORMAT_ND);
out_desc.SetOriginFormat(FORMAT_ND);
GE_IF_BOOL_EXEC(net_output_desc->AddInputDesc(out_desc) != SUCCESS, GELOGW("add input desc failed"); return ); GE_IF_BOOL_EXEC(net_output_desc->AddInputDesc(out_desc) != SUCCESS, GELOGW("add input desc failed"); return );
is_input_const.push_back(PassUtils::IsConstant(src_node)); is_input_const.push_back(PassUtils::IsConstant(src_node));
++iter; ++iter;


+ 25
- 20
ge/graph/preprocess/graph_preprocess.cc View File

@@ -23,6 +23,7 @@
#include "common/formats/format_transfers/format_transfer_nhwc_nc1hwc0.h" #include "common/formats/format_transfers/format_transfer_nhwc_nc1hwc0.h"
#include "common/formats/format_transfers/format_transfer_transpose.h" #include "common/formats/format_transfers/format_transfer_transpose.h"
#include "common/formats/utils/formats_trans_utils.h" #include "common/formats/utils/formats_trans_utils.h"
#include "common/util/error_manager/error_manager.h"
#include "common/helper/model_helper.h" #include "common/helper/model_helper.h"
#include "common/math/math_util.h" #include "common/math/math_util.h"
#include "common/op/ge_op_utils.h" #include "common/op/ge_op_utils.h"
@@ -1304,7 +1305,8 @@ Status GraphPrepare::UpdateInput(const std::vector<GeTensor> &user_input,
auto format = desc.GetFormat(); auto format = desc.GetFormat();
auto origin_format = desc.GetOriginFormat(); auto origin_format = desc.GetOriginFormat();
// data maybe internal format [FRACTAL_NZ] at singleop process such as GEMM. // data maybe internal format [FRACTAL_NZ] at singleop process such as GEMM.
bool need_check_internal_format = (!IsTansDataOpData(input_node)) && (!options_.is_single_op);
auto tune_flag = (options_.build_mode == BUILD_MODE_TUNING) && (options_.build_step == BUILD_STEP_AFTER_BUILDER);
bool need_check_internal_format = (!IsTansDataOpData(input_node)) && (!options_.is_single_op) && (!tune_flag);
if (need_check_internal_format) { if (need_check_internal_format) {
bool is_internal = TypeUtils::IsInternalFormat(format) || TypeUtils::IsInternalFormat(origin_format); bool is_internal = TypeUtils::IsInternalFormat(format) || TypeUtils::IsInternalFormat(origin_format);
if (is_internal) { if (is_internal) {
@@ -1346,19 +1348,22 @@ Status GraphPrepare::UpdateInput(const std::vector<GeTensor> &user_input,
return FAILED; return FAILED;
} }
ge::TensorUtils::SetSize(desc, shape_size); ge::TensorUtils::SetSize(desc, shape_size);
graphStatus graph_ret = op->UpdateInputDesc(0, desc);
if (graph_ret != GRAPH_SUCCESS) {
GELOGE(graph_ret, "UpdateInputDesc fail, graph_ret:%u", graph_ret);
return graph_ret;
}
// Size will be recalculated in the build stage
ge::TensorUtils::SetSize(desc, 0);
graph_ret = op->UpdateOutputDesc(0, desc);
if (graph_ret != GRAPH_SUCCESS) {
GELOGE(graph_ret, "UpdateOutputDesc fail, graph_ret:%u", graph_ret);
return graph_ret;
if (!tune_flag) {
graphStatus graph_ret = op->UpdateInputDesc(0, desc);
if (graph_ret != GRAPH_SUCCESS) {
GELOGE(graph_ret, "UpdateInputDesc fail, graph_ret:%u", graph_ret);
return graph_ret;
}
// Size will be recalculated in the build stage
ge::TensorUtils::SetSize(desc, 0);
graph_ret = op->UpdateOutputDesc(0, desc);
if (graph_ret != GRAPH_SUCCESS) {
GELOGE(graph_ret, "UpdateOutputDesc fail, graph_ret:%u", graph_ret);
return graph_ret;
}
} else {
GELOGI("data %s skip update info in tune mode", op->GetName().c_str());
} }

if (!dynamic_shape_range_vec.empty()) { if (!dynamic_shape_range_vec.empty()) {
ret = UpdateDynamicInputShapeRange(index, dynamic_shape_range_vec, op, desc); ret = UpdateDynamicInputShapeRange(index, dynamic_shape_range_vec, op, desc);
GE_CHK_STATUS_RET(ret, "Fail to update dynamic input shape range on %s.", op->GetName().c_str()); GE_CHK_STATUS_RET(ret, "Fail to update dynamic input shape range on %s.", op->GetName().c_str());
@@ -1763,13 +1768,13 @@ Status GraphPrepare::CheckUserInput(const std::vector<GeTensor> &user_input) {
GeTensorDesc desc(user_input[index].GetTensorDesc()); GeTensorDesc desc(user_input[index].GetTensorDesc());


for (size_t i = 0; i < desc.GetShape().GetDimNum(); ++i) { for (size_t i = 0; i < desc.GetShape().GetDimNum(); ++i) {
if (desc.GetShape().GetDim(i) < 0) {
std::string situation = "data dim[" + std::to_string(i) + "][" +
std::to_string(desc.GetShape().GetDim(i)) + "]" ;
std::string reason = "it need >= 0";
ErrorManager::GetInstance().ATCReportErrMessage("E19025", {"situation", "reason"}, {situation, reason});
GELOGE(GE_GRAPH_INIT_FAILED, "data dim %zu is not supported, need >= 0, real:%ld.", i,
desc.GetShape().GetDim(i));
int64_t dim = desc.GetShape().GetDim(i);
if (dim < UNKNOWN_DIM_NUM) {
std::string situation = "data dim[" + std::to_string(i) + "][" + std::to_string(dim) + "]" ;
std::string reason = "it need >= -2";
REPORT_INPUT_ERROR(
"E19025", std::vector<std::string>({"situation", "reason"}),std::vector<std::string>({situation, reason}));
GELOGE(GE_GRAPH_INIT_FAILED, "[Check][InputDim]data dim %zu is not supported, need >= -2, real:%ld.", i, dim);
return GE_GRAPH_INIT_FAILED; return GE_GRAPH_INIT_FAILED;
} }
} }


+ 6
- 6
ge/host_kernels/concat_offset_kernel.cc View File

@@ -33,7 +33,7 @@ const int kNumOne = 1;
} // namespace } // namespace
Status ConcatOffsetKernel::Compute(const OpDescPtr op_desc_ptr, const vector<ConstGeTensorPtr> &input, Status ConcatOffsetKernel::Compute(const OpDescPtr op_desc_ptr, const vector<ConstGeTensorPtr> &input,
vector<GeTensorPtr> &v_output) { vector<GeTensorPtr> &v_output) {
GELOGI("ConcatOffsetKernel in.");
GELOGD("ConcatOffsetKernel in");
if (op_desc_ptr == nullptr) { if (op_desc_ptr == nullptr) {
GELOGE(PARAM_INVALID, "input opdesc is nullptr."); GELOGE(PARAM_INVALID, "input opdesc is nullptr.");
return PARAM_INVALID; return PARAM_INVALID;
@@ -41,7 +41,7 @@ Status ConcatOffsetKernel::Compute(const OpDescPtr op_desc_ptr, const vector<Con
// validate attrs // validate attrs
int N = 0; int N = 0;
if (!(AttrUtils::GetInt(op_desc_ptr, "N", N))) { if (!(AttrUtils::GetInt(op_desc_ptr, "N", N))) {
GELOGW("Attr %s does not exist.", "N");
GELOGW("Attr %s does not exist", "N");
return NOT_CHANGED; return NOT_CHANGED;
} }
// follow IR def, the first input is concat_dim // follow IR def, the first input is concat_dim
@@ -50,7 +50,7 @@ Status ConcatOffsetKernel::Compute(const OpDescPtr op_desc_ptr, const vector<Con
int32_t concat_dim = *(const_cast<int32_t *>(reinterpret_cast<const int32_t *>(input_0->GetData().data()))); int32_t concat_dim = *(const_cast<int32_t *>(reinterpret_cast<const int32_t *>(input_0->GetData().data())));
// validate inputs // validate inputs
if ((static_cast<int>(input.size()) != (N + kNumOne)) || (input.size() <= kConcatOffsetInputIndexOne)) { if ((static_cast<int>(input.size()) != (N + kNumOne)) || (input.size() <= kConcatOffsetInputIndexOne)) {
GELOGW("The number of input for concat offset must be equal to %d, and must be more than one.", (N + kNumOne));
GELOGW("The number of input for concat offset must be equal to %d, and must be more than one", (N + kNumOne));
return NOT_CHANGED; return NOT_CHANGED;
} }


@@ -61,7 +61,7 @@ Status ConcatOffsetKernel::Compute(const OpDescPtr op_desc_ptr, const vector<Con
GELOGW("Concat dim is bigger than the size of output_shape."); GELOGW("Concat dim is bigger than the size of output_shape.");
return NOT_CHANGED; return NOT_CHANGED;
} }
GELOGI("Output shape size is %ld", output_size);
GELOGI("Output shape size is %ld.", output_size);
int32_t offset = 0; int32_t offset = 0;
if (output_size < 0) { if (output_size < 0) {
GELOGE(FAILED, "Index is negative."); GELOGE(FAILED, "Index is negative.");
@@ -86,7 +86,7 @@ Status ConcatOffsetKernel::Compute(const OpDescPtr op_desc_ptr, const vector<Con
output_ptr->MutableTensorDesc().SetShape(output_shape); output_ptr->MutableTensorDesc().SetShape(output_shape);
GE_IF_BOOL_EXEC(output_ptr->SetData(reinterpret_cast<uint8_t *>(buf.get()), GE_IF_BOOL_EXEC(output_ptr->SetData(reinterpret_cast<uint8_t *>(buf.get()),
static_cast<size_t>(sizeof(DT_INT32) * output_size)) != GRAPH_SUCCESS, static_cast<size_t>(sizeof(DT_INT32) * output_size)) != GRAPH_SUCCESS,
GELOGW("set data failed");
GELOGW("set data failed.");
return NOT_CHANGED); return NOT_CHANGED);
v_output.push_back(output_ptr); v_output.push_back(output_ptr);
// caculate offset // caculate offset
@@ -99,7 +99,7 @@ Status ConcatOffsetKernel::Compute(const OpDescPtr op_desc_ptr, const vector<Con
} }
offset += input_dim; offset += input_dim;
} }
GELOGI("ConcatOffsetKernel success.");
GELOGD("ConcatOffsetKernel success");
return SUCCESS; return SUCCESS;
} }
REGISTER_KERNEL(CONCATOFFSET, ConcatOffsetKernel); REGISTER_KERNEL(CONCATOFFSET, ConcatOffsetKernel);


+ 14
- 14
ge/host_kernels/gather_v2_kernel.cc View File

@@ -278,7 +278,7 @@ Status GatherV2Kernel::SaveIndicesByDataType(ConstGeTensorPtr indices_tensor_ptr
auto indices_ptr = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(indices_tensor_ptr->GetData().data())); auto indices_ptr = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(indices_tensor_ptr->GetData().data()));
for (int64_t i = 0; i < indices_shape.GetShapeSize(); i++) { for (int64_t i = 0; i < indices_shape.GetShapeSize(); i++) {
if (*(indices_ptr + i) < 0 || *(indices_ptr + i) >= x_shape.GetDim(axis)) { if (*(indices_ptr + i) < 0 || *(indices_ptr + i) >= x_shape.GetDim(axis)) {
GELOGW("indices %ld value is not in range [0, %ld)", i, x_shape.GetDim(axis));
GELOGW("indices %ld value is not in range [0, %ld).", i, x_shape.GetDim(axis));
return NOT_CHANGED; return NOT_CHANGED;
} }
indicates_.push_back(*(indices_ptr + i)); indicates_.push_back(*(indices_ptr + i));
@@ -288,7 +288,7 @@ Status GatherV2Kernel::SaveIndicesByDataType(ConstGeTensorPtr indices_tensor_ptr
auto indices_ptr = const_cast<int64_t *>(reinterpret_cast<const int64_t *>(indices_tensor_ptr->GetData().data())); auto indices_ptr = const_cast<int64_t *>(reinterpret_cast<const int64_t *>(indices_tensor_ptr->GetData().data()));
for (int64_t i = 0; i < indices_shape.GetShapeSize(); i++) { for (int64_t i = 0; i < indices_shape.GetShapeSize(); i++) {
if (*(indices_ptr + i) < 0 || *(indices_ptr + i) >= x_shape.GetDim(axis)) { if (*(indices_ptr + i) < 0 || *(indices_ptr + i) >= x_shape.GetDim(axis)) {
GELOGW("indices %ld value is not in range [0, %ld)", i, x_shape.GetDim(axis));
GELOGW("indices %ld value is not in range [0, %ld).", i, x_shape.GetDim(axis));
return NOT_CHANGED; return NOT_CHANGED;
} }
indicates_.push_back(*(indices_ptr + i)); indicates_.push_back(*(indices_ptr + i));
@@ -344,42 +344,42 @@ Status GatherV2Kernel::Check(const OpDescPtr &op_desc_ptr, const vector<ConstGeT
auto indices_data_type = tensor1->GetTensorDesc().GetDataType(); auto indices_data_type = tensor1->GetTensorDesc().GetDataType();
bool is_valid_indices_data_type = indices_data_type == DT_INT32 || indices_data_type == DT_INT64; bool is_valid_indices_data_type = indices_data_type == DT_INT32 || indices_data_type == DT_INT64;
if (!is_valid_indices_data_type) { if (!is_valid_indices_data_type) {
GELOGW("indices datatype must be DT_INT32 or DT_INT64");
GELOGW("indices datatype must be DT_INT32 or DT_INT64.");
return NOT_CHANGED; return NOT_CHANGED;
} }
if (indices_shape.GetDimNum() > kMaxIndicatesDims) { if (indices_shape.GetDimNum() > kMaxIndicatesDims) {
GELOGW("indices input only support 0 or 1 dims");
GELOGW("indices input only support 0 or 1 dims.");
return NOT_CHANGED; return NOT_CHANGED;
} }
return SUCCESS; return SUCCESS;
} }
void GatherV2Kernel::DebugPrint(int64_t axis, const GeShape &x_shape, const GeShape &indices_shape, void GatherV2Kernel::DebugPrint(int64_t axis, const GeShape &x_shape, const GeShape &indices_shape,
const std::vector<int64_t> &y_shape) { const std::vector<int64_t> &y_shape) {
GELOGD("GatherV2Kernel axis:%ld x_shape:%zu indices_shape:%zu y_shape:%zu", axis, x_shape.GetDimNum(),
GELOGD("GatherV2Kernel axis:%ld x_shape:%zu indices_shape:%zu y_shape:%zu.", axis, x_shape.GetDimNum(),
indices_shape.GetDimNum(), y_shape.size()); indices_shape.GetDimNum(), y_shape.size());
for (size_t i = 0; i < x_shape.GetDimNum(); i++) { for (size_t i = 0; i < x_shape.GetDimNum(); i++) {
GELOGD("GatherV2Kernel x_shape[%zu]: %ld", i, x_shape.GetDim(i));
GELOGD("GatherV2Kernel x_shape[%zu]: %ld.", i, x_shape.GetDim(i));
} }
for (size_t i = 0; i < indices_shape.GetDimNum(); i++) { for (size_t i = 0; i < indices_shape.GetDimNum(); i++) {
GELOGD("GatherV2Kernel indices_shape[%zu]: %ld", i, indices_shape.GetDim(i));
GELOGD("GatherV2Kernel indices_shape[%zu]: %ld.", i, indices_shape.GetDim(i));
} }
for (size_t i = 0; i < y_shape.size(); i++) { for (size_t i = 0; i < y_shape.size(); i++) {
GELOGD("GatherV2Kernel y_shape[%zu]: %ld", i, y_shape[i]);
GELOGD("GatherV2Kernel y_shape[%zu]: %ld.", i, y_shape[i]);
} }
for (auto ele : indicates_) { for (auto ele : indicates_) {
GELOGD("GatherV2Kernel indices:%ld", ele);
GELOGD("GatherV2Kernel indices:%ld.", ele);
} }
} }


Status GatherV2Kernel::Compute(const OpDescPtr op_desc_ptr, const vector<ConstGeTensorPtr> &input, Status GatherV2Kernel::Compute(const OpDescPtr op_desc_ptr, const vector<ConstGeTensorPtr> &input,
vector<GeTensorPtr> &v_output) { vector<GeTensorPtr> &v_output) {
GELOGI("Enter GatherV2Kernel Process.");
GELOGI("Enter GatherV2Kernel Process");
Status ret = Check(op_desc_ptr, input, v_output); Status ret = Check(op_desc_ptr, input, v_output);
if (ret != SUCCESS) { if (ret != SUCCESS) {
GELOGW("param check failed.");
GELOGW("param check failed");
return NOT_CHANGED; return NOT_CHANGED;
} }
GELOGI("GatherV2Kernel[%s] start Process.", op_desc_ptr->GetName().c_str());
GELOGI("GatherV2Kernel[%s] start Process", op_desc_ptr->GetName().c_str());
ConstGeTensorPtr tensor0 = input.at(kGatherV2InputIndexZero); ConstGeTensorPtr tensor0 = input.at(kGatherV2InputIndexZero);
ConstGeTensorPtr tensor1 = input.at(kGatherV2InputIndexOne); ConstGeTensorPtr tensor1 = input.at(kGatherV2InputIndexOne);
ConstGeTensorPtr tensor2 = input.at(kGatherV2InputIndexTwo); ConstGeTensorPtr tensor2 = input.at(kGatherV2InputIndexTwo);
@@ -394,7 +394,7 @@ Status GatherV2Kernel::Compute(const OpDescPtr op_desc_ptr, const vector<ConstGe
axis = axis >= 0 ? axis : axis + x_shape.GetDimNum(); axis = axis >= 0 ? axis : axis + x_shape.GetDimNum();
// check axis value // check axis value
if (axis < 0 || (axis + 1) > static_cast<int64_t>(x_shape.GetDimNum())) { if (axis < 0 || (axis + 1) > static_cast<int64_t>(x_shape.GetDimNum())) {
GELOGW("axis is invalid");
GELOGW("axis is invalid!");
return NOT_CHANGED; return NOT_CHANGED;
} }
auto indices_data_type = tensor1->GetTensorDesc().GetDataType(); auto indices_data_type = tensor1->GetTensorDesc().GetDataType();
@@ -407,7 +407,7 @@ Status GatherV2Kernel::Compute(const OpDescPtr op_desc_ptr, const vector<ConstGe
// check input data type // check input data type
auto x_data_type = tensor0->GetTensorDesc().GetDataType(); auto x_data_type = tensor0->GetTensorDesc().GetDataType();
if (supported_type.find(x_data_type) == supported_type.end()) { if (supported_type.find(x_data_type) == supported_type.end()) {
GELOGI("GatherV2Kernel does not support this Data type:%s", TypeUtils::DataTypeToSerialString(x_data_type).c_str());
GELOGI("GatherV2Kernel does not support this Data type:%s.", TypeUtils::DataTypeToSerialString(x_data_type).c_str());
return NOT_CHANGED; return NOT_CHANGED;
} }
// calc output shape // calc output shape


+ 1
- 0
ge/host_kernels/identity_kernel.cc View File

@@ -61,4 +61,5 @@ Status IdentityKernel::Compute(const ge::OpDescPtr op_desc, const std::vector<ge
return SUCCESS; return SUCCESS;
} }
REGISTER_KERNEL(IDENTITY, IdentityKernel); REGISTER_KERNEL(IDENTITY, IdentityKernel);
REGISTER_KERNEL(PLACEHOLDERWITHDEFAULT, IdentityKernel);
} // namespace ge } // namespace ge

+ 9
- 9
ge/host_kernels/strided_slice_kernel.cc View File

@@ -84,14 +84,14 @@ void GetOriginStrideVec(const std::vector<ge::ConstGeTensorPtr> &input, vector<i
} // namespace } // namespace
Status StridedSliceKernel::Compute(const ge::OpDescPtr attr, const std::vector<ge::ConstGeTensorPtr> &input, Status StridedSliceKernel::Compute(const ge::OpDescPtr attr, const std::vector<ge::ConstGeTensorPtr> &input,
vector<ge::GeTensorPtr> &v_output) { vector<ge::GeTensorPtr> &v_output) {
GELOGD("StridedSliceKernel in.");
GELOGD("StridedSliceKernel in");
// 1.Check input and attrs // 1.Check input and attrs
if (CheckAndGetAttr(attr) != SUCCESS) { if (CheckAndGetAttr(attr) != SUCCESS) {
GELOGW("Check and get attrs failed.Ignore kernel.");
GELOGW("Check and get attrs failed.Ignore kernel");
return NOT_CHANGED; return NOT_CHANGED;
} }
if (CheckInputParam(input) != SUCCESS) { if (CheckInputParam(input) != SUCCESS) {
GELOGW("Check input params failed.Ignore kernel.");
GELOGW("Check input params failed.Ignore kernel");
return NOT_CHANGED; return NOT_CHANGED;
} }
// 2.Init param with mask attrs. // 2.Init param with mask attrs.
@@ -120,7 +120,7 @@ Status StridedSliceKernel::Compute(const ge::OpDescPtr attr, const std::vector<g
auto ret = OpUtils::SetOutputSliceData(data, static_cast<int64_t>(data_size), data_type, input_dims, begin_vec, auto ret = OpUtils::SetOutputSliceData(data, static_cast<int64_t>(data_size), data_type, input_dims, begin_vec,
output_dims, output_ptr.get(), stride_vec); output_dims, output_ptr.get(), stride_vec);
if (ret != SUCCESS) { if (ret != SUCCESS) {
GELOGE(INTERNAL_ERROR, "SetOutputSliceData failed.");
GELOGE(INTERNAL_ERROR, "SetOutputSliceData failed");
return NOT_CHANGED; return NOT_CHANGED;
} }


@@ -133,7 +133,7 @@ Status StridedSliceKernel::Compute(const ge::OpDescPtr attr, const std::vector<g
GetOutputDims(final_dim_size, output_dims, v_dims); GetOutputDims(final_dim_size, output_dims, v_dims);
t_d.SetShape(GeShape(v_dims)); t_d.SetShape(GeShape(v_dims));
v_output.push_back(output_ptr); v_output.push_back(output_ptr);
GELOGI("StridedSliceKernel success.");
GELOGI("StridedSliceKernel success");
return SUCCESS; return SUCCESS;
} }
Status StridedSliceKernel::CheckAndGetAttr(const OpDescPtr &attr) { Status StridedSliceKernel::CheckAndGetAttr(const OpDescPtr &attr) {
@@ -144,7 +144,7 @@ Status StridedSliceKernel::CheckAndGetAttr(const OpDescPtr &attr) {
// Get all op attr value of strided_slice // Get all op attr value of strided_slice
for (auto &attr_2_value : attr_value_map_) { for (auto &attr_2_value : attr_value_map_) {
if (!AttrUtils::GetInt(attr, attr_2_value.first, attr_2_value.second)) { if (!AttrUtils::GetInt(attr, attr_2_value.first, attr_2_value.second)) {
GELOGE(PARAM_INVALID, "Get %s attr failed.", attr_2_value.first.c_str());
GELOGE(PARAM_INVALID, "Get %s attr failed", attr_2_value.first.c_str());
return PARAM_INVALID; return PARAM_INVALID;
} }
} }
@@ -182,7 +182,7 @@ Status StridedSliceKernel::CheckInputParam(const std::vector<ConstGeTensorPtr> &
return PARAM_INVALID; return PARAM_INVALID;
} }
if (kIndexNumberType.find(begin_tensor_desc.GetDataType()) == kIndexNumberType.end()) { if (kIndexNumberType.find(begin_tensor_desc.GetDataType()) == kIndexNumberType.end()) {
GELOGW("Data type of StridedSlice OP(begin,end,strides) must be int32 or int64.");
GELOGW("Data type of StridedSlice OP(begin,end,strides) must be int32 or int64");
return PARAM_INVALID; return PARAM_INVALID;
} }


@@ -250,7 +250,7 @@ Status StridedSliceKernel::InitParamWithAttrs(const std::vector<ConstGeTensorPtr
end_i = x_dims.at(i); end_i = x_dims.at(i);
stride_i = 1; stride_i = 1;
} }
GELOGD("Before mask calculate. Begin is : %ld\t,end is : %ld\t stride is : %ld\t x_dim_i is : %ld.",
GELOGD("Before mask calculate. Begin is : %ld\t,end is : %ld\t stride is : %ld\t x_dim_i is : %ld",
begin_i, end_i, stride_i, x_dims.at(i)); begin_i, end_i, stride_i, x_dims.at(i));
auto ret = MaskCal(i, begin_i, end_i, x_dims.at(i)); auto ret = MaskCal(i, begin_i, end_i, x_dims.at(i));
if (ret != SUCCESS) { if (ret != SUCCESS) {
@@ -258,7 +258,7 @@ Status StridedSliceKernel::InitParamWithAttrs(const std::vector<ConstGeTensorPtr
return NOT_CHANGED; return NOT_CHANGED;
} }
int64_t dim_final; int64_t dim_final;
GELOGD("Before stride calculate. Begin is : %ld\t,end is : %ld\t stride is : %ld\t x_dim_i is : %ld.",
GELOGD("Before stride calculate. Begin is : %ld\t,end is : %ld\t stride is : %ld\t x_dim_i is : %ld",
begin_i, end_i, stride_i, x_dims.at(i)); begin_i, end_i, stride_i, x_dims.at(i));
(void) StrideCal(x_dims.at(i), begin_i, end_i, stride_i, dim_final); (void) StrideCal(x_dims.at(i), begin_i, end_i, stride_i, dim_final);
output_dims.push_back(dim_final); output_dims.push_back(dim_final);


+ 10
- 21
ge/hybrid/executor/hybrid_model_async_executor.cc View File

@@ -29,7 +29,7 @@ const size_t kMinimumPiplineStages = 2;
const int kDefaultLoopCount = 10; const int kDefaultLoopCount = 10;
} }
HybridModelAsyncExecutor::HybridModelAsyncExecutor(HybridModel *model) HybridModelAsyncExecutor::HybridModelAsyncExecutor(HybridModel *model)
: model_(model), run_flag_(false) {
: model_(model), run_flag_(false), data_dumper_(nullptr) {
} }


HybridModelAsyncExecutor::~HybridModelAsyncExecutor() { HybridModelAsyncExecutor::~HybridModelAsyncExecutor() {
@@ -444,31 +444,20 @@ Status HybridModelAsyncExecutor::Execute(const std::vector<DataBuffer> &inputs,
TensorValue tensor_value(inputs[i].data, inputs[i].length); TensorValue tensor_value(inputs[i].data, inputs[i].length);
args.inputs[i] = tensor_value; args.inputs[i] = tensor_value;
} }
for (size_t i = 0; i < outputs.size(); ++i) {
args.outputs.emplace_back(TensorValue(outputs[i].data, outputs[i].length));
}
// usr must designate input tensorDesc when input shape is dynamic in inference
for (size_t i = 0; i < input_desc.size(); ++i) {
ConstGeTensorDescPtr tensor_desc_ptr = MakeShared<GeTensorDesc>(input_desc[i]);
args.input_desc.emplace_back(tensor_desc_ptr);
}

GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model."); GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model.");
for (const auto &output_tensor_desc : args.output_desc) { for (const auto &output_tensor_desc : args.output_desc) {
output_desc.emplace_back(*output_tensor_desc); output_desc.emplace_back(*output_tensor_desc);
} }


for (size_t i = 0; i < args.outputs.size(); ++i) {
int64_t output_real_size = 0;
ge::graphStatus graph_status = TensorUtils::GetTensorSizeInBytes(output_desc[i], output_real_size);
if (graph_status != GRAPH_SUCCESS) {
GELOGE(FAILED, "Get tensor size in bytes failed.");
return FAILED;
}
if (output_real_size > 0) {
if (outputs[i].length < static_cast<uint64_t>(output_real_size)) {
GELOGE(FAILED, "output idx[%zu], the memory size of output[%lu] given by "
"user should be greater than or equal to the real size of output[%ld]",
i, outputs[i].length, output_real_size);
return FAILED;
}
GE_CHK_RT_RET(rtMemcpy(outputs[i].data, outputs[i].length, args.outputs[i].GetData(), output_real_size,
RT_MEMCPY_DEVICE_TO_DEVICE));
}
outputs[i].length = output_real_size;
}

return SUCCESS; return SUCCESS;
} }




+ 35
- 6
ge/hybrid/executor/node_state.cc View File

@@ -44,6 +44,27 @@ ShapeInferenceState::ShapeInferenceState(const NodeItem &node_item) : node_item(
} }
} }


Status ShapeInferenceState::CheckInputShapeByShapeRange(const GeTensorDesc &tensor_desc,
const GeTensorDesc &target_tensor_desc) const {
std::vector<std::pair<int64_t, int64_t>> shape_range;
if (tensor_desc.GetShapeRange(shape_range) != SUCCESS) {
GELOGE(PARAM_INVALID, "Get shape range failed.");
return PARAM_INVALID;
}
if (shape_range.empty()) {
GELOGD("Shape range is empty, no need to check input shape.");
return SUCCESS;
}

