@@ -1,8 +1,8 @@ | |||||
[submodule "parser"] | [submodule "parser"] | ||||
path = parser | path = parser | ||||
url = https://gitee.com/ascend/parser.git | url = https://gitee.com/ascend/parser.git | ||||
branch = master | |||||
branch = r1.5.0 | |||||
[submodule "metadef"] | [submodule "metadef"] | ||||
path = metadef | path = metadef | ||||
url = https://gitee.com/ascend/metadef.git | url = https://gitee.com/ascend/metadef.git | ||||
branch = master | |||||
branch = r1.5.0 |
@@ -95,6 +95,7 @@ else () | |||||
#find_module(ascendcl_static libascendcl.a ${GE_LIB_PATH}) | #find_module(ascendcl_static libascendcl.a ${GE_LIB_PATH}) | ||||
else() | else() | ||||
find_module(slog libalog.so ${ASCEND_ATC_DIR}) | find_module(slog libalog.so ${ASCEND_ATC_DIR}) | ||||
find_module(opt_feature libopt_feature.so ${ASCEND_ATC_DIR}) | |||||
find_module(static_mmpa libmmpa.a ${ASCEND_ATC_DIR}) | find_module(static_mmpa libmmpa.a ${ASCEND_ATC_DIR}) | ||||
if(PLATFORM STREQUAL "train") | if(PLATFORM STREQUAL "train") | ||||
find_module(adump_server libadump_server.a ${ASCEND_RUNTIME_DIR}) | find_module(adump_server libadump_server.a ${ASCEND_RUNTIME_DIR}) | ||||
@@ -355,13 +355,13 @@ generate_package() | |||||
if [ "x${PLATFORM}" = "xtrain" ] | if [ "x${PLATFORM}" = "xtrain" ] | ||||
then | then | ||||
tar -cf graphengine_lib.tar fwkacllib | |||||
tar -zcf graphengine_lib.tar fwkacllib | |||||
elif [ "x${PLATFORM}" = "xinference" ] | elif [ "x${PLATFORM}" = "xinference" ] | ||||
then | then | ||||
tar -cf graphengine_lib.tar acllib atc | |||||
tar -zcf graphengine_lib.tar acllib atc | |||||
elif [ "x${PLATFORM}" = "xall" ] | elif [ "x${PLATFORM}" = "xall" ] | ||||
then | then | ||||
tar -cf graphengine_lib.tar fwkacllib acllib atc | |||||
tar -zcf graphengine_lib.tar fwkacllib acllib atc | |||||
fi | fi | ||||
} | } | ||||
@@ -371,6 +371,6 @@ elif [ "X$MINDSPORE_MODE" = "Xon" ] | |||||
then | then | ||||
cd "${OUTPUT_PATH}" | cd "${OUTPUT_PATH}" | ||||
find ./ -name graphengine_lib.tar -exec rm {} \; | find ./ -name graphengine_lib.tar -exec rm {} \; | ||||
tar -cf graphengine_lib.tar lib | |||||
tar -zcf graphengine_lib.tar lib | |||||
fi | fi | ||||
echo "---------------- GraphEngine package archive generated ----------------" | echo "---------------- GraphEngine package archive generated ----------------" |
@@ -11,14 +11,14 @@ if ((${CMAKE_INSTALL_PREFIX} STREQUAL /usr/local) OR | |||||
message(STATUS "No install prefix selected, default to ${CMAKE_INSTALL_PREFIX}.") | message(STATUS "No install prefix selected, default to ${CMAKE_INSTALL_PREFIX}.") | ||||
endif() | endif() | ||||
if (GE_PB_PKG) | if (GE_PB_PKG) | ||||
set(REQ_URL "${GE_PB_PKG}/libs/protobuf/v3.8.0.tar.gz") | |||||
set(REQ_URL "${GE_PB_PKG}/libs/protobuf/v3.13.0.tar.gz") | |||||
else() | else() | ||||
if (ENABLE_GITEE) | if (ENABLE_GITEE) | ||||
set(REQ_URL "https://gitee.com/mirrors/protobuf_source/repository/archive/v3.8.0.tar.gz") | |||||
set(MD5 "eba86ae9f07ba5cfbaf8af3bc4e84236") | |||||
set(REQ_URL "https://gitee.com/mirrors/protobuf_source/repository/archive/v3.13.0.tar.gz") | |||||
set(MD5 "f4489cb88922ad9c58cbe3308d59cee5") | |||||
else() | else() | ||||
set(REQ_URL "https://github.com/protocolbuffers/protobuf/archive/v3.8.0.tar.gz") | |||||
set(MD5 "3d9e32700639618a4d2d342c99d4507a") | |||||
set(REQ_URL "https://github.com/protocolbuffers/protobuf/archive/v3.13.0.tar.gz") | |||||
set(MD5 "1a6274bc4a65b55a6fa70e264d796490") | |||||
endif () | endif () | ||||
endif() | endif() | ||||
@@ -58,7 +58,7 @@ target_include_directories(ascend_protobuf INTERFACE ${PROTOBUF_SHARED_PKG_DIR}/ | |||||
set(INSTALL_BASE_DIR "") | set(INSTALL_BASE_DIR "") | ||||
set(INSTALL_LIBRARY_DIR lib) | set(INSTALL_LIBRARY_DIR lib) | ||||
install(FILES ${PROTOBUF_SHARED_PKG_DIR}/${CMAKE_INSTALL_LIBDIR}/ascend_protobuf.so.3.8.0.0 OPTIONAL | |||||
install(FILES ${PROTOBUF_SHARED_PKG_DIR}/${CMAKE_INSTALL_LIBDIR}/ascend_protobuf.so.3.13.0.0 OPTIONAL | |||||
DESTINATION ${INSTALL_LIBRARY_DIR}) | DESTINATION ${INSTALL_LIBRARY_DIR}) | ||||
install(FILES ${PROTOBUF_SHARED_PKG_DIR}/${CMAKE_INSTALL_LIBDIR}/ascend_protobuf.so OPTIONAL | install(FILES ${PROTOBUF_SHARED_PKG_DIR}/${CMAKE_INSTALL_LIBDIR}/ascend_protobuf.so OPTIONAL | ||||
DESTINATION ${INSTALL_LIBRARY_DIR}) | DESTINATION ${INSTALL_LIBRARY_DIR}) | ||||
@@ -13,14 +13,14 @@ if ((${CMAKE_INSTALL_PREFIX} STREQUAL /usr/local) OR | |||||
endif() | endif() | ||||
if(GE_PB_PKG) | if(GE_PB_PKG) | ||||
set(REQ_URL "${GE_PB_PKG}/libs/protobuf/v3.8.0.tar.gz") | |||||
set(REQ_URL "${GE_PB_PKG}/libs/protobuf/v3.13.0.tar.gz") | |||||
else() | else() | ||||
if (ENABLE_GITEE) | if (ENABLE_GITEE) | ||||
set(REQ_URL "https://gitee.com/mirrors/protobuf_source/repository/archive/v3.8.0.tar.gz") | |||||
set(MD5 "eba86ae9f07ba5cfbaf8af3bc4e84236") | |||||
set(REQ_URL "https://gitee.com/mirrors/protobuf_source/repository/archive/v3.13.0.tar.gz") | |||||
set(MD5 "f4489cb88922ad9c58cbe3308d59cee5") | |||||
else() | else() | ||||
set(REQ_URL "https://github.com/protocolbuffers/protobuf/archive/v3.8.0.tar.gz") | |||||
set(MD5 "3d9e32700639618a4d2d342c99d4507a") | |||||
set(REQ_URL "https://github.com/protocolbuffers/protobuf/archive/v3.13.0.tar.gz") | |||||
set(MD5 "1a6274bc4a65b55a6fa70e264d796490") | |||||
endif () | endif () | ||||
endif() | endif() | ||||
@@ -29,8 +29,6 @@ set(protobuf_LDFLAGS "-Wl,-z,relro,-z,now,-z,noexecstack") | |||||
set(PROTOBUF_STATIC_PKG_DIR ${CMAKE_INSTALL_PREFIX}/protobuf_static) | set(PROTOBUF_STATIC_PKG_DIR ${CMAKE_INSTALL_PREFIX}/protobuf_static) | ||||
ExternalProject_Add(protobuf_static_build | ExternalProject_Add(protobuf_static_build | ||||
URL ${REQ_URL} | URL ${REQ_URL} | ||||
#URL /home/txd/workspace/linux_cmake/pkg/protobuf-3.8.0.tar.gz | |||||
#SOURCE_DIR ${METADEF_DIR}/../../third_party/protobuf/src/protobuf-3.8.0 | |||||
TLS_VERIFY OFF | TLS_VERIFY OFF | ||||
CONFIGURE_COMMAND ${CMAKE_COMMAND} | CONFIGURE_COMMAND ${CMAKE_COMMAND} | ||||
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} | -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} | ||||
@@ -13,14 +13,14 @@ if ((${CMAKE_INSTALL_PREFIX} STREQUAL /usr/local) OR | |||||
endif() | endif() | ||||
if(GE_PB_PKG) | if(GE_PB_PKG) | ||||
set(REQ_URL "${GE_PB_PKG}/libs/protobuf/v3.8.0.tar.gz") | |||||
set(REQ_URL "${GE_PB_PKG}/libs/protobuf/v3.13.0.tar.gz") | |||||
else() | else() | ||||
if (ENABLE_GITEE) | if (ENABLE_GITEE) | ||||
set(REQ_URL "https://gitee.com/mirrors/protobuf_source/repository/archive/v3.8.0.tar.gz") | |||||
set(MD5 "eba86ae9f07ba5cfbaf8af3bc4e84236") | |||||
set(REQ_URL "https://gitee.com/mirrors/protobuf_source/repository/archive/v3.13.0.tar.gz") | |||||
set(MD5 "f4489cb88922ad9c58cbe3308d59cee5") | |||||
else() | else() | ||||
set(REQ_URL "https://github.com/protocolbuffers/protobuf/archive/v3.8.0.tar.gz") | |||||
set(MD5 "3d9e32700639618a4d2d342c99d4507a") | |||||
set(REQ_URL "https://github.com/protocolbuffers/protobuf/archive/v3.13.0.tar.gz") | |||||
set(MD5 "1a6274bc4a65b55a6fa70e264d796490") | |||||
endif () | endif () | ||||
endif() | endif() | ||||
@@ -28,8 +28,6 @@ set(protobuf_CXXFLAGS "-Wno-maybe-uninitialized -Wno-unused-parameter -fPIC -fst | |||||
set(protobuf_LDFLAGS "-Wl,-z,relro,-z,now,-z,noexecstack") | set(protobuf_LDFLAGS "-Wl,-z,relro,-z,now,-z,noexecstack") | ||||
ExternalProject_Add(protoc_build | ExternalProject_Add(protoc_build | ||||
URL ${REQ_URL} | URL ${REQ_URL} | ||||
#URL /home/txd/workspace/linux_cmake/pkg/protobuf-3.8.0.tar.gz | |||||
#SOURCE_DIR ${GE_CODE_DIR}/../third_party/protobuf/src/protobuf-3.8.0 | |||||
TLS_VERIFY OFF | TLS_VERIFY OFF | ||||
CONFIGURE_COMMAND ${CMAKE_COMMAND} -Dprotobuf_WITH_ZLIB=OFF -Dprotobuf_BUILD_TESTS=OFF -DBUILD_SHARED_LIBS=OFF -DCMAKE_CXX_FLAGS=${protobuf_CXXFLAGS} -DCMAKE_CXX_LDFLAGS=${protobuf_LDFLAGS} -DCMAKE_INSTALL_PREFIX=${CMAKE_INSTALL_PREFIX}/protoc <SOURCE_DIR>/cmake | CONFIGURE_COMMAND ${CMAKE_COMMAND} -Dprotobuf_WITH_ZLIB=OFF -Dprotobuf_BUILD_TESTS=OFF -DBUILD_SHARED_LIBS=OFF -DCMAKE_CXX_FLAGS=${protobuf_CXXFLAGS} -DCMAKE_CXX_LDFLAGS=${protobuf_LDFLAGS} -DCMAKE_INSTALL_PREFIX=${CMAKE_INSTALL_PREFIX}/protoc <SOURCE_DIR>/cmake | ||||
BUILD_COMMAND $(MAKE) | BUILD_COMMAND $(MAKE) | ||||
@@ -174,6 +174,7 @@ set(TRAIN_SRC_LIST | |||||
"graph/load/model_manager/task_info/model_exit_task_info.cc" | "graph/load/model_manager/task_info/model_exit_task_info.cc" | ||||
"graph/load/model_manager/task_info/event_record_task_info.cc" | "graph/load/model_manager/task_info/event_record_task_info.cc" | ||||
"graph/load/model_manager/task_info/event_wait_task_info.cc" | "graph/load/model_manager/task_info/event_wait_task_info.cc" | ||||
"graph/load/model_manager/task_info/ffts_task_info.cc" | |||||
"graph/load/model_manager/task_info/fusion_start_task_info.cc" | "graph/load/model_manager/task_info/fusion_start_task_info.cc" | ||||
"graph/load/model_manager/task_info/fusion_stop_task_info.cc" | "graph/load/model_manager/task_info/fusion_stop_task_info.cc" | ||||
"graph/load/model_manager/task_info/hccl_task_info.cc" | "graph/load/model_manager/task_info/hccl_task_info.cc" | ||||
@@ -433,6 +434,7 @@ set(TRAIN_SRC_LIST | |||||
"graph/build/memory/max_block_mem_assigner.cc" | "graph/build/memory/max_block_mem_assigner.cc" | ||||
"graph/build/memory/var_mem_assign_util.cc" | "graph/build/memory/var_mem_assign_util.cc" | ||||
"graph/build/memory/buffer_pool_mem_assigner.cc" | "graph/build/memory/buffer_pool_mem_assigner.cc" | ||||
"ge_opt_info/ge_opt_info.cc" | |||||
) | ) | ||||
set(INFER_SRC_LIST | set(INFER_SRC_LIST | ||||
@@ -662,6 +664,7 @@ set(INFER_SRC_LIST | |||||
"graph/load/model_manager/task_info/task_info.cc" | "graph/load/model_manager/task_info/task_info.cc" | ||||
"graph/load/model_manager/task_info/event_record_task_info.cc" | "graph/load/model_manager/task_info/event_record_task_info.cc" | ||||
"graph/load/model_manager/task_info/event_wait_task_info.cc" | "graph/load/model_manager/task_info/event_wait_task_info.cc" | ||||
"graph/load/model_manager/task_info/ffts_task_info.cc" | |||||
"graph/load/model_manager/task_info/fusion_start_task_info.cc" | "graph/load/model_manager/task_info/fusion_start_task_info.cc" | ||||
"graph/load/model_manager/task_info/fusion_stop_task_info.cc" | "graph/load/model_manager/task_info/fusion_stop_task_info.cc" | ||||
"graph/load/model_manager/task_info/kernel_ex_task_info.cc" | "graph/load/model_manager/task_info/kernel_ex_task_info.cc" | ||||
@@ -709,6 +712,7 @@ set(INFER_SRC_LIST | |||||
"graph/build/memory/max_block_mem_assigner.cc" | "graph/build/memory/max_block_mem_assigner.cc" | ||||
"graph/build/memory/var_mem_assign_util.cc" | "graph/build/memory/var_mem_assign_util.cc" | ||||
"graph/build/memory/buffer_pool_mem_assigner.cc" | "graph/build/memory/buffer_pool_mem_assigner.cc" | ||||
"ge_opt_info/ge_opt_info.cc" | |||||
) | ) | ||||
if (NOT ENABLE_D AND NOT ENABLE_ACL AND NOT ENABLE_MS_TESTCASES) | if (NOT ENABLE_D AND NOT ENABLE_ACL AND NOT ENABLE_MS_TESTCASES) | ||||
@@ -770,11 +774,13 @@ target_include_directories(ge_runner SYSTEM PRIVATE | |||||
${GE_CODE_DIR}/../inc/cce | ${GE_CODE_DIR}/../inc/cce | ||||
${GE_CODE_DIR}/../toolchain/ide/ide-daemon/external | ${GE_CODE_DIR}/../toolchain/ide/ide-daemon/external | ||||
${GE_CODE_DIR}/../abl/adump/external | ${GE_CODE_DIR}/../abl/adump/external | ||||
${GE_CODE_DIR}/../abl/licctrl | |||||
#### blue zone | #### blue zone | ||||
${ASCEND_DIR}/driver/include | ${ASCEND_DIR}/driver/include | ||||
${ASCEND_DIR}/fwkacllib/include | ${ASCEND_DIR}/fwkacllib/include | ||||
${GE_CODE_DIR}/third_party/fwkacllib/inc | ${GE_CODE_DIR}/third_party/fwkacllib/inc | ||||
${GE_CODE_DIR}/third_party/fwkacllib/inc/toolchain | ${GE_CODE_DIR}/third_party/fwkacllib/inc/toolchain | ||||
${GE_CODE_DIR}/third_party/fwkacllib/inc/opt_info | |||||
) | ) | ||||
target_link_options(ge_runner PRIVATE | target_link_options(ge_runner PRIVATE | ||||
@@ -797,6 +803,7 @@ target_link_libraries(ge_runner PRIVATE | |||||
runtime | runtime | ||||
error_manager | error_manager | ||||
ascend_hal_stub | ascend_hal_stub | ||||
opt_feature | |||||
-Wl,--as-needed | -Wl,--as-needed | ||||
json | json | ||||
-lrt | -lrt | ||||
@@ -851,11 +858,13 @@ target_include_directories(ge_compiler SYSTEM PRIVATE | |||||
${GE_CODE_DIR}/../inc/cce | ${GE_CODE_DIR}/../inc/cce | ||||
${GE_CODE_DIR}/../toolchain/ide/ide-daemon/external | ${GE_CODE_DIR}/../toolchain/ide/ide-daemon/external | ||||
${GE_CODE_DIR}/../abl/adump/external | ${GE_CODE_DIR}/../abl/adump/external | ||||
${GE_CODE_DIR}/../abl/licctrl | |||||
#### blue zone #### | #### blue zone #### | ||||
${ASCEND_DIR}/driver/include | ${ASCEND_DIR}/driver/include | ||||
${ASCEND_DIR}/fwkacllib/include | ${ASCEND_DIR}/fwkacllib/include | ||||
${GE_CODE_DIR}/third_party/fwkacllib/inc | ${GE_CODE_DIR}/third_party/fwkacllib/inc | ||||
${GE_CODE_DIR}/third_party/fwkacllib/inc/toolchain | ${GE_CODE_DIR}/third_party/fwkacllib/inc/toolchain | ||||
${GE_CODE_DIR}/third_party/fwkacllib/inc/opt_info | |||||
) | ) | ||||
target_link_options(ge_compiler PRIVATE | target_link_options(ge_compiler PRIVATE | ||||
@@ -875,6 +884,7 @@ target_link_libraries(ge_compiler PRIVATE | |||||
error_manager | error_manager | ||||
slog | slog | ||||
runtime_compile | runtime_compile | ||||
opt_feature | |||||
-Wl,--as-needed | -Wl,--as-needed | ||||
json | json | ||||
-lrt | -lrt | ||||
@@ -1 +0,0 @@ | |||||
../../proto/ge_api.proto |
@@ -1,193 +0,0 @@ | |||||
syntax = "proto3"; | |||||
package ge.proto; | |||||
enum DataType | |||||
{ | |||||
DT_UNDEFINED = 0; // Used to indicate a DataType field has not been set. | |||||
DT_FLOAT = 1; // float type | |||||
DT_FLOAT16 = 2; // fp16 type | |||||
DT_INT8 = 3; // int8 type | |||||
DT_UINT8 = 4; // uint8 type | |||||
DT_INT16 = 5; // int16 type | |||||
DT_UINT16 = 6; // uint16 type | |||||
DT_INT32 = 7; // | |||||
DT_INT64 = 8; // int64 type | |||||
DT_UINT32 = 9; // unsigned int32 | |||||
DT_UINT64 = 10; // unsigned int64 | |||||
DT_BOOL = 11; // bool type | |||||
DT_DOUBLE = 12; // double type | |||||
DT_STRING = 13; // string type | |||||
DT_DUAL_SUB_INT8 = 14; /**< dual output int8 type */ | |||||