GeShape target_shape = target_tensor_desc.GetShape();
if (TensorUtils::CheckShapeByShapeRange(target_shape, shape_range) != SUCCESS) {
GELOGE(PARAM_INVALID, "Check shape by shape range failed.");
return PARAM_INVALID;
}

return SUCCESS;
}

Status ShapeInferenceState::UpdateInputShape(int idx, const GeTensorDesc &target) { Status ShapeInferenceState::UpdateInputShape(int idx, const GeTensorDesc &target) {
if (node_item.IsInputShapeStatic(idx)) { if (node_item.IsInputShapeStatic(idx)) {
GELOGD("[%s] Trying to update static shape, idx = %d. old shape = [%s], new shape = [%s]", GELOGD("[%s] Trying to update static shape, idx = %d. old shape = [%s], new shape = [%s]",
@@ -54,19 +75,27 @@ Status ShapeInferenceState::UpdateInputShape(int idx, const GeTensorDesc &target
return SUCCESS; return SUCCESS;
} }


std::lock_guard<std::mutex> lk(mu_);
auto &input_desc = input_tensor_desc[idx];
GeShape shape = target.GetShape();
input_desc.SetShape(shape);
input_desc.SetOriginShape(target.GetOriginShape());
int64_t tensor_size = -1; int64_t tensor_size = -1;
(void) TensorUtils::GetSize(target, tensor_size); (void) TensorUtils::GetSize(target, tensor_size);
if (tensor_size <= 0) {
Format format = input_desc.GetFormat();
DataType data_type = input_desc.GetDataType();
if (TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size) != GRAPH_SUCCESS) {
GELOGE(FAILED, "[%s] Calculate tensor memory size failed.", node_item.NodeName().c_str());
return FAILED;
}
}
GELOGD("[%s] Update input shape [%d] with Shape: [%s] and OriginalShape: [%s], size = %ld", GELOGD("[%s] Update input shape [%d] with Shape: [%s] and OriginalShape: [%s], size = %ld",
node_item.NodeName().c_str(), node_item.NodeName().c_str(),
idx, idx,
target.GetShape().ToString().c_str(),
shape.ToString().c_str(),
target.GetOriginShape().ToString().c_str(), target.GetOriginShape().ToString().c_str(),
tensor_size); tensor_size);

std::lock_guard<std::mutex> lk(mu_);
auto &input_desc = input_tensor_desc[idx];
input_desc.SetShape(target.GetShape());
input_desc.SetOriginShape(target.GetOriginShape());
(void) TensorUtils::SetSize(input_desc, tensor_size); (void) TensorUtils::SetSize(input_desc, tensor_size);
if (--num_pending_shapes_ <= 0) { if (--num_pending_shapes_ <= 0) {
ready_cv_.notify_all(); ready_cv_.notify_all();


+ 2
- 0
ge/hybrid/executor/node_state.h View File

@@ -58,6 +58,8 @@ struct ShapeInferenceState {


const vector<GeTensorDesc> &GetOutputTensorDesc() const; const vector<GeTensorDesc> &GetOutputTensorDesc() const;


Status CheckInputShapeByShapeRange(const GeTensorDesc &tensor_desc, const GeTensorDesc &target_tensor_desc) const;

const NodeItem &node_item; const NodeItem &node_item;


private: private:


+ 1
- 1
ge/hybrid/executor/worker/shape_inference_engine.cc View File

@@ -41,7 +41,7 @@ Status ShapeInferenceEngine::InferShape(NodeState &node_state) {
// Wait for "const input nodes" if node's shape inference function requires any. // Wait for "const input nodes" if node's shape inference function requires any.
// Even if output shape is static, there are cases that the const-input will be used in OpTiling and Execution // Even if output shape is static, there are cases that the const-input will be used in OpTiling and Execution
GE_CHK_STATUS_RET_NOLOG(AwaitDependentNodes(node_state)); GE_CHK_STATUS_RET_NOLOG(AwaitDependentNodes(node_state));
if (node_item.is_output_shape_static) {
if (node_item.is_output_shape_static && !node_item.is_need_force_infershape) {
return SUCCESS; return SUCCESS;
} }




+ 14
- 15
ge/hybrid/model/hybrid_model.cc View File

@@ -225,23 +225,19 @@ Status HybridModel::GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, st
GE_CHECK_NOTNULL(op_desc->GetInputDescPtr(0)); GE_CHECK_NOTNULL(op_desc->GetInputDescPtr(0));


Format format = op_desc->GetInputDescPtr(0)->GetFormat(); Format format = op_desc->GetInputDescPtr(0)->GetFormat();
input.data_type = op_desc->GetInputDescPtr(0)->GetDataType();
DataType data_type = op_desc->GetInputDescPtr(0)->GetDataType();
input.data_type = static_cast<uint32_t>(data_type);
input.name = op_desc->GetName(); input.name = op_desc->GetName();

int64_t input_size = 0;
GE_CHK_STATUS_RET(TensorUtils::GetSize(*op_desc->GetInputDescPtr(0), input_size), "get input size failed.");

// support dynamic shape
if (input_size < 0) {
GELOGD("dynamic shape scene, input size is unknown. "
"format=%d, data_type=%d, input_size=%ld",
format, input.data_type, input_size);
input_size = kMemSizeUnknownShape; // -1
GeShape shape = op_desc->GetInputDescPtr(0)->GetShape();
int64_t tensor_size = 0;
if (TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size) != GRAPH_SUCCESS) {
GELOGE(FAILED, "Calculate tensor mem size failed.");
return FAILED;
} }
// not support dynamic shape input for now, so input_size here will be not less than zero.
input.size = input_size;
if (tensor_size == kMemSizeUnknownShape) {
tensor_size = 0;
}
input.size = static_cast<uint64_t>(tensor_size);
CreateInputDimsInfo(op_desc, input); CreateInputDimsInfo(op_desc, input);


formats.push_back(format); formats.push_back(format);
@@ -284,6 +280,9 @@ void HybridModel::CreateOutput(ConstGeTensorDescPtr &output_desc,
} }
int64_t tensor_size = 0; int64_t tensor_size = 0;
(void)TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size); (void)TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size);
if (tensor_size == kMemSizeUnknownShape) {
tensor_size = 0;
}
output_desc_info.size = static_cast<uint64_t>(tensor_size); output_desc_info.size = static_cast<uint64_t>(tensor_size);
output_desc_info.data_type = output_desc->GetDataType(); output_desc_info.data_type = output_desc->GetDataType();
} }


+ 1
- 0
ge/hybrid/model/hybrid_model.h View File

@@ -154,6 +154,7 @@ class HybridModel {
uint32_t model_id_ = 0; uint32_t model_id_ = 0;
uint8_t *var_mem_base_ = nullptr; uint8_t *var_mem_base_ = nullptr;
std::unique_ptr<TensorBuffer> weight_buffer_; std::unique_ptr<TensorBuffer> weight_buffer_;
std::map<string, std::unique_ptr<TensorBuffer>> weight_buffer_map_;
RuntimeParam root_runtime_param_; RuntimeParam root_runtime_param_;
string om_name_; string om_name_;
}; };


+ 70
- 60
ge/hybrid/model/hybrid_model_builder.cc View File

@@ -50,6 +50,7 @@ const char *const kProfilingBpNode = "ProfilingBpNode";
const char *const kProfilingEndNode = "ProfilingEndNode"; const char *const kProfilingEndNode = "ProfilingEndNode";
const char *const kProfilingArNode = "ProfilingAllReduceNode"; const char *const kProfilingArNode = "ProfilingAllReduceNode";
const char *const kEngineNameRts = "DNN_VM_RTS_OP_STORE"; const char *const kEngineNameRts = "DNN_VM_RTS_OP_STORE";
const char *const kForceInfershape = "_force_infershape_when_running";


Status SetOutputNameAttr(ComputeGraph &graph) { Status SetOutputNameAttr(ComputeGraph &graph) {
vector<string> output_names; vector<string> output_names;
@@ -171,6 +172,9 @@ Status HybridModelBuilder::ValidateParams() {


Status HybridModelBuilder::BuildNodeItem(const NodePtr &node, NodeItem &node_item) { Status HybridModelBuilder::BuildNodeItem(const NodePtr &node, NodeItem &node_item) {
auto op_desc = node->GetOpDesc(); auto op_desc = node->GetOpDesc();
GE_CHK_STATUS_RET(ParseForceInfershapeNodes(node, node_item),
"[%s] Failed to parse force_infershape node.",
node_item.NodeName().c_str());
vector<string> dependencies = node->GetOpDesc()->GetOpInferDepends(); vector<string> dependencies = node->GetOpDesc()->GetOpInferDepends();
GE_CHK_STATUS_RET(ParseDependentInputNodes(node_item, dependencies), GE_CHK_STATUS_RET(ParseDependentInputNodes(node_item, dependencies),
"[%s] Failed to parse node dependencies.", "[%s] Failed to parse node dependencies.",
@@ -263,6 +267,17 @@ Status HybridModelBuilder::GetOrCreateNodeItem(const NodePtr &node, NodeItem **n
return SUCCESS; return SUCCESS;
} }


Status HybridModelBuilder::ParseForceInfershapeNodes(const NodePtr &node, NodeItem &node_item) {
auto op_desc = node->GetOpDesc();
GE_CHECK_NOTNULL(op_desc);
// not care result, if no this attr, stand for the op does not need force infershape
(void)AttrUtils::GetBool(op_desc, kForceInfershape, node_item.is_need_force_infershape);
GELOGD("node [%s] is need do infershape , flag is %d",
op_desc->GetName().c_str(),
node_item.is_need_force_infershape);
return SUCCESS;
}

Status HybridModelBuilder::ParseDependentInputNodes(NodeItem &node_item, const std::vector<string> &dependencies) { Status HybridModelBuilder::ParseDependentInputNodes(NodeItem &node_item, const std::vector<string> &dependencies) {
std::set<NodePtr> dependent_input_nodes; std::set<NodePtr> dependent_input_nodes;
auto &ge_node = node_item.node; auto &ge_node = node_item.node;
@@ -997,70 +1012,65 @@ Status HybridModelBuilder::InitVariableTensors() {


Status HybridModelBuilder::InitWeights() { Status HybridModelBuilder::InitWeights() {
// For constant in root graph // For constant in root graph
const auto &root_graph = ge_root_model_->GetRootGraph();
const auto &subgraph_models = ge_root_model_->GetSubgraphInstanceNameToModel();
auto iter = subgraph_models.find(root_graph->GetName());
if (iter == subgraph_models.end()) {
GELOGD("Root graph model not found");
return SUCCESS;
}
for (const auto &subgraph_model : ge_root_model_->GetSubgraphInstanceNameToModel()) {
const auto &weight_buffer = subgraph_model.second->GetWeight();
if (weight_buffer.GetSize() == 0) {
GELOGD("weight is empty");
return SUCCESS;
}


auto &root_model = iter->second;
const auto &weight_buffer = root_model->GetWeight();
if (weight_buffer.GetSize() == 0) {
GELOGD("weight is empty");
return SUCCESS;
}
auto allocator = NpuMemoryAllocator::GetAllocator();
GE_CHECK_NOTNULL(allocator);
auto sub_weight_buffer = TensorBuffer::Create(allocator, weight_buffer.size());
GE_CHECK_NOTNULL(sub_weight_buffer);
auto weight_base = reinterpret_cast<uint8_t *>(sub_weight_buffer->GetData());
GE_CHK_RT_RET(rtMemcpy(weight_base,
sub_weight_buffer->GetSize(),
weight_buffer.GetData(),
weight_buffer.GetSize(),
RT_MEMCPY_HOST_TO_DEVICE));

GELOGI("Init weight mem successfully, weight base %p, weight size = %zu",
weight_base,
sub_weight_buffer->GetSize());
auto root_graph = GraphUtils::GetComputeGraph(subgraph_model.second->GetGraph());
hybrid_model_.weight_buffer_map_.emplace(root_graph->GetName(),std::move(sub_weight_buffer));
for (auto &node : root_graph->GetDirectNode()) {
if (node->GetType() != CONSTANT) {
continue;
}


auto allocator = NpuMemoryAllocator::GetAllocator();
GE_CHECK_NOTNULL(allocator);
hybrid_model_.weight_buffer_ = TensorBuffer::Create(allocator, weight_buffer.size());
GE_CHECK_NOTNULL(hybrid_model_.weight_buffer_);
auto weight_base = reinterpret_cast<uint8_t *>(hybrid_model_.weight_buffer_->GetData());
GE_CHK_RT_RET(rtMemcpy(weight_base,
hybrid_model_.weight_buffer_->GetSize(),
weight_buffer.GetData(),
weight_buffer.GetSize(),
RT_MEMCPY_HOST_TO_DEVICE));

GELOGI("Init weight mem successfully, weight base %p, weight size = %zu",
weight_base,
hybrid_model_.weight_buffer_->GetSize());
for (auto &node : root_graph->GetDirectNode()) {
if (node->GetType() != CONSTANT) {
continue;
}
auto op_desc = node->GetOpDesc();
auto v_weights = ModelUtils::GetWeights(op_desc);
if (v_weights.empty()) {
GELOGE(INTERNAL_ERROR, "[%s] Constant has no value", node->GetName().c_str());
return INTERNAL_ERROR;
}
auto *ge_tensor = const_cast<GeTensor *>(v_weights[0].get());
GE_CHECK_NOTNULL(ge_tensor);
const GeTensorDesc &tensor_desc = ge_tensor->GetTensorDesc();
int64_t tensor_size = 0;
GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetSize(*op_desc->MutableOutputDesc(0), tensor_size),
"[%s] Failed to get tensor size",
node->GetName().c_str());
int64_t data_offset = 0;
GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetDataOffset(tensor_desc, data_offset),
"[%s] Failed to get data offset",
node->GetName().c_str());
GELOGD("[%s] Start to init Constant node [%s], size = %ld, offset = %ld",
GetGraphName(),
node->GetName().c_str(),
tensor_size,
data_offset);


auto op_desc = node->GetOpDesc();
auto v_weights = ModelUtils::GetWeights(op_desc);
if (v_weights.empty()) {
GELOGE(INTERNAL_ERROR, "[%s] Constant has no value", node->GetName().c_str());
return INTERNAL_ERROR;
auto tensor_buffer = TensorBuffer::Create(weight_base + data_offset, tensor_size);
GE_CHECK_NOTNULL(tensor_buffer);
std::unique_ptr<TensorValue> constant_tensor(new (std::nothrow)TensorValue(std::move(tensor_buffer)));
GE_CHECK_NOTNULL(constant_tensor);
constant_tensor->SetName("Constant_" + op_desc->GetName());
hybrid_model_.constant_tensors_.emplace(node, std::move(constant_tensor));
GELOGD("[%s] Constant node [%s] added, size = %ld", GetGraphName(), node->GetName().c_str(), tensor_size);
} }
auto *ge_tensor = const_cast<GeTensor *>(v_weights[0].get());
GE_CHECK_NOTNULL(ge_tensor);
const GeTensorDesc &tensor_desc = ge_tensor->GetTensorDesc();
int64_t tensor_size = 0;
GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetSize(*op_desc->MutableOutputDesc(0), tensor_size),
"[%s] Failed to get tensor size",
node->GetName().c_str());
int64_t data_offset = 0;
GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetDataOffset(tensor_desc, data_offset),
"[%s] Failed to get data offset",
node->GetName().c_str());
GELOGD("[%s] Start to init Constant node [%s], size = %ld, offset = %ld",
GetGraphName(),
node->GetName().c_str(),
tensor_size,
data_offset);

auto tensor_buffer = TensorBuffer::Create(weight_base + data_offset, tensor_size);
GE_CHECK_NOTNULL(tensor_buffer);
std::unique_ptr<TensorValue> constant_tensor(new (std::nothrow)TensorValue(std::move(tensor_buffer)));
GE_CHECK_NOTNULL(constant_tensor);
constant_tensor->SetName("Constant_" + op_desc->GetName());
hybrid_model_.constant_tensors_.emplace(node, std::move(constant_tensor));
GELOGD("[%s] Constant node [%s] added, size = %ld", GetGraphName(), node->GetName().c_str(), tensor_size);
} }
return SUCCESS; return SUCCESS;
} }


+ 1
- 0
ge/hybrid/model/hybrid_model_builder.h View File

@@ -62,6 +62,7 @@ class HybridModelBuilder {
Status IdentifySameInputs(NodeItem &node_item); Status IdentifySameInputs(NodeItem &node_item);
Status BuildNodeItem(const NodePtr &node, NodeItem &node_item); Status BuildNodeItem(const NodePtr &node, NodeItem &node_item);
Status GetOrCreateNodeItem(const NodePtr &node, NodeItem **node_item); Status GetOrCreateNodeItem(const NodePtr &node, NodeItem **node_item);
Status ParseForceInfershapeNodes(const NodePtr &node, NodeItem &node_item);
Status ParseDependentInputNodes(NodeItem &node_item, const std::vector<string> &dependencies); Status ParseDependentInputNodes(NodeItem &node_item, const std::vector<string> &dependencies);
Status ParseDependentForFusedSubgraph(NodeItem &node_item); Status ParseDependentForFusedSubgraph(NodeItem &node_item);
Status IndexTaskDefs(); Status IndexTaskDefs();


+ 1
- 0
ge/hybrid/model/node_item.h View File

@@ -83,6 +83,7 @@ struct NodeItem {
bool has_observer = false; bool has_observer = false;
bool has_optional_inputs = false; bool has_optional_inputs = false;
bool is_output_shape_static = true; bool is_output_shape_static = true;
bool is_need_force_infershape = false;
UnknowShapeOpType shape_inference_type = DEPEND_IN_SHAPE; UnknowShapeOpType shape_inference_type = DEPEND_IN_SHAPE;
std::string node_name; std::string node_name;
std::string node_type; std::string node_type;


+ 1
- 0
ge/hybrid/node_executor/ge_local/ge_local_node_executor.cc View File

@@ -33,6 +33,7 @@ const std::map<std::string, std::vector<uint32_t>>
{RESHAPE, {}}, {RESHAPE, {}},
{EXPANDDIMS, {}}, {EXPANDDIMS, {}},
{SQUEEZE, {}}, {SQUEEZE, {}},
{UNSQUEEZE, {}},
{BROADCASTGRADIENTARGS, {}} {BROADCASTGRADIENTARGS, {}}
}; };




+ 1
- 1
ge/hybrid/node_executor/task_context.cc View File

@@ -236,7 +236,7 @@ Status TaskContext::AllocateOutput(int index,
ref_node->GetName().c_str(), ref_node->GetName().c_str(),
ref_node->GetType().c_str()); ref_node->GetType().c_str());


TensorValue *ref_tensor = execution_context_->model->GetVariable(ref_node->GetName());
TensorValue *ref_tensor = execution_context_->model->GetTensor(ref_node);
GE_CHECK_NOTNULL(ref_tensor); GE_CHECK_NOTNULL(ref_tensor);
outputs_start_[index] = *ref_tensor; outputs_start_[index] = *ref_tensor;
} else { } else {


+ 226
- 1
ge/ir_build/atc_ir_common.cc View File

@@ -19,7 +19,9 @@
#include "framework/common/string_util.h" #include "framework/common/string_util.h"
#include "framework/common/types.h" #include "framework/common/types.h"
#include "framework/common/util.h" #include "framework/common/util.h"
#include "graph/compute_graph.h"
#include "graph/utils/type_utils.h" #include "graph/utils/type_utils.h"
#include "graph/utils/tensor_utils.h"


using std::pair; using std::pair;
using std::string; using std::string;
@@ -52,6 +54,11 @@ const char *const kCompressWeightError = "it must be appointed when appoint para
const char *const kSelectImplmodeError = "only support high_performance, high_precision"; const char *const kSelectImplmodeError = "only support high_performance, high_precision";
const char *const kDynamicBatchSizeError = "It can only contains digit, \",\", \" \""; const char *const kDynamicBatchSizeError = "It can only contains digit, \",\", \" \"";
const char *const kKeepDtypeError = "file not found"; const char *const kKeepDtypeError = "file not found";
const char *const kInputShapeRangeInvalid = "format of shape range is invalid";
const char *const kShapeRangeValueConvertError = "transfer from string to int64 error";
const char *const kInputShapeRangeSample1 = "\"input_name1:[n1~n2,c1,h1,w1]\"";
const char *const kInputShapeRangeSample2 = "\"[]\"";
const char *const kInputShapeRangeSample3 = "\"[1~20,3,3~6,-1]\"";


vector<string> SplitInputShape(const std::string &input_shape) { vector<string> SplitInputShape(const std::string &input_shape) {
vector<string> shape_pair_vec; vector<string> shape_pair_vec;
@@ -257,8 +264,132 @@ bool CheckAndParseDynamicDims(int32_t dynamic_dim_num, std::string &dynamic_dims
return true; return true;
} }


bool StringToLongNoThrow(const string &str, long &val) {
try {
val = std::stol(str);
return true;
} catch (const std::invalid_argument) {
ErrorManager::GetInstance().ATCReportErrMessage("E10048", {"shape_range", "reason", "sample"},
{str, kShapeRangeValueConvertError, kInputShapeRangeSample3});
GELOGE(PARAM_INVALID,
"Parse input parameter [--input_shape_range]'s shape range[%s] failed, reason: %s, correct sample is %s.",
str.c_str(), kShapeRangeValueConvertError, kInputShapeRangeSample3);
} catch (const std::out_of_range) {
ErrorManager::GetInstance().ATCReportErrMessage("E10048", {"shape_range", "reason", "sample"},
{str, kShapeRangeValueConvertError, kInputShapeRangeSample3});
GELOGE(PARAM_INVALID,
"Parse input parameter [--input_shape_range]'s shape range[%s] failed, reason: %s, correct sample is %s.",
str.c_str(), kShapeRangeValueConvertError, kInputShapeRangeSample3);
}
return false;
}

bool ParseSingleShapeRange(std::string &shape_range, vector<pair<int64_t, int64_t>> &shape_range_vec) {
vector<char> square_brackets;
for (auto ch : shape_range) {
if (ch == '[' || ch == ']') {
square_brackets.push_back(ch);
}
}

bool is_square_brackets = (square_brackets[0] == '[') && (square_brackets[1] == ']') && (square_brackets.size() == 2);
if (!is_square_brackets) {
ErrorManager::GetInstance().ATCReportErrMessage("E10048", {"shape_range", "reason", "sample"},
{shape_range, kInputShapeRangeInvalid, kInputShapeRangeSample2});
GELOGE(PARAM_INVALID,
"Parse input parameter [--input_shape_range]'s shape range[%s] failed, reason: %s, correct sample is %s.",
shape_range.c_str(), kInputShapeRangeInvalid, kInputShapeRangeSample2);
return false;
}
// trim start bytes, after that, single input should be "1~20,3,3~6,-1"
if (ge::StringUtils::StartWith(shape_range, "[")) {
shape_range = shape_range.substr(1, shape_range.size() - 1);
}
// parse shape_range of single input. eg. "1~20,3,3~6,-1"
vector<string> dim_range_set = ge::StringUtils::Split(shape_range, ',');
for (const auto &range_pair_str : dim_range_set) {
vector<string> range_pair_set = ge::StringUtils::Split(range_pair_str, '~');
pair<int64_t, int64_t> range_pair;
if (range_pair_set.size() == 1) {
long range_value = 0;
if (!StringToLongNoThrow(range_pair_set.at(0), range_value)) {
return false;
}
if (range_value < 0) {
range_pair = std::make_pair(1, range_value);
} else {
range_pair = std::make_pair(range_value, range_value);
}
} else if (range_pair_set.size() == 2) {
// unknown dim, should get range.
long range_left = 0;
if (!StringToLongNoThrow(range_pair_set.at(0), range_left)) {
return false;
}
long range_right = 0;
if (!StringToLongNoThrow(range_pair_set.at(1), range_right)) {
return false;
}
if (range_left < 0 || (range_right < 0)) {
ErrorManager::GetInstance().ATCReportErrMessage("E10048", {"shape_range", "reason", "sample"},
{shape_range, kInputShapeRangeInvalid, kInputShapeRangeSample3});
GELOGE(PARAM_INVALID,
"Parse input parameter [--input_shape_range]'s shape range[%s] failed, reason: %s, correct sample is %s.",
shape_range.c_str(), kInputShapeRangeInvalid, kInputShapeRangeSample3);
return false;
}
range_pair = std::make_pair(range_left, range_right);
} else {
ErrorManager::GetInstance().ATCReportErrMessage("E10048", {"shape_range", "reason", "sample"},
{shape_range, kInputShapeRangeInvalid, kInputShapeRangeSample3});
GELOGE(PARAM_INVALID,
"Parse input parameter [--input_shape_range]'s shape range[%s] failed, reason: %s, correct sample is %s.",
shape_range.c_str(), kInputShapeRangeInvalid, kInputShapeRangeSample3);
return false;
}
shape_range_vec.emplace_back(range_pair);
}
return true;
}

bool ParseInputShapeRange(const std::string &shape_range,
std::map<string, std::vector<std::pair<int64_t, int64_t>>> &shape_range_map) {
GELOGD("Input shape range %s", shape_range.c_str());

vector<string> shape_range_vec = StringUtils::Split(shape_range, ';');
const int DEFAULT_SHAPE_RANGE_PAIR_SIZE = 2;
for (const auto &shape_range_item : shape_range_vec) {
vector<string> shape_range_pair_vec = SplitInputShape(shape_range_item);
if (shape_range_pair_vec.size() != DEFAULT_SHAPE_RANGE_PAIR_SIZE) {
ErrorManager::GetInstance().ATCReportErrMessage("E10048", {"shape_range", "reason", "sample"},
{shape_range, kSplitError1, kInputShapeRangeSample1});
GELOGE(PARAM_INVALID, "Parse input parameter [--input_shape_range]'s shape range[%s] failed, "
"reason: %s, correct sample is %s.", shape_range.c_str(), kSplitError1, kInputShapeRangeSample1);
return false;
}
if (shape_range_pair_vec[1].empty()) {
ErrorManager::GetInstance().ATCReportErrMessage("E10048", {"shape", "reason", "sample"},
{shape_range, kEmptyError, kInputShapeRangeSample1});
GELOGE(PARAM_INVALID, "Parse input parameter [--input_shape_range]'s shape range[%s] failed,"
"reason: %s, correct sample is %s.", shape_range.c_str(), kEmptyError, kInputShapeRangeSample1);
return false;
}

string shape_range_str = shape_range_pair_vec[1];
vector<pair<int64_t, int64_t>> shape_range_val;
if (!ParseSingleShapeRange(shape_range_str, shape_range_val)) {
GELOGE(PARAM_INVALID, "Parse single shape range %s error.", shape_range_str.c_str());
return false;
}
shape_range_map.emplace(make_pair(StringUtils::Trim(shape_range_pair_vec[0]), shape_range_val));
}
return true;
}

Status CheckDynamicInputParamValid(string &dynamic_batch_size, string &dynamic_image_size, string &dynamic_dims, Status CheckDynamicInputParamValid(string &dynamic_batch_size, string &dynamic_image_size, string &dynamic_dims,
const string input_shape, const string input_format, bool &is_dynamic_input) {
const string input_shape, const string input_shape_range, const string input_format,
bool &is_dynamic_input) {
int32_t param_size = static_cast<int32_t>(!dynamic_batch_size.empty()) + int32_t param_size = static_cast<int32_t>(!dynamic_batch_size.empty()) +
static_cast<int32_t>(!dynamic_image_size.empty()) + static_cast<int32_t>(!dynamic_dims.empty()); static_cast<int32_t>(!dynamic_image_size.empty()) + static_cast<int32_t>(!dynamic_dims.empty());
if (param_size > 1) { if (param_size > 1) {
@@ -269,6 +400,13 @@ Status CheckDynamicInputParamValid(string &dynamic_batch_size, string &dynamic_i
} }


if (param_size == 0) { if (param_size == 0) {
if (!input_shape_range.empty()) {
std::map<string, std::vector<std::pair<int64_t, int64_t>>> shape_range_map;
if(!ParseInputShapeRange(input_shape_range, shape_range_map)) {
GELOGE(ge::PARAM_INVALID, "Failed to parse input shape range: %s", input_shape_range.c_str());
return ge::PARAM_INVALID;
}
}
return ge::SUCCESS; return ge::SUCCESS;
} }


@@ -546,4 +684,91 @@ void EraseEndSemicolon(string &param) {
param.erase(param.end() - 1); param.erase(param.end() - 1);
} }
} }

Status UpdateDataOpShape(const OpDescPtr &op, map<string, vector<int64_t>> &shape_map) {
GE_CHECK_NOTNULL(op);
if (shape_map.empty()) {
GELOGI("Shape map of data op [%s] is empty, no need to update.", op->GetName().c_str());
return SUCCESS;
}

auto tensor_input = op->MutableInputDesc(0);
auto tensor_output = op->MutableOutputDesc(0);
GE_CHECK_NOTNULL(tensor_input);
GE_CHECK_NOTNULL(tensor_output);
string data_op_name = op->GetName();
auto iter = shape_map.find(data_op_name);
if (iter != shape_map.end()) {
tensor_input->SetShape(ge::GeShape(iter->second));
tensor_output->SetShape(ge::GeShape(iter->second));
GELOGI("Update input [%s] shape info", data_op_name.c_str());
} else {
GELOGI("No need update input [%s] attr because not found from input_shape.", data_op_name.c_str());
}

return SUCCESS;
}

Status UpdateDataOpShapeRange(const OpDescPtr &op,
map<string, vector<pair<int64_t, int64_t>>> &shape_range_map) {
GE_CHECK_NOTNULL(op);
if (shape_range_map.empty()) {
GELOGI("Shape range map of data op [%s] is empty.", op->GetName().c_str());
return SUCCESS;
}

auto tensor_input = op->MutableInputDesc(0);
GE_CHECK_NOTNULL(tensor_input);
string data_op_name = op->GetName();
auto origin_shape = tensor_input->GetShape();
auto iter = shape_range_map.find(data_op_name);
if (iter != shape_range_map.end()) {
auto cur_shape_range = iter->second;
if (TensorUtils::CheckShapeByShapeRange(origin_shape, cur_shape_range) != SUCCESS) {
GELOGE(PARAM_INVALID, "[%s] Check shape by shape range failed.", op->GetName().c_str());
return PARAM_INVALID;
}
for (size_t idx = 0; idx < cur_shape_range.size(); idx++) {
auto left_range = cur_shape_range[idx].first;
auto right_range = cur_shape_range[idx].second;
if (left_range != right_range) {
origin_shape.SetDim(idx, UNKNOWN_DIM);
}
}
tensor_input->SetShape(origin_shape);
tensor_input->SetShapeRange(cur_shape_range);
GELOGI("Update input [%s] shape range info", data_op_name.c_str());
} else {
GELOGI("No need to update input [%s] attr because not found from input_shape_range.", data_op_name.c_str());
}

return SUCCESS;
}

Status UpdateDynamicInputShapeRange(const ge::ComputeGraphPtr &compute_graph, const string &input_shape_range) {
if (input_shape_range.empty()) {
return SUCCESS;
}
GE_CHECK_NOTNULL(compute_graph);

map<string, vector<pair<int64_t, int64_t>>> shape_range_map;
if (!ParseInputShapeRange(input_shape_range, shape_range_map)) {
GELOGE(PARAM_INVALID, "Parse input shape range failed.");
return PARAM_INVALID;
}

for (NodePtr &input_node : compute_graph->GetDirectNode()) {
GE_CHECK_NOTNULL(input_node);
OpDescPtr op = input_node->GetOpDesc();
GE_CHECK_NOTNULL(op);
if (op->GetType() == DATA) {
if (UpdateDataOpShapeRange(op, shape_range_map) != SUCCESS) {
GELOGE(FAILED, "Update data op [%s] input shape range failed.", op->GetName().c_str());
return FAILED;
}
}
}
return SUCCESS;
}

} // namespace ge } // namespace ge

+ 9
- 2
ge/ir_build/atc_ir_common.h View File

@@ -31,7 +31,7 @@
namespace ge { namespace ge {
static std::set<std::string> caffe_support_input_format = {"NCHW", "ND"}; static std::set<std::string> caffe_support_input_format = {"NCHW", "ND"};
static std::set<std::string> tf_support_input_format = {"NCHW", "NHWC", "ND", "NCDHW", "NDHWC"}; static std::set<std::string> tf_support_input_format = {"NCHW", "NHWC", "ND", "NCDHW", "NDHWC"};
static std::set<std::string> onnx_support_input_format = {"NCHW", "ND"};
static std::set<std::string> onnx_support_input_format = {"NCHW", "ND", "NCDHW"};


static std::map<std::string, domiTensorFormat_t> input_format_str_to_geformat = { static std::map<std::string, domiTensorFormat_t> input_format_str_to_geformat = {
{"ND", domi::DOMI_TENSOR_ND}, {"ND", domi::DOMI_TENSOR_ND},
@@ -59,10 +59,13 @@ bool CheckAndParseDynamicDims(int32_t dynamic_dim_num, std::string &dynamic_dims


Status CheckDynamicInputParamValid(std::string &dynamic_batch_size, std::string &dynamic_image_size, Status CheckDynamicInputParamValid(std::string &dynamic_batch_size, std::string &dynamic_image_size,
std::string &dynamic_dims, const std::string input_shape, std::string &dynamic_dims, const std::string input_shape,
const std::string input_format, bool &is_dynamic_input);
const std::string input_shape_range, const std::string input_format,
bool &is_dynamic_input);


bool ParseInputShape(const std::string &input_shape, std::map<string, std::vector<int64_t>> &shape_map, bool ParseInputShape(const std::string &input_shape, std::map<string, std::vector<int64_t>> &shape_map,
std::vector<std::pair<string, vector<int64_t>>> &user_shape_map, bool is_dynamic_input = false); std::vector<std::pair<string, vector<int64_t>>> &user_shape_map, bool is_dynamic_input = false);
bool ParseInputShapeRange(const std::string &shape_range,
std::map<string, std::vector<std::pair<int64_t, int64_t>>> &shape_range_map);


Status CheckOutputTypeParamValid(const std::string output_type); Status CheckOutputTypeParamValid(const std::string output_type);
Status CheckBufferOptimizeParamValid(const std::string buffer_optimize); Status CheckBufferOptimizeParamValid(const std::string buffer_optimize);
@@ -76,5 +79,9 @@ Status CheckInputFormat(const string &input_format);
Status CheckKeepTypeParamValid(const std::string &keep_dtype); Status CheckKeepTypeParamValid(const std::string &keep_dtype);
void PrintOptionMap(std::map<std::string, std::string> &options, std::string tips); void PrintOptionMap(std::map<std::string, std::string> &options, std::string tips);
void EraseEndSemicolon(std::string &param); void EraseEndSemicolon(std::string &param);
Status UpdateDataOpShape(const OpDescPtr &op, std::map<std::string, std::vector<int64_t>> &shape_map);
Status UpdateDataOpShapeRange(const OpDescPtr &op,
std::map<std::string, std::vector<std::pair<int64_t, int64_t>>> &shape_range_map);
Status UpdateDynamicInputShapeRange(const ge::ComputeGraphPtr &compute_graph, const string &input_shape_range);
} }
#endif // FRAMEWORK_DOMI_ATC_IR_COMMON_H_ #endif // FRAMEWORK_DOMI_ATC_IR_COMMON_H_

+ 24
- 18
ge/ir_build/ge_ir_build.cc View File

@@ -55,6 +55,7 @@ const std::string IR_OPTION_DISABLE_REUSE_MEMORY_DEFAULT = "0";
const std::string IR_OPTION_ENABLE_COMPRESS_WEIGHT_DEFAULT = "false"; const std::string IR_OPTION_ENABLE_COMPRESS_WEIGHT_DEFAULT = "false";
const std::string KEEP_DTYPE_OPTION = "keep_dtype"; const std::string KEEP_DTYPE_OPTION = "keep_dtype";
const std::string kInputShape = "input_shape"; const std::string kInputShape = "input_shape";
const std::string kInputShapeRange = "input_shape_range";
const std::string kInputFormat = "input_format"; const std::string kInputFormat = "input_format";


/** /**
@@ -289,13 +290,20 @@ graphStatus Impl::InferShapePrepare(const ComputeGraphPtr &compute_graph) {


graphStatus Impl::UpdateDataOpAttr(const Graph &graph) { graphStatus Impl::UpdateDataOpAttr(const Graph &graph) {
GELOGD("Enter Update Data Attr Process!"); GELOGD("Enter Update Data Attr Process!");
if (options_.find(kInputShape) == options_.end()) {
return GRAPH_SUCCESS;
}
std::string input_shape = (options_.find(kInputShape) == options_.end()) ? "" : options_[kInputShape];
std::string input_shape_range = (options_.find(kInputShapeRange) == options_.end()) ? "" : options_[kInputShapeRange];
map<string, vector<int64_t>> shape_map; map<string, vector<int64_t>> shape_map;
vector<pair<string, vector<int64_t>>> user_shape_map; vector<pair<string, vector<int64_t>>> user_shape_map;
GE_CHK_BOOL_EXEC(ParseInputShape(options_[kInputShape], shape_map, user_shape_map, true),
return GRAPH_PARAM_INVALID, "parse input shape failed!");
if (!input_shape.empty()) {
GE_CHK_BOOL_EXEC(ParseInputShape(input_shape, shape_map, user_shape_map, true),
return GRAPH_PARAM_INVALID, "Parse input shape failed!");
}
std::map<string, std::vector<std::pair<int64_t, int64_t>>> shape_range_map;
if (!input_shape_range.empty()) {
GE_CHK_BOOL_EXEC(ParseInputShapeRange(input_shape_range, shape_range_map),
return GRAPH_PARAM_INVALID, "Parse input shape range failed.");
}
auto compute_graph = ge::GraphUtils::GetComputeGraph(graph); auto compute_graph = ge::GraphUtils::GetComputeGraph(graph);
GE_CHECK_NOTNULL(compute_graph); GE_CHECK_NOTNULL(compute_graph);
for (ge::NodePtr &input_node : compute_graph->GetDirectNode()) { for (ge::NodePtr &input_node : compute_graph->GetDirectNode()) {
@@ -303,21 +311,17 @@ graphStatus Impl::UpdateDataOpAttr(const Graph &graph) {
ge::OpDescPtr op = input_node->GetOpDesc(); ge::OpDescPtr op = input_node->GetOpDesc();
GE_CHECK_NOTNULL(op); GE_CHECK_NOTNULL(op);
if (op->GetType() == DATA) { if (op->GetType() == DATA) {
auto tensor_input = op->MutableInputDesc(0);
auto tensor_output = op->MutableOutputDesc(0);
GE_CHECK_NOTNULL(tensor_input);
GE_CHECK_NOTNULL(tensor_output);
string data_op_name = op->GetName();
auto iter = shape_map.find(data_op_name);
if (iter != shape_map.end()) {
tensor_input->SetShape(ge::GeShape(iter->second));
tensor_output->SetShape(ge::GeShape(iter->second));
GELOGD("update input [%s] shape info", data_op_name.c_str());
} else {
GELOGI("no need update input [%s] attr because not found from input_shape.", data_op_name.c_str());
if (UpdateDataOpShape(op, shape_map) != SUCCESS) {
GELOGE(GRAPH_FAILED, "Update data op [%s] shape failed.", op->GetName().c_str());
return GRAPH_FAILED;
}
if (UpdateDataOpShapeRange(op, shape_range_map) != SUCCESS) {
GELOGE(GRAPH_FAILED, "Update data op [%s] shape range failed.", op->GetName().c_str());
return GRAPH_FAILED;
} }
} }
} }

return GRAPH_SUCCESS; return GRAPH_SUCCESS;
} }


@@ -400,9 +404,11 @@ graphStatus Impl::Init(const Graph &graph, const std::map<std::string, std::stri
: options_[ge::ir_option::DYNAMIC_IMAGE_SIZE]; : options_[ge::ir_option::DYNAMIC_IMAGE_SIZE];
string dynamic_dims = string dynamic_dims =
options_.find(ge::ir_option::DYNAMIC_DIMS) == options_.end() ? "" : options_[ge::ir_option::DYNAMIC_DIMS]; options_.find(ge::ir_option::DYNAMIC_DIMS) == options_.end() ? "" : options_[ge::ir_option::DYNAMIC_DIMS];
string input_shape_range =
options_.find(ge::INPUT_SHAPE_RANGE) == options_.end() ? "" : options_[ge::INPUT_SHAPE_RANGE];


auto status = CheckDynamicInputParamValid(dynamic_batch_size, dynamic_image_size, dynamic_dims, input_shape, auto status = CheckDynamicInputParamValid(dynamic_batch_size, dynamic_image_size, dynamic_dims, input_shape,
input_format, is_dynamic_input_);
input_shape_range, input_format, is_dynamic_input_);
if (status != ge::SUCCESS) { if (status != ge::SUCCESS) {
GELOGE(GRAPH_PARAM_INVALID, "Check dynamic input size failed!"); GELOGE(GRAPH_PARAM_INVALID, "Check dynamic input size failed!");
return GRAPH_PARAM_INVALID; return GRAPH_PARAM_INVALID;


+ 8
- 2
ge/offline/main.cc View File

@@ -70,7 +70,7 @@ const char *const kModeSupport = "only support 0(model to framework model), "
const char *const kModelToJsonSupport = "only support 0(Caffe) 3(TensorFlow) 5(Onnx)"; const char *const kModelToJsonSupport = "only support 0(Caffe) 3(TensorFlow) 5(Onnx)";
const char *const kCaffeFormatSupport = "only support NCHW, ND in Caffe model"; const char *const kCaffeFormatSupport = "only support NCHW, ND in Caffe model";
const char *const kTFFormatSupport = "only support NCHW, NHWC, ND, NCDHW, NDHWC in TF model"; const char *const kTFFormatSupport = "only support NCHW, NHWC, ND, NCDHW, NDHWC in TF model";
const char *const kONNXFormatSupport = "only support NCHW, ND in ONNX model";
const char *const kONNXFormatSupport = "only support NCHW, ND, NCDHW in ONNX model";
// limit available mem size 2G // limit available mem size 2G
const long kMinAvailableMem = 2097152; // 2 * 1024 * 1024 const long kMinAvailableMem = 2097152; // 2 * 1024 * 1024
} // namespace } // namespace
@@ -84,6 +84,10 @@ DEFINE_string(input_shape, "",
"Optional; shape of input data. Required when framework is caffe " "Optional; shape of input data. Required when framework is caffe "
"or TensorFLow or MindSpore or Onnx. " "or TensorFLow or MindSpore or Onnx. "
"Format: \"input_name1:n1,c1,h1,w1;input_name2:n2,c2,h2,w2\""); "Format: \"input_name1:n1,c1,h1,w1;input_name2:n2,c2,h2,w2\"");
DEFINE_string(input_shape_range, "",
"Optional; shape range of input data. Required when framework is caffe "
"or TensorFLow or Onnx. "
"Format: \"input_name1:[n1~n2,c1,h1,w1];input_name2:[n2~n3,c2,h2,w2]\"");
DEFINE_bool(h, false, "show this help message"); DEFINE_bool(h, false, "show this help message");
DEFINE_string(cal_conf, "", "Optional; the calibration config file."); DEFINE_string(cal_conf, "", "Optional; the calibration config file.");


@@ -240,6 +244,7 @@ class GFlagUtils {
" --framework Framework type. 0:Caffe; 1:MindSpore; 3:Tensorflow; 5:Onnx\n" " --framework Framework type. 0:Caffe; 1:MindSpore; 3:Tensorflow; 5:Onnx\n"
" --input_format Format of input data. E.g.: \"NCHW\"\n" " --input_format Format of input data. E.g.: \"NCHW\"\n"
" --input_shape Shape of input data. Separate multiple nodes with semicolons (;). " " --input_shape Shape of input data. Separate multiple nodes with semicolons (;). "
" --input_shape_range Shape range of input data. Separate multiple nodes with semicolons (;)."
"Use double quotation marks (\") to enclose each argument.\n" "Use double quotation marks (\") to enclose each argument.\n"
" E.g.: \"input_name1:n1,c1,h1,w1;input_name2:n2,c2,h2,w2\"\n" " E.g.: \"input_name1:n1,c1,h1,w1;input_name2:n2,c2,h2,w2\"\n"
" --dynamic_batch_size Set dynamic batch size. E.g.: \"batchsize1,batchsize2,batchsize3\"\n" " --dynamic_batch_size Set dynamic batch size. E.g.: \"batchsize1,batchsize2,batchsize3\"\n"
@@ -373,7 +378,7 @@ class GFlagUtils {


GE_CHK_BOOL_TRUE_EXEC_WITH_LOG( GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
ge::CheckDynamicInputParamValid(FLAGS_dynamic_batch_size, FLAGS_dynamic_image_size, ge::CheckDynamicInputParamValid(FLAGS_dynamic_batch_size, FLAGS_dynamic_image_size,
FLAGS_dynamic_dims, FLAGS_input_shape,
FLAGS_dynamic_dims, FLAGS_input_shape, FLAGS_input_shape_range,
FLAGS_input_format, is_dynamic_input) != ge::SUCCESS, FLAGS_input_format, is_dynamic_input) != ge::SUCCESS,
ret = ge::FAILED, "check dynamic size(batch size, image size or dims) failed!"); ret = ge::FAILED, "check dynamic size(batch size, image size or dims) failed!");


@@ -985,6 +990,7 @@ domi::Status GenerateModel(std::map<string, string> &options, std::string output
} else { } else {
std::map<string, string> atc_params; std::map<string, string> atc_params;
atc_params.insert(std::pair<string, string>("input_shape", FLAGS_input_shape)); atc_params.insert(std::pair<string, string>("input_shape", FLAGS_input_shape));
atc_params.insert(std::pair<string, string>(ge::INPUT_SHAPE_RANGE, FLAGS_input_shape_range));
atc_params.insert(std::pair<string, string>("out_nodes", FLAGS_out_nodes)); atc_params.insert(std::pair<string, string>("out_nodes", FLAGS_out_nodes));
atc_params.insert(std::pair<string, string>("input_format", FLAGS_input_format)); atc_params.insert(std::pair<string, string>("input_format", FLAGS_input_format));
atc_params.insert(std::pair<string, string>("check_report", FLAGS_check_report)); atc_params.insert(std::pair<string, string>("check_report", FLAGS_check_report));


+ 7
- 0
ge/session/omg.cc View File

@@ -576,6 +576,7 @@ Status InitDomiOmgContext(const string &input_shape, const string &input_format,
GELOGE(PARAM_INVALID, "Failed to parse input shape: %s", input_shape.c_str()); GELOGE(PARAM_INVALID, "Failed to parse input shape: %s", input_shape.c_str());
return PARAM_INVALID; return PARAM_INVALID;
} }

return SUCCESS; return SUCCESS;
} }


@@ -788,6 +789,12 @@ FMK_FUNC_HOST_VISIBILITY Status ParseGraph(ge::Graph &graph, const std::map<stri


GE_CHK_BOOL_RET_STATUS(ret == SUCCESS, ret, "ATC weights parse ret fail."); GE_CHK_BOOL_RET_STATUS(ret == SUCCESS, ret, "ATC weights parse ret fail.");


// parser input shape range and update op shape range
std::string input_shape_range;
ParseAtcParms(atc_params, INPUT_SHAPE_RANGE, input_shape_range);
GE_RETURN_WITH_LOG_IF_ERROR(UpdateDynamicInputShapeRange(compute_graph, input_shape_range),
"Update input shape range failed");

GELOGI("ATC parser success."); GELOGI("ATC parser success.");


return SUCCESS; return SUCCESS;


+ 41
- 48
inc/external/acl/acl_base.h View File

@@ -136,50 +136,49 @@ static const int ACL_ERROR_PROFILING_FAILURE = 500005;
#define ACL_UNKNOWN_RANK 0xFFFFFFFFFFFFFFFE #define ACL_UNKNOWN_RANK 0xFFFFFFFFFFFFFFFE


typedef enum { typedef enum {
ACL_DT_UNDEFINED = -1,
ACL_FLOAT = 0,
ACL_FLOAT16 = 1,
ACL_INT8 = 2,
ACL_INT32 = 3,
ACL_UINT8 = 4,
ACL_INT16 = 6,
ACL_UINT16 = 7,
ACL_UINT32 = 8,
ACL_INT64 = 9,
ACL_UINT64 = 10,
ACL_DOUBLE = 11,
ACL_BOOL = 12,
ACL_STRING = 13,
ACL_DT_UNDEFINED = -1,
ACL_FLOAT = 0,
ACL_FLOAT16 = 1,
ACL_INT8 = 2,
ACL_INT32 = 3,
ACL_UINT8 = 4,
ACL_INT16 = 6,
ACL_UINT16 = 7,
ACL_UINT32 = 8,
ACL_INT64 = 9,
ACL_UINT64 = 10,
ACL_DOUBLE = 11,
ACL_BOOL = 12,
ACL_STRING = 13,
} aclDataType; } aclDataType;


typedef enum { typedef enum {
ACL_FORMAT_UNDEFINED = -1,
ACL_FORMAT_NCHW = 0,
ACL_FORMAT_NHWC = 1,
ACL_FORMAT_ND = 2,
ACL_FORMAT_NC1HWC0 = 3,
ACL_FORMAT_FRACTAL_Z = 4,
ACL_FORMAT_NC1HWC0_C04 = 12,
ACL_FORMAT_NDHWC = 27,
ACL_FORMAT_FRACTAL_NZ = 29,
ACL_FORMAT_NCDHW = 30,
ACL_FORMAT_NDC1HWC0 = 32,
ACL_FRACTAL_Z_3D = 33
ACL_FORMAT_UNDEFINED = -1,
ACL_FORMAT_NCHW = 0,
ACL_FORMAT_NHWC = 1,
ACL_FORMAT_ND = 2,
ACL_FORMAT_NC1HWC0 = 3,
ACL_FORMAT_FRACTAL_Z = 4,
ACL_FORMAT_NC1HWC0_C04 = 12,
ACL_FORMAT_NDHWC = 27,
ACL_FORMAT_FRACTAL_NZ = 29,
ACL_FORMAT_NCDHW = 30,
ACL_FORMAT_NDC1HWC0 = 32,
ACL_FRACTAL_Z_3D = 33
} aclFormat; } aclFormat;


typedef enum { typedef enum {
ACL_DEBUG = 0,
ACL_INFO = 1,
ACL_WARNING = 2,
ACL_ERROR = 3,
ACL_DEBUG = 0,
ACL_INFO = 1,
ACL_WARNING = 2,
ACL_ERROR = 3,
} aclLogLevel; } aclLogLevel;


typedef enum { typedef enum {
ACL_MEMTYPE_DEVICE = 0,
ACL_MEMTYPE_HOST = 1,
ACL_MEMTYPE_DEVICE = 0,
ACL_MEMTYPE_HOST = 1,
} aclMemType; } aclMemType;



/** /**
* @ingroup AscendCL * @ingroup AscendCL
* @brief Converts data of type aclFloat16 to data of type float * @brief Converts data of type aclFloat16 to data of type float
@@ -312,9 +311,7 @@ ACL_FUNC_VISIBILITY size_t aclDataTypeSize(aclDataType dataType);
* @retval aclTensorDesc pointer. * @retval aclTensorDesc pointer.
* @retval nullptr if param is invalid or run out of memory * @retval nullptr if param is invalid or run out of memory
*/ */
ACL_FUNC_VISIBILITY aclTensorDesc *aclCreateTensorDesc(aclDataType dataType,
int numDims,
const int64_t *dims,
ACL_FUNC_VISIBILITY aclTensorDesc *aclCreateTensorDesc(aclDataType dataType, int numDims, const int64_t *dims,
aclFormat format); aclFormat format);


/** /**
@@ -336,8 +333,7 @@ ACL_FUNC_VISIBILITY void aclDestroyTensorDesc(const aclTensorDesc *desc);
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclSetTensorShapeRange(aclTensorDesc* desc,
size_t dimsCount,
ACL_FUNC_VISIBILITY aclError aclSetTensorShapeRange(aclTensorDesc *desc, size_t dimsCount,
int64_t dimsRange[][ACL_TENSOR_SHAPE_RANGE_NUM]); int64_t dimsRange[][ACL_TENSOR_SHAPE_RANGE_NUM]);


/** /**
@@ -434,9 +430,7 @@ ACL_FUNC_VISIBILITY aclError aclGetTensorDescDimV2(const aclTensorDesc *desc, si
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclGetTensorDescDimRange(const aclTensorDesc *desc,
size_t index,
size_t dimRangeNum,
ACL_FUNC_VISIBILITY aclError aclGetTensorDescDimRange(const aclTensorDesc *desc, size_t index, size_t dimRangeNum,
int64_t *dimRange); int64_t *dimRange);


/** /**
@@ -473,7 +467,7 @@ ACL_FUNC_VISIBILITY const char *aclGetTensorDescName(aclTensorDesc *desc);
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclTransTensorDescFormat(const aclTensorDesc *srcDesc, aclFormat dstFormat, ACL_FUNC_VISIBILITY aclError aclTransTensorDescFormat(const aclTensorDesc *srcDesc, aclFormat dstFormat,
aclTensorDesc **dstDesc);
aclTensorDesc **dstDesc);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -561,7 +555,7 @@ ACL_FUNC_VISIBILITY aclError aclSetTensorOriginShape(aclTensorDesc *desc, int nu
* *
* @retval null for failed. * @retval null for failed.
* @retval OtherValues success. * @retval OtherValues success.
*/
*/
ACL_FUNC_VISIBILITY aclTensorDesc *aclGetTensorDescByIndex(aclTensorDesc *desc, size_t index); ACL_FUNC_VISIBILITY aclTensorDesc *aclGetTensorDescByIndex(aclTensorDesc *desc, size_t index);


/** /**
@@ -572,7 +566,7 @@ ACL_FUNC_VISIBILITY aclTensorDesc *aclGetTensorDescByIndex(aclTensorDesc *desc,
* *
* @retval null for failed * @retval null for failed
* @retval OtherValues success * @retval OtherValues success
*/
*/
ACL_FUNC_VISIBILITY void *aclGetTensorDescAddress(const aclTensorDesc *desc); ACL_FUNC_VISIBILITY void *aclGetTensorDescAddress(const aclTensorDesc *desc);


/** /**
@@ -624,13 +618,12 @@ ACL_FUNC_VISIBILITY aclError aclSetTensorPlaceMent(aclTensorDesc *desc, aclMemTy
* @param ... [IN] the value of current log * @param ... [IN] the value of current log
*/ */
ACL_FUNC_VISIBILITY void aclAppLog(aclLogLevel logLevel, const char *func, const char *file, uint32_t line, ACL_FUNC_VISIBILITY void aclAppLog(aclLogLevel logLevel, const char *func, const char *file, uint32_t line,
const char *fmt, ...);
const char *fmt, ...);


#define ACL_APP_LOG(level, fmt, ...) \
aclAppLog(level, __FUNCTION__, __FILE__, __LINE__, fmt, ##__VA_ARGS__)
#define ACL_APP_LOG(level, fmt, ...) aclAppLog(level, __FUNCTION__, __FILE__, __LINE__, fmt, ##__VA_ARGS__)


#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif


#endif // INC_EXTERNAL_ACL_ACL_BASE_H_
#endif // INC_EXTERNAL_ACL_ACL_BASE_H_

+ 166
- 190
inc/external/acl/acl_mdl.h View File

@@ -27,19 +27,19 @@
extern "C" { extern "C" {
#endif #endif


#define ACL_MAX_DIM_CNT 128
#define ACL_MAX_TENSOR_NAME_LEN 128
#define ACL_MAX_BATCH_NUM 128
#define ACL_MAX_HW_NUM 128
#define ACL_MAX_SHAPE_COUNT 128
#define ACL_INVALID_NODE_INDEX 0xFFFFFFFF
#define ACL_MDL_LOAD_FROM_FILE 1
#define ACL_MDL_LOAD_FROM_FILE_WITH_MEM 2
#define ACL_MDL_LOAD_FROM_MEM 3
#define ACL_MDL_LOAD_FROM_MEM_WITH_MEM 4
#define ACL_MDL_LOAD_FROM_FILE_WITH_Q 5
#define ACL_MDL_LOAD_FROM_MEM_WITH_Q 6
#define ACL_MAX_DIM_CNT 128
#define ACL_MAX_TENSOR_NAME_LEN 128
#define ACL_MAX_BATCH_NUM 128
#define ACL_MAX_HW_NUM 128
#define ACL_MAX_SHAPE_COUNT 128
#define ACL_INVALID_NODE_INDEX 0xFFFFFFFF
#define ACL_MDL_LOAD_FROM_FILE 1
#define ACL_MDL_LOAD_FROM_FILE_WITH_MEM 2
#define ACL_MDL_LOAD_FROM_MEM 3
#define ACL_MDL_LOAD_FROM_MEM_WITH_MEM 4
#define ACL_MDL_LOAD_FROM_FILE_WITH_Q 5
#define ACL_MDL_LOAD_FROM_MEM_WITH_Q 6