DT_DUAL_SUB_UINT8 = 15; /**< dual output uint8 type */ | |||||
DT_COMPLEX64 = 16; // complex64 type | |||||
DT_COMPLEX128 = 17; // complex128 type | |||||
DT_QINT8 = 18; // qint8 type | |||||
DT_QINT16 = 19; // qint16 type | |||||
DT_QINT32 = 20; // qint32 type | |||||
DT_QUINT8 = 21; // quint8 type | |||||
DT_QUINT16 = 22; // quint16 type | |||||
DT_RESOURCE = 23; // resource type | |||||
DT_STRING_REF = 24; // string_ref type | |||||
DT_DUAL = 25; /**< dual output type */ | |||||
DT_VARIANT = 26; // variant type | |||||
DT_BF16 = 27; // bf16 type | |||||
DT_INT4 = 28; // int4 type | |||||
} | |||||
message AttrDef | |||||
{ | |||||
message ListValue | |||||
{ | |||||
enum ListValueType{ | |||||
VT_LIST_NONE = 0; | |||||
VT_LIST_STRING = 1; | |||||
VT_LIST_INT = 2; | |||||
VT_LIST_FLOAT = 3; | |||||
VT_LIST_BOOL = 4; | |||||
VT_LIST_BYTES = 5; | |||||
VT_LIST_TENSOR_DESC = 6; | |||||
VT_LIST_TENSOR = 7; | |||||
VT_LIST_GRAPH = 8; | |||||
VT_LIST_NAMED_ATTRS = 9; | |||||
VT_LIST_DATA_TYPE = 10; | |||||
} | |||||
repeated bytes s = 2; // "list(string)" | |||||
repeated int64 i = 3; // "list(int)" | |||||
repeated float f = 4; // "list(float)" | |||||
repeated bool b = 5; // "list(bool)" | |||||
repeated bytes bt = 7; | |||||
repeated TensorDescriptor td = 8; | |||||
repeated TensorDef t = 9; | |||||
repeated GraphDef g = 10; | |||||
repeated NamedAttrs na = 11; | |||||
repeated int64 dt = 12; // list ge::DataType | |||||
ListValueType val_type = 20; | |||||
} | |||||
message ListListInt{ | |||||
message ListInt{ | |||||
repeated int64 list_i = 1; // list int | |||||
} | |||||
repeated ListInt list_list_i = 1; // list list int | |||||
} | |||||
oneof value | |||||
{ | |||||
bytes s = 2; // "string" | |||||
int64 i = 3; // "int" | |||||
float f = 4; // "float" | |||||
bool b = 5; // "bool" | |||||
bytes bt = 7; | |||||
ListValue list = 1; // any "list(...)" | |||||
NamedAttrs func = 10; // Used to support attr nesting | |||||
TensorDescriptor td = 11; // GeTensorDesc type | |||||
TensorDef t = 12; // GeTensor type | |||||
GraphDef g = 13; // Graph type | |||||
ListListInt list_list_int = 14; // List List Int type | |||||
int64 dt = 15; // ge::DataType | |||||
} | |||||
} | |||||
// A list of attr names and their values. The whole list is attached | |||||
// with a string name. E.g., MatMul[T=float]. | |||||
message NamedAttrs | |||||
{ | |||||
string name = 1; | |||||
map<string, AttrDef> attr = 2; | |||||
} | |||||
// Shape / dimension description, using row-major order | |||||
message ShapeDef | |||||
{ | |||||
repeated int64 dim = 1; // Size of each dimension | |||||
} | |||||
// Multidimensional data description | |||||
message TensorDescriptor | |||||
{ | |||||
string name = 1; // Optional parameter, tensor name | |||||
DataType dtype = 2; // tensor datatype | |||||
ShapeDef shape = 3; // Shape / dimension | |||||
string layout = 4; // Tensor format, eg: "NCHW", "NHWC", "CHW", "ND" | |||||
bool has_out_attr = 9; | |||||
int64 size = 10; | |||||
int64 weight_size = 11; | |||||
bool reuse_input = 12; | |||||
bool output_tensor = 13; | |||||
string device_type = 14; | |||||
bool input_tensor =15; | |||||
int64 real_dim_cnt = 16; | |||||
int64 reuse_input_index = 17; | |||||
int64 data_offset = 18; | |||||
int64 cmps_size = 19; | |||||
string cmps_tab = 20; | |||||
int64 cmps_tab_offset = 21; | |||||
map<string, AttrDef> attr = 5; // Set of extra parameter fields | |||||
} | |||||
// GeTensor definition | |||||
message TensorDef | |||||
{ | |||||
TensorDescriptor desc = 1; // Tensor description | |||||
bytes data = 2; // Tensor data | |||||
} | |||||
// Operator description | |||||
message OpDef | |||||
{ | |||||
string name = 1; // name | |||||
string type = 2; // type | |||||
repeated string input = 5; // input original op name + outgoing index. op_name:index | |||||
map<string, AttrDef> attr = 10; // Set of operator parameter fields | |||||
bool has_out_attr = 20; | |||||
int64 id = 21; | |||||
int64 stream_id =22; | |||||
repeated string input_name = 23; | |||||
repeated string src_name = 24; | |||||
repeated int64 src_index = 25; | |||||
repeated string dst_name = 26; | |||||
repeated int64 dst_index = 27; | |||||
repeated int64 input_i = 28; | |||||
repeated int64 output_i = 29; | |||||
repeated int64 workspace = 30; | |||||
repeated int64 workspace_bytes = 31; | |||||
repeated bool is_input_const = 32; | |||||
repeated TensorDescriptor input_desc = 33; | |||||
repeated TensorDescriptor output_desc = 34; | |||||
repeated string subgraph_name = 35; | |||||
} | |||||
// Graph definition | |||||
message GraphDef | |||||
{ | |||||
string name = 1; // name | |||||
repeated string input = 4; // Graph input | |||||
repeated string output = 5; // Graph output | |||||
repeated OpDef op = 6; // List of operators | |||||
map<string, AttrDef> attr = 11; // Extended field | |||||
} | |||||
// model definition | |||||
message ModelDef | |||||
{ | |||||
string name = 1; // name | |||||
uint32 version = 2; // IR Proto verion | |||||
string custom_version = 3; // User model version number, passed in by user | |||||
repeated GraphDef graph = 7; // Graph definition,graph[0] represents the main diagram in modeldef | |||||
map<string, AttrDef> attr = 11; // Extended field | |||||
} | |||||
@@ -1,140 +0,0 @@ | |||||
syntax = "proto3"; | |||||
package domi; | |||||
message InsertNewOps { | |||||
repeated AippOpParams aipp_op = 1; | |||||
repeated MultiShapeOpParams multi_shape_op = 2; | |||||
} | |||||
message AippOpParams { | |||||
enum InputFormat { | |||||
UNDEFINED = 0; | |||||
YUV420SP_U8 = 1; | |||||
XRGB8888_U8 = 2; | |||||
RGB888_U8 = 3; | |||||
YUV400_U8 = 4; | |||||
NC1HWC0DI_FP16 = 5; | |||||
NC1HWC0DI_S8 = 6; | |||||
ARGB8888_U8 = 7; | |||||
YUYV_U8 = 8; | |||||
YUV422SP_U8 = 9; | |||||
AYUV444_U8 = 10; | |||||
RAW10 = 11; | |||||
RAW12 = 12; | |||||
RAW16 = 13; | |||||
RAW24 = 14; | |||||
RGB16 = 15; | |||||
RGB20 = 16; | |||||
RGB24 = 17; | |||||
RGB8_IR = 18; | |||||
RGB16_IR = 19; | |||||
RGB24_IR = 20; | |||||
} | |||||
enum AippMode { | |||||
undefined = 0; | |||||
static = 1; | |||||
dynamic = 2; | |||||
} | |||||
// AIPP模式,区分静态AIPP和动态AIPP | |||||
AippMode aipp_mode = 1; | |||||
// related_input_rank参数为必填,类型为整型,配置范围>=0, <=输入Data算子的个数,默认值为0。 | |||||
// 标识对模型的第几个输入做AIPP处理,例如模型有两个输入,需要对第2个输入做AIPP,则配置related_input_rank为1。 | |||||
uint32 related_input_rank = 2; | |||||
// related_input_name is optional and the top name of data node which inserts aipp | |||||
string related_input_name = 6; | |||||
// input_edge_idx参数为可选,类型为整型,配置范围为>=0。 | |||||
// 配置该参数的作用,在于对Data算子不同的输出做不同的AIPP处理,如果该参数没有配置,默认对related_input_rank指定的模型输入的所有输出边做AIPP。 | |||||
// 配置值 <= Data算子输出边的个数。 | |||||
repeated uint32 input_edge_idx = 3; | |||||
// [Begin] 动态AIPP参数,配置静态AIPP时无效 | |||||
uint32 max_src_image_size = 4; | |||||
// 是否支持旋转。默认不支持,开启支持旋转时,会有额外的空间和性能损失 | |||||
bool support_rotation = 5; | |||||
// [End] 动态AIPP参数 | |||||
// [Begin] 静态AIPP参数,配置动态AIPP时无效 | |||||
InputFormat input_format = 51; | |||||
bool csc_switch = 52; | |||||
float cpadding_value = 53; | |||||
bool rbuv_swap_switch = 54; | |||||
bool ax_swap_switch = 55; | |||||
bool single_line_mode = 56; | |||||
int32 src_image_size_w = 57; | |||||
int32 src_image_size_h = 58; | |||||
bool crop = 59; | |||||
int32 load_start_pos_w = 60; | |||||
int32 load_start_pos_h = 61; | |||||
int32 crop_size_w = 62; | |||||
int32 crop_size_h = 63; | |||||
bool resize = 64; | |||||
int32 resize_output_w = 65; | |||||
int32 resize_output_h = 66; | |||||
bool padding = 67; | |||||
int32 left_padding_size = 68; | |||||
int32 right_padding_size = 69; | |||||
int32 top_padding_size = 70; | |||||
int32 bottom_padding_size = 71; | |||||
float padding_value = 72; | |||||
int32 mean_chn_0 = 10; | |||||
int32 mean_chn_1 = 11; | |||||
int32 mean_chn_2 = 12; | |||||
int32 mean_chn_3 = 19; | |||||
float min_chn_0 = 13; | |||||
float min_chn_1 = 14; | |||||
float min_chn_2 = 15; | |||||
float min_chn_3 = 20; | |||||
repeated float var_reci_chn_0 = 16; | |||||
repeated float var_reci_chn_1 = 17; | |||||
repeated float var_reci_chn_2 = 18; | |||||
repeated float var_reci_chn_3 = 21; | |||||
repeated int32 matrix_r0c0 = 30; | |||||
repeated int32 matrix_r0c1 = 31; | |||||
repeated int32 matrix_r0c2 = 32; | |||||
repeated int32 matrix_r1c0 = 33; | |||||
repeated int32 matrix_r1c1 = 34; | |||||
repeated int32 matrix_r1c2 = 35; | |||||
repeated int32 matrix_r2c0 = 36; | |||||
repeated int32 matrix_r2c1 = 37; | |||||
repeated int32 matrix_r2c2 = 38; | |||||
repeated int32 output_bias_0 = 39; | |||||
repeated int32 output_bias_1 = 40; | |||||
repeated int32 output_bias_2 = 41; | |||||
repeated int32 input_bias_0 = 42; | |||||
repeated int32 input_bias_1 = 43; | |||||
repeated int32 input_bias_2 = 44; | |||||
// [End] 静态AIPP参数 | |||||
// The n number that is used for raw/rgbir data into f16 transformation. | |||||
// The transformation equation is x/(2^n). If set to 0, no transform is performed. | |||||
uint32 raw_rgbir_to_f16_n = 45; | |||||
} | |||||
message MultiShapeOpParams { | |||||
enum MultiShapeMode { | |||||
batch = 0; //动态batch | |||||
resolution = 1; //动态分辨率,扩展用 | |||||
} | |||||
MultiShapeMode mode = 1; //算子模式 | |||||
uint32 related_input_rank = 2; //新增算子插入到哪个输入 | |||||
repeated uint32 batch_list = 11; //batch_list值,batch_list的个数是2到8之间 | |||||
} |
@@ -1,396 +0,0 @@ | |||||
/* Copyright (C) 2018. Huawei Technologies Co., Ltd. All rights reserved. | |||||
* | |||||
* This program is free software; you can redistribute it and/or modify | |||||
* it under the terms of the Apache License Version 2.0.You may not use this file except in compliance with the License. | |||||
* | |||||
* This program is distributed in the hope that it will be useful, | |||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||||
* Apache License for more details at | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi; | |||||
enum TargetType | |||||
{ | |||||
MINI = 0; | |||||
TINY = 1; | |||||
LITE = 2; | |||||
} | |||||
// offline model | |||||
message ModelDef { | |||||
string name = 1; | |||||
uint32 version = 2; | |||||
uint64 memory_size = 10; | |||||
uint32 stream_num = 11; | |||||
uint32 event_num = 12; | |||||
uint64 weight_size = 13; | |||||
uint32 label_num = 15; | |||||
repeated OpDef op = 20; | |||||
TargetType target_type = 23; | |||||
map<string, AttrDef> attr = 30; | |||||
}; | |||||
// operator define | |||||
message OpDef { | |||||
string name = 1; | |||||
string type = 2; | |||||
uint32 id = 3; | |||||
uint32 stream_id = 4; | |||||
repeated string input_name = 5; | |||||
repeated string src_name = 8; | |||||
repeated int32 src_index = 9; | |||||
repeated int64 input = 10; | |||||
repeated int64 output = 11; | |||||
repeated TensorDescriptor input_desc = 12; | |||||
repeated TensorDescriptor output_desc = 13; | |||||
repeated WeightDef weights = 14; | |||||
repeated string dst_name = 15; | |||||
repeated int32 dst_index = 16; | |||||
repeated int64 workspace = 20; | |||||
repeated uint32 workspace_bytes = 21; | |||||
repeated string weight_name = 22; | |||||
repeated bool is_input_const = 23; | |||||
map<string, AttrDef> attr = 30; | |||||
QuantizeFactorParams quantize_factor = 31; | |||||
oneof op_params { | |||||
// start at 100 here | |||||
SendOpParams sender_param = 100; | |||||
RecvOpParams receiver_param = 200; | |||||
ConvolutionOpParams convolution_param = 300; | |||||
PoolingOpParams pooling_param = 400; | |||||
EltwiseOpParams eltwise_param = 500; | |||||
BatchNormOpParams batchnorm_param = 600; | |||||
ScaleOpParams scale_param = 700; | |||||
FullConnectionOpParams full_connection_param = 800; | |||||
SoftmaxOpParams softmax_param = 900; | |||||
ActivationOpParams activation_param = 1000; | |||||
ReshapeOpParams reshape_param = 1100; | |||||
} | |||||
}; | |||||
message SendOpParams { | |||||
uint32 event_id = 1; | |||||
}; | |||||
message RecvOpParams { | |||||
uint32 event_id = 1; | |||||
}; | |||||
enum QuantizeScaleType | |||||
{ | |||||
VECTOR_SCALE = 0; | |||||
SCALAR_SCALE = 1; | |||||
} | |||||
enum QuantizeScaleMode | |||||
{ | |||||
NORMAL_MODE = 0; | |||||
SQRT_MODE = 1; | |||||
} | |||||
enum QuantizeAlgorithm | |||||
{ | |||||
NON_OFFSET_ALGO = 0; | |||||
HALF_OFFSET_ALGO = 1; | |||||
ALL_OFFSET_ALGO = 2; | |||||
} | |||||
message QuantizeFactor | |||||
{ | |||||
QuantizeScaleMode scale_mode = 1; | |||||
bytes scale_value = 2; | |||||
int64 scale_offset = 3; | |||||
bytes offset_data_value = 4; | |||||
int64 offset_data_offset = 5; | |||||
bytes offset_weight_value = 6; | |||||
int64 offset_weight_offset = 7; | |||||
bytes offset_pad_value = 8; | |||||
int64 offset_pad_offset = 9; | |||||
}; | |||||
message QuantizeCalcFactor | |||||
{ | |||||
bytes offsetw = 1; | |||||
int64 offsetw_offset = 2; | |||||
bytes offsetd = 3; | |||||
int64 offsetd_offset = 4; | |||||
bytes scalereq = 5; | |||||
int64 scaledreq_offset = 6; | |||||
bytes offsetdnext = 7; | |||||
int64 offsetdnext_offset = 8; | |||||
} | |||||
message QuantizeFactorParams | |||||
{ | |||||
QuantizeAlgorithm quantize_algo = 1; | |||||
QuantizeScaleType scale_type = 2; | |||||
QuantizeFactor quantize_param = 3; | |||||
QuantizeFactor dequantize_param = 4; | |||||
QuantizeFactor requantize_param = 5; | |||||
QuantizeCalcFactor quantizecalc_param = 6; | |||||
}; | |||||
message ConvolutionOpParams { | |||||
int32 mode = 1; | |||||
int32 algo = 2; | |||||
int32 pad_mode = 3; | |||||
uint32 group = 4; | |||||
uint32 num_output = 5; | |||||
repeated uint32 pad = 10; | |||||
repeated uint32 stride = 11; | |||||
repeated uint32 dilation = 12; | |||||
repeated uint32 kernel = 13; | |||||
float alpha = 20; | |||||
float beta = 21; | |||||
WeightDef filter = 40; | |||||
WeightDef bias = 41; | |||||
bool relu_flag = 62; | |||||
repeated uint32 adj = 70; | |||||
repeated uint32 target_shape = 71; | |||||
repeated uint32 before_pad = 72; | |||||
}; | |||||
message PoolingOpParams { | |||||
int32 mode = 1; | |||||
int32 nan_opt = 2; | |||||
int32 pad_mode = 3; | |||||
bool global_pooling = 4; | |||||
repeated uint32 window = 10; | |||||
repeated uint32 pad = 11; | |||||
repeated uint32 stride = 12; | |||||
bool ceil_mode = 13; | |||||
int32 data_mode = 14; | |||||
float alpha = 20; | |||||
float beta = 21; | |||||
repeated uint32 before_pad = 22; | |||||
}; | |||||
message EltwiseOpParams { | |||||
int32 mode = 1; | |||||
repeated float coeff = 2; | |||||
float alpha = 3; | |||||
float beta = 4; | |||||
repeated WeightDef weight = 5; | |||||
bool relu_flag = 6; | |||||
}; | |||||
message ActivationOpParams { | |||||
int32 mode = 1; | |||||
float coef = 2; | |||||
float alpha = 3; | |||||
float beta = 4; | |||||
}; | |||||
message BatchNormOpParams { | |||||
int32 mode = 1; | |||||
float alpha = 2; | |||||
float beta = 3; | |||||
double epsilon = 4;//optinal,[default = 1e-5] | |||||
bool use_global_stats = 5; //optinal,by default true,testing mode | |||||
float moving_average_fraction = 6; //optinal,[default = .999]; | |||||
WeightDef estimated_mean = 7; | |||||
WeightDef estimated_variance = 8; | |||||
WeightDef scale = 9; | |||||
WeightDef bias = 10; | |||||
}; | |||||
message ScaleOpParams { | |||||
WeightDef scale = 1; | |||||
WeightDef bias = 2; | |||||
}; | |||||
message ReshapeOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
ShapeDef shape = 3; | |||||
int32 axis = 4; | |||||
int32 num_axes = 5; | |||||
int32 format = 6; | |||||
}; | |||||
message SoftmaxOpParams { | |||||
int32 algo = 1; | |||||
int32 mode = 2; | |||||
float alpha = 3; | |||||
float beta = 4; | |||||
}; | |||||
message FullConnectionOpParams { | |||||
WeightDef filter = 1; | |||||
WeightDef bias = 2; | |||||
uint32 num_output = 3; | |||||
bool relu_flag = 12; | |||||
}; | |||||
message FlattenOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
int32 start_axis = 3; | |||||
int32 end_axis = 4; | |||||
} | |||||
message AddLimitedOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
int32 axis = 3; | |||||
bool broadcast = 4; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message MulLimitedOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
int32 axis = 3; | |||||
bool broadcast = 4; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message AddOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message MulOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message SubOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message BiasAddOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
WeightDef bias = 10; | |||||
}; | |||||
message MatMulOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
bool transposeX = 3; | |||||
bool transposeW = 4; | |||||
WeightDef filter = 10; | |||||
WeightDef bias = 12; | |||||
}; | |||||
message RsqrtOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
}; | |||||
message WeightDef { | |||||
int32 format = 1; | |||||
int32 data_type = 2; | |||||
ShapeDef shape = 3; | |||||
bytes data = 4; | |||||
int64 data_offset = 5; | |||||
uint32 cmps_size = 6; | |||||
bytes cmps_tab = 7; | |||||
int64 cmps_tab_offset = 10; | |||||
CompressInfo cmps_info = 8; | |||||
AllOffsetQuantizeInfo alloffset_quantize_info = 11; | |||||
} | |||||
message ShapeDef { | |||||
repeated int64 dim = 1; | |||||
} | |||||
enum DeviceType { | |||||
NPU = 0; // In default, we will use NPU. | |||||
CPU = 1; // CPU | |||||
} | |||||
message AllOffsetQuantizeInfo { | |||||
float scale = 1; | |||||
int32 offset = 2; | |||||
} | |||||
message TensorDescriptor { | |||||
int32 format = 1; | |||||
int32 data_type = 2; | |||||
repeated int64 dim = 3; | |||||
uint32 size = 4; | |||||
bool reuse_input = 5; | |||||
bool output_tensor = 7; | |||||
DeviceType device_type = 8; | |||||
bool input_tensor = 9; | |||||
uint32 real_dim_cnt = 10; | |||||
uint32 reuse_input_index = 11; | |||||
AllOffsetQuantizeInfo alloffset_quantize_info = 12; | |||||
} | |||||
message CompressInfo { | |||||
int32 blockRow = 1; // block row | |||||
int32 blockCol = 2; // block col | |||||
int32 fractalK = 3; // fractal K | |||||
int32 fractalN = 4; // fractal N | |||||
int32 lastFractalK = 5; // K of last fractal | |||||
int32 lastFractalN = 6; // N of last fractal | |||||
int32 cubeSize = 7; // cube's length | |||||
int32 loadDir = 8; // data load directtiono 0:col load 1:row load | |||||
} | |||||
message AttrDef { | |||||
message ListValue { | |||||
repeated string s = 2; // "list(string)" | |||||
repeated int64 i = 3 [packed = true]; // "list(int)" | |||||
repeated float f = 4 [packed = true]; // "list(float)" | |||||
repeated bool b = 5 [packed = true]; // "list(bool)" | |||||
repeated uint32 u = 6 [packed = true]; // "list(uint)" | |||||
repeated bytes bt = 7; | |||||
} | |||||
oneof value { | |||||
string s = 2; // "string" | |||||
int64 i = 3; // "int" | |||||
float f = 4; // "float" | |||||
bool b = 5; // "bool" | |||||
uint32 u = 6; // "uint32" | |||||
bytes bt = 7; | |||||
ListValue list = 1; // any "list(...)" | |||||
NamedAttrs func = 10; | |||||
} | |||||
} | |||||
// A list of attr names and their values. The whole list is attached | |||||
// with a string name. E.g., MatMul[T=float]. | |||||
message NamedAttrs { | |||||
string name = 1; | |||||
map<string, AttrDef> attr = 2; | |||||
} | |||||
@@ -1,179 +0,0 @@ | |||||
/* Copyright (C) 2018. Huawei Technologies Co., Ltd. All rights reserved. | |||||
* | |||||
* This program is free software; you can redistribute it and/or modify | |||||
* it under the terms of the Apache License Version 2.0.You may not use this file except in compliance with the License. | |||||
* | |||||
* This program is distributed in the hope that it will be useful, | |||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||||
* Apache License for more details at | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi; | |||||
message ModelTaskDef { | |||||
string version = 1; | |||||
map<string, string> attr = 9; // Extended field | |||||
repeated TaskDef task = 10; | |||||
uint64 memory_size = 11; | |||||
uint32 stream_num = 12; | |||||
uint32 event_num = 13; | |||||
uint64 weight_size = 14; | |||||
repeated bytes op = 15; // input/output opdef in bytes | |||||
uint64 base_addr = 16; // base addr | |||||
uint64 weight_addr = 17; // weight addr | |||||
uint32 batch_num = 18; | |||||
} | |||||
message TaskDef { | |||||
uint32 id = 1; | |||||
uint32 type = 2; | |||||
uint32 stream_id = 10; | |||||
uint32 event_id = 11; | |||||
KernelDef kernel = 20; | |||||
KernelExDef kernel_ex = 21; | |||||
KernelHcclDef kernel_hccl = 25; | |||||
EventExDef event_ex = 26; | |||||
LogTimeStampDef log_timestamp = 28; | |||||
uint32 label_id = 30; | |||||
MemcpyAsyncDef memcpy_async = 31; | |||||
StreamSwitchDef stream_switch = 32; | |||||
StreamActiveDef stream_active = 33; | |||||
bytes private_def = 34; | |||||
uint64 ops_kernel_store_ptr = 35; // adjustments to other fields in the future | |||||
StreamSwitchNDef stream_switch_n = 36; | |||||
LabelSetDef label_set = 37; | |||||
LabelGotoExDef label_goto_ex = 38; | |||||
LabelSwitchByIndexDef label_switch_by_index = 39; | |||||
KernelDefWithHandle kernel_with_handle = 40; | |||||
} | |||||
message KernelDef { | |||||
KernelContext context = 1; | |||||
string stub_func = 10; | |||||
uint32 block_dim = 11; | |||||
uint32 args_size = 12; | |||||
bytes args = 13; | |||||
bytes sm_desc = 14; | |||||
bytes flowtable = 15; | |||||
string so_name = 16; | |||||
string kernel_name = 17; | |||||
bytes kernel_ext_info = 18; | |||||
uint32 kernel_ext_info_size = 19; | |||||
} | |||||
message KernelDefWithHandle { | |||||
KernelContext context = 1; | |||||
uint64 handle = 10; | |||||
string dev_func = 11; | |||||
uint32 block_dim = 12; | |||||
uint32 args_size = 13; | |||||
bytes args = 14; | |||||
bytes sm_desc = 15; | |||||
string original_kernel_key = 16; | |||||
string node_info = 17; | |||||
} | |||||
message KernelContext { | |||||
uint32 kernel_type = 1; | |||||
uint32 op_id = 2; // OP type in CCE | |||||
uint32 kernel_func_id = 3; | |||||
uint32 op_index = 4; // TE/Custom operator | |||||
bool is_flowtable = 5; // Identify whether args is a flowtable structure | |||||
bytes args_offset = 6; // args offset information | |||||
uint32 args_count = 7; // args count | |||||
repeated uint32 origin_op_index = 8; | |||||
} | |||||
message KernelExDef { | |||||
uint32 flags = 1; | |||||
uint32 op_index = 4; | |||||
uint32 args_size = 12; | |||||
bytes args = 13; | |||||
bytes task_info = 14; // serialized nodeDef, funcDef, inputoutput | |||||
uint32 task_info_size = 15; | |||||
bytes kernel_ext_info = 16; | |||||
uint32 kernel_ext_info_size = 17; | |||||
} | |||||
message KernelHcclDef { | |||||
uint32 op_index = 8; | |||||
string hccl_type = 9; | |||||
} | |||||
message EventExDef { | |||||
uint32 op_index = 1; | |||||
uint32 event_type = 2; | |||||
} | |||||
message LogTimeStampDef { | |||||
uint64 logid = 1; | |||||
bool notify = 2; | |||||
uint32 flat = 3; | |||||
} | |||||
message MemcpyAsyncDef { | |||||
uint64 dst = 1; | |||||
uint64 dst_max = 2; | |||||
uint64 src = 3; | |||||
uint64 count = 4; | |||||
uint32 kind = 5; | |||||
uint32 op_index = 6; | |||||
} | |||||
message StreamSwitchDef { | |||||
uint32 op_index = 1; | |||||
uint32 true_stream_id = 2; | |||||
int64 value = 3; | |||||
uint64 value_ptr = 4; | |||||
uint32 data_type = 5; | |||||
} | |||||
message StreamActiveDef { | |||||
uint32 op_index = 1; | |||||
uint32 active_stream_id = 2; | |||||
} | |||||
message StreamSwitchNDef { | |||||
uint32 op_index = 1; | |||||
uint32 size = 2; | |||||
repeated int64 target_value = 3; | |||||
repeated uint32 true_stream_id = 4; | |||||
uint32 element_size = 5; | |||||
uint32 data_type = 6; | |||||
} | |||||
message LabelSetDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_id = 2; | |||||
uint32 model_id = 3; | |||||
} | |||||
message LabelGotoExDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_id = 2; | |||||
uint32 model_id = 3; | |||||
} | |||||
message LabelSwitchByIndexDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_max = 2; | |||||
} |
@@ -106,6 +106,7 @@ target_link_libraries(ge_common PRIVATE | |||||
c_sec | c_sec | ||||
error_manager | error_manager | ||||
slog | slog | ||||
opt_feature | |||||
-Wl,--as-needed | -Wl,--as-needed | ||||
json | json | ||||
$<$<NOT:$<STREQUAL:${TARGET_SYSTEM_NAME},Android>>:-lrt> | $<$<NOT:$<STREQUAL:${TARGET_SYSTEM_NAME},Android>>:-lrt> | ||||
@@ -33,7 +33,7 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY DumpManager &DumpManager::GetIn | |||||
bool DumpManager::NeedDoDump(const DumpConfig &dump_config, DumpProperties &dump_properties) { | bool DumpManager::NeedDoDump(const DumpConfig &dump_config, DumpProperties &dump_properties) { | ||||
if (dump_config.dump_status.empty() && dump_config.dump_debug.empty()) { | if (dump_config.dump_status.empty() && dump_config.dump_debug.empty()) { | ||||
dump_properties_map_.emplace(kInferSessionId, dump_properties); | |||||
dump_properties_map_[kInferSessionId] = dump_properties; | |||||
GELOGI("Dump does not open"); | GELOGI("Dump does not open"); | ||||
return false; | return false; | ||||
} | } | ||||
@@ -41,7 +41,7 @@ bool DumpManager::NeedDoDump(const DumpConfig &dump_config, DumpProperties &dump | |||||
if ((dump_config.dump_status == kDumpoff || dump_config.dump_status == kDumpOFF) && | if ((dump_config.dump_status == kDumpoff || dump_config.dump_status == kDumpOFF) && | ||||
dump_config.dump_debug == kDumpoff) { | dump_config.dump_debug == kDumpoff) { | ||||
dump_properties.ClearDumpPropertyValue(); | dump_properties.ClearDumpPropertyValue(); | ||||
dump_properties_map_.emplace(kInferSessionId, dump_properties); | |||||
dump_properties_map_[kInferSessionId] = dump_properties; | |||||
return false; | return false; | ||||
} | } | ||||
if (dump_config.dump_status == kDumpOn && dump_config.dump_debug == kDumpOn) { | if (dump_config.dump_status == kDumpOn && dump_config.dump_debug == kDumpOn) { | ||||
@@ -161,6 +161,7 @@ Status ExceptionDumper::DumpExceptionInfo(const std::vector<rtExceptionInfo> &ex | |||||
uint64_t proto_size = dump_data.ByteSizeLong(); | uint64_t proto_size = dump_data.ByteSizeLong(); | ||||
std::unique_ptr<char[]> proto_msg(new (std::nothrow) char[proto_size]); | std::unique_ptr<char[]> proto_msg(new (std::nothrow) char[proto_size]); | ||||
GE_CHECK_NOTNULL(proto_msg); | |||||
bool ret = dump_data.SerializeToArray(proto_msg.get(), proto_size); | bool ret = dump_data.SerializeToArray(proto_msg.get(), proto_size); | ||||
if (!ret || proto_size == 0) { | if (!ret || proto_size == 0) { | ||||
REPORT_INNER_ERROR("E19999", "Serialize proto to string fail"); | REPORT_INNER_ERROR("E19999", "Serialize proto to string fail"); | ||||
@@ -185,6 +185,7 @@ Status TransFormatFromNdToFracNz(const TransArgs &args, TransResult &result, con | |||||
auto src_offset = (src_h_head + w1_idx * w0) * size; | auto src_offset = (src_h_head + w1_idx * w0) * size; | ||||
auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) ? | auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) ? | ||||
dst_size - dst_offset : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | dst_size - dst_offset : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | ||||
GE_CHECK_GE(protected_size, 0); | |||||
auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | ||||
static_cast<size_t>(size * w0)); | static_cast<size_t>(size * w0)); | ||||
if (ret != EOK) { | if (ret != EOK) { | ||||
@@ -202,6 +203,7 @@ Status TransFormatFromNdToFracNz(const TransArgs &args, TransResult &result, con | |||||
auto src_offset = (src_h_head + src_w_idx) * size; | auto src_offset = (src_h_head + src_w_idx) * size; | ||||
auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) ? | auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) ? | ||||
dst_size - dst_offset : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | dst_size - dst_offset : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | ||||
GE_CHECK_GE(protected_size, 0); | |||||
auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | ||||
static_cast<size_t>(size)); | static_cast<size_t>(size)); | ||||
if (ret != EOK) { | if (ret != EOK) { | ||||
@@ -267,6 +269,7 @@ Status TransFormatFromFracNzToNd(const TransArgs &args, TransResult &result, con | |||||