#define ACL_DYNAMIC_TENSOR_NAME "ascend_mbatch_shape_data" #define ACL_DYNAMIC_TENSOR_NAME "ascend_mbatch_shape_data"
#define ACL_DYNAMIC_AIPP_NAME "ascend_dynamic_aipp_data" #define ACL_DYNAMIC_AIPP_NAME "ascend_dynamic_aipp_data"
@@ -51,123 +51,123 @@ typedef struct aclAippExtendInfo aclAippExtendInfo;
typedef struct aclmdlConfigHandle aclmdlConfigHandle; typedef struct aclmdlConfigHandle aclmdlConfigHandle;


typedef enum { typedef enum {
ACL_YUV420SP_U8 = 1,
ACL_XRGB8888_U8,
ACL_RGB888_U8,
ACL_YUV400_U8,
ACL_NC1HWC0DI_FP16,
ACL_NC1HWC0DI_S8,
ACL_ARGB8888_U8,
ACL_YUYV_U8,
ACL_YUV422SP_U8,
ACL_AYUV444_U8,
ACL_RAW10,
ACL_RAW12,
ACL_RAW16,
ACL_RAW24,
ACL_AIPP_RESERVED = 0xffff,
ACL_YUV420SP_U8 = 1,
ACL_XRGB8888_U8,
ACL_RGB888_U8,
ACL_YUV400_U8,
ACL_NC1HWC0DI_FP16,
ACL_NC1HWC0DI_S8,
ACL_ARGB8888_U8,
ACL_YUYV_U8,
ACL_YUV422SP_U8,
ACL_AYUV444_U8,
ACL_RAW10,
ACL_RAW12,
ACL_RAW16,
ACL_RAW24,
ACL_AIPP_RESERVED = 0xffff,
} aclAippInputFormat; } aclAippInputFormat;


typedef enum { typedef enum {
ACL_MDL_PRIORITY_INT32 = 0,
ACL_MDL_LOAD_TYPE_SIZET,
ACL_MDL_PATH_PTR, /**< pointer to model load path with deep copy */
ACL_MDL_MEM_ADDR_PTR, /**< pointer to model memory with shallow copy */
ACL_MDL_MEM_SIZET,
ACL_MDL_WEIGHT_ADDR_PTR, /**< pointer to weight memory of model with shallow copy */
ACL_MDL_WEIGHT_SIZET,
ACL_MDL_WORKSPACE_ADDR_PTR, /**< pointer to worksapce memory of model with shallow copy */
ACL_MDL_WORKSPACE_SIZET,
ACL_MDL_INPUTQ_NUM_SIZET,
ACL_MDL_INPUTQ_ADDR_PTR, /**< pointer to inputQ with shallow copy */
ACL_MDL_OUTPUTQ_NUM_SIZET,
ACL_MDL_OUTPUTQ_ADDR_PTR /**< pointer to outputQ with shallow copy */
ACL_MDL_PRIORITY_INT32 = 0,
ACL_MDL_LOAD_TYPE_SIZET,
ACL_MDL_PATH_PTR, /**< pointer to model load path with deep copy */
ACL_MDL_MEM_ADDR_PTR, /**< pointer to model memory with shallow copy */
ACL_MDL_MEM_SIZET,
ACL_MDL_WEIGHT_ADDR_PTR, /**< pointer to weight memory of model with shallow copy */
ACL_MDL_WEIGHT_SIZET,
ACL_MDL_WORKSPACE_ADDR_PTR, /**< pointer to worksapce memory of model with shallow copy */
ACL_MDL_WORKSPACE_SIZET,
ACL_MDL_INPUTQ_NUM_SIZET,
ACL_MDL_INPUTQ_ADDR_PTR, /**< pointer to inputQ with shallow copy */
ACL_MDL_OUTPUTQ_NUM_SIZET,
ACL_MDL_OUTPUTQ_ADDR_PTR /**< pointer to outputQ with shallow copy */
} aclmdlConfigAttr; } aclmdlConfigAttr;


typedef enum { typedef enum {
ACL_DATA_WITHOUT_AIPP = 0,
ACL_DATA_WITH_STATIC_AIPP,
ACL_DATA_WITH_DYNAMIC_AIPP,
ACL_DYNAMIC_AIPP_NODE
ACL_DATA_WITHOUT_AIPP = 0,
ACL_DATA_WITH_STATIC_AIPP,
ACL_DATA_WITH_DYNAMIC_AIPP,
ACL_DYNAMIC_AIPP_NODE
} aclmdlInputAippType; } aclmdlInputAippType;


typedef struct aclmdlIODims { typedef struct aclmdlIODims {
char name[ACL_MAX_TENSOR_NAME_LEN]; /**< tensor name */
size_t dimCount; /**< dim array count */
int64_t dims[ACL_MAX_DIM_CNT]; /**< dim data array */
char name[ACL_MAX_TENSOR_NAME_LEN]; /**< tensor name */
size_t dimCount; /**< dim array count */
int64_t dims[ACL_MAX_DIM_CNT]; /**< dim data array */
} aclmdlIODims; } aclmdlIODims;


typedef struct aclAippDims { typedef struct aclAippDims {
aclmdlIODims srcDims; /**< input dims before model transform */
size_t srcSize; /**< input size before model transform */
aclmdlIODims aippOutdims; /**< aipp output dims */
size_t aippOutSize; /**< aipp output size */
aclmdlIODims srcDims; /**< input dims before model transform */
size_t srcSize; /**< input size before model transform */
aclmdlIODims aippOutdims; /**< aipp output dims */
size_t aippOutSize; /**< aipp output size */
} aclAippDims; } aclAippDims;


typedef struct aclmdlBatch { typedef struct aclmdlBatch {
size_t batchCount; /**< batch array count */
uint64_t batch[ACL_MAX_BATCH_NUM]; /**< batch data array */
size_t batchCount; /**< batch array count */
uint64_t batch[ACL_MAX_BATCH_NUM]; /**< batch data array */
} aclmdlBatch; } aclmdlBatch;


typedef struct aclmdlHW { typedef struct aclmdlHW {
size_t hwCount; /**< height&width array count */
uint64_t hw[ACL_MAX_HW_NUM][2]; /**< height&width data array */
size_t hwCount; /**< height&width array count */
uint64_t hw[ACL_MAX_HW_NUM][2]; /**< height&width data array */
} aclmdlHW; } aclmdlHW;


typedef struct aclAippInfo { typedef struct aclAippInfo {
aclAippInputFormat inputFormat;
int32_t srcImageSizeW;
int32_t srcImageSizeH;
int8_t cropSwitch;
int32_t loadStartPosW;
int32_t loadStartPosH;
int32_t cropSizeW;
int32_t cropSizeH;
int8_t resizeSwitch;
int32_t resizeOutputW;
int32_t resizeOutputH;
int8_t paddingSwitch;
int32_t leftPaddingSize;
int32_t rightPaddingSize;
int32_t topPaddingSize;
int32_t bottomPaddingSize;
int8_t cscSwitch;
int8_t rbuvSwapSwitch;
int8_t axSwapSwitch;
int8_t singleLineMode;
int32_t matrixR0C0;
int32_t matrixR0C1;
int32_t matrixR0C2;
int32_t matrixR1C0;
int32_t matrixR1C1;
int32_t matrixR1C2;
int32_t matrixR2C0;
int32_t matrixR2C1;
int32_t matrixR2C2;
int32_t outputBias0;
int32_t outputBias1;
int32_t outputBias2;
int32_t inputBias0;
int32_t inputBias1;
int32_t inputBias2;
int32_t meanChn0;
int32_t meanChn1;
int32_t meanChn2;
int32_t meanChn3;
float minChn0;
float minChn1;
float minChn2;
float minChn3;
float varReciChn0;
float varReciChn1;
float varReciChn2;
float varReciChn3;
aclFormat srcFormat;
aclDataType srcDatatype;
size_t srcDimNum;
size_t shapeCount;
aclAippDims outDims[ACL_MAX_SHAPE_COUNT];
aclAippExtendInfo *aippExtend; /**< reserved parameters, current version needs to be null */
aclAippInputFormat inputFormat;
int32_t srcImageSizeW;
int32_t srcImageSizeH;
int8_t cropSwitch;
int32_t loadStartPosW;
int32_t loadStartPosH;
int32_t cropSizeW;
int32_t cropSizeH;
int8_t resizeSwitch;
int32_t resizeOutputW;
int32_t resizeOutputH;
int8_t paddingSwitch;
int32_t leftPaddingSize;
int32_t rightPaddingSize;
int32_t topPaddingSize;
int32_t bottomPaddingSize;
int8_t cscSwitch;
int8_t rbuvSwapSwitch;
int8_t axSwapSwitch;
int8_t singleLineMode;
int32_t matrixR0C0;
int32_t matrixR0C1;
int32_t matrixR0C2;
int32_t matrixR1C0;
int32_t matrixR1C1;
int32_t matrixR1C2;
int32_t matrixR2C0;
int32_t matrixR2C1;
int32_t matrixR2C2;
int32_t outputBias0;
int32_t outputBias1;
int32_t outputBias2;
int32_t inputBias0;
int32_t inputBias1;
int32_t inputBias2;
int32_t meanChn0;
int32_t meanChn1;
int32_t meanChn2;
int32_t meanChn3;
float minChn0;
float minChn1;
float minChn2;
float minChn3;
float varReciChn0;
float varReciChn1;
float varReciChn2;
float varReciChn3;
aclFormat srcFormat;
aclDataType srcDatatype;
size_t srcDimNum;
size_t shapeCount;
aclAippDims outDims[ACL_MAX_SHAPE_COUNT];
aclAippExtendInfo *aippExtend; /**< reserved parameters, current version needs to be null */
} aclAippInfo; } aclAippInfo;


/** /**
@@ -339,8 +339,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlLoadFromFile(const char *modelPath, uint32_t
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclmdlLoadFromMem(const void *model, size_t modelSize,
uint32_t *modelId);
ACL_FUNC_VISIBILITY aclError aclmdlLoadFromMem(const void *model, size_t modelSize, uint32_t *modelId);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -362,9 +361,8 @@ ACL_FUNC_VISIBILITY aclError aclmdlLoadFromMem(const void *model, size_t modelS
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclmdlLoadFromFileWithMem(const char *modelPath,
uint32_t *modelId, void *workPtr, size_t workSize,
void *weightPtr, size_t weightSize);
ACL_FUNC_VISIBILITY aclError aclmdlLoadFromFileWithMem(const char *modelPath, uint32_t *modelId, void *workPtr,
size_t workSize, void *weightPtr, size_t weightSize);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -387,9 +385,9 @@ ACL_FUNC_VISIBILITY aclError aclmdlLoadFromFileWithMem(const char *modelPath,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclmdlLoadFromMemWithMem(const void *model, size_t modelSize,
uint32_t *modelId, void *workPtr, size_t workSize,
void *weightPtr, size_t weightSize);
ACL_FUNC_VISIBILITY aclError aclmdlLoadFromMemWithMem(const void *model, size_t modelSize, uint32_t *modelId,
void *workPtr, size_t workSize, void *weightPtr,
size_t weightSize);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -424,8 +422,8 @@ ACL_FUNC_VISIBILITY aclError aclmdlLoadFromFileWithQ(const char *modelPath, uint
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclmdlLoadFromMemWithQ(const void *model, size_t modelSize, uint32_t *modelId, ACL_FUNC_VISIBILITY aclError aclmdlLoadFromMemWithQ(const void *model, size_t modelSize, uint32_t *modelId,
const uint32_t *inputQ, size_t inputQNum,
const uint32_t *outputQ, size_t outputQNum);
const uint32_t *inputQ, size_t inputQNum, const uint32_t *outputQ,
size_t outputQNum);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -455,8 +453,8 @@ ACL_FUNC_VISIBILITY aclError aclmdlExecute(uint32_t modelId, const aclmdlDataset
* @see aclmdlLoadFromFile | aclmdlLoadFromMem | aclmdlLoadFromFileWithMem | * @see aclmdlLoadFromFile | aclmdlLoadFromMem | aclmdlLoadFromFileWithMem |
* aclmdlLoadFromMemWithMem * aclmdlLoadFromMemWithMem
*/ */
ACL_FUNC_VISIBILITY aclError aclmdlExecuteAsync(uint32_t modelId, const aclmdlDataset *input,
aclmdlDataset *output, aclrtStream stream);
ACL_FUNC_VISIBILITY aclError aclmdlExecuteAsync(uint32_t modelId, const aclmdlDataset *input, aclmdlDataset *output,
aclrtStream stream);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -831,11 +829,11 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPInputFormat(aclmdlAIPP *aippParmsSet,
* @retval OtherValues Failure * @retval OtherValues Failure
* *
* @see aclmdlCreateAIPP * @see aclmdlCreateAIPP
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPCscParams(aclmdlAIPP *aippParmsSet, int8_t csc_switch,
int16_t cscMatrixR0C0, int16_t cscMatrixR0C1, int16_t cscMatrixR0C2,
int16_t cscMatrixR1C0, int16_t cscMatrixR1C1, int16_t cscMatrixR1C2,
int16_t cscMatrixR2C0, int16_t cscMatrixR2C1, int16_t cscMatrixR2C2,
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPCscParams(aclmdlAIPP *aippParmsSet, int8_t csc_switch, int16_t cscMatrixR0C0,
int16_t cscMatrixR0C1, int16_t cscMatrixR0C2, int16_t cscMatrixR1C0,
int16_t cscMatrixR1C1, int16_t cscMatrixR1C2, int16_t cscMatrixR2C0,
int16_t cscMatrixR2C1, int16_t cscMatrixR2C2,
uint8_t cscOutputBiasR0, uint8_t cscOutputBiasR1, uint8_t cscOutputBiasR0, uint8_t cscOutputBiasR1,
uint8_t cscOutputBiasR2, uint8_t cscInputBiasR0, uint8_t cscOutputBiasR2, uint8_t cscInputBiasR0,
uint8_t cscInputBiasR1, uint8_t cscInputBiasR2); uint8_t cscInputBiasR1, uint8_t cscInputBiasR2);
@@ -851,7 +849,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPCscParams(aclmdlAIPP *aippParmsSet, in
* @retval OtherValues Failure * @retval OtherValues Failure
* *
* @see aclmdlCreateAIPP * @see aclmdlCreateAIPP
*/
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPRbuvSwapSwitch(aclmdlAIPP *aippParmsSet, int8_t rbuvSwapSwitch); ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPRbuvSwapSwitch(aclmdlAIPP *aippParmsSet, int8_t rbuvSwapSwitch);


/** /**
@@ -865,7 +863,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPRbuvSwapSwitch(aclmdlAIPP *aippParmsSe
* @retval OtherValues Failure * @retval OtherValues Failure
* *
* @see aclmdlCreateAIPP * @see aclmdlCreateAIPP
*/
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPAxSwapSwitch(aclmdlAIPP *aippParmsSet, int8_t axSwapSwitch); ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPAxSwapSwitch(aclmdlAIPP *aippParmsSet, int8_t axSwapSwitch);


/** /**
@@ -880,7 +878,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPAxSwapSwitch(aclmdlAIPP *aippParmsSet,
* @retval OtherValues Failure * @retval OtherValues Failure
* *
* @see aclmdlCreateAIPP * @see aclmdlCreateAIPP
*/
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPSrcImageSize(aclmdlAIPP *aippParmsSet, int32_t srcImageSizeW, ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPSrcImageSize(aclmdlAIPP *aippParmsSet, int32_t srcImageSizeW,
int32_t srcImageSizeH); int32_t srcImageSizeH);


@@ -900,14 +898,10 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPSrcImageSize(aclmdlAIPP *aippParmsSet,
* @retval OtherValues Failure * @retval OtherValues Failure
* *
* @see aclmdlCreateAIPP * @see aclmdlCreateAIPP
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPScfParams(aclmdlAIPP *aippParmsSet,
int8_t scfSwitch,
int32_t scfInputSizeW,
int32_t scfInputSizeH,
int32_t scfOutputSizeW,
int32_t scfOutputSizeH,
uint64_t batchIndex);
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPScfParams(aclmdlAIPP *aippParmsSet, int8_t scfSwitch, int32_t scfInputSizeW,
int32_t scfInputSizeH, int32_t scfOutputSizeW,
int32_t scfOutputSizeH, uint64_t batchIndex);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -925,13 +919,9 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPScfParams(aclmdlAIPP *aippParmsSet,
* @retval OtherValues Failure * @retval OtherValues Failure
* *
* @see aclmdlCreateAIPP * @see aclmdlCreateAIPP
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPCropParams(aclmdlAIPP *aippParmsSet,
int8_t cropSwitch,
int32_t cropStartPosW,
int32_t cropStartPosH,
int32_t cropSizeW,
int32_t cropSizeH,
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPCropParams(aclmdlAIPP *aippParmsSet, int8_t cropSwitch, int32_t cropStartPosW,
int32_t cropStartPosH, int32_t cropSizeW, int32_t cropSizeH,
uint64_t batchIndex); uint64_t batchIndex);


/** /**
@@ -950,7 +940,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPCropParams(aclmdlAIPP *aippParmsSet,
* @retval OtherValues Failure * @retval OtherValues Failure
* *
* @see aclmdlCreateAIPP * @see aclmdlCreateAIPP
*/
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPPaddingParams(aclmdlAIPP *aippParmsSet, int8_t paddingSwitch, ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPPaddingParams(aclmdlAIPP *aippParmsSet, int8_t paddingSwitch,
int32_t paddingSizeTop, int32_t paddingSizeBottom, int32_t paddingSizeTop, int32_t paddingSizeBottom,
int32_t paddingSizeLeft, int32_t paddingSizeRight, int32_t paddingSizeLeft, int32_t paddingSizeRight,
@@ -971,13 +961,10 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPPaddingParams(aclmdlAIPP *aippParmsSet
* @retval OtherValues Failure * @retval OtherValues Failure
* *
* @see aclmdlCreateAIPP * @see aclmdlCreateAIPP
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPDtcPixelMean(aclmdlAIPP *aippParmsSet,
int16_t dtcPixelMeanChn0,
int16_t dtcPixelMeanChn1,
int16_t dtcPixelMeanChn2,
int16_t dtcPixelMeanChn3,
uint64_t batchIndex);
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPDtcPixelMean(aclmdlAIPP *aippParmsSet, int16_t dtcPixelMeanChn0,
int16_t dtcPixelMeanChn1, int16_t dtcPixelMeanChn2,
int16_t dtcPixelMeanChn3, uint64_t batchIndex);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -994,13 +981,10 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPDtcPixelMean(aclmdlAIPP *aippParmsSet,
* @retval OtherValues Failure * @retval OtherValues Failure
* *
* @see aclmdlCreateAIPP * @see aclmdlCreateAIPP
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPDtcPixelMin(aclmdlAIPP *aippParmsSet,
float dtcPixelMinChn0,
float dtcPixelMinChn1,
float dtcPixelMinChn2,
float dtcPixelMinChn3,
uint64_t batchIndex);
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPDtcPixelMin(aclmdlAIPP *aippParmsSet, float dtcPixelMinChn0,
float dtcPixelMinChn1, float dtcPixelMinChn2,
float dtcPixelMinChn3, uint64_t batchIndex);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -1017,13 +1001,10 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPDtcPixelMin(aclmdlAIPP *aippParmsSet,
* @retval OtherValues Failure * @retval OtherValues Failure
* *
* @see aclmdlCreateAIPP * @see aclmdlCreateAIPP
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPPixelVarReci(aclmdlAIPP *aippParmsSet,
float dtcPixelVarReciChn0,
float dtcPixelVarReciChn1,
float dtcPixelVarReciChn2,
float dtcPixelVarReciChn3,
uint64_t batchIndex);
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPPixelVarReci(aclmdlAIPP *aippParmsSet, float dtcPixelVarReciChn0,
float dtcPixelVarReciChn1, float dtcPixelVarReciChn2,
float dtcPixelVarReciChn3, uint64_t batchIndex);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -1039,10 +1020,8 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPPixelVarReci(aclmdlAIPP *aippParmsSet,
* *
* @see aclmdlLoadFromFile | aclmdlLoadFromMem | aclmdlLoadFromFileWithMem | * @see aclmdlLoadFromFile | aclmdlLoadFromMem | aclmdlLoadFromFileWithMem |
* aclmdlLoadFromMemWithMem | aclmdlGetInputIndexByName | aclmdlCreateAIPP * aclmdlLoadFromMemWithMem | aclmdlGetInputIndexByName | aclmdlCreateAIPP
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetInputAIPP(uint32_t modelId,
aclmdlDataset *dataset,
size_t index,
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetInputAIPP(uint32_t modelId, aclmdlDataset *dataset, size_t index,
const aclmdlAIPP *aippParmsSet); const aclmdlAIPP *aippParmsSet);


/** /**
@@ -1059,10 +1038,8 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetInputAIPP(uint32_t modelId,
* *
* @see aclmdlLoadFromFile | aclmdlLoadFromMem | aclmdlLoadFromFileWithMem | * @see aclmdlLoadFromFile | aclmdlLoadFromMem | aclmdlLoadFromFileWithMem |
* aclmdlLoadFromMemWithMem | aclmdlGetInputIndexByName | aclmdlCreateAIPP * aclmdlLoadFromMemWithMem | aclmdlGetInputIndexByName | aclmdlCreateAIPP
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPByInputIndex(uint32_t modelId,
aclmdlDataset *dataset,
size_t index,
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPByInputIndex(uint32_t modelId, aclmdlDataset *dataset, size_t index,
const aclmdlAIPP *aippParmsSet); const aclmdlAIPP *aippParmsSet);


/** /**
@@ -1080,10 +1057,8 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetAIPPByInputIndex(uint32_t modelId,
* *
* @see aclmdlLoadFromFile | aclmdlLoadFromMem | aclmdlLoadFromFileWithMem | * @see aclmdlLoadFromFile | aclmdlLoadFromMem | aclmdlLoadFromFileWithMem |
* aclmdlLoadFromMemWithMem | aclmdlGetInputIndexByName | aclmdlCreateAIPP * aclmdlLoadFromMemWithMem | aclmdlGetInputIndexByName | aclmdlCreateAIPP
*/
ACL_FUNC_VISIBILITY aclError aclmdlGetAippType(uint32_t modelId,
size_t index,
aclmdlInputAippType *type,
*/
ACL_FUNC_VISIBILITY aclError aclmdlGetAippType(uint32_t modelId, size_t index, aclmdlInputAippType *type,
size_t *dynamicAttachedDataIndex); size_t *dynamicAttachedDataIndex);


/** /**
@@ -1100,7 +1075,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlGetAippType(uint32_t modelId,
* *
* @see aclmdlLoadFromFile | aclmdlLoadFromMem | aclmdlLoadFromFileWithMem | * @see aclmdlLoadFromFile | aclmdlLoadFromMem | aclmdlLoadFromFileWithMem |
* aclmdlLoadFromMemWithMem | aclmdlGetInputIndexByName * aclmdlLoadFromMemWithMem | aclmdlGetInputIndexByName
*/
*/
ACL_FUNC_VISIBILITY aclError aclmdlGetFirstAippInfo(uint32_t modelId, size_t index, aclAippInfo *aippinfo); ACL_FUNC_VISIBILITY aclError aclmdlGetFirstAippInfo(uint32_t modelId, size_t index, aclAippInfo *aippinfo);


/** /**
@@ -1119,10 +1094,11 @@ ACL_FUNC_VISIBILITY aclError aclmdlGetFirstAippInfo(uint32_t modelId, size_t ind
* *
* @retval ACL_SUCCESS The function is successfully executed * @retval ACL_SUCCESS The function is successfully executed
* @retval OtherValues Failure * @retval OtherValues Failure
*/
ACL_FUNC_VISIBILITY aclError aclmdlCreateAndGetOpDesc(uint32_t deviceId, uint32_t streamId,
uint32_t taskId, char *opName, size_t opNameLen, aclTensorDesc **inputDesc, size_t *numInputs,
aclTensorDesc **outputDesc, size_t *numOutputs);
*/
ACL_FUNC_VISIBILITY aclError aclmdlCreateAndGetOpDesc(uint32_t deviceId, uint32_t streamId, uint32_t taskId,
char *opName, size_t opNameLen, aclTensorDesc **inputDesc,
size_t *numInputs, aclTensorDesc **outputDesc,
size_t *numOutputs);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -1130,7 +1106,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlCreateAndGetOpDesc(uint32_t deviceId, uint32_
* *
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/
*/
ACL_FUNC_VISIBILITY aclError aclmdlInitDump(); ACL_FUNC_VISIBILITY aclError aclmdlInitDump();


/** /**
@@ -1141,7 +1117,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlInitDump();
* *
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/
*/
ACL_FUNC_VISIBILITY aclError aclmdlSetDump(const char *dumpCfgPath); ACL_FUNC_VISIBILITY aclError aclmdlSetDump(const char *dumpCfgPath);


/** /**
@@ -1150,7 +1126,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlSetDump(const char *dumpCfgPath);
* *
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/
*/
ACL_FUNC_VISIBILITY aclError aclmdlFinalizeDump(); ACL_FUNC_VISIBILITY aclError aclmdlFinalizeDump();


/** /**
@@ -1162,7 +1138,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlFinalizeDump();
* *
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/
*/
ACL_FUNC_VISIBILITY aclError aclmdlLoadWithConfig(const aclmdlConfigHandle *handle, uint32_t *modelId); ACL_FUNC_VISIBILITY aclError aclmdlLoadWithConfig(const aclmdlConfigHandle *handle, uint32_t *modelId);


/** /**
@@ -1172,7 +1148,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlLoadWithConfig(const aclmdlConfigHandle *hand
* @retval the aclmdlConfigHandle pointer * @retval the aclmdlConfigHandle pointer
* *
* @see aclmdlDestroyConfigHandle * @see aclmdlDestroyConfigHandle
*/
*/
ACL_FUNC_VISIBILITY aclmdlConfigHandle *aclmdlCreateConfigHandle(); ACL_FUNC_VISIBILITY aclmdlConfigHandle *aclmdlCreateConfigHandle();


/** /**
@@ -1201,7 +1177,7 @@ ACL_FUNC_VISIBILITY aclError aclmdlDestroyConfigHandle(aclmdlConfigHandle *handl
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclmdlSetConfigOpt(aclmdlConfigHandle *handle, aclmdlConfigAttr attr, ACL_FUNC_VISIBILITY aclError aclmdlSetConfigOpt(aclmdlConfigHandle *handle, aclmdlConfigAttr attr,
const void *attrValue, size_t valueSize);
const void *attrValue, size_t valueSize);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -1219,4 +1195,4 @@ ACL_FUNC_VISIBILITY const char *aclmdlGetTensorRealName(const aclmdlDesc *modelD
} }
#endif #endif


#endif // INC_EXTERNAL_ACL_ACL_MODEL_H_
#endif // INC_EXTERNAL_ACL_ACL_MODEL_H_

+ 37
- 82
inc/external/acl/acl_op.h View File

@@ -33,9 +33,9 @@ typedef void (*aclDataDeallocator)(void *data, size_t length);
static const int ACL_COMPILE_FLAG_BIN_SELECTOR = 1; static const int ACL_COMPILE_FLAG_BIN_SELECTOR = 1;


typedef enum aclEngineType { typedef enum aclEngineType {
ACL_ENGINE_SYS,
ACL_ENGINE_AICORE,
ACL_ENGINE_VECTOR,
ACL_ENGINE_SYS,
ACL_ENGINE_AICORE,
ACL_ENGINE_VECTOR,
} aclopEngineType; } aclopEngineType;


/** /**
@@ -148,7 +148,7 @@ ACL_FUNC_VISIBILITY aclError aclopSetAttrString(aclopAttr *attr, const char *att
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopSetAttrListBool(aclopAttr *attr, const char *attrName, int numValues, ACL_FUNC_VISIBILITY aclError aclopSetAttrListBool(aclopAttr *attr, const char *attrName, int numValues,
const uint8_t *values);
const uint8_t *values);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -163,7 +163,7 @@ ACL_FUNC_VISIBILITY aclError aclopSetAttrListBool(aclopAttr *attr, const char *a
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopSetAttrListInt(aclopAttr *attr, const char *attrName, int numValues, ACL_FUNC_VISIBILITY aclError aclopSetAttrListInt(aclopAttr *attr, const char *attrName, int numValues,
const int64_t *values);
const int64_t *values);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -178,7 +178,7 @@ ACL_FUNC_VISIBILITY aclError aclopSetAttrListInt(aclopAttr *attr, const char *at
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopSetAttrListFloat(aclopAttr *attr, const char *attrName, int numValues, ACL_FUNC_VISIBILITY aclError aclopSetAttrListFloat(aclopAttr *attr, const char *attrName, int numValues,
const float *values);
const float *values);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -193,7 +193,7 @@ ACL_FUNC_VISIBILITY aclError aclopSetAttrListFloat(aclopAttr *attr, const char *
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopSetAttrListString(aclopAttr *attr, const char *attrName, int numValues, ACL_FUNC_VISIBILITY aclError aclopSetAttrListString(aclopAttr *attr, const char *attrName, int numValues,
const char **values);
const char **values);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -208,11 +208,8 @@ ACL_FUNC_VISIBILITY aclError aclopSetAttrListString(aclopAttr *attr, const char
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopSetAttrListListInt(aclopAttr *attr,
const char *attrName,
int numLists,
const int *numValues,
const int64_t *const values[]);
ACL_FUNC_VISIBILITY aclError aclopSetAttrListListInt(aclopAttr *attr, const char *attrName, int numLists,
const int *numValues, const int64_t *const values[]);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -242,15 +239,10 @@ ACL_FUNC_VISIBILITY aclError aclopSetAttrListListInt(aclopAttr *attr,
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_DEPRECATED_MESSAGE("aclopExecute is deprecated, use aclopExecuteV2 instead") ACL_DEPRECATED_MESSAGE("aclopExecute is deprecated, use aclopExecuteV2 instead")
ACL_FUNC_VISIBILITY aclError aclopExecute(const char *opType,
int numInputs,
const aclTensorDesc *const inputDesc[],
const aclDataBuffer *const inputs[],
int numOutputs,
const aclTensorDesc *const outputDesc[],
aclDataBuffer *const outputs[],
const aclopAttr *attr,
aclrtStream stream);
ACL_FUNC_VISIBILITY aclError aclopExecute(const char *opType, int numInputs, const aclTensorDesc *const inputDesc[],
const aclDataBuffer *const inputs[], int numOutputs,
const aclTensorDesc *const outputDesc[], aclDataBuffer *const outputs[],
const aclopAttr *attr, aclrtStream stream);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -280,15 +272,9 @@ ACL_FUNC_VISIBILITY aclError aclopExecute(const char *opType,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopExecuteV2(const char *opType,
int numInputs,
aclTensorDesc *inputDesc[],
aclDataBuffer *inputs[],
int numOutputs,
aclTensorDesc *outputDesc[],
aclDataBuffer *outputs[],
aclopAttr *attr,
aclrtStream stream);
ACL_FUNC_VISIBILITY aclError aclopExecuteV2(const char *opType, int numInputs, aclTensorDesc *inputDesc[],
aclDataBuffer *inputs[], int numOutputs, aclTensorDesc *outputDesc[],
aclDataBuffer *outputs[], aclopAttr *attr, aclrtStream stream);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -306,12 +292,9 @@ ACL_FUNC_VISIBILITY aclError aclopExecuteV2(const char *opType,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopCreateHandle(const char *opType,
int numInputs,
const aclTensorDesc *const inputDesc[],
int numOutputs,
const aclTensorDesc *const outputDesc[],
const aclopAttr *opAttr,
ACL_FUNC_VISIBILITY aclError aclopCreateHandle(const char *opType, int numInputs,
const aclTensorDesc *const inputDesc[], int numOutputs,
const aclTensorDesc *const outputDesc[], const aclopAttr *opAttr,
aclopHandle **handle); aclopHandle **handle);


/** /**
@@ -343,12 +326,9 @@ ACL_FUNC_VISIBILITY void aclopDestroyHandle(aclopHandle *handle);
* *
* @see aclopCreateHandle | aclCreateDataBuffer * @see aclopCreateHandle | aclCreateDataBuffer
*/ */
ACL_FUNC_VISIBILITY aclError aclopExecWithHandle(aclopHandle *handle,
int numInputs,
const aclDataBuffer *const inputs[],
int numOutputs,
aclDataBuffer *const outputs[],
aclrtStream stream);
ACL_FUNC_VISIBILITY aclError aclopExecWithHandle(aclopHandle *handle, int numInputs,
const aclDataBuffer *const inputs[], int numOutputs,
aclDataBuffer *const outputs[], aclrtStream stream);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -364,11 +344,8 @@ ACL_FUNC_VISIBILITY aclError aclopExecWithHandle(aclopHandle *handle,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopCast(const aclTensorDesc *srcDesc,
const aclDataBuffer *srcBuffer,
const aclTensorDesc *dstDesc,
aclDataBuffer *dstBuffer,
uint8_t truncate,
ACL_FUNC_VISIBILITY aclError aclopCast(const aclTensorDesc *srcDesc, const aclDataBuffer *srcBuffer,
const aclTensorDesc *dstDesc, aclDataBuffer *dstBuffer, uint8_t truncate,
aclrtStream stream); aclrtStream stream);


/** /**
@@ -383,12 +360,9 @@ ACL_FUNC_VISIBILITY aclError aclopCast(const aclTensorDesc *srcDesc,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopCreateHandleForCast(aclTensorDesc *srcDesc,
aclTensorDesc *dstDesc,
uint8_t truncate,
ACL_FUNC_VISIBILITY aclError aclopCreateHandleForCast(aclTensorDesc *srcDesc, aclTensorDesc *dstDesc, uint8_t truncate,
aclopHandle **handle); aclopHandle **handle);



/** /**
* @ingroup AscendCL * @ingroup AscendCL
* @brief create kernel * @brief create kernel
@@ -407,15 +381,10 @@ ACL_FUNC_VISIBILITY aclError aclopCreateHandleForCast(aclTensorDesc *srcDesc,
* *
* @see aclopCompile * @see aclopCompile
*/ */
ACL_FUNC_VISIBILITY aclError aclopCreateKernel(const char *opType,
const char *kernelId,
const char *kernelName,
void *binData,
int binSize,
aclopEngineType enginetype,
ACL_FUNC_VISIBILITY aclError aclopCreateKernel(const char *opType, const char *kernelId, const char *kernelName,
void *binData, int binSize, aclopEngineType enginetype,
aclDataDeallocator deallocator); aclDataDeallocator deallocator);