auto dst_offset = (dst_h_head + w1_idx * w0) * size; | auto dst_offset = (dst_h_head + w1_idx * w0) * size; | ||||
auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) ? | auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) ? | ||||
dst_size - dst_offset : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | dst_size - dst_offset : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | ||||
GE_CHECK_GE(protected_size, 0); | |||||
ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | ||||
static_cast<size_t>(size * w0)); | static_cast<size_t>(size * w0)); | ||||
if (ret != EOK) { | if (ret != EOK) { | ||||
@@ -285,6 +288,7 @@ Status TransFormatFromFracNzToNd(const TransArgs &args, TransResult &result, con | |||||
auto dst_offset = (dst_h_head + dst_w_idx) * size; | auto dst_offset = (dst_h_head + dst_w_idx) * size; | ||||
auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) ? | auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) ? | ||||
dst_size - dst_offset : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | dst_size - dst_offset : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | ||||
GE_CHECK_GE(protected_size, 0); | |||||
ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | ||||
static_cast<size_t>(size)); | static_cast<size_t>(size)); | ||||
if (ret != EOK) { | if (ret != EOK) { | ||||
@@ -193,6 +193,7 @@ Status TransFormatFromNdToFracZz(const TransArgs &args, TransResult &result, con | |||||
auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) | auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) | ||||
? dst_size - dst_offset | ? dst_size - dst_offset | ||||
: static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | ||||
GE_CHECK_GE(protected_size, 0); | |||||
auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | ||||
static_cast<size_t>(size * w0)); | static_cast<size_t>(size * w0)); | ||||
if (ret != EOK) { | if (ret != EOK) { | ||||
@@ -213,6 +214,7 @@ Status TransFormatFromNdToFracZz(const TransArgs &args, TransResult &result, con | |||||
auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) | auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) | ||||
? dst_size - dst_offset | ? dst_size - dst_offset | ||||
: static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | ||||
GE_CHECK_GE(protected_size, 0); | |||||
auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | ||||
static_cast<size_t>(size)); | static_cast<size_t>(size)); | ||||
if (ret != EOK) { | if (ret != EOK) { | ||||
@@ -284,6 +286,7 @@ Status TransFormatFromFracZzToNd(const TransArgs &args, TransResult &result, con | |||||
auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) | auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) | ||||
? dst_size - dst_offset | ? dst_size - dst_offset | ||||
: static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | ||||
GE_CHECK_GE(protected_size, 0); | |||||
auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | ||||
static_cast<size_t>(size * w0)); | static_cast<size_t>(size * w0)); | ||||
if (ret != EOK) { | if (ret != EOK) { | ||||
@@ -304,6 +307,7 @@ Status TransFormatFromFracZzToNd(const TransArgs &args, TransResult &result, con | |||||
auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) | auto protected_size = dst_size - dst_offset < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) | ||||
? dst_size - dst_offset | ? dst_size - dst_offset | ||||
: static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | : static_cast<int64_t>(SECUREC_MEM_MAX_LEN); | ||||
GE_CHECK_GE(protected_size, 0); | |||||
auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | auto ret = memcpy_s(dst.get() + dst_offset, static_cast<size_t>(protected_size), args.data + src_offset, | ||||
static_cast<size_t>(size)); | static_cast<size_t>(size)); | ||||
if (ret != EOK) { | if (ret != EOK) { | ||||
@@ -104,7 +104,15 @@ void TBEPluginManager::ProcessSoFullName(vector<string> &file_list, string &caff | |||||
} | } | ||||
} | } | ||||
void TBEPluginManager::FindParserSo(const string &path, vector<string> &file_list, string &caffe_parser_path) { | |||||
void TBEPluginManager::FindParserSo(const string &path, vector<string> &file_list, | |||||
string &caffe_parser_path, int recursive_depth) { | |||||
static const int kMaxRecursiveDepth = 20; // For recursive depth protection | |||||
if (recursive_depth >= kMaxRecursiveDepth) { | |||||
GELOGW("Recursive depth is become %d, Please check input!", recursive_depth); | |||||
return; | |||||
} | |||||
// Path, change to absolute path | // Path, change to absolute path | ||||
string real_path = RealPath(path.c_str()); | string real_path = RealPath(path.c_str()); | ||||
// Plugin path does not exist | // Plugin path does not exist | ||||
@@ -138,7 +146,7 @@ void TBEPluginManager::FindParserSo(const string &path, vector<string> &file_lis | |||||
ProcessSoFullName(file_list, caffe_parser_path, full_name, caffe_parser_so_suff, aicpu_so_suff, | ProcessSoFullName(file_list, caffe_parser_path, full_name, caffe_parser_so_suff, aicpu_so_suff, | ||||
aicpu_host_so_suff); | aicpu_host_so_suff); | ||||
} else { | } else { | ||||
FindParserSo(full_name, file_list, caffe_parser_path); | |||||
FindParserSo(full_name, file_list, caffe_parser_path, recursive_depth + 1); | |||||
} | } | ||||
} | } | ||||
mmScandirFree(entries, ret); | mmScandirFree(entries, ret); | ||||
@@ -57,7 +57,8 @@ class TBEPluginManager { | |||||
static void ProcessSoFullName(vector<string> &file_list, string &caffe_parser_path, string &full_name, | static void ProcessSoFullName(vector<string> &file_list, string &caffe_parser_path, string &full_name, | ||||
const string &caffe_parser_so_suff, const string &aicpu_so_suff, | const string &caffe_parser_so_suff, const string &aicpu_so_suff, | ||||
const string &aicpu_host_so_suff); | const string &aicpu_host_so_suff); | ||||
static void FindParserSo(const string &path, vector<string> &file_list, string &caffe_parser_path); | |||||
static void FindParserSo(const string &path, vector<string> &file_list, string &caffe_parser_path, | |||||
int recursive_depth = 0); | |||||
static void GetPluginSoFileList(const string &path, vector<string> &file_list, string &caffe_parser_path); | static void GetPluginSoFileList(const string &path, vector<string> &file_list, string &caffe_parser_path); | ||||
static void GetCustomOpPath(std::string &customop_path); | static void GetCustomOpPath(std::string &customop_path); | ||||
void LoadCustomOpLib(); | void LoadCustomOpLib(); | ||||
@@ -1679,6 +1679,13 @@ Status ModelCacheHelper::LoadOmModelFromCache(GeModelPtr &ge_model) const { | |||||
GELOGW("LoadOmModelFromCache: Load model from file failed. ret = %u", ret); | GELOGW("LoadOmModelFromCache: Load model from file failed. ret = %u", ret); | ||||
return ret; | return ret; | ||||
} | } | ||||
std::function<void()> callback = [&]() { | |||||
if (model_data.model_data != nullptr) { | |||||
delete[] reinterpret_cast<char *>(model_data.model_data); | |||||
model_data.model_data = nullptr; | |||||
} | |||||
}; | |||||
GE_MAKE_GUARD(release, callback); | |||||
ModelHelper model_helper; | ModelHelper model_helper; | ||||
ret = model_helper.LoadModel(model_data); | ret = model_helper.LoadModel(model_data); | ||||
@@ -22,6 +22,7 @@ | |||||
#include "graph/load/graph_loader.h" | #include "graph/load/graph_loader.h" | ||||
#include "init/gelib.h" | #include "init/gelib.h" | ||||
#include "framework/common/ge_inner_error_codes.h" | #include "framework/common/ge_inner_error_codes.h" | ||||
#include "model/ge_model.h" | |||||
namespace { | namespace { | ||||
const uint32_t kDeviceListIndex = 3; | const uint32_t kDeviceListIndex = 3; | ||||
@@ -42,6 +43,10 @@ const std::map<ProfCommandHandleType, std::string> kProfCommandTypeMap = { | |||||
{kProfCommandhandleFinalize, kProfilingFinalize}, | {kProfCommandhandleFinalize, kProfilingFinalize}, | ||||
{kProfCommandhandleModelSubscribe, kProfModelSubscribe}, | {kProfCommandhandleModelSubscribe, kProfModelSubscribe}, | ||||
{kProfCommandhandleModelUnsubscribe, kProfModelUnsubscribe}}; | {kProfCommandhandleModelUnsubscribe, kProfModelUnsubscribe}}; | ||||
const uint64_t kModelId = ge::INVALID_MODEL_ID; | |||||
const uint16_t kStepStart = 0; | |||||
const uint16_t kStepEnd = 1; | |||||
} // namespace | } // namespace | ||||
bool TransProfConfigToParam(const ProfCommandHandleData &profCommand, vector<string> &prof_config_params) { | bool TransProfConfigToParam(const ProfCommandHandleData &profCommand, vector<string> &prof_config_params) { | ||||
@@ -216,3 +221,36 @@ ge::Status ProfCommandHandle(ProfCommandHandleType type, void *data, uint32_t le | |||||
return ge::SUCCESS; | return ge::SUCCESS; | ||||
} | } | ||||
ge::Status ProfSetStepInfo(uint64_t index_id, uint16_t tag_id, rtStream_t stream) { | |||||
static bool is_first_run = true; | |||||
int32_t device_id = 0; | |||||
rtError_t rt_ret = rtGetDevice(&device_id); | |||||
if (rt_ret != RT_ERROR_NONE) { | |||||
GELOGE(rt_ret, "[Get][LogicDeviceId]Failed, ret 0x%X", rt_ret); | |||||
REPORT_CALL_ERROR("E19999", "Get logic device id failed, ret 0x%X", rt_ret); | |||||
return ge::FAILED; | |||||
} | |||||
if (is_first_run && tag_id == kStepStart) { | |||||
GE_CHK_STATUS_RET_NOLOG(ge::ProfilingManager::Instance().ProfileStepInfo(index_id, | |||||
kModelId, | |||||
tag_id, | |||||
stream, | |||||
device_id)); | |||||
is_first_run = false; | |||||
return ge::SUCCESS; | |||||
} | |||||
if (!is_first_run && tag_id == kStepEnd) { | |||||
GE_CHK_STATUS_RET_NOLOG(ge::ProfilingManager::Instance().ProfileStepInfo(index_id, | |||||
kModelId, | |||||
tag_id, | |||||
stream, | |||||
device_id)); | |||||
is_first_run = true; | |||||
return ge::SUCCESS; | |||||
} | |||||
GELOGE(ge::FAILED, "Param tag_id:%u invalid when is_first_run is %d", tag_id, is_first_run); | |||||
REPORT_INPUT_ERROR("E10001", std::vector<std::string>({"value", "parameter", "reason"}), | |||||
std::vector<std::string>({std::to_string(tag_id), "tag_id", | |||||
"tag id must be 0 when first run, must be 1 when second run"})); | |||||
return ge::FAILED; | |||||
} |
@@ -1,193 +0,0 @@ | |||||
syntax = "proto3"; | |||||
package ge.proto; | |||||
enum DataType | |||||
{ | |||||
DT_UNDEFINED = 0; // Used to indicate a DataType field has not been set. | |||||
DT_FLOAT = 1; // float type | |||||
DT_FLOAT16 = 2; // fp16 type | |||||
DT_INT8 = 3; // int8 type | |||||
DT_UINT8 = 4; // uint8 type | |||||
DT_INT16 = 5; // int16 type | |||||
DT_UINT16 = 6; // uint16 type | |||||
DT_INT32 = 7; // | |||||
DT_INT64 = 8; // int64 type | |||||
DT_UINT32 = 9; // unsigned int32 | |||||
DT_UINT64 = 10; // unsigned int64 | |||||
DT_BOOL = 11; // bool type | |||||
DT_DOUBLE = 12; // double type | |||||
DT_STRING = 13; // string type | |||||
DT_DUAL_SUB_INT8 = 14; /**< dual output int8 type */ | |||||
DT_DUAL_SUB_UINT8 = 15; /**< dual output uint8 type */ | |||||
DT_COMPLEX64 = 16; // complex64 type | |||||
DT_COMPLEX128 = 17; // complex128 type | |||||
DT_QINT8 = 18; // qint8 type | |||||
DT_QINT16 = 19; // qint16 type | |||||
DT_QINT32 = 20; // qint32 type | |||||
DT_QUINT8 = 21; // quint8 type | |||||
DT_QUINT16 = 22; // quint16 type | |||||
DT_RESOURCE = 23; // resource type | |||||
DT_STRING_REF = 24; // string_ref type | |||||
DT_DUAL = 25; /**< dual output type */ | |||||
DT_VARIANT = 26; // variant type | |||||
DT_BF16 = 27; // bf16 type | |||||
DT_INT4 = 28; // int4 type | |||||
} | |||||
message AttrDef | |||||
{ | |||||
message ListValue | |||||
{ | |||||
enum ListValueType{ | |||||
VT_LIST_NONE = 0; | |||||
VT_LIST_STRING = 1; | |||||
VT_LIST_INT = 2; | |||||
VT_LIST_FLOAT = 3; | |||||
VT_LIST_BOOL = 4; | |||||
VT_LIST_BYTES = 5; | |||||
VT_LIST_TENSOR_DESC = 6; | |||||
VT_LIST_TENSOR = 7; | |||||
VT_LIST_GRAPH = 8; | |||||
VT_LIST_NAMED_ATTRS = 9; | |||||
VT_LIST_DATA_TYPE = 10; | |||||
} | |||||
repeated bytes s = 2; // "list(string)" | |||||
repeated int64 i = 3; // "list(int)" | |||||
repeated float f = 4; // "list(float)" | |||||
repeated bool b = 5; // "list(bool)" | |||||
repeated bytes bt = 7; | |||||
repeated TensorDescriptor td = 8; | |||||
repeated TensorDef t = 9; | |||||
repeated GraphDef g = 10; | |||||
repeated NamedAttrs na = 11; | |||||
repeated int64 dt = 12; // list ge::DataType | |||||
ListValueType val_type = 20; | |||||
} | |||||
message ListListInt{ | |||||
message ListInt{ | |||||
repeated int64 list_i = 1; // list int | |||||
} | |||||
repeated ListInt list_list_i = 1; // list list int | |||||
} | |||||
oneof value | |||||
{ | |||||
bytes s = 2; // "string" | |||||
int64 i = 3; // "int" | |||||
float f = 4; // "float" | |||||
bool b = 5; // "bool" | |||||
bytes bt = 7; | |||||
ListValue list = 1; // any "list(...)" | |||||
NamedAttrs func = 10; // Used to support attr nesting | |||||
TensorDescriptor td = 11; // GeTensorDesc type | |||||
TensorDef t = 12; // GeTensor type | |||||
GraphDef g = 13; // Graph type | |||||
ListListInt list_list_int = 14; // List List Int type | |||||
int64 dt = 15; // ge::DataType | |||||
} | |||||
} | |||||
// A list of attr names and their values. The whole list is attached | |||||
// with a string name. E.g., MatMul[T=float]. | |||||
message NamedAttrs | |||||
{ | |||||
string name = 1; | |||||
map<string, AttrDef> attr = 2; | |||||
} | |||||
// Shape / dimension description, using row-major order | |||||
message ShapeDef | |||||
{ | |||||
repeated int64 dim = 1; // Size of each dimension | |||||
} | |||||
// Multidimensional data description | |||||
message TensorDescriptor | |||||
{ | |||||
string name = 1; // Optional parameter, tensor name | |||||
DataType dtype = 2; // tensor datatype | |||||
ShapeDef shape = 3; // Shape / dimension | |||||
string layout = 4; // Tensor format, eg: "NCHW", "NHWC", "CHW", "ND" | |||||
bool has_out_attr = 9; | |||||
int64 size = 10; | |||||
int64 weight_size = 11; | |||||
bool reuse_input = 12; | |||||
bool output_tensor = 13; | |||||
string device_type = 14; | |||||
bool input_tensor =15; | |||||
int64 real_dim_cnt = 16; | |||||
int64 reuse_input_index = 17; | |||||
int64 data_offset = 18; | |||||
int64 cmps_size = 19; | |||||
string cmps_tab = 20; | |||||
int64 cmps_tab_offset = 21; | |||||