/** /**
* @ingroup AscendCL * @ingroup AscendCL
* @brief create kernel * @brief create kernel
@@ -430,11 +399,8 @@ ACL_FUNC_VISIBILITY aclError aclopCreateKernel(const char *opType,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
typedef aclError (*aclopCompileFunc)(int numInputs,
const aclTensorDesc *const inputDesc[],
int numOutputs,
const aclTensorDesc *const outputDesc[],
const aclopAttr *opAttr,
typedef aclError (*aclopCompileFunc)(int numInputs, const aclTensorDesc *const inputDesc[], int numOutputs,
const aclTensorDesc *const outputDesc[], const aclopAttr *opAttr,
aclopKernelDesc *aclopKernelDesc); aclopKernelDesc *aclopKernelDesc);


/** /**
@@ -475,11 +441,8 @@ ACL_FUNC_VISIBILITY aclError aclopUnregisterCompileFunc(const char *opType);
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopSetKernelArgs(aclopKernelDesc *kernelDesc,
const char *kernelId,
uint32_t blockDim,
const void *args,
uint32_t argSize);
ACL_FUNC_VISIBILITY aclError aclopSetKernelArgs(aclopKernelDesc *kernelDesc, const char *kernelId, uint32_t blockDim,
const void *args, uint32_t argSize);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -510,12 +473,9 @@ ACL_FUNC_VISIBILITY aclError aclopSetKernelWorkspaceSizes(aclopKernelDesc *kerne
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopUpdateParams(const char *opType,
int numInputs,
const aclTensorDesc *const inputDesc[],
int numOutputs,
const aclTensorDesc *const outputDesc[],
const aclopAttr *attr);
ACL_FUNC_VISIBILITY aclError aclopUpdateParams(const char *opType, int numInputs,
const aclTensorDesc *const inputDesc[], int numOutputs,
const aclTensorDesc *const outputDesc[], const aclopAttr *attr);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -533,17 +493,12 @@ ACL_FUNC_VISIBILITY aclError aclopUpdateParams(const char *opType,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopInferShape(const char *opType,
int numInputs,
aclTensorDesc *inputDesc[],
aclDataBuffer *inputs[],
int numOutputs,
aclTensorDesc *outputDesc[],
ACL_FUNC_VISIBILITY aclError aclopInferShape(const char *opType, int numInputs, aclTensorDesc *inputDesc[],
aclDataBuffer *inputs[], int numOutputs, aclTensorDesc *outputDesc[],
aclopAttr *attr); aclopAttr *attr);



#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif


#endif // INC_EXTERNAL_ACL_ACL_OP_H_
#endif // INC_EXTERNAL_ACL_ACL_OP_H_

+ 19
- 28
inc/external/acl/acl_op_compiler.h View File

@@ -24,21 +24,18 @@
extern "C" { extern "C" {
#endif #endif


typedef enum aclCompileType {
ACL_COMPILE_SYS,
ACL_COMPILE_UNREGISTERED
} aclopCompileType;
typedef enum aclCompileType { ACL_COMPILE_SYS, ACL_COMPILE_UNREGISTERED } aclopCompileType;


typedef enum { typedef enum {
ACL_PRECISION_MODE,
ACL_AICORE_NUM,
ACL_AUTO_TUNE_MODE,
ACL_OP_SELECT_IMPL_MODE,
ACL_OPTYPELIST_FOR_IMPLMODE,
ACL_OP_DEBUG_LEVEL,
ACL_DEBUG_DIR,
ACL_OP_COMPILER_CACHE_MODE,
ACL_OP_COMPILER_CACHE_DIR
ACL_PRECISION_MODE,
ACL_AICORE_NUM,
ACL_AUTO_TUNE_MODE,
ACL_OP_SELECT_IMPL_MODE,
ACL_OPTYPELIST_FOR_IMPLMODE,
ACL_OP_DEBUG_LEVEL,
ACL_DEBUG_DIR,
ACL_OP_COMPILER_CACHE_MODE,
ACL_OP_COMPILER_CACHE_DIR
} aclCompileOpt; } aclCompileOpt;


/** /**
@@ -59,15 +56,10 @@ typedef enum {
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopCompile(const char *opType,
int numInputs,
const aclTensorDesc *const inputDesc[],
int numOutputs,
const aclTensorDesc *const outputDesc[],
const aclopAttr *attr,
aclopEngineType engineType,
aclopCompileType compileFlag,
const char *opPath);
ACL_FUNC_VISIBILITY aclError aclopCompile(const char *opType, int numInputs, const aclTensorDesc *const inputDesc[],
int numOutputs, const aclTensorDesc *const outputDesc[],
const aclopAttr *attr, aclopEngineType engineType,
aclopCompileType compileFlag, const char *opPath);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -90,11 +82,10 @@ ACL_FUNC_VISIBILITY aclError aclopCompile(const char *opType,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclopCompileAndExecute(const char *opType,
int numInputs, const aclTensorDesc *const inputDesc[], const aclDataBuffer *const inputs[],
int numOutputs, const aclTensorDesc *const outputDesc[], aclDataBuffer *const outputs[],
const aclopAttr *attr, aclopEngineType engineType, aclopCompileType compileFlag,
const char *opPath, aclrtStream stream);
ACL_FUNC_VISIBILITY aclError aclopCompileAndExecute(
const char *opType, int numInputs, const aclTensorDesc *const inputDesc[], const aclDataBuffer *const inputs[],
int numOutputs, const aclTensorDesc *const outputDesc[], aclDataBuffer *const outputs[], const aclopAttr *attr,
aclopEngineType engineType, aclopCompileType compileFlag, const char *opPath, aclrtStream stream);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -112,4 +103,4 @@ ACL_FUNC_VISIBILITY aclError aclSetCompileopt(aclCompileOpt opt, const char *val
} }
#endif #endif


#endif // INC_EXTERNAL_ACL_ACL_OP_COMPILER_H_
#endif // INC_EXTERNAL_ACL_ACL_OP_COMPILER_H_

+ 23
- 23
inc/external/acl/acl_prof.h View File

@@ -23,24 +23,24 @@
extern "C" { extern "C" {
#endif #endif


#define ACL_PROF_ACL_API 0x0001
#define ACL_PROF_TASK_TIME 0x0002
#define ACL_PROF_AICORE_METRICS 0x0004
#define ACL_PROF_AICPU 0x0008
#define ACL_PROF_ACL_API 0x0001
#define ACL_PROF_TASK_TIME 0x0002
#define ACL_PROF_AICORE_METRICS 0x0004
#define ACL_PROF_AICPU 0x0008


/** /**
* @deprecated please use aclprofGetOpTypeLen and aclprofGetOpTNameLen instead * @deprecated please use aclprofGetOpTypeLen and aclprofGetOpTNameLen instead
*/ */
#define ACL_PROF_MAX_OP_NAME_LEN 257
#define ACL_PROF_MAX_OP_TYPE_LEN 65
#define ACL_PROF_MAX_OP_NAME_LEN 257
#define ACL_PROF_MAX_OP_TYPE_LEN 65


typedef enum { typedef enum {
ACL_AICORE_ARITHMETIC_UTILIZATION = 0,
ACL_AICORE_PIPE_UTILIZATION = 1,
ACL_AICORE_MEMORY_BANDWIDTH = 2,
ACL_AICORE_L0B_AND_WIDTH = 3,
ACL_AICORE_RESOURCE_CONFLICT_RATIO = 4,
ACL_AICORE_NONE = 0xFF
ACL_AICORE_ARITHMETIC_UTILIZATION = 0,
ACL_AICORE_PIPE_UTILIZATION = 1,
ACL_AICORE_MEMORY_BANDWIDTH = 2,
ACL_AICORE_L0B_AND_WIDTH = 3,
ACL_AICORE_RESOURCE_CONFLICT_RATIO = 4,
ACL_AICORE_NONE = 0xFF
} aclprofAicoreMetrics; } aclprofAicoreMetrics;


typedef struct aclprofConfig aclprofConfig; typedef struct aclprofConfig aclprofConfig;
@@ -101,7 +101,8 @@ ACL_FUNC_VISIBILITY aclError aclprofStart(const aclprofConfig *profilerConfig);
* @see aclprofDestroyConfig * @see aclprofDestroyConfig
*/ */
ACL_FUNC_VISIBILITY aclprofConfig *aclprofCreateConfig(uint32_t *deviceIdList, uint32_t deviceNums, ACL_FUNC_VISIBILITY aclprofConfig *aclprofCreateConfig(uint32_t *deviceIdList, uint32_t deviceNums,
aclprofAicoreMetrics aicoreMetrics, aclprofAicoreEvents *aicoreEvents, uint64_t dataTypeConfig);
aclprofAicoreMetrics aicoreMetrics,
aclprofAicoreEvents *aicoreEvents, uint64_t dataTypeConfig);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -141,8 +142,7 @@ ACL_FUNC_VISIBILITY aclError aclprofStop(const aclprofConfig *profilerConfig);
* *
* @see aclprofModelUnSubscribe * @see aclprofModelUnSubscribe
*/ */
ACL_FUNC_VISIBILITY aclError aclprofModelSubscribe(uint32_t modelId,
const aclprofSubscribeConfig *profSubscribeConfig);
ACL_FUNC_VISIBILITY aclError aclprofModelSubscribe(uint32_t modelId, const aclprofSubscribeConfig *profSubscribeConfig);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -170,7 +170,7 @@ ACL_FUNC_VISIBILITY aclError aclprofModelUnSubscribe(uint32_t modelId);
* @see aclprofDestroySubscribeConfig * @see aclprofDestroySubscribeConfig
*/ */
ACL_FUNC_VISIBILITY aclprofSubscribeConfig *aclprofCreateSubscribeConfig(int8_t timeInfoSwitch, ACL_FUNC_VISIBILITY aclprofSubscribeConfig *aclprofCreateSubscribeConfig(int8_t timeInfoSwitch,
aclprofAicoreMetrics aicoreMetrics, void *fd);
aclprofAicoreMetrics aicoreMetrics, void *fd);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -222,7 +222,7 @@ ACL_FUNC_VISIBILITY aclError aclprofGetOpNum(const void *opInfo, size_t opInfoLe
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclprofGetOpTypeLen(const void *opInfo, size_t opInfoLen, uint32_t index, ACL_FUNC_VISIBILITY aclError aclprofGetOpTypeLen(const void *opInfo, size_t opInfoLen, uint32_t index,
size_t *opTypeLen);
size_t *opTypeLen);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -237,8 +237,8 @@ ACL_FUNC_VISIBILITY aclError aclprofGetOpTypeLen(const void *opInfo, size_t opIn
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclprofGetOpType(const void *opInfo, size_t opInfoLen, uint32_t index,
char *opType, size_t opTypeLen);
ACL_FUNC_VISIBILITY aclError aclprofGetOpType(const void *opInfo, size_t opInfoLen, uint32_t index, char *opType,
size_t opTypeLen);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -253,7 +253,7 @@ ACL_FUNC_VISIBILITY aclError aclprofGetOpType(const void *opInfo, size_t opInfoL
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclprofGetOpNameLen(const void *opInfo, size_t opInfoLen, uint32_t index, ACL_FUNC_VISIBILITY aclError aclprofGetOpNameLen(const void *opInfo, size_t opInfoLen, uint32_t index,
size_t *opNameLen);
size_t *opNameLen);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -268,8 +268,8 @@ ACL_FUNC_VISIBILITY aclError aclprofGetOpNameLen(const void *opInfo, size_t opIn
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclprofGetOpName(const void *opInfo, size_t opInfoLen, uint32_t index,
char *opName, size_t opNameLen);
ACL_FUNC_VISIBILITY aclError aclprofGetOpName(const void *opInfo, size_t opInfoLen, uint32_t index, char *opName,
size_t opNameLen);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -326,4 +326,4 @@ ACL_FUNC_VISIBILITY size_t aclprofGetModelId(const void *opInfo, size_t opInfoLe
} }
#endif #endif


#endif // INC_EXTERNAL_ACL_PROF_H_
#endif // INC_EXTERNAL_ACL_PROF_H_

+ 62
- 80
inc/external/acl/acl_rt.h View File

@@ -28,63 +28,63 @@ extern "C" {
#define ACL_EVENT_TIME_LINE 0x00000008u #define ACL_EVENT_TIME_LINE 0x00000008u


typedef enum aclrtRunMode { typedef enum aclrtRunMode {
ACL_DEVICE,
ACL_HOST,
ACL_DEVICE,
ACL_HOST,
} aclrtRunMode; } aclrtRunMode;


typedef enum aclrtTsId { typedef enum aclrtTsId {
ACL_TS_ID_AICORE = 0,
ACL_TS_ID_AIVECTOR = 1,
ACL_TS_ID_RESERVED = 2,
ACL_TS_ID_AICORE = 0,
ACL_TS_ID_AIVECTOR = 1,
ACL_TS_ID_RESERVED = 2,
} aclrtTsId; } aclrtTsId;


typedef enum aclrtEventStatus { typedef enum aclrtEventStatus {
ACL_EVENT_STATUS_COMPLETE = 0,
ACL_EVENT_STATUS_NOT_READY = 1,
ACL_EVENT_STATUS_RESERVED = 2,
ACL_EVENT_STATUS_COMPLETE = 0,
ACL_EVENT_STATUS_NOT_READY = 1,
ACL_EVENT_STATUS_RESERVED = 2,
} aclrtEventStatus; } aclrtEventStatus;


typedef enum aclrtCallbackBlockType { typedef enum aclrtCallbackBlockType {
ACL_CALLBACK_NO_BLOCK,
ACL_CALLBACK_BLOCK,
ACL_CALLBACK_NO_BLOCK,
ACL_CALLBACK_BLOCK,
} aclrtCallbackBlockType; } aclrtCallbackBlockType;


typedef enum aclrtMemcpyKind { typedef enum aclrtMemcpyKind {
ACL_MEMCPY_HOST_TO_HOST,
ACL_MEMCPY_HOST_TO_DEVICE,
ACL_MEMCPY_DEVICE_TO_HOST,
ACL_MEMCPY_DEVICE_TO_DEVICE,
ACL_MEMCPY_HOST_TO_HOST,
ACL_MEMCPY_HOST_TO_DEVICE,
ACL_MEMCPY_DEVICE_TO_HOST,
ACL_MEMCPY_DEVICE_TO_DEVICE,
} aclrtMemcpyKind; } aclrtMemcpyKind;


typedef enum aclrtMemMallocPolicy { typedef enum aclrtMemMallocPolicy {
ACL_MEM_MALLOC_HUGE_FIRST,
ACL_MEM_MALLOC_HUGE_ONLY,
ACL_MEM_MALLOC_NORMAL_ONLY,
ACL_MEM_MALLOC_HUGE_FIRST_P2P,
ACL_MEM_MALLOC_HUGE_ONLY_P2P,
ACL_MEM_MALLOC_NORMAL_ONLY_P2P,
ACL_MEM_MALLOC_HUGE_FIRST,
ACL_MEM_MALLOC_HUGE_ONLY,
ACL_MEM_MALLOC_NORMAL_ONLY,
ACL_MEM_MALLOC_HUGE_FIRST_P2P,
ACL_MEM_MALLOC_HUGE_ONLY_P2P,
ACL_MEM_MALLOC_NORMAL_ONLY_P2P,
} aclrtMemMallocPolicy; } aclrtMemMallocPolicy;


typedef enum aclrtMemAttr { typedef enum aclrtMemAttr {
ACL_DDR_MEM,
ACL_HBM_MEM,
ACL_DDR_MEM_HUGE,
ACL_DDR_MEM_NORMAL,
ACL_HBM_MEM_HUGE,
ACL_HBM_MEM_NORMAL,
ACL_DDR_MEM_P2P_HUGE,
ACL_DDR_MEM_P2P_NORMAL,
ACL_HBM_MEM_P2P_HUGE,
ACL_HBM_MEM_P2P_NORMAL,
ACL_DDR_MEM,
ACL_HBM_MEM,
ACL_DDR_MEM_HUGE,
ACL_DDR_MEM_NORMAL,
ACL_HBM_MEM_HUGE,
ACL_HBM_MEM_NORMAL,
ACL_DDR_MEM_P2P_HUGE,
ACL_DDR_MEM_P2P_NORMAL,
ACL_HBM_MEM_P2P_HUGE,
ACL_HBM_MEM_P2P_NORMAL,
} aclrtMemAttr; } aclrtMemAttr;


typedef enum aclrtGroupAttr { typedef enum aclrtGroupAttr {
ACL_GROUP_AICORE_INT,
ACL_GROUP_AIV_INT,
ACL_GROUP_AIC_INT,
ACL_GROUP_SDMANUM_INT,
ACL_GROUP_ASQNUM_INT,
ACL_GROUP_GROUPID_INT
ACL_GROUP_AICORE_INT,
ACL_GROUP_AIV_INT,
ACL_GROUP_AIC_INT,
ACL_GROUP_SDMANUM_INT,
ACL_GROUP_ASQNUM_INT,
ACL_GROUP_GROUPID_INT
} aclrtGroupAttr; } aclrtGroupAttr;


typedef struct tagRtGroupInfo aclrtGroupInfo; typedef struct tagRtGroupInfo aclrtGroupInfo;
@@ -487,7 +487,7 @@ ACL_FUNC_VISIBILITY aclError aclrtRecordEvent(aclrtEvent event, aclrtStream stre
*/ */
ACL_FUNC_VISIBILITY aclError aclrtResetEvent(aclrtEvent event, aclrtStream stream); ACL_FUNC_VISIBILITY aclError aclrtResetEvent(aclrtEvent event, aclrtStream stream);


/**
/**
* @ingroup AscendCL * @ingroup AscendCL
* @brief Queries an event's status * @brief Queries an event's status
* *
@@ -549,9 +549,7 @@ ACL_FUNC_VISIBILITY aclError aclrtEventElapsedTime(float *ms, aclrtEvent start,
* *
* @see aclrtFree | acldvppMalloc | aclrtMallocCached * @see aclrtFree | acldvppMalloc | aclrtMallocCached
*/ */
ACL_FUNC_VISIBILITY aclError aclrtMalloc(void **devPtr,
size_t size,
aclrtMemMallocPolicy policy);
ACL_FUNC_VISIBILITY aclError aclrtMalloc(void **devPtr, size_t size, aclrtMemMallocPolicy policy);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -574,9 +572,7 @@ ACL_FUNC_VISIBILITY aclError aclrtMalloc(void **devPtr,
* *
* @see aclrtFree | aclrtMalloc * @see aclrtFree | aclrtMalloc
*/ */
ACL_FUNC_VISIBILITY aclError aclrtMallocCached(void **devPtr,
size_t size,
aclrtMemMallocPolicy policy);
ACL_FUNC_VISIBILITY aclError aclrtMallocCached(void **devPtr, size_t size, aclrtMemMallocPolicy policy);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -667,10 +663,7 @@ ACL_FUNC_VISIBILITY aclError aclrtFreeHost(void *hostPtr);
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclrtMemcpy(void *dst,
size_t destMax,
const void *src,
size_t count,
ACL_FUNC_VISIBILITY aclError aclrtMemcpy(void *dst, size_t destMax, const void *src, size_t count,
aclrtMemcpyKind kind); aclrtMemcpyKind kind);


/** /**
@@ -717,38 +710,31 @@ ACL_FUNC_VISIBILITY aclError aclrtMemset(void *devPtr, size_t maxCount, int32_t
* *
* @see aclrtSynchronizeStream * @see aclrtSynchronizeStream
*/ */
ACL_FUNC_VISIBILITY aclError aclrtMemcpyAsync(void *dst,
size_t destMax,
const void *src,
size_t count,
aclrtMemcpyKind kind,
aclrtStream stream);
ACL_FUNC_VISIBILITY aclError aclrtMemcpyAsync(void *dst, size_t destMax, const void *src, size_t count,
aclrtMemcpyKind kind, aclrtStream stream);


/** /**
* @ingroup AscendCL
* @brief Asynchronous initialize memory
* and set contents of memory to specified value async
*
* @par Function
* @ingroup AscendCL
* @brief Asynchronous initialize memory
* and set contents of memory to specified value async
*
* @par Function
* The memory to be initialized is on the Host or device side, * The memory to be initialized is on the Host or device side,
* and the system determines whether * and the system determines whether
* it is host or device according to the address * it is host or device according to the address
* *
* @param devPtr [IN] destination address pointer
* @param maxCount [IN] Max length of destination address memory
* @param value [IN] set value
* @param count [IN] the number of byte to set
* @param stream [IN] asynchronized task stream
*
* @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure
*
* @see aclrtSynchronizeStream
*/
ACL_FUNC_VISIBILITY aclError aclrtMemsetAsync(void *devPtr,
size_t maxCount,
int32_t value,
size_t count,
* @param devPtr [IN] destination address pointer
* @param maxCount [IN] Max length of destination address memory
* @param value [IN] set value
* @param count [IN] the number of byte to set
* @param stream [IN] asynchronized task stream
*
* @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure
*
* @see aclrtSynchronizeStream
*/
ACL_FUNC_VISIBILITY aclError aclrtMemsetAsync(void *devPtr, size_t maxCount, int32_t value, size_t count,
aclrtStream stream); aclrtStream stream);


/** /**
@@ -894,11 +880,8 @@ ACL_FUNC_VISIBILITY aclError aclrtGetAllGroupInfo(aclrtGroupInfo *groupInfo);
* *
* @see aclrtGetGroupCount | aclrtGetAllGroupInfo * @see aclrtGetGroupCount | aclrtGetAllGroupInfo
*/ */
ACL_FUNC_VISIBILITY aclError aclrtGetGroupInfoDetail(const aclrtGroupInfo *groupInfo,
int32_t groupIndex,
aclrtGroupAttr attr,
void *attrValue,
size_t valueLen,
ACL_FUNC_VISIBILITY aclError aclrtGetGroupInfoDetail(const aclrtGroupInfo *groupInfo, int32_t groupIndex,
aclrtGroupAttr attr, void *attrValue, size_t valueLen,
size_t *paramRetSize); size_t *paramRetSize);


/** /**
@@ -961,5 +944,4 @@ ACL_FUNC_VISIBILITY aclError aclrtGetMemInfo(aclrtMemAttr attr, size_t *free, si
} }
#endif #endif


#endif // INC_EXTERNAL_ACL_ACL_RT_H_

#endif // INC_EXTERNAL_ACL_ACL_RT_H_

+ 12
- 19
inc/external/acl/acl_tdt.h View File

@@ -24,10 +24,10 @@ extern "C" {
#endif #endif


enum acltdtTensorType { enum acltdtTensorType {
ACL_TENSOR_DATA_UNDEFINED = -1,
ACL_TENSOR_DATA_TENSOR,
ACL_TENSOR_DATA_END_OF_SEQUENCE,
ACL_TENSOR_DATA_ABNORMAL
ACL_TENSOR_DATA_UNDEFINED = -1,
ACL_TENSOR_DATA_TENSOR,
ACL_TENSOR_DATA_END_OF_SEQUENCE,
ACL_TENSOR_DATA_ABNORMAL
}; };


typedef struct acltdtDataItem acltdtDataItem; typedef struct acltdtDataItem acltdtDataItem;
@@ -64,7 +64,7 @@ ACL_FUNC_VISIBILITY aclDataType acltdtGetDataTypeFromItem(const acltdtDataItem *
* *
* @retval null for failed * @retval null for failed
* @retval OtherValues success * @retval OtherValues success
*/
*/
ACL_FUNC_VISIBILITY void *acltdtGetDataAddrFromItem(const acltdtDataItem *dataItem); ACL_FUNC_VISIBILITY void *acltdtGetDataAddrFromItem(const acltdtDataItem *dataItem);


/** /**
@@ -75,7 +75,7 @@ ACL_FUNC_VISIBILITY void *acltdtGetDataAddrFromItem(const acltdtDataItem *dataIt
* *
* @retval 0 for failed * @retval 0 for failed
* @retval OtherValues success * @retval OtherValues success
*/
*/
ACL_FUNC_VISIBILITY size_t acltdtGetDataSizeFromItem(const acltdtDataItem *dataItem); ACL_FUNC_VISIBILITY size_t acltdtGetDataSizeFromItem(const acltdtDataItem *dataItem);


/** /**
@@ -86,7 +86,7 @@ ACL_FUNC_VISIBILITY size_t acltdtGetDataSizeFromItem(const acltdtDataItem *dataI
* *
* @retval 0 for failed * @retval 0 for failed
* @retval OtherValues success * @retval OtherValues success
*/
*/
ACL_FUNC_VISIBILITY size_t acltdtGetDimNumFromItem(const acltdtDataItem *dataItem); ACL_FUNC_VISIBILITY size_t acltdtGetDimNumFromItem(const acltdtDataItem *dataItem);


/** /**
@@ -118,12 +118,8 @@ ACL_FUNC_VISIBILITY aclError acltdtGetDimsFromItem(const acltdtDataItem *dataIte
* *
* @see acltdtDestroyDataItem * @see acltdtDestroyDataItem
*/ */
ACL_FUNC_VISIBILITY acltdtDataItem *acltdtCreateDataItem(acltdtTensorType tdtType,
const int64_t *dims,
size_t dimNum,
aclDataType dataType,
void *data,
size_t size);
ACL_FUNC_VISIBILITY acltdtDataItem *acltdtCreateDataItem(acltdtTensorType tdtType, const int64_t *dims, size_t dimNum,
aclDataType dataType, void *data, size_t size);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -254,8 +250,7 @@ ACL_FUNC_VISIBILITY aclError acltdtDestroyChannel(acltdtChannelHandle *handle);
* *
* @see acltdtReceiveTensor * @see acltdtReceiveTensor
*/ */
ACL_FUNC_VISIBILITY aclError acltdtSendTensor(const acltdtChannelHandle *handle,
const acltdtDataset *dataset,
ACL_FUNC_VISIBILITY aclError acltdtSendTensor(const acltdtChannelHandle *handle, const acltdtDataset *dataset,
int32_t timeout); int32_t timeout);


/** /**
@@ -271,13 +266,11 @@ ACL_FUNC_VISIBILITY aclError acltdtSendTensor(const acltdtChannelHandle *handle,
* *
* @see acltdtSendTensor * @see acltdtSendTensor
*/ */
ACL_FUNC_VISIBILITY aclError acltdtReceiveTensor(const acltdtChannelHandle *handle,
acltdtDataset *dataset,
ACL_FUNC_VISIBILITY aclError acltdtReceiveTensor(const acltdtChannelHandle *handle, acltdtDataset *dataset,
int32_t timeout); int32_t timeout);


#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif


#endif //INC_EXTERNAL_ACL_ACL_TDT_H_

#endif // INC_EXTERNAL_ACL_ACL_TDT_H_

+ 68
- 68
inc/external/acl/error_codes/rt_error_codes.h View File

@@ -23,80 +23,80 @@
extern "C" { extern "C" {
#endif #endif


static const int32_t ACL_RT_SUCCESS = 0; // success
static const int32_t ACL_RT_SUCCESS = 0; // success


static const int32_t ACL_ERROR_RT_PARAM_INVALID = 107000; // param invalid
static const int32_t ACL_ERROR_RT_INVALID_DEVICEID = 107001; // invalid device id
static const int32_t ACL_ERROR_RT_CONTEXT_NULL = 107002; // current context null
static const int32_t ACL_ERROR_RT_STREAM_CONTEXT = 107003; // stream not in current context
static const int32_t ACL_ERROR_RT_MODEL_CONTEXT = 107004; // model not in current context
static const int32_t ACL_ERROR_RT_STREAM_MODEL = 107005; // stream not in model
static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_INVALID = 107006; // event timestamp invalid
static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_REVERSAL = 107007; // event timestamp reversal
static const int32_t ACL_ERROR_RT_ADDR_UNALIGNED = 107008; // memory address unaligned
static const int32_t ACL_ERROR_RT_FILE_OPEN = 107009; // open file failed
static const int32_t ACL_ERROR_RT_FILE_WRITE = 107010; // write file failed
static const int32_t ACL_ERROR_RT_STREAM_SUBSCRIBE = 107011; // error subscribe stream
static const int32_t ACL_ERROR_RT_THREAD_SUBSCRIBE = 107012; // error subscribe thread
static const int32_t ACL_ERROR_RT_GROUP_NOT_SET = 107013; // group not set
static const int32_t ACL_ERROR_RT_GROUP_NOT_CREATE = 107014; // group not create
static const int32_t ACL_ERROR_RT_STREAM_NO_CB_REG = 107015; // callback not register to stream
static const int32_t ACL_ERROR_RT_INVALID_MEMORY_TYPE = 107016; // invalid memory type
static const int32_t ACL_ERROR_RT_INVALID_HANDLE = 107017; // invalid handle
static const int32_t ACL_ERROR_RT_INVALID_MALLOC_TYPE = 107018; // invalid malloc type
static const int32_t ACL_ERROR_RT_PARAM_INVALID = 107000; // param invalid
static const int32_t ACL_ERROR_RT_INVALID_DEVICEID = 107001; // invalid device id
static const int32_t ACL_ERROR_RT_CONTEXT_NULL = 107002; // current context null
static const int32_t ACL_ERROR_RT_STREAM_CONTEXT = 107003; // stream not in current context
static const int32_t ACL_ERROR_RT_MODEL_CONTEXT = 107004; // model not in current context
static const int32_t ACL_ERROR_RT_STREAM_MODEL = 107005; // stream not in model
static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_INVALID = 107006; // event timestamp invalid
static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_REVERSAL = 107007; // event timestamp reversal
static const int32_t ACL_ERROR_RT_ADDR_UNALIGNED = 107008; // memory address unaligned
static const int32_t ACL_ERROR_RT_FILE_OPEN = 107009; // open file failed
static const int32_t ACL_ERROR_RT_FILE_WRITE = 107010; // write file failed
static const int32_t ACL_ERROR_RT_STREAM_SUBSCRIBE = 107011; // error subscribe stream
static const int32_t ACL_ERROR_RT_THREAD_SUBSCRIBE = 107012; // error subscribe thread
static const int32_t ACL_ERROR_RT_GROUP_NOT_SET = 107013; // group not set
static const int32_t ACL_ERROR_RT_GROUP_NOT_CREATE = 107014; // group not create
static const int32_t ACL_ERROR_RT_STREAM_NO_CB_REG = 107015; // callback not register to stream
static const int32_t ACL_ERROR_RT_INVALID_MEMORY_TYPE = 107016; // invalid memory type
static const int32_t ACL_ERROR_RT_INVALID_HANDLE = 107017; // invalid handle
static const int32_t ACL_ERROR_RT_INVALID_MALLOC_TYPE = 107018; // invalid malloc type


static const int32_t ACL_ERROR_RT_FEATURE_NOT_SUPPORT = 207000; // feature not support
static const int32_t ACL_ERROR_RT_MEMORY_ALLOCATION = 207001; // memory allocation error
static const int32_t ACL_ERROR_RT_MEMORY_FREE = 207002; // memory free error
static const int32_t ACL_ERROR_RT_AICORE_OVER_FLOW = 207003; // aicore over flow
static const int32_t ACL_ERROR_RT_NO_DEVICE = 207004; // no device
static const int32_t ACL_ERROR_RT_RESOURCE_ALLOC_FAIL = 207005; // resource alloc fail
static const int32_t ACL_ERROR_RT_NO_PERMISSION = 207006; // no permission
static const int32_t ACL_ERROR_RT_NO_EVENT_RESOURCE = 207007; // no event resource
static const int32_t ACL_ERROR_RT_NO_STREAM_RESOURCE = 207008; // no stream resource
static const int32_t ACL_ERROR_RT_NO_NOTIFY_RESOURCE = 207009; // no notify resource
static const int32_t ACL_ERROR_RT_NO_MODEL_RESOURCE = 207010; // no model resource
static const int32_t ACL_ERROR_RT_FEATURE_NOT_SUPPORT = 207000; // feature not support
static const int32_t ACL_ERROR_RT_MEMORY_ALLOCATION = 207001; // memory allocation error
static const int32_t ACL_ERROR_RT_MEMORY_FREE = 207002; // memory free error
static const int32_t ACL_ERROR_RT_AICORE_OVER_FLOW = 207003; // aicore over flow
static const int32_t ACL_ERROR_RT_NO_DEVICE = 207004; // no device
static const int32_t ACL_ERROR_RT_RESOURCE_ALLOC_FAIL = 207005; // resource alloc fail
static const int32_t ACL_ERROR_RT_NO_PERMISSION = 207006; // no permission
static const int32_t ACL_ERROR_RT_NO_EVENT_RESOURCE = 207007; // no event resource
static const int32_t ACL_ERROR_RT_NO_STREAM_RESOURCE = 207008; // no stream resource
static const int32_t ACL_ERROR_RT_NO_NOTIFY_RESOURCE = 207009; // no notify resource
static const int32_t ACL_ERROR_RT_NO_MODEL_RESOURCE = 207010; // no model resource


static const int32_t ACL_ERROR_RT_INTERNAL_ERROR = 507000; // runtime internal error
static const int32_t ACL_ERROR_RT_TS_ERROR = 507001; // ts internel error
static const int32_t ACL_ERROR_RT_STREAM_TASK_FULL = 507002; // task full in stream
static const int32_t ACL_ERROR_RT_STREAM_TASK_EMPTY = 507003; // task empty in stream
static const int32_t ACL_ERROR_RT_STREAM_NOT_COMPLETE = 507004; // stream not complete
static const int32_t ACL_ERROR_RT_END_OF_SEQUENCE = 507005; // end of sequence
static const int32_t ACL_ERROR_RT_EVENT_NOT_COMPLETE = 507006; // event not complete
static const int32_t ACL_ERROR_RT_CONTEXT_RELEASE_ERROR = 507007; // context release error
static const int32_t ACL_ERROR_RT_SOC_VERSION = 507008; // soc version error
static const int32_t ACL_ERROR_RT_TASK_TYPE_NOT_SUPPORT = 507009; // task type not support
static const int32_t ACL_ERROR_RT_LOST_HEARTBEAT = 507010; // ts lost heartbeat
static const int32_t ACL_ERROR_RT_MODEL_EXECUTE = 507011; // model execute failed
static const int32_t ACL_ERROR_RT_REPORT_TIMEOUT = 507012; // report timeout
static const int32_t ACL_ERROR_RT_SYS_DMA = 507013; // sys dma error
static const int32_t ACL_ERROR_RT_AICORE_TIMEOUT = 507014; // aicore timeout
static const int32_t ACL_ERROR_RT_AICORE_EXCEPTION = 507015; // aicore exception
static const int32_t ACL_ERROR_RT_AICORE_TRAP_EXCEPTION = 507016; // aicore trap exception
static const int32_t ACL_ERROR_RT_AICPU_TIMEOUT = 507017; // aicpu timeout
static const int32_t ACL_ERROR_RT_AICPU_EXCEPTION = 507018; // aicpu exception
static const int32_t ACL_ERROR_RT_AICPU_DATADUMP_RSP_ERR = 507019; // aicpu datadump response error
static const int32_t ACL_ERROR_RT_AICPU_MODEL_RSP_ERR = 507020; // aicpu model operate response error
static const int32_t ACL_ERROR_RT_PROFILING_ERROR = 507021; // profiling error
static const int32_t ACL_ERROR_RT_IPC_ERROR = 507022; // ipc error
static const int32_t ACL_ERROR_RT_MODEL_ABORT_NORMAL = 507023; // model abort normal
static const int32_t ACL_ERROR_RT_KERNEL_UNREGISTERING = 507024; // kernel unregistering
static const int32_t ACL_ERROR_RT_RINGBUFFER_NOT_INIT = 507025; // ringbuffer not init
static const int32_t ACL_ERROR_RT_RINGBUFFER_NO_DATA = 507026; // ringbuffer no data
static const int32_t ACL_ERROR_RT_KERNEL_LOOKUP = 507027; // kernel lookup error
static const int32_t ACL_ERROR_RT_KERNEL_DUPLICATE = 507028; // kernel register duplicate
static const int32_t ACL_ERROR_RT_DEBUG_REGISTER_FAIL = 507029; // debug register failed
static const int32_t ACL_ERROR_RT_DEBUG_UNREGISTER_FAIL = 507030; // debug unregister failed
static const int32_t ACL_ERROR_RT_LABEL_CONTEXT = 507031; // label not in current context
static const int32_t ACL_ERROR_RT_PROGRAM_USE_OUT = 507032; // program register num use out
static const int32_t ACL_ERROR_RT_DEV_SETUP_ERROR = 507033; // device setup error
static const int32_t ACL_ERROR_RT_INTERNAL_ERROR = 507000; // runtime internal error
static const int32_t ACL_ERROR_RT_TS_ERROR = 507001; // ts internel error
static const int32_t ACL_ERROR_RT_STREAM_TASK_FULL = 507002; // task full in stream
static const int32_t ACL_ERROR_RT_STREAM_TASK_EMPTY = 507003; // task empty in stream
static const int32_t ACL_ERROR_RT_STREAM_NOT_COMPLETE = 507004; // stream not complete
static const int32_t ACL_ERROR_RT_END_OF_SEQUENCE = 507005; // end of sequence
static const int32_t ACL_ERROR_RT_EVENT_NOT_COMPLETE = 507006; // event not complete
static const int32_t ACL_ERROR_RT_CONTEXT_RELEASE_ERROR = 507007; // context release error
static const int32_t ACL_ERROR_RT_SOC_VERSION = 507008; // soc version error
static const int32_t ACL_ERROR_RT_TASK_TYPE_NOT_SUPPORT = 507009; // task type not support
static const int32_t ACL_ERROR_RT_LOST_HEARTBEAT = 507010; // ts lost heartbeat
static const int32_t ACL_ERROR_RT_MODEL_EXECUTE = 507011; // model execute failed
static const int32_t ACL_ERROR_RT_REPORT_TIMEOUT = 507012; // report timeout
static const int32_t ACL_ERROR_RT_SYS_DMA = 507013; // sys dma error
static const int32_t ACL_ERROR_RT_AICORE_TIMEOUT = 507014; // aicore timeout
static const int32_t ACL_ERROR_RT_AICORE_EXCEPTION = 507015; // aicore exception
static const int32_t ACL_ERROR_RT_AICORE_TRAP_EXCEPTION = 507016; // aicore trap exception
static const int32_t ACL_ERROR_RT_AICPU_TIMEOUT = 507017; // aicpu timeout
static const int32_t ACL_ERROR_RT_AICPU_EXCEPTION = 507018; // aicpu exception
static const int32_t ACL_ERROR_RT_AICPU_DATADUMP_RSP_ERR = 507019; // aicpu datadump response error
static const int32_t ACL_ERROR_RT_AICPU_MODEL_RSP_ERR = 507020; // aicpu model operate response error
static const int32_t ACL_ERROR_RT_PROFILING_ERROR = 507021; // profiling error
static const int32_t ACL_ERROR_RT_IPC_ERROR = 507022; // ipc error
static const int32_t ACL_ERROR_RT_MODEL_ABORT_NORMAL = 507023; // model abort normal
static const int32_t ACL_ERROR_RT_KERNEL_UNREGISTERING = 507024; // kernel unregistering
static const int32_t ACL_ERROR_RT_RINGBUFFER_NOT_INIT = 507025; // ringbuffer not init
static const int32_t ACL_ERROR_RT_RINGBUFFER_NO_DATA = 507026; // ringbuffer no data
static const int32_t ACL_ERROR_RT_KERNEL_LOOKUP = 507027; // kernel lookup error
static const int32_t ACL_ERROR_RT_KERNEL_DUPLICATE = 507028; // kernel register duplicate
static const int32_t ACL_ERROR_RT_DEBUG_REGISTER_FAIL = 507029; // debug register failed
static const int32_t ACL_ERROR_RT_DEBUG_UNREGISTER_FAIL = 507030; // debug unregister failed
static const int32_t ACL_ERROR_RT_LABEL_CONTEXT = 507031; // label not in current context
static const int32_t ACL_ERROR_RT_PROGRAM_USE_OUT = 507032; // program register num use out
static const int32_t ACL_ERROR_RT_DEV_SETUP_ERROR = 507033; // device setup error


static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error
static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error
static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error
static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error


#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif


#endif // __INC_EXTERNEL_RT_ERROR_CODES_H__
#endif // __INC_EXTERNEL_RT_ERROR_CODES_H__

+ 41
- 138
inc/external/acl/ops/acl_cblas.h View File

@@ -23,17 +23,9 @@
extern "C" { extern "C" {
#endif #endif


typedef enum aclTransType {
ACL_TRANS_N,
ACL_TRANS_T,
ACL_TRANS_NZ,
ACL_TRANS_NZ_T
} aclTransType;
typedef enum aclTransType { ACL_TRANS_N, ACL_TRANS_T, ACL_TRANS_NZ, ACL_TRANS_NZ_T } aclTransType;


typedef enum aclComputeType {
ACL_COMPUTE_HIGH_PRECISION,
ACL_COMPUTE_LOW_PRECISION
} aclComputeType;
typedef enum aclComputeType { ACL_COMPUTE_HIGH_PRECISION, ACL_COMPUTE_LOW_PRECISION } aclComputeType;


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -61,12 +53,11 @@ typedef enum aclComputeType {
* *
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/
ACL_FUNC_VISIBILITY aclError aclblasGemvEx(aclTransType transA, int m, int n,
const void *alpha, const void *a, int lda, aclDataType dataTypeA,
const void *x, int incx, aclDataType dataTypeX,
const void *beta, void *y, int incy, aclDataType dataTypeY,
aclComputeType type, aclrtStream stream);
*/
ACL_FUNC_VISIBILITY aclError aclblasGemvEx(aclTransType transA, int m, int n, const void *alpha, const void *a, int lda,
aclDataType dataTypeA, const void *x, int incx, aclDataType dataTypeX,
const void *beta, void *y, int incy, aclDataType dataTypeY,
aclComputeType type, aclrtStream stream);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -83,15 +74,10 @@ ACL_FUNC_VISIBILITY aclError aclblasGemvEx(aclTransType transA, int m, int n,
* *
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/
ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForGemvEx(aclTransType transA,
int m,
int n,
aclDataType dataTypeA,
aclDataType dataTypeX,
aclDataType dataTypeY,
aclComputeType type,
aclopHandle **handle);
*/
ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForGemvEx(aclTransType transA, int m, int n, aclDataType dataTypeA,
aclDataType dataTypeX, aclDataType dataTypeY,
aclComputeType type, aclopHandle **handle);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -115,18 +101,9 @@ ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForGemvEx(aclTransType transA,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclblasHgemv(aclTransType transA,
int m,
int n,
const aclFloat16 *alpha,
const aclFloat16 *a,
int lda,
const aclFloat16 *x,
int incx,
const aclFloat16 *beta,
aclFloat16 *y,
int incy,
aclComputeType type,
ACL_FUNC_VISIBILITY aclError aclblasHgemv(aclTransType transA, int m, int n, const aclFloat16 *alpha,
const aclFloat16 *a, int lda, const aclFloat16 *x, int incx,
const aclFloat16 *beta, aclFloat16 *y, int incy, aclComputeType type,
aclrtStream stream); aclrtStream stream);


/** /**
@@ -142,10 +119,7 @@ ACL_FUNC_VISIBILITY aclError aclblasHgemv(aclTransType transA,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForHgemv(aclTransType transA,
int m,
int n,
aclComputeType type,
ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForHgemv(aclTransType transA, int m, int n, aclComputeType type,
aclopHandle **handle); aclopHandle **handle);


/** /**
@@ -171,19 +145,9 @@ ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForHgemv(aclTransType transA,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclblasS8gemv(aclTransType transA,
int m,
int n,
const int32_t *alpha,
const int8_t *a,
int lda,
const int8_t *x,
int incx,
const int32_t *beta,
int32_t *y,
int incy,
aclComputeType type,
aclrtStream stream);
ACL_FUNC_VISIBILITY aclError aclblasS8gemv(aclTransType transA, int m, int n, const int32_t *alpha, const int8_t *a,
int lda, const int8_t *x, int incx, const int32_t *beta, int32_t *y,
int incy, aclComputeType type, aclrtStream stream);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -198,10 +162,7 @@ ACL_FUNC_VISIBILITY aclError aclblasS8gemv(aclTransType transA,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForS8gemv(aclTransType transA,
int m,
int n,
aclComputeType type,
ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForS8gemv(aclTransType transA, int m, int n, aclComputeType type,
aclopHandle **handle); aclopHandle **handle);


/** /**
@@ -233,26 +194,11 @@ ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForS8gemv(aclTransType transA,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclblasGemmEx(aclTransType transA,
aclTransType transB,
aclTransType transC,
int m,
int n,
int k,
const void *alpha,
const void *matrixA,
int lda,
aclDataType dataTypeA,
const void *matrixB,
int ldb,
aclDataType dataTypeB,
const void *beta,
void *matrixC,
int ldc,
aclDataType dataTypeC,
aclComputeType type,
aclrtStream stream);

ACL_FUNC_VISIBILITY aclError aclblasGemmEx(aclTransType transA, aclTransType transB, aclTransType transC, int m, int n,
int k, const void *alpha, const void *matrixA, int lda,
aclDataType dataTypeA, const void *matrixB, int ldb, aclDataType dataTypeB,
const void *beta, void *matrixC, int ldc, aclDataType dataTypeC,
aclComputeType type, aclrtStream stream);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -274,18 +220,10 @@ ACL_FUNC_VISIBILITY aclError aclblasGemmEx(aclTransType transA,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForGemmEx(aclTransType transA,
aclTransType transB,
aclTransType transC,
int m,
int n,
int k,
aclDataType dataTypeA,
aclDataType dataTypeB,
aclDataType dataTypeC,
aclComputeType type,
aclopHandle **handle);

ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForGemmEx(aclTransType transA, aclTransType transB, aclTransType transC,
int m, int n, int k, aclDataType dataTypeA,
aclDataType dataTypeB, aclDataType dataTypeC,
aclComputeType type, aclopHandle **handle);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -313,22 +251,10 @@ ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForGemmEx(aclTransType transA,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclblasHgemm(aclTransType transA,
aclTransType transB,
aclTransType transC,
int m,
int n,
int k,
const aclFloat16 *alpha,
const aclFloat16 *matrixA,
int lda,
const aclFloat16 *matrixB,
int ldb,
const aclFloat16 *beta,
aclFloat16 *matrixC,
int ldc,
aclComputeType type,
aclrtStream stream);
ACL_FUNC_VISIBILITY aclError aclblasHgemm(aclTransType transA, aclTransType transB, aclTransType transC, int m, int n,
int k, const aclFloat16 *alpha, const aclFloat16 *matrixA, int lda,
const aclFloat16 *matrixB, int ldb, const aclFloat16 *beta,
aclFloat16 *matrixC, int ldc, aclComputeType type, aclrtStream stream);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -346,13 +272,8 @@ ACL_FUNC_VISIBILITY aclError aclblasHgemm(aclTransType transA,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForHgemm(aclTransType transA,
aclTransType transB,
aclTransType transC,
int m,
int n,
int k,
aclComputeType type,
ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForHgemm(aclTransType transA, aclTransType transB, aclTransType transC,
int m, int n, int k, aclComputeType type,
aclopHandle **handle); aclopHandle **handle);


/** /**
@@ -381,23 +302,10 @@ ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForHgemm(aclTransType transA,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclblasS8gemm(aclTransType transA,
aclTransType transB,
aclTransType transC,
int m,
int n,
int k,
const int32_t *alpha,
const int8_t *matrixA,
int lda,
const int8_t *matrixB,
int ldb,
const int32_t *beta,
int32_t *matrixC,
int ldc,
aclComputeType type,
aclrtStream stream);

ACL_FUNC_VISIBILITY aclError aclblasS8gemm(aclTransType transA, aclTransType transB, aclTransType transC, int m, int n,
int k, const int32_t *alpha, const int8_t *matrixA, int lda,
const int8_t *matrixB, int ldb, const int32_t *beta, int32_t *matrixC,
int ldc, aclComputeType type, aclrtStream stream);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -415,17 +323,12 @@ ACL_FUNC_VISIBILITY aclError aclblasS8gemm(aclTransType transA,
* @retval ACL_SUCCESS The function is successfully executed. * @retval ACL_SUCCESS The function is successfully executed.
* @retval OtherValues Failure * @retval OtherValues Failure
*/ */
ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForS8gemm(aclTransType transA,
aclTransType transB,
aclTransType transC,
int m,
int n,
int k,
aclComputeType type,
ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForS8gemm(aclTransType transA, aclTransType transB, aclTransType transC,
int m, int n, int k, aclComputeType type,
aclopHandle **handle); aclopHandle **handle);


#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif


#endif // INC_EXTERNAL_ACL_OPS_ACL_CBLAS_H_
#endif // INC_EXTERNAL_ACL_OPS_ACL_CBLAS_H_

+ 8
- 6
inc/external/acl/ops/acl_fv.h View File

@@ -32,8 +32,8 @@ typedef struct aclfvSearchResult aclfvSearchResult;


// search operation type // search operation type
enum aclfvSearchType { enum aclfvSearchType {
SEARCH_1_N, // 1:N operation type
SEARCH_N_M // N:M operation type
SEARCH_1_N, // 1:N operation type
SEARCH_N_M // N:M operation type
}; };


/** /**
@@ -104,7 +104,8 @@ ACL_FUNC_VISIBILITY aclError aclfvSetNMTopNum(aclfvInitPara *initPara, uint32_t
* @retval OtherValues success. * @retval OtherValues success.
*/ */
ACL_FUNC_VISIBILITY aclfvFeatureInfo *aclfvCreateFeatureInfo(uint32_t id0, uint32_t id1, uint32_t offset, ACL_FUNC_VISIBILITY aclfvFeatureInfo *aclfvCreateFeatureInfo(uint32_t id0, uint32_t id1, uint32_t offset,
uint32_t featureLen, uint32_t featureCount, uint8_t *featureData, uint32_t featureDataLen);
uint32_t featureLen, uint32_t featureCount,
uint8_t *featureData, uint32_t featureDataLen);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -233,8 +234,9 @@ ACL_FUNC_VISIBILITY aclError aclfvDestroySearchInput(aclfvSearchInput *searchInp
* @retval null for failed. OtherValues success * @retval null for failed. OtherValues success
*/ */
ACL_FUNC_VISIBILITY aclfvSearchResult *aclfvCreateSearchResult(uint32_t queryCnt, uint32_t *resultNum, ACL_FUNC_VISIBILITY aclfvSearchResult *aclfvCreateSearchResult(uint32_t queryCnt, uint32_t *resultNum,
uint32_t resultNumDataLen, uint32_t *id0, uint32_t *id1, uint32_t *resultOffset, float *resultDistance,
uint32_t dataLen);
uint32_t resultNumDataLen, uint32_t *id0, uint32_t *id1,
uint32_t *resultOffset, float *resultDistance,
uint32_t dataLen);


/** /**
* @ingroup AscendCL * @ingroup AscendCL
@@ -348,4 +350,4 @@ ACL_FUNC_VISIBILITY aclError aclfvSearch(aclfvSearchType type, aclfvSearchInput
} }
#endif #endif


#endif // INC_EXTERNAL_ACL_OPS_ACL_RETR_H_
#endif // INC_EXTERNAL_ACL_OPS_ACL_RETR_H_

+ 4
- 0
inc/external/ge/ge_api_types.h View File

@@ -311,6 +311,9 @@ const std::string OP_BANK_UPDATE_FLAG = "ge.op_bank_update";
// 0: data multi; 1: model multi; // 0: data multi; 1: model multi;
const std::string HCOM_MULTI_MODE = "ge.hcomMultiMode"; const std::string HCOM_MULTI_MODE = "ge.hcomMultiMode";


// atc and ir option
const char *const INPUT_SHAPE_RANGE = "input_shape_range";

// Graph run mode // Graph run mode
enum GraphRunMode { PREDICTION = 0, TRAIN }; enum GraphRunMode { PREDICTION = 0, TRAIN };


@@ -390,6 +393,7 @@ static const char *const OP_DEBUG_LEVEL = ge::OP_DEBUG_LEVEL.c_str();
#ifdef __GNUC__ #ifdef __GNUC__
const std::set<std::string> ir_builder_suppported_options = {INPUT_FORMAT, const std::set<std::string> ir_builder_suppported_options = {INPUT_FORMAT,
INPUT_SHAPE, INPUT_SHAPE,
INPUT_SHAPE_RANGE,
OP_NAME_MAP, OP_NAME_MAP,
DYNAMIC_BATCH_SIZE, DYNAMIC_BATCH_SIZE,
DYNAMIC_IMAGE_SIZE, DYNAMIC_IMAGE_SIZE,


+ 17
- 16
inc/external/hccl/hccl.h View File

@@ -27,7 +27,7 @@


#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif // __cplusplus
#endif // __cplusplus


/** /**
* @brief Initialize HCCL. * @brief Initialize HCCL.
@@ -66,14 +66,15 @@ extern HcclResult HcclCommInitRootInfo(uint32_t nRanks, const HcclRootInfo *root
* @param sendBuf A pointer identifying the input data address of the operator. * @param sendBuf A pointer identifying the input data address of the operator.
* @param recvBuf A pointer identifying the output data address of the operator. * @param recvBuf A pointer identifying the output data address of the operator.
* @param count An integer(u64) identifying the number of the output data. * @param count An integer(u64) identifying the number of the output data.
* @param dataType The data type of the operator, must be one of the following types: int8, int16, int32, float16, float32.
* @param dataType The data type of the operator, must be one of the following types: int8, int16, int32, float16,
* float32.
* @param op The reduction type of the operator, must be one of the following types: sum, min, max, prod. * @param op The reduction type of the operator, must be one of the following types: sum, min, max, prod.
* @param comm A pointer identifying the communication resource based on. * @param comm A pointer identifying the communication resource based on.
* @param stream A pointer identifying the stream information. * @param stream A pointer identifying the stream information.
* @return HcclResult
* @return HcclResult
*/ */
extern HcclResult HcclAllReduce(void *sendBuf, void *recvBuf, uint64_t count, HcclDataType dataType,
HcclReduceOp op, HcclComm comm, aclrtStream stream);
extern HcclResult HcclAllReduce(void *sendBuf, void *recvBuf, uint64_t count, HcclDataType dataType, HcclReduceOp op,
HcclComm comm, aclrtStream stream);


/** /**
* @brief Broadcast operator. * @brief Broadcast operator.
@@ -84,10 +85,10 @@ HcclReduceOp op, HcclComm comm, aclrtStream stream);
* @param root An integer(u32) identifying the the root rank in the operator. * @param root An integer(u32) identifying the the root rank in the operator.
* @param comm A pointer identifying the communication resource based on * @param comm A pointer identifying the communication resource based on
* @param stream A pointer identifying the stream information. * @param stream A pointer identifying the stream information.
* @return HcclResult
* @return HcclResult
*/ */
extern HcclResult HcclBroadcast(void *buf, uint64_t count, HcclDataType dataType, uint32_t root, HcclComm comm,
aclrtStream stream);
extern HcclResult HcclBroadcast(void *buf, uint64_t count, HcclDataType dataType, uint32_t root, HcclComm comm,
aclrtStream stream);


/** /**
* @brief ReduceScatter operator. * @brief ReduceScatter operator.
@@ -99,10 +100,10 @@ aclrtStream stream);
* @param op The reduction type of the operator, must be one of the following types: sum, min, max, prod. * @param op The reduction type of the operator, must be one of the following types: sum, min, max, prod.
* @param comm A pointer identifying the communication resource based on. * @param comm A pointer identifying the communication resource based on.
* @param stream A pointer identifying the stream information. * @param stream A pointer identifying the stream information.
* @return HcclResult
* @return HcclResult
*/ */
extern HcclResult HcclReduceScatter(void *sendBuf, void *recvBuf, uint64_t recvCount, HcclDataType dataType,
HcclReduceOp op, HcclComm comm, aclrtStream stream);
extern HcclResult HcclReduceScatter(void *sendBuf, void *recvBuf, uint64_t recvCount, HcclDataType dataType,
HcclReduceOp op, HcclComm comm, aclrtStream stream);


/** /**
* @brief AllGather operator. * @brief AllGather operator.
@@ -113,10 +114,10 @@ HcclReduceOp op, HcclComm comm, aclrtStream stream);
* @param dataType The data type of the operator, must be one of the following types: int8, int32, float16, float32. * @param dataType The data type of the operator, must be one of the following types: int8, int32, float16, float32.
* @param comm A pointer identifying the communication resource based on. * @param comm A pointer identifying the communication resource based on.
* @param stream A pointer identifying the stream information. * @param stream A pointer identifying the stream information.
* @return HcclResult
* @return HcclResult
*/ */
extern HcclResult HcclAllGather(void *sendBuf, void *recvBuf, uint64_t sendCount, HcclDataType dataType,
HcclComm comm, aclrtStream stream);
extern HcclResult HcclAllGather(void *sendBuf, void *recvBuf, uint64_t sendCount, HcclDataType dataType, HcclComm comm,
aclrtStream stream);


/** /**
* @brief Destroy HCCL comm * @brief Destroy HCCL comm
@@ -129,5 +130,5 @@ extern HcclResult HcclCommDestroy(HcclComm comm);


#ifdef __cplusplus #ifdef __cplusplus
} }
#endif // __cplusplus
#endif // HCCL_H_
#endif // __cplusplus
#endif // HCCL_H_

+ 42
- 42
inc/external/hccl/hccl_types.h View File

@@ -16,10 +16,10 @@


/** /**
* @file hccl_types.h * @file hccl_types.h
* @brief HCCL data type definition
*
* @brief HCCL data type definition
*
*/ */
#ifndef HCCL_TYPES_H_ #ifndef HCCL_TYPES_H_
#define HCCL_TYPES_H_ #define HCCL_TYPES_H_


@@ -27,33 +27,33 @@


#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif // __cplusplus
#endif // __cplusplus


/** /**
* @brief HCCL functions return value definition * @brief HCCL functions return value definition
*/ */
typedef enum { typedef enum {
HCCL_SUCCESS = 0, /**< success */
HCCL_E_PARA = 1, /**< parameter error */
HCCL_E_PTR = 2, /**< empty pointer */
HCCL_E_MEMORY = 3, /**< memory error */
HCCL_E_INTERNAL = 4, /**< internal error */
HCCL_E_NOT_SUPPORT = 5, /**< not support feature */
HCCL_E_NOT_FOUND = 6, /**< not found specific resource */
HCCL_E_UNAVAIL = 7, /**< resource unavailable */
HCCL_E_SYSCALL = 8, /**< call system interface error */
HCCL_E_TIMEOUT = 9, /**< timeout */
HCCL_E_OPEN_FILE_FAILURE = 10, /**< open file fail */
HCCL_E_TCP_CONNECT = 11, /**< tcp connect fail */
HCCL_E_ROCE_CONNECT = 12, /**< roce connect fail */
HCCL_E_TCP_TRANSFER = 13, /**< tcp transfer fail */
HCCL_E_ROCE_TRANSFER = 14, /**< roce transfer fail */
HCCL_E_RUNTIME = 15, /**< call runtime api fail */
HCCL_E_DRV = 16, /**< call driver api fail */
HCCL_E_PROFILING = 17, /**< call profiling api fail */
HCCL_E_CCE = 18, /**< call cce api fail */
HCCL_E_NETWORK = 19, /**< call network api fail */
HCCL_E_RESERVED /**< reserved */
HCCL_SUCCESS = 0, /**< success */
HCCL_E_PARA = 1, /**< parameter error */
HCCL_E_PTR = 2, /**< empty pointer */
HCCL_E_MEMORY = 3, /**< memory error */
HCCL_E_INTERNAL = 4, /**< internal error */
HCCL_E_NOT_SUPPORT = 5, /**< not support feature */
HCCL_E_NOT_FOUND = 6, /**< not found specific resource */
HCCL_E_UNAVAIL = 7, /**< resource unavailable */
HCCL_E_SYSCALL = 8, /**< call system interface error */
HCCL_E_TIMEOUT = 9, /**< timeout */
HCCL_E_OPEN_FILE_FAILURE = 10, /**< open file fail */
HCCL_E_TCP_CONNECT = 11, /**< tcp connect fail */
HCCL_E_ROCE_CONNECT = 12, /**< roce connect fail */
HCCL_E_TCP_TRANSFER = 13, /**< tcp transfer fail */
HCCL_E_ROCE_TRANSFER = 14, /**< roce transfer fail */
HCCL_E_RUNTIME = 15, /**< call runtime api fail */
HCCL_E_DRV = 16, /**< call driver api fail */
HCCL_E_PROFILING = 17, /**< call profiling api fail */
HCCL_E_CCE = 18, /**< call cce api fail */
HCCL_E_NETWORK = 19, /**< call network api fail */
HCCL_E_RESERVED /**< reserved */
} HcclResult; } HcclResult;