map<string, AttrDef> attr = 5; // Set of extra parameter fields | |||||
} | |||||
// GeTensor definition | |||||
message TensorDef | |||||
{ | |||||
TensorDescriptor desc = 1; // Tensor description | |||||
bytes data = 2; // Tensor data | |||||
} | |||||
// Operator description | |||||
message OpDef | |||||
{ | |||||
string name = 1; // name | |||||
string type = 2; // type | |||||
repeated string input = 5; // input original op name + outgoing index. op_name:index | |||||
map<string, AttrDef> attr = 10; // Set of operator parameter fields | |||||
bool has_out_attr = 20; | |||||
int64 id = 21; | |||||
int64 stream_id =22; | |||||
repeated string input_name = 23; | |||||
repeated string src_name = 24; | |||||
repeated int64 src_index = 25; | |||||
repeated string dst_name = 26; | |||||
repeated int64 dst_index = 27; | |||||
repeated int64 input_i = 28; | |||||
repeated int64 output_i = 29; | |||||
repeated int64 workspace = 30; | |||||
repeated int64 workspace_bytes = 31; | |||||
repeated bool is_input_const = 32; | |||||
repeated TensorDescriptor input_desc = 33; | |||||
repeated TensorDescriptor output_desc = 34; | |||||
repeated string subgraph_name = 35; | |||||
} | |||||
// Graph definition | |||||
message GraphDef | |||||
{ | |||||
string name = 1; // name | |||||
repeated string input = 4; // Graph input | |||||
repeated string output = 5; // Graph output | |||||
repeated OpDef op = 6; // List of operators | |||||
map<string, AttrDef> attr = 11; // Extended field | |||||
} | |||||
// model definition | |||||
message ModelDef | |||||
{ | |||||
string name = 1; // name | |||||
uint32 version = 2; // IR Proto verion | |||||
string custom_version = 3; // User model version number, passed in by user | |||||
repeated GraphDef graph = 7; // Graph definition,graph[0] represents the main diagram in modeldef | |||||
map<string, AttrDef> attr = 11; // Extended field | |||||
} | |||||
@@ -1,140 +0,0 @@ | |||||
syntax = "proto3"; | |||||
package domi; | |||||
message InsertNewOps { | |||||
repeated AippOpParams aipp_op = 1; | |||||
repeated MultiShapeOpParams multi_shape_op = 2; | |||||
} | |||||
message AippOpParams { | |||||
enum InputFormat { | |||||
UNDEFINED = 0; | |||||
YUV420SP_U8 = 1; | |||||
XRGB8888_U8 = 2; | |||||
RGB888_U8 = 3; | |||||
YUV400_U8 = 4; | |||||
NC1HWC0DI_FP16 = 5; | |||||
NC1HWC0DI_S8 = 6; | |||||
ARGB8888_U8 = 7; | |||||
YUYV_U8 = 8; | |||||
YUV422SP_U8 = 9; | |||||
AYUV444_U8 = 10; | |||||
RAW10 = 11; | |||||
RAW12 = 12; | |||||
RAW16 = 13; | |||||
RAW24 = 14; | |||||
RGB16 = 15; | |||||
RGB20 = 16; | |||||
RGB24 = 17; | |||||
RGB8_IR = 18; | |||||
RGB16_IR = 19; | |||||
RGB24_IR = 20; | |||||
} | |||||
enum AippMode { | |||||
undefined = 0; | |||||
static = 1; | |||||
dynamic = 2; | |||||
} | |||||
// AIPP模式,区分静态AIPP和动态AIPP | |||||
AippMode aipp_mode = 1; | |||||
// related_input_rank参数为必填,类型为整型,配置范围>=0, <=输入Data算子的个数,默认值为0。 | |||||
// 标识对模型的第几个输入做AIPP处理,例如模型有两个输入,需要对第2个输入做AIPP,则配置related_input_rank为1。 | |||||
uint32 related_input_rank = 2; | |||||
// related_input_name is optional and the top name of data node which inserts aipp | |||||
string related_input_name = 6; | |||||
// input_edge_idx参数为可选,类型为整型,配置范围为>=0。 | |||||
// 配置该参数的作用,在于对Data算子不同的输出做不同的AIPP处理,如果该参数没有配置,默认对related_input_rank指定的模型输入的所有输出边做AIPP。 | |||||
// 配置值 <= Data算子输出边的个数。 | |||||
repeated uint32 input_edge_idx = 3; | |||||
// [Begin] 动态AIPP参数,配置静态AIPP时无效 | |||||
uint32 max_src_image_size = 4; | |||||
// 是否支持旋转。默认不支持,开启支持旋转时,会有额外的空间和性能损失 | |||||
bool support_rotation = 5; | |||||
// [End] 动态AIPP参数 | |||||
// [Begin] 静态AIPP参数,配置动态AIPP时无效 | |||||
InputFormat input_format = 51; | |||||
bool csc_switch = 52; | |||||
float cpadding_value = 53; | |||||
bool rbuv_swap_switch = 54; | |||||
bool ax_swap_switch = 55; | |||||
bool single_line_mode = 56; | |||||
int32 src_image_size_w = 57; | |||||
int32 src_image_size_h = 58; | |||||
bool crop = 59; | |||||
int32 load_start_pos_w = 60; | |||||
int32 load_start_pos_h = 61; | |||||
int32 crop_size_w = 62; | |||||
int32 crop_size_h = 63; | |||||
bool resize = 64; | |||||
int32 resize_output_w = 65; | |||||
int32 resize_output_h = 66; | |||||
bool padding = 67; | |||||
int32 left_padding_size = 68; | |||||
int32 right_padding_size = 69; | |||||
int32 top_padding_size = 70; | |||||
int32 bottom_padding_size = 71; | |||||
float padding_value = 72; | |||||
int32 mean_chn_0 = 10; | |||||
int32 mean_chn_1 = 11; | |||||
int32 mean_chn_2 = 12; | |||||
int32 mean_chn_3 = 19; | |||||
float min_chn_0 = 13; | |||||
float min_chn_1 = 14; | |||||
float min_chn_2 = 15; | |||||
float min_chn_3 = 20; | |||||
repeated float var_reci_chn_0 = 16; | |||||
repeated float var_reci_chn_1 = 17; | |||||
repeated float var_reci_chn_2 = 18; | |||||
repeated float var_reci_chn_3 = 21; | |||||
repeated int32 matrix_r0c0 = 30; | |||||
repeated int32 matrix_r0c1 = 31; | |||||
repeated int32 matrix_r0c2 = 32; | |||||
repeated int32 matrix_r1c0 = 33; | |||||
repeated int32 matrix_r1c1 = 34; | |||||
repeated int32 matrix_r1c2 = 35; | |||||
repeated int32 matrix_r2c0 = 36; | |||||
repeated int32 matrix_r2c1 = 37; | |||||
repeated int32 matrix_r2c2 = 38; | |||||
repeated int32 output_bias_0 = 39; | |||||
repeated int32 output_bias_1 = 40; | |||||
repeated int32 output_bias_2 = 41; | |||||
repeated int32 input_bias_0 = 42; | |||||
repeated int32 input_bias_1 = 43; | |||||
repeated int32 input_bias_2 = 44; | |||||
// [End] 静态AIPP参数 | |||||
// The n number that is used for raw/rgbir data into f16 transformation. | |||||
// The transformation equation is x/(2^n). If set to 0, no transform is performed. | |||||
uint32 raw_rgbir_to_f16_n = 45; | |||||
} | |||||
message MultiShapeOpParams { | |||||
enum MultiShapeMode { | |||||
batch = 0; //动态batch | |||||
resolution = 1; //动态分辨率,扩展用 | |||||
} | |||||
MultiShapeMode mode = 1; //算子模式 | |||||
uint32 related_input_rank = 2; //新增算子插入到哪个输入 | |||||
repeated uint32 batch_list = 11; //batch_list值,batch_list的个数是2到8之间 | |||||
} |
@@ -1,396 +0,0 @@ | |||||
/* Copyright (C) 2018. Huawei Technologies Co., Ltd. All rights reserved. | |||||
* | |||||
* This program is free software; you can redistribute it and/or modify | |||||
* it under the terms of the Apache License Version 2.0.You may not use this file except in compliance with the License. | |||||
* | |||||
* This program is distributed in the hope that it will be useful, | |||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||||
* Apache License for more details at | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi; | |||||
enum TargetType | |||||
{ | |||||
MINI = 0; | |||||
TINY = 1; | |||||
LITE = 2; | |||||
} | |||||
// offline model | |||||
message ModelDef { | |||||
string name = 1; | |||||
uint32 version = 2; | |||||
uint64 memory_size = 10; | |||||
uint32 stream_num = 11; | |||||
uint32 event_num = 12; | |||||
uint64 weight_size = 13; | |||||
uint32 label_num = 15; | |||||
repeated OpDef op = 20; | |||||
TargetType target_type = 23; | |||||
map<string, AttrDef> attr = 30; | |||||
}; | |||||
// operator define | |||||
message OpDef { | |||||
string name = 1; | |||||
string type = 2; | |||||
uint32 id = 3; | |||||
uint32 stream_id = 4; | |||||
repeated string input_name = 5; | |||||
repeated string src_name = 8; | |||||
repeated int32 src_index = 9; | |||||
repeated int64 input = 10; | |||||
repeated int64 output = 11; | |||||
repeated TensorDescriptor input_desc = 12; | |||||
repeated TensorDescriptor output_desc = 13; | |||||
repeated WeightDef weights = 14; | |||||
repeated string dst_name = 15; | |||||
repeated int32 dst_index = 16; | |||||
repeated int64 workspace = 20; | |||||
repeated uint32 workspace_bytes = 21; | |||||
repeated string weight_name = 22; | |||||
repeated bool is_input_const = 23; | |||||
map<string, AttrDef> attr = 30; | |||||
QuantizeFactorParams quantize_factor = 31; | |||||
oneof op_params { | |||||
// start at 100 here | |||||
SendOpParams sender_param = 100; | |||||
RecvOpParams receiver_param = 200; | |||||
ConvolutionOpParams convolution_param = 300; | |||||
PoolingOpParams pooling_param = 400; | |||||
EltwiseOpParams eltwise_param = 500; | |||||
BatchNormOpParams batchnorm_param = 600; | |||||
ScaleOpParams scale_param = 700; | |||||
FullConnectionOpParams full_connection_param = 800; | |||||
SoftmaxOpParams softmax_param = 900; | |||||
ActivationOpParams activation_param = 1000; | |||||
ReshapeOpParams reshape_param = 1100; | |||||
} | |||||
}; | |||||
message SendOpParams { | |||||
uint32 event_id = 1; | |||||
}; | |||||
message RecvOpParams { | |||||
uint32 event_id = 1; | |||||
}; | |||||
enum QuantizeScaleType | |||||
{ | |||||
VECTOR_SCALE = 0; | |||||
SCALAR_SCALE = 1; | |||||
} | |||||
enum QuantizeScaleMode | |||||
{ | |||||
NORMAL_MODE = 0; | |||||
SQRT_MODE = 1; | |||||
} | |||||
enum QuantizeAlgorithm | |||||
{ | |||||
NON_OFFSET_ALGO = 0; | |||||
HALF_OFFSET_ALGO = 1; | |||||
ALL_OFFSET_ALGO = 2; | |||||
} | |||||
message QuantizeFactor | |||||
{ | |||||
QuantizeScaleMode scale_mode = 1; | |||||
bytes scale_value = 2; | |||||
int64 scale_offset = 3; | |||||
bytes offset_data_value = 4; | |||||
int64 offset_data_offset = 5; | |||||
bytes offset_weight_value = 6; | |||||
int64 offset_weight_offset = 7; | |||||
bytes offset_pad_value = 8; | |||||
int64 offset_pad_offset = 9; | |||||
}; | |||||
message QuantizeCalcFactor | |||||
{ | |||||
bytes offsetw = 1; | |||||
int64 offsetw_offset = 2; | |||||
bytes offsetd = 3; | |||||
int64 offsetd_offset = 4; | |||||
bytes scalereq = 5; | |||||
int64 scaledreq_offset = 6; | |||||
bytes offsetdnext = 7; | |||||
int64 offsetdnext_offset = 8; | |||||
} | |||||
message QuantizeFactorParams | |||||
{ | |||||
QuantizeAlgorithm quantize_algo = 1; | |||||
QuantizeScaleType scale_type = 2; | |||||
QuantizeFactor quantize_param = 3; | |||||
QuantizeFactor dequantize_param = 4; | |||||
QuantizeFactor requantize_param = 5; | |||||
QuantizeCalcFactor quantizecalc_param = 6; | |||||
}; | |||||
message ConvolutionOpParams { | |||||
int32 mode = 1; | |||||
int32 algo = 2; | |||||
int32 pad_mode = 3; | |||||
uint32 group = 4; | |||||
uint32 num_output = 5; | |||||
repeated uint32 pad = 10; | |||||
repeated uint32 stride = 11; | |||||
repeated uint32 dilation = 12; | |||||
repeated uint32 kernel = 13; | |||||
float alpha = 20; | |||||
float beta = 21; | |||||
WeightDef filter = 40; | |||||
WeightDef bias = 41; | |||||
bool relu_flag = 62; | |||||
repeated uint32 adj = 70; | |||||
repeated uint32 target_shape = 71; | |||||
repeated uint32 before_pad = 72; | |||||
}; | |||||
message PoolingOpParams { | |||||
int32 mode = 1; | |||||
int32 nan_opt = 2; | |||||
int32 pad_mode = 3; | |||||
bool global_pooling = 4; | |||||
repeated uint32 window = 10; | |||||
repeated uint32 pad = 11; | |||||
repeated uint32 stride = 12; | |||||
bool ceil_mode = 13; | |||||
int32 data_mode = 14; | |||||
float alpha = 20; | |||||
float beta = 21; | |||||
repeated uint32 before_pad = 22; | |||||
}; | |||||
message EltwiseOpParams { | |||||
int32 mode = 1; | |||||
repeated float coeff = 2; | |||||
float alpha = 3; | |||||
float beta = 4; | |||||
repeated WeightDef weight = 5; | |||||
bool relu_flag = 6; | |||||
}; | |||||
message ActivationOpParams { | |||||
int32 mode = 1; | |||||
float coef = 2; | |||||
float alpha = 3; | |||||
float beta = 4; | |||||
}; | |||||
message BatchNormOpParams { | |||||
int32 mode = 1; | |||||
float alpha = 2; | |||||
float beta = 3; | |||||
double epsilon = 4;//optinal,[default = 1e-5] | |||||
bool use_global_stats = 5; //optinal,by default true,testing mode | |||||
float moving_average_fraction = 6; //optinal,[default = .999]; | |||||
WeightDef estimated_mean = 7; | |||||
WeightDef estimated_variance = 8; | |||||
WeightDef scale = 9; | |||||
WeightDef bias = 10; | |||||
}; | |||||
message ScaleOpParams { | |||||
WeightDef scale = 1; | |||||
WeightDef bias = 2; | |||||
}; | |||||
message ReshapeOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
ShapeDef shape = 3; | |||||
int32 axis = 4; | |||||
int32 num_axes = 5; | |||||
int32 format = 6; | |||||
}; | |||||
message SoftmaxOpParams { | |||||
int32 algo = 1; | |||||
int32 mode = 2; | |||||
float alpha = 3; | |||||
float beta = 4; | |||||
}; | |||||
message FullConnectionOpParams { | |||||
WeightDef filter = 1; | |||||
WeightDef bias = 2; | |||||
uint32 num_output = 3; | |||||
bool relu_flag = 12; | |||||
}; | |||||
message FlattenOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
int32 start_axis = 3; | |||||
int32 end_axis = 4; | |||||
} | |||||
message AddLimitedOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
int32 axis = 3; | |||||
bool broadcast = 4; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message MulLimitedOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
int32 axis = 3; | |||||
bool broadcast = 4; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message AddOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message MulOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message SubOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message BiasAddOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
WeightDef bias = 10; | |||||
}; | |||||
message MatMulOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
bool transposeX = 3; | |||||
bool transposeW = 4; | |||||
WeightDef filter = 10; | |||||
WeightDef bias = 12; | |||||
}; | |||||
message RsqrtOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
}; | |||||
message WeightDef { | |||||
int32 format = 1; | |||||
int32 data_type = 2; | |||||
ShapeDef shape = 3; | |||||
bytes data = 4; | |||||
int64 data_offset = 5; | |||||
uint32 cmps_size = 6; | |||||
bytes cmps_tab = 7; | |||||
int64 cmps_tab_offset = 10; | |||||
CompressInfo cmps_info = 8; | |||||
AllOffsetQuantizeInfo alloffset_quantize_info = 11; | |||||
} | |||||
message ShapeDef { | |||||
repeated int64 dim = 1; | |||||
} | |||||
enum DeviceType { | |||||
NPU = 0; // In default, we will use NPU. | |||||
CPU = 1; // CPU | |||||
} | |||||
message AllOffsetQuantizeInfo { | |||||
float scale = 1; | |||||
int32 offset = 2; | |||||
} | |||||
message TensorDescriptor { | |||||