/** /**
@@ -65,37 +65,37 @@ typedef void *HcclComm;
* @brief HCCL Reduction opperation * @brief HCCL Reduction opperation
*/ */
typedef enum { typedef enum {
HCCL_REDUCE_SUM = 0, /**< sum */
HCCL_REDUCE_PROD = 1, /**< prod */
HCCL_REDUCE_MAX = 2, /**< max */
HCCL_REDUCE_MIN = 3, /**< min */
HCCL_REDUCE_RESERVED /**< reserved */
HCCL_REDUCE_SUM = 0, /**< sum */
HCCL_REDUCE_PROD = 1, /**< prod */
HCCL_REDUCE_MAX = 2, /**< max */
HCCL_REDUCE_MIN = 3, /**< min */
HCCL_REDUCE_RESERVED /**< reserved */
} HcclReduceOp; } HcclReduceOp;


/** /**
* @brief HCCL data type * @brief HCCL data type
*/ */
typedef enum { typedef enum {
HCCL_DATA_TYPE_INT8 = 0, /**< int8 */
HCCL_DATA_TYPE_INT16 = 1, /**< int16 */
HCCL_DATA_TYPE_INT32 = 2, /**< int32 */
HCCL_DATA_TYPE_FP16 = 3, /**< fp16 */
HCCL_DATA_TYPE_FP32 = 4, /**< fp32 */
HCCL_DATA_TYPE_INT64 = 5, /**< int64 */
HCCL_DATA_TYPE_UINT64 = 6, /**< uint64 */
HCCL_DATA_TYPE_RESERVED /**< reserved */
HCCL_DATA_TYPE_INT8 = 0, /**< int8 */
HCCL_DATA_TYPE_INT16 = 1, /**< int16 */
HCCL_DATA_TYPE_INT32 = 2, /**< int32 */
HCCL_DATA_TYPE_FP16 = 3, /**< fp16 */
HCCL_DATA_TYPE_FP32 = 4, /**< fp32 */
HCCL_DATA_TYPE_INT64 = 5, /**< int64 */
HCCL_DATA_TYPE_UINT64 = 6, /**< uint64 */
HCCL_DATA_TYPE_RESERVED /**< reserved */
} HcclDataType; } HcclDataType;


const uint32_t HCCL_ROOT_INFO_BYTES = 4108; // 4108: root info length
const uint32_t HCCL_ROOT_INFO_BYTES = 4108; // 4108: root info length


/** /**
* @brief HCCL root info * @brief HCCL root info
*/ */
typedef struct HcclRootInfoDef { typedef struct HcclRootInfoDef {
char internal[HCCL_ROOT_INFO_BYTES];
char internal[HCCL_ROOT_INFO_BYTES];
} HcclRootInfo; } HcclRootInfo;


#ifdef __cplusplus #ifdef __cplusplus
} }
#endif // __cplusplus
#endif // HCCL_TYPES_H_
#endif // __cplusplus
#endif // HCCL_TYPES_H_

+ 68
- 68
inc/external/runtime/rt_error_codes.h View File

@@ -23,80 +23,80 @@
extern "C" { extern "C" {
#endif #endif


static const int32_t ACL_RT_SUCCESS = 0; // success
static const int32_t ACL_RT_SUCCESS = 0; // success


static const int32_t ACL_ERROR_RT_PARAM_INVALID = 107000; // param invalid
static const int32_t ACL_ERROR_RT_INVALID_DEVICEID = 107001; // invalid device id
static const int32_t ACL_ERROR_RT_CONTEXT_NULL = 107002; // current context null
static const int32_t ACL_ERROR_RT_STREAM_CONTEXT = 107003; // stream not in current context
static const int32_t ACL_ERROR_RT_MODEL_CONTEXT = 107004; // model not in current context
static const int32_t ACL_ERROR_RT_STREAM_MODEL = 107005; // stream not in model
static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_INVALID = 107006; // event timestamp invalid
static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_REVERSAL = 107007; // event timestamp reversal
static const int32_t ACL_ERROR_RT_ADDR_UNALIGNED = 107008; // memory address unaligned
static const int32_t ACL_ERROR_RT_FILE_OPEN = 107009; // open file failed
static const int32_t ACL_ERROR_RT_FILE_WRITE = 107010; // write file failed
static const int32_t ACL_ERROR_RT_STREAM_SUBSCRIBE = 107011; // error subscribe stream
static const int32_t ACL_ERROR_RT_THREAD_SUBSCRIBE = 107012; // error subscribe thread
static const int32_t ACL_ERROR_RT_GROUP_NOT_SET = 107013; // group not set
static const int32_t ACL_ERROR_RT_GROUP_NOT_CREATE = 107014; // group not create
static const int32_t ACL_ERROR_RT_STREAM_NO_CB_REG = 107015; // callback not register to stream
static const int32_t ACL_ERROR_RT_INVALID_MEMORY_TYPE = 107016; // invalid memory type
static const int32_t ACL_ERROR_RT_INVALID_HANDLE = 107017; // invalid handle
static const int32_t ACL_ERROR_RT_INVALID_MALLOC_TYPE = 107018; // invalid malloc type
static const int32_t ACL_ERROR_RT_PARAM_INVALID = 107000; // param invalid
static const int32_t ACL_ERROR_RT_INVALID_DEVICEID = 107001; // invalid device id
static const int32_t ACL_ERROR_RT_CONTEXT_NULL = 107002; // current context null
static const int32_t ACL_ERROR_RT_STREAM_CONTEXT = 107003; // stream not in current context
static const int32_t ACL_ERROR_RT_MODEL_CONTEXT = 107004; // model not in current context
static const int32_t ACL_ERROR_RT_STREAM_MODEL = 107005; // stream not in model
static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_INVALID = 107006; // event timestamp invalid
static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_REVERSAL = 107007; // event timestamp reversal
static const int32_t ACL_ERROR_RT_ADDR_UNALIGNED = 107008; // memory address unaligned
static const int32_t ACL_ERROR_RT_FILE_OPEN = 107009; // open file failed
static const int32_t ACL_ERROR_RT_FILE_WRITE = 107010; // write file failed
static const int32_t ACL_ERROR_RT_STREAM_SUBSCRIBE = 107011; // error subscribe stream
static const int32_t ACL_ERROR_RT_THREAD_SUBSCRIBE = 107012; // error subscribe thread
static const int32_t ACL_ERROR_RT_GROUP_NOT_SET = 107013; // group not set
static const int32_t ACL_ERROR_RT_GROUP_NOT_CREATE = 107014; // group not create
static const int32_t ACL_ERROR_RT_STREAM_NO_CB_REG = 107015; // callback not register to stream
static const int32_t ACL_ERROR_RT_INVALID_MEMORY_TYPE = 107016; // invalid memory type
static const int32_t ACL_ERROR_RT_INVALID_HANDLE = 107017; // invalid handle
static const int32_t ACL_ERROR_RT_INVALID_MALLOC_TYPE = 107018; // invalid malloc type


static const int32_t ACL_ERROR_RT_FEATURE_NOT_SUPPORT = 207000; // feature not support
static const int32_t ACL_ERROR_RT_MEMORY_ALLOCATION = 207001; // memory allocation error
static const int32_t ACL_ERROR_RT_MEMORY_FREE = 207002; // memory free error
static const int32_t ACL_ERROR_RT_AICORE_OVER_FLOW = 207003; // aicore over flow
static const int32_t ACL_ERROR_RT_NO_DEVICE = 207004; // no device
static const int32_t ACL_ERROR_RT_RESOURCE_ALLOC_FAIL = 207005; // resource alloc fail
static const int32_t ACL_ERROR_RT_NO_PERMISSION = 207006; // no permission
static const int32_t ACL_ERROR_RT_NO_EVENT_RESOURCE = 207007; // no event resource
static const int32_t ACL_ERROR_RT_NO_STREAM_RESOURCE = 207008; // no stream resource
static const int32_t ACL_ERROR_RT_NO_NOTIFY_RESOURCE = 207009; // no notify resource
static const int32_t ACL_ERROR_RT_NO_MODEL_RESOURCE = 207010; // no model resource
static const int32_t ACL_ERROR_RT_FEATURE_NOT_SUPPORT = 207000; // feature not support
static const int32_t ACL_ERROR_RT_MEMORY_ALLOCATION = 207001; // memory allocation error
static const int32_t ACL_ERROR_RT_MEMORY_FREE = 207002; // memory free error
static const int32_t ACL_ERROR_RT_AICORE_OVER_FLOW = 207003; // aicore over flow
static const int32_t ACL_ERROR_RT_NO_DEVICE = 207004; // no device
static const int32_t ACL_ERROR_RT_RESOURCE_ALLOC_FAIL = 207005; // resource alloc fail
static const int32_t ACL_ERROR_RT_NO_PERMISSION = 207006; // no permission
static const int32_t ACL_ERROR_RT_NO_EVENT_RESOURCE = 207007; // no event resource
static const int32_t ACL_ERROR_RT_NO_STREAM_RESOURCE = 207008; // no stream resource
static const int32_t ACL_ERROR_RT_NO_NOTIFY_RESOURCE = 207009; // no notify resource
static const int32_t ACL_ERROR_RT_NO_MODEL_RESOURCE = 207010; // no model resource


static const int32_t ACL_ERROR_RT_INTERNAL_ERROR = 507000; // runtime internal error
static const int32_t ACL_ERROR_RT_TS_ERROR = 507001; // ts internel error
static const int32_t ACL_ERROR_RT_STREAM_TASK_FULL = 507002; // task full in stream
static const int32_t ACL_ERROR_RT_STREAM_TASK_EMPTY = 507003; // task empty in stream
static const int32_t ACL_ERROR_RT_STREAM_NOT_COMPLETE = 507004; // stream not complete
static const int32_t ACL_ERROR_RT_END_OF_SEQUENCE = 507005; // end of sequence
static const int32_t ACL_ERROR_RT_EVENT_NOT_COMPLETE = 507006; // event not complete
static const int32_t ACL_ERROR_RT_CONTEXT_RELEASE_ERROR = 507007; // context release error
static const int32_t ACL_ERROR_RT_SOC_VERSION = 507008; // soc version error
static const int32_t ACL_ERROR_RT_TASK_TYPE_NOT_SUPPORT = 507009; // task type not support
static const int32_t ACL_ERROR_RT_LOST_HEARTBEAT = 507010; // ts lost heartbeat
static const int32_t ACL_ERROR_RT_MODEL_EXECUTE = 507011; // model execute failed
static const int32_t ACL_ERROR_RT_REPORT_TIMEOUT = 507012; // report timeout
static const int32_t ACL_ERROR_RT_SYS_DMA = 507013; // sys dma error
static const int32_t ACL_ERROR_RT_AICORE_TIMEOUT = 507014; // aicore timeout
static const int32_t ACL_ERROR_RT_AICORE_EXCEPTION = 507015; // aicore exception
static const int32_t ACL_ERROR_RT_AICORE_TRAP_EXCEPTION = 507016; // aicore trap exception
static const int32_t ACL_ERROR_RT_AICPU_TIMEOUT = 507017; // aicpu timeout
static const int32_t ACL_ERROR_RT_AICPU_EXCEPTION = 507018; // aicpu exception
static const int32_t ACL_ERROR_RT_AICPU_DATADUMP_RSP_ERR = 507019; // aicpu datadump response error
static const int32_t ACL_ERROR_RT_AICPU_MODEL_RSP_ERR = 507020; // aicpu model operate response error
static const int32_t ACL_ERROR_RT_PROFILING_ERROR = 507021; // profiling error
static const int32_t ACL_ERROR_RT_IPC_ERROR = 507022; // ipc error
static const int32_t ACL_ERROR_RT_MODEL_ABORT_NORMAL = 507023; // model abort normal
static const int32_t ACL_ERROR_RT_KERNEL_UNREGISTERING = 507024; // kernel unregistering
static const int32_t ACL_ERROR_RT_RINGBUFFER_NOT_INIT = 507025; // ringbuffer not init
static const int32_t ACL_ERROR_RT_RINGBUFFER_NO_DATA = 507026; // ringbuffer no data
static const int32_t ACL_ERROR_RT_KERNEL_LOOKUP = 507027; // kernel lookup error
static const int32_t ACL_ERROR_RT_KERNEL_DUPLICATE = 507028; // kernel register duplicate
static const int32_t ACL_ERROR_RT_DEBUG_REGISTER_FAIL = 507029; // debug register failed
static const int32_t ACL_ERROR_RT_DEBUG_UNREGISTER_FAIL = 507030; // debug unregister failed
static const int32_t ACL_ERROR_RT_LABEL_CONTEXT = 507031; // label not in current context
static const int32_t ACL_ERROR_RT_PROGRAM_USE_OUT = 507032; // program register num use out
static const int32_t ACL_ERROR_RT_DEV_SETUP_ERROR = 507033; // device setup error
static const int32_t ACL_ERROR_RT_INTERNAL_ERROR = 507000; // runtime internal error
static const int32_t ACL_ERROR_RT_TS_ERROR = 507001; // ts internel error
static const int32_t ACL_ERROR_RT_STREAM_TASK_FULL = 507002; // task full in stream
static const int32_t ACL_ERROR_RT_STREAM_TASK_EMPTY = 507003; // task empty in stream
static const int32_t ACL_ERROR_RT_STREAM_NOT_COMPLETE = 507004; // stream not complete
static const int32_t ACL_ERROR_RT_END_OF_SEQUENCE = 507005; // end of sequence
static const int32_t ACL_ERROR_RT_EVENT_NOT_COMPLETE = 507006; // event not complete
static const int32_t ACL_ERROR_RT_CONTEXT_RELEASE_ERROR = 507007; // context release error
static const int32_t ACL_ERROR_RT_SOC_VERSION = 507008; // soc version error
static const int32_t ACL_ERROR_RT_TASK_TYPE_NOT_SUPPORT = 507009; // task type not support
static const int32_t ACL_ERROR_RT_LOST_HEARTBEAT = 507010; // ts lost heartbeat
static const int32_t ACL_ERROR_RT_MODEL_EXECUTE = 507011; // model execute failed
static const int32_t ACL_ERROR_RT_REPORT_TIMEOUT = 507012; // report timeout
static const int32_t ACL_ERROR_RT_SYS_DMA = 507013; // sys dma error
static const int32_t ACL_ERROR_RT_AICORE_TIMEOUT = 507014; // aicore timeout
static const int32_t ACL_ERROR_RT_AICORE_EXCEPTION = 507015; // aicore exception
static const int32_t ACL_ERROR_RT_AICORE_TRAP_EXCEPTION = 507016; // aicore trap exception
static const int32_t ACL_ERROR_RT_AICPU_TIMEOUT = 507017; // aicpu timeout
static const int32_t ACL_ERROR_RT_AICPU_EXCEPTION = 507018; // aicpu exception
static const int32_t ACL_ERROR_RT_AICPU_DATADUMP_RSP_ERR = 507019; // aicpu datadump response error
static const int32_t ACL_ERROR_RT_AICPU_MODEL_RSP_ERR = 507020; // aicpu model operate response error
static const int32_t ACL_ERROR_RT_PROFILING_ERROR = 507021; // profiling error
static const int32_t ACL_ERROR_RT_IPC_ERROR = 507022; // ipc error
static const int32_t ACL_ERROR_RT_MODEL_ABORT_NORMAL = 507023; // model abort normal
static const int32_t ACL_ERROR_RT_KERNEL_UNREGISTERING = 507024; // kernel unregistering
static const int32_t ACL_ERROR_RT_RINGBUFFER_NOT_INIT = 507025; // ringbuffer not init
static const int32_t ACL_ERROR_RT_RINGBUFFER_NO_DATA = 507026; // ringbuffer no data
static const int32_t ACL_ERROR_RT_KERNEL_LOOKUP = 507027; // kernel lookup error
static const int32_t ACL_ERROR_RT_KERNEL_DUPLICATE = 507028; // kernel register duplicate
static const int32_t ACL_ERROR_RT_DEBUG_REGISTER_FAIL = 507029; // debug register failed
static const int32_t ACL_ERROR_RT_DEBUG_UNREGISTER_FAIL = 507030; // debug unregister failed
static const int32_t ACL_ERROR_RT_LABEL_CONTEXT = 507031; // label not in current context
static const int32_t ACL_ERROR_RT_PROGRAM_USE_OUT = 507032; // program register num use out
static const int32_t ACL_ERROR_RT_DEV_SETUP_ERROR = 507033; // device setup error


static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error
static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error
static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error
static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error


#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif


#endif // __INC_EXTERNEL_RT_ERROR_CODES_H__
#endif // __INC_EXTERNEL_RT_ERROR_CODES_H__

+ 5
- 3
inc/framework/common/debug/ge_log.h View File

@@ -20,6 +20,7 @@
#include <cstdint> #include <cstdint>


#include "framework/common/ge_inner_error_codes.h" #include "framework/common/ge_inner_error_codes.h"
#include "common/util/error_manager/error_manager.h"
#include "toolchain/slog.h" #include "toolchain/slog.h"
#ifdef __GNUC__ #ifdef __GNUC__
#include <unistd.h> #include <unistd.h>
@@ -55,9 +56,10 @@ inline bool IsLogEnable(int module_name, int log_level) {
return (enable == 1); return (enable == 1);
} }


#define GELOGE(ERROR_CODE, fmt, ...) \
dlog_error(GE_MODULE_NAME, "%lu %s: ErrorNo: %d(%s) " fmt, GeLog::GetTid(), __FUNCTION__, ERROR_CODE, \
((GE_GET_ERRORNO_STR(ERROR_CODE)).c_str()), ##__VA_ARGS__)
#define GELOGE(ERROR_CODE, fmt, ...) \
dlog_error(GE_MODULE_NAME, "%lu %s: ErrorNo: %d(%s) %s" fmt, GeLog::GetTid(), __FUNCTION__, ERROR_CODE, \
((GE_GET_ERRORNO_STR(ERROR_CODE)).c_str()), ErrorManager::GetInstance().GetLogHeader().c_str(), \
##__VA_ARGS__)
#define GELOGW(fmt, ...) \ #define GELOGW(fmt, ...) \
if (IsLogEnable(GE_MODULE_NAME, DLOG_WARN)) \ if (IsLogEnable(GE_MODULE_NAME, DLOG_WARN)) \
dlog_warn(GE_MODULE_NAME, "%lu %s:" fmt, GeLog::GetTid(), __FUNCTION__, ##__VA_ARGS__) dlog_warn(GE_MODULE_NAME, "%lu %s:" fmt, GeLog::GetTid(), __FUNCTION__, ##__VA_ARGS__)


+ 4
- 4
inc/framework/common/debug/log.h View File

@@ -255,10 +255,10 @@
exec_expr1; \ exec_expr1; \
} }


#define GE_ERRORLOG_AND_ERRORMSG(_status, errormsg) \
{ \
GELOGE(_status, "%s", errormsg); \
ErrorManager::GetInstance().ATCReportErrMessage("E19021", {"reason"}, {errormsg}); \
#define GE_ERRORLOG_AND_ERRORMSG(_status, errormsg) \
{ \
GELOGE(_status, "[Check][InnerData]%s", errormsg); \
REPORT_INNER_ERROR("E19999", "%s", errormsg); \
} }


#define GE_WARNINGLOG_AND_ERRORMSG(errormsg) \ #define GE_WARNINGLOG_AND_ERRORMSG(errormsg) \


+ 65
- 63
inc/framework/common/util.h View File

@@ -30,12 +30,12 @@
#include "framework/common/ge_inner_error_codes.h" #include "framework/common/ge_inner_error_codes.h"
#include "mmpa/mmpa_api.h" #include "mmpa/mmpa_api.h"


#define GE_CHECK_POSITIVE_SIZE_RANGE(size) \
do { \
if (size <= 0) { \
DOMI_LOGE("param[%s] is not a positive number", #size); \
return PARAM_INVALID; \
} \
#define GE_CHECK_POSITIVE_SIZE_RANGE(size) \
do { \
if (size <= 0) { \
DOMI_LOGE("param[%s] is not a positive number", #size); \
return PARAM_INVALID; \
} \
} while (0) } while (0)


#define CHECK_FALSE_EXEC(expr, exec_expr, ...) \ #define CHECK_FALSE_EXEC(expr, exec_expr, ...) \
@@ -113,84 +113,75 @@
} while (0) } while (0)


// Check if the parameter is null. If yes, return PARAM_INVALID and record the error // Check if the parameter is null. If yes, return PARAM_INVALID and record the error
#define GE_CHECK_NOTNULL(val) \
do { \
if (val == nullptr) { \
DOMI_LOGE("param[%s] must not be null.", #val); \
return ge::PARAM_INVALID; \
} \
#define GE_CHECK_NOTNULL(val) \
do { \
if (val == nullptr) { \
DOMI_LOGE("[Check][Param:%s]null is invalid when %s.", #val, __FUNCTION__); \
return ge::PARAM_INVALID; \
} \
} while (0) } while (0)


// Check if the parameter is null. If yes, just return and record the error // Check if the parameter is null. If yes, just return and record the error
#define GE_CHECK_NOTNULL_JUST_RETURN(val) \
do { \
if (val == nullptr) { \
DOMI_LOGE("param[%s] must not be null.", #val); \
return; \
} \
#define GE_CHECK_NOTNULL_JUST_RETURN(val) \
do { \
if (val == nullptr) { \
DOMI_LOGE("param[%s] must not be null.", #val); \
return; \
} \
} while (0) } while (0)


// Check whether the parameter is null. If so, execute the exec_expr expression and record the error log // Check whether the parameter is null. If so, execute the exec_expr expression and record the error log
#define GE_CHECK_NOTNULL_EXEC(val, exec_expr) \
do { \
if (val == nullptr) { \
DOMI_LOGE("param[%s] must not be null.", #val); \
exec_expr; \
} \
#define GE_CHECK_NOTNULL_EXEC(val, exec_expr) \
do { \
if (val == nullptr) { \
DOMI_LOGE("param[%s] must not be null.", #val); \
exec_expr; \
} \
} while (0) } while (0)


// Check whether the parameter is null. If yes, return directly and record the error log // Check whether the parameter is null. If yes, return directly and record the error log
#define GE_RT_VOID_CHECK_NOTNULL(val) \
do { \
if (val == nullptr) { \
DOMI_LOGE("param[%s] must not be null.", #val); \
return; \
} \
#define GE_RT_VOID_CHECK_NOTNULL(val) \
do { \
if (val == nullptr) { \
DOMI_LOGE("param[%s] must not be null.", #val); \
return; \
} \
} while (0) } while (0)


// Check if the parameter is null. If yes, return false and record the error log // Check if the parameter is null. If yes, return false and record the error log
#define GE_RT_FALSE_CHECK_NOTNULL(val) \
do { \
if (val == nullptr) { \
DOMI_LOGE("param[%s] must not be null.", #val); \
return false; \
} \
#define GE_RT_FALSE_CHECK_NOTNULL(val) \
do { \
if (val == nullptr) { \
DOMI_LOGE("param[%s] must not be null.", #val); \
return false; \
} \
} while (0) } while (0)


// Check if the parameter is out of bounds // Check if the parameter is out of bounds
#define GE_CHECK_SIZE(size) \
do { \
if (size == 0) { \
DOMI_LOGE("param[%s] is out of range", #size); \
return ge::PARAM_INVALID; \
} \
} while (0)

// Check if the container is empty
#define GE_CHECK_VECTOR_NOT_EMPTY(vector) \
do { \
if (vector.empty()) { \
DOMI_LOGE("param[%s] is empty!", #vector); \
return ge::FAILED; \
} \
#define GE_CHECK_SIZE(size) \
do { \
if (size == 0) { \
DOMI_LOGE("param[%s] is out of range", #size); \
return ge::PARAM_INVALID; \
} \
} while (0) } while (0)


// Check if the value on the left is greater than or equal to the value on the right // Check if the value on the left is greater than or equal to the value on the right
#define GE_CHECK_GE(lhs, rhs) \
do { \
if (lhs < rhs) { \
DOMI_LOGE("param[%s] is less than[%s]", #lhs, #rhs); \
return ge::PARAM_INVALID; \
} \
#define GE_CHECK_GE(lhs, rhs) \
do { \
if (lhs < rhs) { \
DOMI_LOGE("param[%s] is less than[%s]", #lhs, #rhs); \
return ge::PARAM_INVALID; \
} \
} while (0) } while (0)


// Check if the value on the left is less than or equal to the value on the right // Check if the value on the left is less than or equal to the value on the right
#define GE_CHECK_LE(lhs, rhs) \
do { \
if (lhs > rhs) { \
DOMI_LOGE("param[%s] is greater than[%s]", #lhs, #rhs); \
return ge::PARAM_INVALID; \
} \
#define GE_CHECK_LE(lhs, rhs) \
do { \
if (lhs > rhs) { \
DOMI_LOGE("param[%s] is greater than[%s]", #lhs, #rhs); \
return ge::PARAM_INVALID; \
} \
} while (0) } while (0)


#define GE_DELETE_NEW_SINGLE(var) \ #define GE_DELETE_NEW_SINGLE(var) \
@@ -209,6 +200,17 @@
} \ } \
} while (0) } while (0)


#define GE_FREE_RT_LOG(addr) \
do { \
if (addr != nullptr) { \
rtError_t error = rtFree(addr); \
if (error != RT_ERROR_NONE) { \
GELOGE(RT_FAILED, "Call rtFree failed, error: %#x", error); \
} \
addr = nullptr; \
} \
} while (0)

/** /**
* @ingroup domi_common * @ingroup domi_common
* @brief version of om.proto file * @brief version of om.proto file


+ 1
- 1
metadef

@@ -1 +1 @@
Subproject commit 2607691fc5edaad412d21c9f4a3284b02cfc8c5e
Subproject commit 140538eadb161278f1c733e7850bfaba65cf665e

+ 1
- 1
parser

@@ -1 +1 @@
Subproject commit 6a07f1a8b9b8b4630a5b60d9d8d02ec4a6314d68
Subproject commit b203d47837421b2c149f353fc0808f6a29fa584e

+ 7
- 1
tests/depends/error_manager/src/error_manager_stub.cc View File

@@ -18,6 +18,8 @@


using namespace ErrorMessage; using namespace ErrorMessage;


thread_local Context ErrorManager::error_context_ = {0, "", "", ""};

ErrorManager &ErrorManager::GetInstance() { ErrorManager &ErrorManager::GetInstance() {
static ErrorManager instance; static ErrorManager instance;
return instance; return instance;
@@ -40,6 +42,10 @@ using namespace ErrorMessage;
return 0; return 0;
} }


int ErrorManager::ReportInterErrMessage(std::string error_code, const std::string &error_msg) {
return 0;
}

/// ///
/// @brief output error message /// @brief output error message
/// @param [in] handle: print handle /// @param [in] handle: print handle
@@ -84,7 +90,7 @@ using namespace ErrorMessage;


void ErrorManager::GenWorkStreamIdBySessionGraph(uint64_t session_id, uint64_t graph_id) {} void ErrorManager::GenWorkStreamIdBySessionGraph(uint64_t session_id, uint64_t graph_id) {}


const std::string &ErrorManager::GetLogHeader() { return "[TEST][TEST]"; }
const std::string &ErrorManager::GetLogHeader() { return error_context_.log_header; }


struct Context &ErrorManager::GetErrorContext() { struct Context &ErrorManager::GetErrorContext() {
struct Context error_context; struct Context error_context;


+ 1
- 1
tests/depends/mmpa/src/mmpa_stub.cc View File

@@ -269,7 +269,7 @@ CHAR *mmDlerror()


INT32 mmDladdr(VOID *addr, mmDlInfo *info) INT32 mmDladdr(VOID *addr, mmDlInfo *info)
{ {
return 0;
return -1;
} }


VOID *mmDlopen(const CHAR *fileName, INT32 mode) VOID *mmDlopen(const CHAR *fileName, INT32 mode)


+ 3
- 2
tests/ut/common/graph/CMakeLists.txt View File

@@ -38,6 +38,7 @@ include_directories(${GE_CODE_DIR}/metadef/inc)
include_directories(${GE_CODE_DIR}/metadef/inc/graph) include_directories(${GE_CODE_DIR}/metadef/inc/graph)
include_directories(${GE_CODE_DIR}/metadef/inc/common) include_directories(${GE_CODE_DIR}/metadef/inc/common)
include_directories(${GE_CODE_DIR}/metadef/third_party) include_directories(${GE_CODE_DIR}/metadef/third_party)
include_directories(${GE_CODE_DIR}/metadef/third_party/transformer/inc)
include_directories(${GE_CODE_DIR}/third_party/fwkacllib/inc) include_directories(${GE_CODE_DIR}/third_party/fwkacllib/inc)
include_directories(${GE_CODE_DIR}/third_party/fwkacllib/inc/ops) include_directories(${GE_CODE_DIR}/third_party/fwkacllib/inc/ops)
include_directories(${CMAKE_BINARY_DIR}) include_directories(${CMAKE_BINARY_DIR})
@@ -98,8 +99,8 @@ set(SRC_FILES
"${GE_CODE_DIR}/metadef/graph/utils/transformer_utils.cc" "${GE_CODE_DIR}/metadef/graph/utils/transformer_utils.cc"
"${GE_CODE_DIR}/metadef/graph/runtime_inference_context.cc" "${GE_CODE_DIR}/metadef/graph/runtime_inference_context.cc"
"${GE_CODE_DIR}/metadef/graph/ref_relation.cc" "${GE_CODE_DIR}/metadef/graph/ref_relation.cc"
"${GE_CODE_DIR}/metadef/third_party/transformer/src/transfer_shape_according_to_format.cpp"
"${GE_CODE_DIR}/metadef/third_party/transformer/src/axis_util.cpp"
"${GE_CODE_DIR}/metadef/third_party/transformer/src/transfer_shape_according_to_format.cc"
"${GE_CODE_DIR}/metadef/third_party/transformer/src/axis_util.cc"
) )