int32 format = 1; | |||||
int32 data_type = 2; | |||||
repeated int64 dim = 3; | |||||
uint32 size = 4; | |||||
bool reuse_input = 5; | |||||
bool output_tensor = 7; | |||||
DeviceType device_type = 8; | |||||
bool input_tensor = 9; | |||||
uint32 real_dim_cnt = 10; | |||||
uint32 reuse_input_index = 11; | |||||
AllOffsetQuantizeInfo alloffset_quantize_info = 12; | |||||
} | |||||
message CompressInfo { | |||||
int32 blockRow = 1; // block row | |||||
int32 blockCol = 2; // block col | |||||
int32 fractalK = 3; // fractal K | |||||
int32 fractalN = 4; // fractal N | |||||
int32 lastFractalK = 5; // K of last fractal | |||||
int32 lastFractalN = 6; // N of last fractal | |||||
int32 cubeSize = 7; // cube's length | |||||
int32 loadDir = 8; // data load directtiono 0:col load 1:row load | |||||
} | |||||
message AttrDef { | |||||
message ListValue { | |||||
repeated string s = 2; // "list(string)" | |||||
repeated int64 i = 3 [packed = true]; // "list(int)" | |||||
repeated float f = 4 [packed = true]; // "list(float)" | |||||
repeated bool b = 5 [packed = true]; // "list(bool)" | |||||
repeated uint32 u = 6 [packed = true]; // "list(uint)" | |||||
repeated bytes bt = 7; | |||||
} | |||||
oneof value { | |||||
string s = 2; // "string" | |||||
int64 i = 3; // "int" | |||||
float f = 4; // "float" | |||||
bool b = 5; // "bool" | |||||
uint32 u = 6; // "uint32" | |||||
bytes bt = 7; | |||||
ListValue list = 1; // any "list(...)" | |||||
NamedAttrs func = 10; | |||||
} | |||||
} | |||||
// A list of attr names and their values. The whole list is attached | |||||
// with a string name. E.g., MatMul[T=float]. | |||||
message NamedAttrs { | |||||
string name = 1; | |||||
map<string, AttrDef> attr = 2; | |||||
} | |||||
@@ -1,75 +0,0 @@ | |||||
syntax = "proto3"; | |||||
package toolkit.aicpu.dump; | |||||
message Shape { | |||||
repeated uint64 dim = 1; | |||||
} | |||||
message Output { | |||||
int32 data_type = 1; | |||||
int32 format = 2; | |||||
Shape shape = 3; | |||||
uint64 address = 4; | |||||
string original_name = 5; | |||||
int32 original_output_index = 6; | |||||
int32 original_output_data_type = 7; | |||||
int32 original_output_format = 8; | |||||
uint64 size = 9; | |||||
Shape origin_shape = 10; | |||||
} | |||||
message Input { | |||||
int32 data_type =1; | |||||
int32 format = 2; | |||||
Shape shape = 3; | |||||
uint64 address = 4; | |||||
uint64 size = 5; | |||||
Shape origin_shape = 6; | |||||
} | |||||
enum BufferType { | |||||
L1 = 0; | |||||
} | |||||
message OpBuffer { | |||||
BufferType buffer_type = 1; | |||||
uint64 address = 2; | |||||
uint64 size = 3; | |||||
} | |||||
message Op { | |||||
string op_name = 1; | |||||
string op_type = 2; | |||||
} | |||||
message Task { | |||||
uint32 task_id = 1; | |||||
uint32 stream_id = 2; | |||||
Op op = 3; | |||||
repeated Output output = 4; | |||||
bool end_graph = 5; | |||||
repeated Input input = 6; | |||||
repeated OpBuffer buffer = 7; | |||||
} | |||||
message OpMappingInfo { | |||||
string dump_path = 1; | |||||
oneof model_name_param { | |||||
string model_name = 2; | |||||
} | |||||
oneof model_id_param { | |||||
uint32 model_id = 3; | |||||
} | |||||
oneof step_id { | |||||
uint64 step_id_addr = 4; | |||||
} | |||||
oneof iterations_per_loop { | |||||
uint64 iterations_per_loop_addr = 5; | |||||
} | |||||
oneof loop_cond { | |||||
uint64 loop_cond_addr = 6; | |||||
} | |||||
uint32 flag = 7; // 0x01 load, 0x00 unload | |||||
repeated Task task = 8; | |||||
string dump_step = 9; | |||||
} |
@@ -1,179 +0,0 @@ | |||||
/* Copyright (C) 2018. Huawei Technologies Co., Ltd. All rights reserved. | |||||
* | |||||
* This program is free software; you can redistribute it and/or modify | |||||
* it under the terms of the Apache License Version 2.0.You may not use this file except in compliance with the License. | |||||
* | |||||
* This program is distributed in the hope that it will be useful, | |||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||||
* Apache License for more details at | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi; | |||||
message ModelTaskDef { | |||||
string version = 1; | |||||
map<string, string> attr = 9; // Extended field | |||||
repeated TaskDef task = 10; | |||||
uint64 memory_size = 11; | |||||
uint32 stream_num = 12; | |||||
uint32 event_num = 13; | |||||
uint64 weight_size = 14; | |||||
repeated bytes op = 15; // input/output opdef in bytes | |||||
uint64 base_addr = 16; // base addr | |||||
uint64 weight_addr = 17; // weight addr | |||||
uint32 batch_num = 18; | |||||
} | |||||
message TaskDef { | |||||
uint32 id = 1; | |||||
uint32 type = 2; | |||||
uint32 stream_id = 10; | |||||
uint32 event_id = 11; | |||||
KernelDef kernel = 20; | |||||
KernelExDef kernel_ex = 21; | |||||
KernelHcclDef kernel_hccl = 25; | |||||
EventExDef event_ex = 26; | |||||
LogTimeStampDef log_timestamp = 28; | |||||
uint32 label_id = 30; | |||||
MemcpyAsyncDef memcpy_async = 31; | |||||
StreamSwitchDef stream_switch = 32; | |||||
StreamActiveDef stream_active = 33; | |||||
bytes private_def = 34; | |||||
uint64 ops_kernel_store_ptr = 35; // adjustments to other fields in the future | |||||
StreamSwitchNDef stream_switch_n = 36; | |||||
LabelSetDef label_set = 37; | |||||
LabelGotoExDef label_goto_ex = 38; | |||||
LabelSwitchByIndexDef label_switch_by_index = 39; | |||||
KernelDefWithHandle kernel_with_handle = 40; | |||||
} | |||||
message KernelDef { | |||||
KernelContext context = 1; | |||||
string stub_func = 10; | |||||
uint32 block_dim = 11; | |||||
uint32 args_size = 12; | |||||
bytes args = 13; | |||||
bytes sm_desc = 14; | |||||
bytes flowtable = 15; | |||||
string so_name = 16; | |||||
string kernel_name = 17; | |||||
bytes kernel_ext_info = 18; | |||||
uint32 kernel_ext_info_size = 19; | |||||
} | |||||
message KernelDefWithHandle { | |||||
KernelContext context = 1; | |||||
uint64 handle = 10; | |||||
string dev_func = 11; | |||||
uint32 block_dim = 12; | |||||
uint32 args_size = 13; | |||||
bytes args = 14; | |||||
bytes sm_desc = 15; | |||||
string original_kernel_key = 16; | |||||
string node_info = 17; | |||||
} | |||||
message KernelContext { | |||||
uint32 kernel_type = 1; | |||||
uint32 op_id = 2; // OP type in CCE | |||||
uint32 kernel_func_id = 3; | |||||
uint32 op_index = 4; // TE/Custom operator | |||||
bool is_flowtable = 5; // Identify whether args is a flowtable structure | |||||
bytes args_offset = 6; // args offset information | |||||
uint32 args_count = 7; // args count | |||||
repeated uint32 origin_op_index = 8; | |||||
} | |||||
message KernelExDef { | |||||
uint32 flags = 1; | |||||
uint32 op_index = 4; | |||||
uint32 args_size = 12; | |||||
bytes args = 13; | |||||
bytes task_info = 14; // serialized nodeDef, funcDef, inputoutput | |||||
uint32 task_info_size = 15; | |||||
bytes kernel_ext_info = 16; | |||||
uint32 kernel_ext_info_size = 17; | |||||
} | |||||
message KernelHcclDef { | |||||
uint32 op_index = 8; | |||||
string hccl_type = 9; | |||||
} | |||||
message EventExDef { | |||||
uint32 op_index = 1; | |||||
uint32 event_type = 2; | |||||
} | |||||
message LogTimeStampDef { | |||||
uint64 logid = 1; | |||||
bool notify = 2; | |||||
uint32 flat = 3; | |||||
} | |||||
message MemcpyAsyncDef { | |||||
uint64 dst = 1; | |||||
uint64 dst_max = 2; | |||||
uint64 src = 3; | |||||
uint64 count = 4; | |||||
uint32 kind = 5; | |||||
uint32 op_index = 6; | |||||
} | |||||
message StreamSwitchDef { | |||||
uint32 op_index = 1; | |||||
uint32 true_stream_id = 2; | |||||
int64 value = 3; | |||||
uint64 value_ptr = 4; | |||||
uint32 data_type = 5; | |||||
} | |||||
message StreamActiveDef { | |||||
uint32 op_index = 1; | |||||
uint32 active_stream_id = 2; | |||||
} | |||||
message StreamSwitchNDef { | |||||
uint32 op_index = 1; | |||||
uint32 size = 2; | |||||
repeated int64 target_value = 3; | |||||
repeated uint32 true_stream_id = 4; | |||||
uint32 element_size = 5; | |||||
uint32 data_type = 6; | |||||
} | |||||
message LabelSetDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_id = 2; | |||||
uint32 model_id = 3; | |||||
} | |||||
message LabelGotoExDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_id = 2; | |||||
uint32 model_id = 3; | |||||
} | |||||
message LabelSwitchByIndexDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_max = 2; | |||||
} |
@@ -1,70 +0,0 @@ | |||||
/** | |||||
* This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow | |||||
* | |||||
* This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model. | |||||
* This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications"). | |||||
* All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd. | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi.tensorflow; | |||||
option cc_enable_arenas = true; | |||||
option java_outer_classname = "AttrValueProtos"; | |||||
option java_multiple_files = true; | |||||
option java_package = "org.tensorflow.framework"; | |||||
import "tensor.proto"; | |||||
import "tensor_shape.proto"; | |||||
import "types.proto"; | |||||
// Protocol buffer representing the value for an attr used to configure an Op. | |||||
// Comment indicates the corresponding attr type. Only the field matching the | |||||
// attr type may be filled. | |||||
message AttrValue { | |||||
// LINT.IfChange | |||||
message ListValue { | |||||
repeated bytes s = 2; // "list(string)" | |||||
repeated int64 i = 3 [packed = true]; // "list(int)" | |||||
repeated float f = 4 [packed = true]; // "list(float)" | |||||
repeated bool b = 5 [packed = true]; // "list(bool)" | |||||
repeated DataType type = 6 [packed = true]; // "list(type)" | |||||
repeated TensorShapeProto shape = 7; // "list(shape)" | |||||
repeated TensorProto tensor = 8; // "list(tensor)" | |||||
repeated NameAttrList func = 9; // "list(attr)" | |||||
} | |||||
// LINT.ThenChange(https://www.tensorflow.org/code/tensorflow/c/c_api.cc) | |||||
oneof value { | |||||
bytes s = 2; // "string" | |||||
int64 i = 3; // "int" | |||||
float f = 4; // "float" | |||||
bool b = 5; // "bool" | |||||
DataType type = 6; // "type" | |||||
TensorShapeProto shape = 7; // "shape" | |||||
TensorProto tensor = 8; // "tensor" | |||||
ListValue list = 1; // any "list(...)" | |||||
// "func" represents a function. func.name is a function's name or | |||||
// a primitive op's name. func.attr.first is the name of an attr | |||||
// defined for that function. func.attr.second is the value for | |||||
// that attr in the instantiation. | |||||
NameAttrList func = 10; | |||||
// This is a placeholder only used in nodes defined inside a | |||||
// function. It indicates the attr value will be supplied when | |||||
// the function is instantiated. For example, let us suppose a | |||||
// node "N" in function "FN". "N" has an attr "A" with value | |||||
// placeholder = "foo". When FN is instantiated with attr "foo" | |||||
// set to "bar", the instantiated node N's attr A will have been | |||||
// given the value "bar". | |||||
string placeholder = 9; | |||||
} | |||||
} | |||||
// A list of attr names and their values. The whole list is attached | |||||
// with a string name. E.g., MatMul[T=float]. | |||||
message NameAttrList { | |||||
string name = 1; | |||||
map<string, AttrValue> attr = 2; | |||||
} |
@@ -1,108 +0,0 @@ | |||||
/** | |||||
* This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow | |||||
* | |||||
* This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model. | |||||
* This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications"). | |||||
* All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd. | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi.tensorflow; | |||||
option cc_enable_arenas = true; | |||||
option java_outer_classname = "FunctionProtos"; | |||||
option java_multiple_files = true; | |||||
option java_package = "org.tensorflow.framework"; | |||||
import "attr_value.proto"; | |||||
import "node_def.proto"; | |||||
import "op_def.proto"; | |||||
// A library is a set of named functions. | |||||
message FunctionDefLibrary { | |||||
repeated FunctionDef function = 1; | |||||
repeated GradientDef gradient = 2; | |||||
} | |||||
// A function can be instantiated when the runtime can bind every attr | |||||
// with a value. When a GraphDef has a call to a function, it must | |||||
// have binding for every attr defined in the signature. | |||||
// * device spec, etc. | |||||
message FunctionDef { | |||||
// The definition of the function's name, arguments, return values, | |||||
// attrs etc. | |||||
OpDef signature = 1; | |||||
// Attributes specific to this function definition. | |||||
map<string, AttrValue> attr = 5; | |||||
// NOTE: field id 2 deleted on Jan 11, 2017, GraphDef version 21. | |||||
reserved 2; | |||||
// In both of the following fields, there is the need to specify an | |||||
// output that is used as either the input to another node (in | |||||
// `node_def`) or as a return value of the function (in `ret`). | |||||
// Unlike the NodeDefs in GraphDef, we need to be able to specify a | |||||
// list in some cases (instead of just single outputs). Also, we | |||||
// need to be able to deal with lists of unknown length (so the | |||||
// output index may not be known at function definition time). So | |||||
// we use the following format instead: | |||||
// * "fun_in" where "fun_in" is the name of a function input arg in | |||||
// the `signature` field above. This represents that input, whether | |||||
// it is a single tensor or a list. | |||||
// * "fun_in:0" gives the first element of a function input arg (a | |||||
// non-list input is considered a list of length 1 for these | |||||
// purposes). | |||||
// * "node:out" where "node" is the name of a node in `node_def` and | |||||
// "out" is the name one of its op's output arguments (the name | |||||
// comes from the OpDef of the node's op). This represents that | |||||
// node's output, whether it is a single tensor or a list. | |||||
// Note: We enforce that an op's output arguments are never | |||||
// renamed in the backwards-compatibility test. | |||||
// * "node:out:0" gives the first element of a node output arg (a | |||||