#add_executable(ut_libgraph ${UT_FILES} ${SRC_FILES} ${PROTO_SRCS} ${PROTO_HDRS}) #add_executable(ut_libgraph ${UT_FILES} ${SRC_FILES} ${PROTO_SRCS} ${PROTO_HDRS})


+ 6
- 2
tests/ut/ge/CMakeLists.txt View File

@@ -45,6 +45,7 @@ include_directories(${GE_CODE_DIR}/inc)
include_directories(${GE_CODE_DIR}/metadef/inc) include_directories(${GE_CODE_DIR}/metadef/inc)
include_directories(${GE_CODE_DIR}/ge) include_directories(${GE_CODE_DIR}/ge)
include_directories(${GE_CODE_DIR}/ge/inc) include_directories(${GE_CODE_DIR}/ge/inc)
include_directories(${GE_CODE_DIR}/ge/ir_build)
include_directories(${GE_CODE_DIR}/metadef) include_directories(${GE_CODE_DIR}/metadef)
include_directories(${GE_CODE_DIR}/metadef/graph) include_directories(${GE_CODE_DIR}/metadef/graph)
include_directories(${GE_CODE_DIR}/inc/external) include_directories(${GE_CODE_DIR}/inc/external)
@@ -54,6 +55,7 @@ include_directories(${GE_CODE_DIR}/metadef/inc/graph)
include_directories(${GE_CODE_DIR}/inc/framework) include_directories(${GE_CODE_DIR}/inc/framework)
include_directories(${GE_CODE_DIR}/metadef/inc/common) include_directories(${GE_CODE_DIR}/metadef/inc/common)
include_directories(${GE_CODE_DIR}/metadef/third_party) include_directories(${GE_CODE_DIR}/metadef/third_party)
include_directories(${GE_CODE_DIR}/metadef/third_party/transformer/inc)
include_directories(${GE_CODE_DIR}/parser) include_directories(${GE_CODE_DIR}/parser)
include_directories(${GE_CODE_DIR}/parser/parser) include_directories(${GE_CODE_DIR}/parser/parser)
include_directories(${GE_CODE_DIR}/third_party/fwkacllib/inc) include_directories(${GE_CODE_DIR}/third_party/fwkacllib/inc)
@@ -61,6 +63,7 @@ include_directories(${GE_CODE_DIR}/third_party/fwkacllib/inc/cce)
include_directories(${GE_CODE_DIR}/third_party/fwkacllib/inc/ops) include_directories(${GE_CODE_DIR}/third_party/fwkacllib/inc/ops)
include_directories(${GE_CODE_DIR}/third_party/fwkacllib/inc/toolchain) include_directories(${GE_CODE_DIR}/third_party/fwkacllib/inc/toolchain)
include_directories(${GE_CODE_DIR}/tests/ut/ge) include_directories(${GE_CODE_DIR}/tests/ut/ge)
include_directories(${GE_CODE_DIR}/tests/ut/common)
include_directories(${CMAKE_BINARY_DIR}) include_directories(${CMAKE_BINARY_DIR})
include_directories(${CMAKE_BINARY_DIR}/proto/ge) include_directories(${CMAKE_BINARY_DIR}/proto/ge)
include_directories(${CMAKE_BINARY_DIR}/proto/ge/proto) include_directories(${CMAKE_BINARY_DIR}/proto/ge/proto)
@@ -85,8 +88,8 @@ set(GRAPH_SRC_FILES
"${GE_CODE_DIR}/metadef/graph/node.cc" "${GE_CODE_DIR}/metadef/graph/node.cc"
"${GE_CODE_DIR}/metadef/graph/runtime_inference_context.cc" "${GE_CODE_DIR}/metadef/graph/runtime_inference_context.cc"
"${GE_CODE_DIR}/metadef/graph/op_desc.cc" "${GE_CODE_DIR}/metadef/graph/op_desc.cc"
"${GE_CODE_DIR}/metadef/third_party/transformer/src/transfer_shape_according_to_format.cpp"
"${GE_CODE_DIR}/metadef/third_party/transformer/src/axis_util.cpp"
"${GE_CODE_DIR}/metadef/third_party/transformer/src/transfer_shape_according_to_format.cc"
"${GE_CODE_DIR}/metadef/third_party/transformer/src/axis_util.cc"
"${GE_CODE_DIR}/metadef/graph/operator.cc" "${GE_CODE_DIR}/metadef/graph/operator.cc"
"${GE_CODE_DIR}/metadef/graph/operator_factory.cc" "${GE_CODE_DIR}/metadef/graph/operator_factory.cc"
"${GE_CODE_DIR}/metadef/graph/operator_factory_impl.cc" "${GE_CODE_DIR}/metadef/graph/operator_factory_impl.cc"
@@ -732,6 +735,7 @@ set(KERNEL_TEST_FILES


set(MULTI_PARTS_TEST_FILES set(MULTI_PARTS_TEST_FILES
"graph_ir/ge_operator_factory_unittest.cc" "graph_ir/ge_operator_factory_unittest.cc"
"graph_ir/ge_ir_build_unittest.cc"
"graph/transop_util_unittest.cc" "graph/transop_util_unittest.cc"
"common/datatype_transfer_unittest.cc" "common/datatype_transfer_unittest.cc"
"common/dump_manager_unittest.cc" "common/dump_manager_unittest.cc"


+ 17
- 17
tests/ut/ge/common/format_transfer_fractal_nz_unittest.cc View File

@@ -9136,23 +9136,23 @@ TEST_F(UtestFormatTransferNdFractNz, invalid_src_data_type2) {
EXPECT_EQ(transfer.TransFormat(args, result), ACL_ERROR_GE_DATATYPE_INVALID); EXPECT_EQ(transfer.TransFormat(args, result), ACL_ERROR_GE_DATATYPE_INVALID);
} }


TEST_F(UtestFormatTransferNdFractNz, invalid_src_data_type3) {
uint16_t data[1 * 1 * 1 * 16 * 16] = {0};
TransArgs args{reinterpret_cast<uint8_t *>(data),
FORMAT_FRACTAL_NZ,
FORMAT_NHWC,
{1, 1, 1, 16, 16},
{
1,
1,
4,
4,
},
DT_VARIANT};
TransResult result;
FormatTransferFractalNzND transfer;
EXPECT_EQ(transfer.TransFormat(args, result), ACL_ERROR_GE_DATATYPE_INVALID);
}
// TEST_F(UtestFormatTransferNdFractNz, invalid_src_data_type3) {
// uint16_t data[1 * 1 * 1 * 16 * 16] = {0};
// TransArgs args{reinterpret_cast<uint8_t *>(data),
// FORMAT_FRACTAL_NZ,
// FORMAT_NHWC,
// {1, 1, 1, 16, 16},
// {
// 1,
// 1,
// 4,
// 4,
// },
// DT_VARIANT};
// TransResult result;
// FormatTransferFractalNzND transfer;
// EXPECT_EQ(transfer.TransFormat(args, result), ACL_ERROR_GE_DATATYPE_INVALID);
// }


TEST_F(UtestFormatTransferNdFractNz, invalid_dst_format2) { TEST_F(UtestFormatTransferNdFractNz, invalid_dst_format2) {
uint16_t data[1 * 1 * 1 * 1 * 16 * 16] = {0}; uint16_t data[1 * 1 * 1 * 1 * 16 * 16] = {0};


+ 8
- 8
tests/ut/ge/common/format_transfer_nhwc_fractalz_unittest.cc View File

@@ -5354,14 +5354,14 @@ TEST_F(UtestFormatTransferNhwcFz, build_transfer_uint8) {
EXPECT_NE(transfer, nullptr); EXPECT_NE(transfer, nullptr);
} }


TEST_F(UtestFormatTransferNhwcFz, invalid_data_type) {
uint16_t data[1 * 4 * 4 * 1] = {0};
TransArgs args{
reinterpret_cast<uint8_t *>(data), FORMAT_NHWC, FORMAT_FRACTAL_NZ, {1, 4, 4}, {1, 1, 1, 16, 16}, DT_VARIANT};
FormatTransferFractalZ transfer;
EXPECT_EQ(transfer.TransShape(args.src_format, args.src_shape, args.src_data_type, args.dst_format, args.dst_shape),
ACL_ERROR_GE_DATATYPE_INVALID);
}
// TEST_F(UtestFormatTransferNhwcFz, invalid_data_type) {
// uint16_t data[1 * 4 * 4 * 1] = {0};
// TransArgs args{
// reinterpret_cast<uint8_t *>(data), FORMAT_NHWC, FORMAT_FRACTAL_NZ, {1, 4, 4}, {1, 1, 1, 16, 16}, DT_VARIANT};
// FormatTransferFractalZ transfer;
// EXPECT_EQ(transfer.TransShape(args.src_format, args.src_shape, args.src_data_type, args.dst_format, args.dst_shape),
// ACL_ERROR_GE_DATATYPE_INVALID);
// }


TEST_F(UtestFormatTransferNhwcFz, invalid_data_format) { TEST_F(UtestFormatTransferNhwcFz, invalid_data_format) {
uint16_t data[1 * 4 * 4 * 1] = {0}; uint16_t data[1 * 4 * 4 * 1] = {0};


+ 29
- 29
tests/ut/ge/common/format_transfer_unittest.cc View File

@@ -52,34 +52,34 @@ TEST_F(UtestFormatTransfer, build_unsupported_transfer) {
EXPECT_EQ(transfer2, nullptr); EXPECT_EQ(transfer2, nullptr);
} }


TEST_F(UtestFormatTransfer, get_size_by_data_type) {
EXPECT_EQ(GetSizeByDataType(DT_FLOAT), 4);
EXPECT_EQ(GetSizeByDataType(DT_FLOAT16), 2);
EXPECT_EQ(GetSizeByDataType(DT_INT8), 1);
EXPECT_EQ(GetSizeByDataType(DT_INT16), 2);
EXPECT_EQ(GetSizeByDataType(DT_UINT16), 2);
EXPECT_EQ(GetSizeByDataType(DT_UINT8), 1);
EXPECT_EQ(GetSizeByDataType(DT_INT32), 4);
EXPECT_EQ(GetSizeByDataType(DT_INT64), 8);
EXPECT_EQ(GetSizeByDataType(DT_UINT32), 4);
EXPECT_EQ(GetSizeByDataType(DT_UINT64), 8);
EXPECT_EQ(GetSizeByDataType(DT_BOOL), 1);
EXPECT_EQ(GetSizeByDataType(DT_DOUBLE), 8);
EXPECT_EQ(GetSizeByDataType(DT_STRING), -1);
EXPECT_EQ(GetSizeByDataType(DT_DUAL_SUB_INT8), 1);
EXPECT_EQ(GetSizeByDataType(DT_DUAL_SUB_UINT8), 1);
EXPECT_EQ(GetSizeByDataType(DT_COMPLEX64), 8);
EXPECT_EQ(GetSizeByDataType(DT_COMPLEX128), 16);
EXPECT_EQ(GetSizeByDataType(DT_QINT8), 1);
EXPECT_EQ(GetSizeByDataType(DT_QINT16), 2);
EXPECT_EQ(GetSizeByDataType(DT_QINT32), 4);
EXPECT_EQ(GetSizeByDataType(DT_QUINT8), 1);
EXPECT_EQ(GetSizeByDataType(DT_QUINT16), 2);
EXPECT_EQ(GetSizeByDataType(DT_RESOURCE), -1);
EXPECT_EQ(GetSizeByDataType(DT_STRING_REF), -1);
EXPECT_EQ(GetSizeByDataType(DT_DUAL), 5);
EXPECT_EQ(GetSizeByDataType(DT_UNDEFINED), -1);
EXPECT_EQ(DT_UNDEFINED, 27);
}
// TEST_F(UtestFormatTransfer, get_size_by_data_type) {
// EXPECT_EQ(GetSizeByDataType(DT_FLOAT), 4);
// EXPECT_EQ(GetSizeByDataType(DT_FLOAT16), 2);
// EXPECT_EQ(GetSizeByDataType(DT_INT8), 1);
// EXPECT_EQ(GetSizeByDataType(DT_INT16), 2);
// EXPECT_EQ(GetSizeByDataType(DT_UINT16), 2);
// EXPECT_EQ(GetSizeByDataType(DT_UINT8), 1);
// EXPECT_EQ(GetSizeByDataType(DT_INT32), 4);
// EXPECT_EQ(GetSizeByDataType(DT_INT64), 8);
// EXPECT_EQ(GetSizeByDataType(DT_UINT32), 4);
// EXPECT_EQ(GetSizeByDataType(DT_UINT64), 8);
// EXPECT_EQ(GetSizeByDataType(DT_BOOL), 1);
// EXPECT_EQ(GetSizeByDataType(DT_DOUBLE), 8);
// EXPECT_EQ(GetSizeByDataType(DT_STRING), -1);
// EXPECT_EQ(GetSizeByDataType(DT_DUAL_SUB_INT8), 1);
// EXPECT_EQ(GetSizeByDataType(DT_DUAL_SUB_UINT8), 1);
// EXPECT_EQ(GetSizeByDataType(DT_COMPLEX64), 8);
// EXPECT_EQ(GetSizeByDataType(DT_COMPLEX128), 16);
// EXPECT_EQ(GetSizeByDataType(DT_QINT8), 1);
// EXPECT_EQ(GetSizeByDataType(DT_QINT16), 2);
// EXPECT_EQ(GetSizeByDataType(DT_QINT32), 4);
// EXPECT_EQ(GetSizeByDataType(DT_QUINT8), 1);
// EXPECT_EQ(GetSizeByDataType(DT_QUINT16), 2);
// EXPECT_EQ(GetSizeByDataType(DT_RESOURCE), -1);
// EXPECT_EQ(GetSizeByDataType(DT_STRING_REF), -1);
// EXPECT_EQ(GetSizeByDataType(DT_DUAL), 5);
// EXPECT_EQ(GetSizeByDataType(DT_UNDEFINED), -1);
// EXPECT_EQ(DT_UNDEFINED, 27);
// }
} // namespace formats } // namespace formats
} // namespace ge } // namespace ge

+ 2
- 2
tests/ut/ge/common/opdebug_register_unittest.cc View File

@@ -31,7 +31,7 @@ TEST_F(UTEST_opdebug_register, register_debug_for_model_success) {
OpdebugRegister opdebug_register; OpdebugRegister opdebug_register;
rtModel_t model_handle = (void*)0x111; rtModel_t model_handle = (void*)0x111;
uint32_t op_debug_mode = 1; uint32_t op_debug_mode = 1;
DataDumper data_dumper;
DataDumper data_dumper({});
auto ret = opdebug_register.RegisterDebugForModel(model_handle, op_debug_mode, data_dumper); auto ret = opdebug_register.RegisterDebugForModel(model_handle, op_debug_mode, data_dumper);
opdebug_register.UnregisterDebugForModel(model_handle); opdebug_register.UnregisterDebugForModel(model_handle);
EXPECT_EQ(ret, ge::SUCCESS); EXPECT_EQ(ret, ge::SUCCESS);
@@ -41,7 +41,7 @@ TEST_F(UTEST_opdebug_register, register_debug_for_stream_success) {
OpdebugRegister opdebug_register; OpdebugRegister opdebug_register;
rtStream_t stream = (void*)0x111; rtStream_t stream = (void*)0x111;
uint32_t op_debug_mode = 1; uint32_t op_debug_mode = 1;
DataDumper data_dumper;
DataDumper data_dumper({});
auto ret = opdebug_register.RegisterDebugForStream(stream, op_debug_mode, data_dumper); auto ret = opdebug_register.RegisterDebugForStream(stream, op_debug_mode, data_dumper);
opdebug_register.UnregisterDebugForStream(stream); opdebug_register.UnregisterDebugForStream(stream);
EXPECT_EQ(ret, ge::SUCCESS); EXPECT_EQ(ret, ge::SUCCESS);


+ 39
- 0
tests/ut/ge/generator/ge_generator_unittest.cc View File

@@ -20,6 +20,11 @@
#define protected public #define protected public
#include "generator/ge_generator.h" #include "generator/ge_generator.h"
#include "graph/utils/tensor_utils.h" #include "graph/utils/tensor_utils.h"
#include "graph/attr_value.h"
#include "graph/debug/ge_attr_define.h"
#include "graph/utils/graph_utils.h"
#include "../graph/passes/graph_builder_utils.h"
#include "../graph/manager/graph_manager.h"


using namespace std; using namespace std;


@@ -31,6 +36,16 @@ class UtestGeGenerator : public testing::Test {
void TearDown() {} void TearDown() {}
}; };


namespace {
ComputeGraphPtr MakeGraph() {
ge::ut::GraphBuilder builder("graph");
auto data = builder.AddNode("data", "Data", 1, 1);
auto addn1 = builder.AddNode("addn1", "AddN", 1, 1);
builder.AddDataEdge(data, 0, addn1, 0);
return builder.GetGraph();
}
} // namespace

/* /*
TEST_F(UtestGeGenerator, test_build_single_op_offline) { TEST_F(UtestGeGenerator, test_build_single_op_offline) {
GeTensorDesc tensor_desc(GeShape(), FORMAT_NCHW, DT_FLOAT); GeTensorDesc tensor_desc(GeShape(), FORMAT_NCHW, DT_FLOAT);
@@ -71,4 +86,28 @@ TEST_F(UtestGeGenerator, test_build_single_op_online) {
ModelBufferData model_buffer; ModelBufferData model_buffer;
EXPECT_EQ(generator.BuildSingleOpModel(op_desc, inputs, outputs, ENGINE_AIVECTOR, model_buffer), FAILED); EXPECT_EQ(generator.BuildSingleOpModel(op_desc, inputs, outputs, ENGINE_AIVECTOR, model_buffer), FAILED);
} }

TEST_F(UtestGeGenerator, test_graph_manager) {
GraphManager graph_manager;
GraphPartitioner graph_partitioner;

auto root_graph = MakeGraph();
auto sub_graph = MakeGraph();
root_graph->AddSubGraph(sub_graph);

auto sgi = MakeShared<SubGraphInfo>();
// set engine name
sgi->SetEngineName("AIcoreEngine");
sgi->SetSubGraph(sub_graph);

auto sgi_gelocal = MakeShared<SubGraphInfo>();
// set engine name
sgi_gelocal->SetEngineName("GELOCAL");
sgi_gelocal->SetSubGraph(sub_graph);

graph_partitioner.graph_2_input_subgraph_[root_graph] = sgi_gelocal;
graph_partitioner.graph_2_subgraph_list_.insert({root_graph, {sgi, sgi_gelocal}});
graph_partitioner.graph_2_subgraph_list_.insert({sub_graph, {sgi, sgi_gelocal}});
EXPECT_EQ(graph_manager.ConvertGraphToFile(root_graph, graph_partitioner, "./"), GRAPH_SUCCESS);
}
} // namespace ge } // namespace ge

+ 1
- 1
tests/ut/ge/graph/load/data_dumper_unittest.cc View File

@@ -56,7 +56,7 @@ TEST_F(UtestDataDumper, LoadDumpInfo_no_output_addrs_fail) {


TEST_F(UtestDataDumper, UnloadDumpInfo_success) { TEST_F(UtestDataDumper, UnloadDumpInfo_success) {
RuntimeParam rts_param; RuntimeParam rts_param;
DataDumper data_dumper(rts_param);
DataDumper data_dumper(&rts_param);
data_dumper.SetModelName("test"); data_dumper.SetModelName("test");
data_dumper.SetModelId(2333); data_dumper.SetModelId(2333);




+ 14
- 0
tests/ut/ge/graph/preprocess/graph_preprocess_unittest.cc View File

@@ -74,4 +74,18 @@ TEST_F(UtestGraphPreproces, test_dynamic_input_shape_parse) {
EXPECT_EQ(result_shape.GetDim(i), expect_shape.at(i)); EXPECT_EQ(result_shape.GetDim(i), expect_shape.at(i));
} }
} }

TEST_F(UtestGraphPreproces, test_check_user_input) {
ge::GraphPrepare graph_prepare;
graph_prepare.compute_graph_ = BuildGraph1();

vector<int64_t> dim = {2, -3};
GeTensor tensor;
tensor.SetTensorDesc(GeTensorDesc(GeShape(dim)));
std::vector<GeTensor> user_input;
user_input.emplace_back(tensor);

Status ret = graph_prepare.CheckUserInput(user_input);
EXPECT_EQ(ret, GE_GRAPH_INIT_FAILED);
}
} }

+ 100
- 0
tests/ut/ge/graph_ir/ge_ir_build_unittest.cc View File

@@ -0,0 +1,100 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <gtest/gtest.h>
#include "ir_build/atc_ir_common.h"
#include "graph/testcase/ge_graph/graph_builder_utils.h"

#define protected public
#define private public

#undef private
#undef protected

const string DATA = "Data";
const string AddNYes = "AddNYes";
const string NETOUTPUT = "NetOutput";

using namespace ge;
class UtestIrCommon : public testing::Test {
protected:
void SetUp() {}

void TearDown() {}
};

static ge::OpDescPtr CreateOpDesc(const std::string &name, const std::string &type) {
OpDescPtr op_desc = std::make_shared<ge::OpDesc>(name, type);
ge::GeTensorDesc ge_tensor_desc;
op_desc->AddInputDesc("input", ge_tensor_desc);
op_desc->AddOutputDesc("output", ge_tensor_desc);

return op_desc;
}

static ComputeGraphPtr BuildComputeGraph() {
auto builder = ut::GraphBuilder("test");
auto data1 = builder.AddNode("input1", DATA, 1, 1, FORMAT_NCHW, DT_FLOAT, {1, 2, 3});
auto data2 = builder.AddNode("input2", DATA, 1, 1, FORMAT_NCHW, DT_FLOAT, {4, 10});
auto addn1 = builder.AddNode("addn1", AddNYes, 2, 1);
auto netoutput = builder.AddNode("netoutput", NETOUTPUT, 1, 0);

builder.AddDataEdge(data1, 0, addn1, 0);
builder.AddDataEdge(data2, 0, addn1, 1);
builder.AddDataEdge(addn1, 0,netoutput, 0);

return builder.GetGraph();
}

TEST(UtestIrCommon, update_data_op_shape) {
ge::OpDescPtr op_desc = CreateOpDesc("Data", "Data");
map<string, vector<int64_t>> shape_map;
shape_map["Data"] = {{1,2}};

Status ret = UpdateDataOpShape(op_desc, shape_map);
EXPECT_EQ(ret, ge::SUCCESS);
}

TEST(UtestIrCommon, update_dynamic_shape_range_success) {
ComputeGraphPtr graph = BuildComputeGraph();
std::string input_shape_range = "input1:[1, 2~3, -1];input2:[3~5, 10]";

Status ret = UpdateDynamicInputShapeRange(graph, input_shape_range);
EXPECT_EQ(ret, ge::SUCCESS);
}

TEST(UtestIrCommon, update_dynamic_shape_range_failed) {
ComputeGraphPtr graph = BuildComputeGraph();
// 1
std::string input_shape_range = "input1;[1, 2~3, -1]";
Status ret = UpdateDynamicInputShapeRange(graph, input_shape_range);
EXPECT_EQ(ret, ge::PARAM_INVALID);

// 2
input_shape_range = "input1:[1, 2~3, -1)";
ret = UpdateDynamicInputShapeRange(graph, input_shape_range);
EXPECT_EQ(ret, ge::PARAM_INVALID);

//3
input_shape_range = "input1:[1, 3~2, -1];input2:[3~5, 10]";
ret = UpdateDynamicInputShapeRange(graph, input_shape_range);
EXPECT_EQ(ret, ge::FAILED);

//4
input_shape_range = "input1:[1, 2~-3, -1]";
ret = UpdateDynamicInputShapeRange(graph, input_shape_range);
EXPECT_EQ(ret, ge::PARAM_INVALID);
}

+ 54
- 2
tests/ut/ge/hybrid/ge_hybrid_unittest.cc View File

@@ -15,8 +15,8 @@
*/ */


#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <gmock/gmock.h>
#include <vector> #include <vector>

#include "runtime/rt.h" #include "runtime/rt.h"


#define protected public #define protected public
@@ -25,7 +25,6 @@
#include "hybrid/model/hybrid_model.h" #include "hybrid/model/hybrid_model.h"
#include "model/ge_model.h" #include "model/ge_model.h"
#include "model/ge_root_model.h" #include "model/ge_root_model.h"

#include "hybrid/node_executor/aicore/aicore_op_task.h" #include "hybrid/node_executor/aicore/aicore_op_task.h"
#include "framework/common/taskdown_common.h" #include "framework/common/taskdown_common.h"
#include "framework/common/debug/log.h" #include "framework/common/debug/log.h"
@@ -33,7 +32,10 @@
#include "hybrid/executor/hybrid_execution_context.h" #include "hybrid/executor/hybrid_execution_context.h"
#include "hybrid/node_executor/aicore/aicore_task_builder.h" #include "hybrid/node_executor/aicore/aicore_task_builder.h"
#include "graph/load/model_manager/tbe_handle_store.h" #include "graph/load/model_manager/tbe_handle_store.h"
#include "graph/manager/graph_mem_allocator.h"
#include "hybrid/common/npu_memory_allocator.h"
#include "graph/types.h" #include "graph/types.h"
#include "graph/utils/tensor_utils.h"


#undef private #undef private
#undef protected #undef protected
@@ -43,6 +45,7 @@ using namespace testing;
using namespace ge; using namespace ge;
using namespace hybrid; using namespace hybrid;



class UtestGeHybrid : public testing::Test { class UtestGeHybrid : public testing::Test {
protected: protected:
void SetUp() {} void SetUp() {}
@@ -152,6 +155,20 @@ TEST_F(UtestGeHybrid, index_taskdefs_failed) {
ASSERT_EQ(hybrid_model_builder.IndexTaskDefs(graph, ge_model), INTERNAL_ERROR); ASSERT_EQ(hybrid_model_builder.IndexTaskDefs(graph, ge_model), INTERNAL_ERROR);
} }


TEST_F(UtestGeHybrid, parse_force_infershape_nodes) {
const char *const kForceInfershape = "_force_infershape_when_running";
auto graph = make_shared<ComputeGraph>("graph");
OpDescPtr op_desc = CreateOpDesc("Conv2D", "Conv2D");
ge::AttrUtils::SetBool(op_desc, kForceInfershape, true);
auto node = graph->AddNode(op_desc);
std::unique_ptr<NodeItem> new_node;
NodeItem::Create(node, new_node);
GeRootModelPtr ge_root_model = make_shared<GeRootModel>(graph);
HybridModel hybrid_model(ge_root_model);
HybridModelBuilder hybrid_model_builder(hybrid_model);
ASSERT_EQ(hybrid_model_builder.ParseForceInfershapeNodes(node, *new_node), SUCCESS);
}

TEST_F(UtestGeHybrid, index_taskdefs_success) { TEST_F(UtestGeHybrid, index_taskdefs_success) {
// build aicore task // build aicore task
domi::ModelTaskDef model_task_def; domi::ModelTaskDef model_task_def;
@@ -190,4 +207,39 @@ TEST_F(UtestGeHybrid, index_taskdefs_success) {
HybridModelBuilder hybrid_model_builder(hybrid_model); HybridModelBuilder hybrid_model_builder(hybrid_model);


ASSERT_EQ(hybrid_model_builder.IndexTaskDefs(graph, ge_model), SUCCESS); ASSERT_EQ(hybrid_model_builder.IndexTaskDefs(graph, ge_model), SUCCESS);
}

TEST_F(UtestGeHybrid, init_weight_success) {
NpuMemoryAllocator::allocators_.emplace(make_pair(0, nullptr));
// make graph with sub_graph
ComputeGraphPtr graph = std::make_shared<ComputeGraph>("root_graph");
OpDescPtr op_desc = CreateOpDesc("if", IF);
NodePtr node = graph->AddNode(op_desc);
// make sub graph
ComputeGraphPtr sub_graph = std::make_shared<ComputeGraph>("if_sub_graph");
OpDescPtr const_op_desc = CreateOpDesc("const", CONSTANT);
vector<int64_t> dims_vec_0 = {2, 1, 4, 1, 2};
vector<int32_t> data_vec_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
GeTensorDesc tensor_desc_0(GeShape(dims_vec_0), FORMAT_NCHW, DT_INT32);
(void)TensorUtils::SetRealDimCnt(tensor_desc_0, dims_vec_0.size());
ConstGeTensorPtr constTensor_0 =
std::make_shared<GeTensor>(tensor_desc_0, (uint8_t *)&data_vec_0[0], data_vec_0.size() * sizeof(int32_t));
AttrUtils::SetTensor(const_op_desc, ge::ATTR_NAME_WEIGHTS, constTensor_0);
const_op_desc->AddOutputDesc(tensor_desc_0);
NodePtr const_node = sub_graph->AddNode(const_op_desc);
graph->AddSubgraph("sub", sub_graph);

GeRootModelPtr ge_root_model = make_shared<GeRootModel>(graph);
GeModelPtr ge_sub_model = make_shared<GeModel>();
//Buffer weight_buffer = Buffer(128,0);
//ge_sub_model->SetWeight(weight_buffer);
ge_root_model->SetSubgraphInstanceNameToModel("sub",ge_sub_model);
HybridModel hybrid_model(ge_root_model);
HybridModelBuilder hybrid_model_builder(hybrid_model);
auto ret = hybrid_model_builder.InitWeights();
ASSERT_EQ(ret,SUCCESS);
Buffer weight_buffer = Buffer(128,0);
ge_sub_model->SetWeight(weight_buffer);
ret = hybrid_model_builder.InitWeights();
ASSERT_EQ(ret,PARAM_INVALID);
} }

Loading…
Cancel
Save