// non-list output is considered a list of length 1 for these | |||||
// purposes). | |||||
// | |||||
// NOT CURRENTLY SUPPORTED (but may be in the future): | |||||
// * "node:out:-1" gives last element in a node output list | |||||
// * "node:out:1:" gives a list with all but the first element in a | |||||
// node output list | |||||
// * "node:out::-1" gives a list with all but the last element in a | |||||
// node output list | |||||
// The body of the function. Unlike the NodeDefs in a GraphDef, attrs | |||||
// may have values of type `placeholder` and the `input` field uses | |||||
// the "output" format above. | |||||
// By convention, "op" in node_def is resolved by consulting with a | |||||
// user-defined library first. If not resolved, "func" is assumed to | |||||
// be a builtin op. | |||||
repeated NodeDef node_def = 3; | |||||
// A mapping from the output arg names from `signature` to the | |||||
// outputs from `node_def` that should be returned by the function. | |||||
map<string, string> ret = 4; | |||||
} | |||||
// GradientDef defines the gradient function of a function defined in | |||||
// a function library. | |||||
// | |||||
// A gradient function g (specified by gradient_func) for a function f | |||||
// (specified by function_name) must follow the following: | |||||
// | |||||
// The function 'f' must be a numerical function which takes N inputs | |||||
// and produces M outputs. Its gradient function 'g', which is a | |||||
// function taking N + M inputs and produces N outputs. | |||||
// | |||||
// I.e. if we have | |||||
// (y1, y2, ..., y_M) = f(x1, x2, ..., x_N), | |||||
// then, g is | |||||
// (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N, | |||||
// dL/dy1, dL/dy2, ..., dL/dy_M), | |||||
// where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the | |||||
// loss function). dL/dx_i is the partial derivative of L with respect | |||||
// to x_i. | |||||
message GradientDef { | |||||
string function_name = 1; // The function name. | |||||
string gradient_func = 2; // The gradient function's name. | |||||
} |
@@ -1,64 +0,0 @@ | |||||
/** | |||||
* This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow | |||||
* | |||||
* This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model. | |||||
* This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications"). | |||||
* All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd. | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi.tensorflow; | |||||
option cc_enable_arenas = true; | |||||
option java_outer_classname = "GraphProtos"; | |||||
option java_multiple_files = true; | |||||
option java_package = "org.tensorflow.framework"; | |||||
import "node_def.proto"; | |||||
import "function.proto"; | |||||
import "versions.proto"; | |||||
// Represents the graph of operations | |||||
message GraphDef { | |||||
repeated NodeDef node = 1; | |||||
// Compatibility versions of the graph. See core/public/version.h for version | |||||
// history. The GraphDef version is distinct from the TensorFlow version, and | |||||
// each release of TensorFlow will support a range of GraphDef versions. | |||||
VersionDef versions = 4; | |||||
// Deprecated single version field; use versions above instead. Since all | |||||
// GraphDef changes before "versions" was introduced were forward | |||||
// compatible, this field is entirely ignored. | |||||
int32 version = 3 [deprecated = true]; | |||||
// EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET. | |||||
// | |||||
// "library" provides user-defined functions. | |||||
// | |||||
// Naming: | |||||
// * library.function.name are in a flat namespace. | |||||
// NOTE: We may need to change it to be hierarchical to support | |||||
// different orgs. E.g., | |||||
// { "/google/nn", { ... }}, | |||||
// { "/google/vision", { ... }} | |||||
// { "/org_foo/module_bar", { ... }} | |||||
// map<string, FunctionDefLib> named_lib; | |||||
// * If node[i].op is the name of one function in "library", | |||||
// node[i] is deemed as a function call. Otherwise, node[i].op | |||||
// must be a primitive operation supported by the runtime. | |||||
// | |||||
// | |||||
// Function call semantics: | |||||
// | |||||
// * The callee may start execution as soon as some of its inputs | |||||
// are ready. The caller may want to use Tuple() mechanism to | |||||
// ensure all inputs are ready in the same time. | |||||
// | |||||
// * The consumer of return values may start executing as soon as | |||||
// the return values the consumer depends on are ready. The | |||||
// consumer may want to use Tuple() mechanism to ensure the | |||||
// consumer does not start until all return values of the callee | |||||
// function are ready. | |||||
FunctionDefLibrary library = 2; | |||||
}; |
@@ -1,22 +0,0 @@ | |||||
/** | |||||
* This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow | |||||
* | |||||
* This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model. | |||||
* This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications"). | |||||
* All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd. | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi.tensorflow; | |||||
import "graph.proto"; | |||||
message GeGraphDef { | |||||
string name = 1; | |||||
GraphDef graph = 2; | |||||
} | |||||
message GraphDefLibrary { | |||||
repeated GeGraphDef graph_def = 1; | |||||
}; |
@@ -1,71 +0,0 @@ | |||||
/** | |||||
* This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow | |||||
* | |||||
* This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model. | |||||
* This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications"). | |||||
* All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd. | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi.tensorflow; | |||||
option cc_enable_arenas = true; | |||||
option java_outer_classname = "NodeProto"; | |||||
option java_multiple_files = true; | |||||
option java_package = "org.tensorflow.framework"; | |||||
import "attr_value.proto"; | |||||
message NodeDef { | |||||
// The name given to this operator. Used for naming inputs, | |||||
// logging, visualization, etc. Unique within a single GraphDef. | |||||
// Must match the regexp "[A-Za-z0-9.][A-Za-z0-9_./]*". | |||||
string name = 1; | |||||
// The operation name. There may be custom parameters in attrs. | |||||
// Op names starting with an underscore are reserved for internal use. | |||||
string op = 2; | |||||
// Each input is "node:src_output" with "node" being a string name and | |||||
// "src_output" indicating which output tensor to use from "node". If | |||||
// "src_output" is 0 the ":0" suffix can be omitted. Regular inputs | |||||
// may optionally be followed by control inputs that have the format | |||||
// "^node". | |||||
repeated string input = 3; | |||||
// A (possibly partial) specification for the device on which this | |||||
// node should be placed. | |||||
// The expected syntax for this string is as follows: | |||||
// | |||||
// DEVICE_SPEC ::= PARTIAL_SPEC | |||||
// | |||||
// PARTIAL_SPEC ::= ("/" CONSTRAINT) * | |||||
// CONSTRAINT ::= ("job:" JOB_NAME) | |||||
// | ("replica:" [1-9][0-9]*) | |||||
// | ("task:" [1-9][0-9]*) | |||||
// | ("device:" [A-Za-z]* ":" ([1-9][0-9]* | "*") ) | |||||
// | |||||
// Valid values for this string include: | |||||
// * "/job:worker/replica:0/task:1/device:GPU:3" (full specification) | |||||
// * "/job:worker/device:GPU:3" (partial specification) | |||||
// * "" (no specification) | |||||
// | |||||
// If the constraints do not resolve to a single device (or if this | |||||
// field is empty or not present), the runtime will attempt to | |||||
// choose a device automatically. | |||||
string device = 4; | |||||
// Operation-specific graph-construction-time configuration. | |||||
// Note that this should include all attrs defined in the | |||||
// corresponding OpDef, including those with a value matching | |||||
// the default -- this allows the default to change and makes | |||||
// NodeDefs easier to interpret on their own. However, if | |||||
// an attr with a default is not specified in this list, the | |||||
// default will be used. | |||||
// The "names" (keys) must match the regexp "[a-z][a-z0-9_]+" (and | |||||
// one of the names from the corresponding OpDef's attr field). | |||||
// The values must have a type matching the corresponding OpDef | |||||
// attr's type field. | |||||
// Add some examples here showing best practices. | |||||
map<string, AttrValue> attr = 5; | |||||
}; |
@@ -1,172 +0,0 @@ | |||||
/** | |||||
* This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow | |||||
* | |||||
* This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model. | |||||
* This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications"). | |||||
* All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd. | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi.tensorflow; | |||||
option cc_enable_arenas = true; | |||||
option java_outer_classname = "OpDefProtos"; | |||||
option java_multiple_files = true; | |||||
option java_package = "org.tensorflow.framework"; | |||||
import "attr_value.proto"; | |||||
import "types.proto"; | |||||
// Defines an operation. A NodeDef in a GraphDef specifies an Op by | |||||
// using the "op" field which should match the name of a OpDef. | |||||
// LINT.IfChange | |||||
message OpDef { | |||||
// Op names starting with an underscore are reserved for internal use. | |||||
// Names should be CamelCase and match the regexp "[A-Z][a-zA-Z0-9_]*". | |||||
string name = 1; | |||||
// For describing inputs and outputs. | |||||
message ArgDef { | |||||
// Name for the input/output. Should match the regexp "[a-z][a-z0-9_]*". | |||||
string name = 1; | |||||
// Human readable description. | |||||
string description = 2; | |||||
// Describes the type of one or more tensors that are accepted/produced | |||||
// by this input/output arg. The only legal combinations are: | |||||
// * For a single tensor: either the "type" field is set or the | |||||
// "type_attr" field is set to the name of an attr with type "type". | |||||
// * For a sequence of tensors with the same type: the "number_attr" | |||||
// field will be set to the name of an attr with type "int", and | |||||
// either the "type" or "type_attr" field will be set as for | |||||
// single tensors. | |||||
// * For a sequence of tensors, the "type_list_attr" field will be set | |||||
// to the name of an attr with type "list(type)". | |||||
DataType type = 3; | |||||
string type_attr = 4; // if specified, attr must have type "type" | |||||
string number_attr = 5; // if specified, attr must have type "int" | |||||
// If specified, attr must have type "list(type)", and none of | |||||
// type, type_attr, and number_attr may be specified. | |||||
string type_list_attr = 6; | |||||
// For inputs: if true, the inputs are required to be refs. | |||||
// By default, inputs can be either refs or non-refs. | |||||
// For outputs: if true, outputs are refs, otherwise they are not. | |||||
bool is_ref = 16; | |||||
}; | |||||
// Description of the input(s). | |||||
repeated ArgDef input_arg = 2; | |||||
// Description of the output(s). | |||||
repeated ArgDef output_arg = 3; | |||||
// Description of the graph-construction-time configuration of this | |||||
// Op. That is to say, this describes the attr fields that will | |||||
// be specified in the NodeDef. | |||||
message AttrDef { | |||||
// A descriptive name for the argument. May be used, e.g. by the | |||||
// Python client, as a keyword argument name, and so should match | |||||
// the regexp "[a-z][a-z0-9_]+". | |||||
string name = 1; | |||||
// One of the type names from attr_value.proto ("string", "list(string)", | |||||
// "int", etc.). | |||||
string type = 2; | |||||
// A reasonable default for this attribute if the user does not supply | |||||
// a value. If not specified, the user must supply a value. | |||||
AttrValue default_value = 3; | |||||
// Human-readable description. | |||||
string description = 4; | |||||
// --- Constraints --- | |||||
// These constraints are only in effect if specified. Default is no | |||||
// constraints. | |||||
// For type == "int", this is a minimum value. For "list(___)" | |||||
// types, this is the minimum length. | |||||
bool has_minimum = 5; | |||||
int64 minimum = 6; | |||||
// The set of allowed values. Has type that is the "list" version | |||||
// of the "type" field above (uses the "list" field of AttrValue). | |||||
// If type == "type" or "list(type)" above, then the "type" field | |||||
// of "allowed_values.list" has the set of allowed DataTypes. | |||||
// If type == "string" or "list(string)", then the "s" field of | |||||
// "allowed_values.list" has the set of allowed strings. | |||||
AttrValue allowed_values = 7; | |||||
} | |||||
repeated AttrDef attr = 4; | |||||
// Optional deprecation based on GraphDef versions. | |||||
OpDeprecation deprecation = 8; | |||||
// One-line human-readable description of what the Op does. | |||||
string summary = 5; | |||||
// Additional, longer human-readable description of what the Op does. | |||||
string description = 6; | |||||
// ------------------------------------------------------------------------- | |||||
// Which optimizations this operation can participate in. | |||||
// True if the operation is commutative ("op(a,b) == op(b,a)" for all inputs) | |||||
bool is_commutative = 18; | |||||
// If is_aggregate is true, then this operation accepts N >= 2 | |||||
// inputs and produces 1 output all of the same type. Should be | |||||
// associative and commutative, and produce output with the same | |||||
// shape as the input. The optimizer may replace an aggregate op | |||||
// taking input from multiple devices with a tree of aggregate ops | |||||
// that aggregate locally within each device (and possibly within | |||||
// groups of nearby devices) before communicating. | |||||
bool is_aggregate = 16; // for things like add | |||||
// Other optimizations go here, like | |||||
// can_alias_input, rewrite_when_output_unused, partitioning_strategy, etc. | |||||
// ------------------------------------------------------------------------- | |||||
// Optimization constraints. | |||||
// Ops are marked as stateful if their behavior depends on some state beyond | |||||
// their input tensors (e.g. variable reading op) or if they have | |||||
// a side-effect (e.g. printing or asserting ops). Equivalently, stateless ops | |||||
// must always produce the same output for the same input and have | |||||
// no side-effects. | |||||
// | |||||
// By default Ops may be moved between devices. Stateful ops should | |||||
// either not be moved, or should only be moved if that state can also | |||||
// be moved (e.g. via some sort of save / restore). | |||||
// Stateful ops are guaranteed to never be optimized away by Common | |||||
// Subexpression Elimination (CSE). | |||||
bool is_stateful = 17; // for things like variables, queue | |||||
// ------------------------------------------------------------------------- | |||||
// Non-standard options. | |||||
// By default, all inputs to an Op must be initialized Tensors. Ops | |||||
// that may initialize tensors for the first time should set this | |||||
// field to true, to allow the Op to take an uninitialized Tensor as | |||||
// input. | |||||
bool allows_uninitialized_input = 19; // for Assign, etc. | |||||
}; | |||||
// LINT.ThenChange( | |||||
// https://www.tensorflow.org/code/tensorflow/core/framework/op_def_util.cc) | |||||
// Information about version-dependent deprecation of an op | |||||
message OpDeprecation { | |||||
// First GraphDef version at which the op is disallowed. | |||||
int32 version = 1; | |||||
// Explanation of why it was deprecated and what to use instead. | |||||
string explanation = 2; | |||||
}; | |||||
// A collection of OpDefs | |||||
message OpList { | |||||
repeated OpDef op = 1; | |||||
}; |
@@ -1,37 +0,0 @@ | |||||
/** | |||||
* This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow | |||||
* | |||||
* This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model. | |||||
* This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications"). | |||||
* All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd. | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi.tensorflow; | |||||
option cc_enable_arenas = true; | |||||
option java_outer_classname = "ResourceHandle"; | |||||
option java_multiple_files = true; | |||||
option java_package = "org.tensorflow.framework"; | |||||
// Protocol buffer representing a handle to a tensorflow resource. Handles are | |||||
// not valid across executions, but can be serialized back and forth from within | |||||
// a single run. | |||||
message ResourceHandleProto { | |||||
// Unique name for the device containing the resource. | |||||
string device = 1; | |||||
// Container in which this resource is placed. | |||||
string container = 2; | |||||
// Unique name of this resource. | |||||
string name = 3; | |||||
// Hash code for the type of the resource. Is only valid in the same device | |||||
// and in the same execution. | |||||
uint64 hash_code = 4; | |||||
// For debug-only, the name of the type pointed to by this handle, if | |||||
// available. | |||||
string maybe_type_name = 5; | |||||
}; |
@@ -1,102 +0,0 @@ | |||||
/** | |||||
* This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow | |||||
* | |||||
* This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model. | |||||
* This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications"). | |||||
* All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd. | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi.tensorflow; | |||||
option cc_enable_arenas = true; | |||||
option java_outer_classname = "TensorProtos"; | |||||
option java_multiple_files = true; | |||||
option java_package = "org.tensorflow.framework"; | |||||
import "resource_handle.proto"; | |||||
import "tensor_shape.proto"; | |||||
import "types.proto"; | |||||
// Protocol buffer representing a tensor. | |||||
message TensorProto { | |||||
DataType dtype = 1; | |||||
// Shape of the tensor. | |||||
TensorShapeProto tensor_shape = 2; | |||||
// Only one of the representations below is set, one of "tensor_contents" and | |||||
// the "xxx_val" attributes. We are not using oneof because as oneofs cannot | |||||
// contain repeated fields it would require another extra set of messages. | |||||
// Version number. | |||||
// | |||||
// In version 0, if the "repeated xxx" representations contain only one | |||||
// element, that element is repeated to fill the shape. This makes it easy | |||||
// to represent a constant Tensor with a single value. | |||||
int32 version_number = 3; | |||||
// Serialized raw tensor content from either Tensor::AsProtoTensorContent or | |||||
// memcpy in tensorflow::grpc::EncodeTensorToByteBuffer. This representation | |||||
// can be used for all tensor types. The purpose of this representation is to | |||||
// reduce serialization overhead during RPC call by avoiding serialization of | |||||
// many repeated small items. | |||||
bytes tensor_content = 4; | |||||
// Type specific representations that make it easy to create tensor protos in | |||||
// all languages. Only the representation corresponding to "dtype" can | |||||
// be set. The values hold the flattened representation of the tensor in | |||||
// row major order. | |||||
// DT_HALF, DT_BFLOAT16. Note that since protobuf has no int16 type, we'll | |||||
// have some pointless zero padding for each value here. | |||||
repeated int32 half_val = 13 [packed = true]; | |||||
// DT_FLOAT. | |||||
repeated float float_val = 5 [packed = true]; | |||||
// DT_DOUBLE. | |||||
repeated double double_val = 6 [packed = true]; | |||||
// DT_INT32, DT_INT16, DT_INT8, DT_UINT8. | |||||
repeated int32 int_val = 7 [packed = true]; | |||||
// DT_STRING | |||||
repeated bytes string_val = 8; | |||||
// DT_COMPLEX64. scomplex_val(2*i) and scomplex_val(2*i+1) are real | |||||
// and imaginary parts of i-th single precision complex. | |||||
repeated float scomplex_val = 9 [packed = true]; | |||||
// DT_INT64 | |||||
repeated int64 int64_val = 10 [packed = true]; | |||||
// DT_BOOL | |||||
repeated bool bool_val = 11 [packed = true]; | |||||
// DT_COMPLEX128. dcomplex_val(2*i) and dcomplex_val(2*i+1) are real | |||||
// and imaginary parts of i-th double precision complex. | |||||
repeated double dcomplex_val = 12 [packed = true]; | |||||
// DT_RESOURCE | |||||
repeated ResourceHandleProto resource_handle_val = 14; | |||||
// DT_VARIANT | |||||
repeated VariantTensorDataProto variant_val = 15; | |||||
// DT_UINT32 | |||||
repeated uint32 uint32_val = 16 [packed = true]; | |||||
// DT_UINT64 | |||||
repeated uint64 uint64_val = 17 [packed = true]; | |||||
}; | |||||
// Protocol buffer representing the serialization format of DT_VARIANT tensors. | |||||
message VariantTensorDataProto { | |||||
// Name of the type of objects being serialized. | |||||
string type_name = 1; | |||||
// Portions of the object that are not Tensors. | |||||
bytes metadata = 2; | |||||
// Tensors contained within objects being serialized. | |||||
repeated TensorProto tensors = 3; | |||||
} |
@@ -1,53 +0,0 @@ | |||||
/** | |||||
* This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow | |||||
* | |||||
* This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model. | |||||
* This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications"). | |||||
* All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd. | |||||
*/ | |||||
// Protocol buffer representing the shape of tensors. | |||||
syntax = "proto3"; | |||||
option cc_enable_arenas = true; | |||||
option java_outer_classname = "TensorShapeProtos"; | |||||
option java_multiple_files = true; | |||||
option java_package = "org.tensorflow.framework"; | |||||
package domi.tensorflow; | |||||
// Dimensions of a tensor. | |||||
message TensorShapeProto { | |||||
// One dimension of the tensor. | |||||
message Dim { | |||||
// Size of the tensor in that dimension. | |||||
// This value must be >= -1, but values of -1 are reserved for "unknown" | |||||
// shapes (values of -1 mean "unknown" dimension). Certain wrappers | |||||
// that work with TensorShapeProto may fail at runtime when deserializing | |||||
// a TensorShapeProto containing a dim value of -1. | |||||
int64 size = 1; | |||||
// Optional name of the tensor dimension. | |||||
string name = 2; | |||||
}; | |||||
// Dimensions of the tensor, such as {"input", 30}, {"output", 40} | |||||
// for a 30 x 40 2D tensor. If an entry has size -1, this | |||||
// corresponds to a dimension of unknown size. The names are | |||||
// optional. | |||||
// | |||||
// The order of entries in "dim" matters: It indicates the layout of the | |||||
// values in the tensor in-memory representation. | |||||
// | |||||
// The first entry in "dim" is the outermost dimension used to layout the | |||||
// values, the last entry is the innermost dimension. This matches the | |||||
// in-memory layout of RowMajor Eigen tensors. | |||||
// | |||||
// If "dim.size()" > 0, "unknown_rank" must be false. | |||||
repeated Dim dim = 2; | |||||
// If true, the number of dimensions in the shape is unknown. | |||||
// | |||||
// If true, "dim.size()" must be 0. | |||||
bool unknown_rank = 3; | |||||
}; |
@@ -1,82 +0,0 @@ | |||||
/** | |||||
* This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow | |||||
* | |||||
* This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model. | |||||
* This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications"). | |||||
* All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd. | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi.tensorflow; | |||||
option cc_enable_arenas = true; | |||||
option java_outer_classname = "TypesProtos"; | |||||
option java_multiple_files = true; | |||||
option java_package = "org.tensorflow.framework"; | |||||
// LINT.IfChange | |||||
enum DataType { | |||||
// Not a legal value for DataType. Used to indicate a DataType field | |||||
// has not been set. | |||||
DT_INVALID = 0; | |||||
// Data types that all computation devices are expected to be | |||||
// capable to support. | |||||
DT_FLOAT = 1; | |||||
DT_DOUBLE = 2; | |||||
DT_INT32 = 3; | |||||
DT_UINT8 = 4; | |||||
DT_INT16 = 5; | |||||
DT_INT8 = 6; | |||||
DT_STRING = 7; | |||||
DT_COMPLEX64 = 8; // Single-precision complex | |||||
DT_INT64 = 9; | |||||
DT_BOOL = 10; | |||||
DT_QINT8 = 11; // Quantized int8 | |||||
DT_QUINT8 = 12; // Quantized uint8 | |||||
DT_QINT32 = 13; // Quantized int32 | |||||
DT_BFLOAT16 = 14; // Float32 truncated to 16 bits. Only for cast ops. | |||||
DT_QINT16 = 15; // Quantized int16 | |||||
DT_QUINT16 = 16; // Quantized uint16 | |||||
DT_UINT16 = 17; | |||||
DT_COMPLEX128 = 18; // Double-precision complex | |||||
DT_HALF = 19; | |||||
DT_RESOURCE = 20; | |||||
DT_VARIANT = 21; // Arbitrary C++ data types | |||||
DT_UINT32 = 22; | |||||
DT_UINT64 = 23; | |||||
// Do not use! These are only for parameters. Every enum above | |||||
// should have a corresponding value below (verified by types_test). | |||||
DT_FLOAT_REF = 101; | |||||
DT_DOUBLE_REF = 102; | |||||
DT_INT32_REF = 103; | |||||
DT_UINT8_REF = 104; | |||||
DT_INT16_REF = 105; | |||||
DT_INT8_REF = 106; | |||||
DT_STRING_REF = 107; | |||||
DT_COMPLEX64_REF = 108; | |||||
DT_INT64_REF = 109; | |||||
DT_BOOL_REF = 110; | |||||
DT_QINT8_REF = 111; | |||||
DT_QUINT8_REF = 112; | |||||
DT_QINT32_REF = 113; | |||||
DT_BFLOAT16_REF = 114; | |||||
DT_QINT16_REF = 115; | |||||
DT_QUINT16_REF = 116; | |||||
DT_UINT16_REF = 117; | |||||
DT_COMPLEX128_REF = 118; | |||||
DT_HALF_REF = 119; | |||||
DT_RESOURCE_REF = 120; | |||||
DT_VARIANT_REF = 121; | |||||
DT_UINT32_REF = 122; | |||||
DT_UINT64_REF = 123; | |||||
} | |||||
// LINT.ThenChange( | |||||
// https://www.tensorflow.org/code/tensorflow/c/c_api.h, | |||||
// https://www.tensorflow.org/code/tensorflow/go/tensor.go, | |||||
// https://www.tensorflow.org/code/tensorflow/core/framework/tensor.cc, | |||||
// https://www.tensorflow.org/code/tensorflow/core/framework/types.h, | |||||
// https://www.tensorflow.org/code/tensorflow/core/framework/types.cc, | |||||
// https://www.tensorflow.org/code/tensorflow/python/framework/dtypes.py, | |||||
// https://www.tensorflow.org/code/tensorflow/python/framework/function.py) |
@@ -1,39 +0,0 @@ | |||||
/** | |||||
* This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow | |||||
* | |||||
* This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model. | |||||
* This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications"). | |||||
* All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd. | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi.tensorflow; | |||||
option cc_enable_arenas = true; | |||||
option java_outer_classname = "VersionsProtos"; | |||||
option java_multiple_files = true; | |||||
option java_package = "org.tensorflow.framework"; | |||||
// Version information for a piece of serialized data | |||||
// | |||||
// There are different types of versions for each type of data | |||||
// (GraphDef, etc.), but they all have the same common shape | |||||
// described here. | |||||
// | |||||
// Each consumer has "consumer" and "min_producer" versions (specified | |||||
// elsewhere). A consumer is allowed to consume this data if | |||||
// | |||||
// producer >= min_producer | |||||
// consumer >= min_consumer | |||||
// consumer not in bad_consumers | |||||
// | |||||
message VersionDef { | |||||
// The version of the code that produced this data. | |||||
int32 producer = 1; | |||||
// Any consumer below this version is not allowed to consume this data. | |||||
int32 min_consumer = 2; | |||||
// Specific consumer versions which are disallowed (e.g. due to bugs). | |||||
repeated int32 bad_consumers = 3; | |||||
}; |
@@ -37,6 +37,7 @@ set(SRC_LIST | |||||
"../graph/load/model_manager/task_info/task_info.cc" | "../graph/load/model_manager/task_info/task_info.cc" | ||||
"../graph/load/model_manager/task_info/event_record_task_info.cc" | "../graph/load/model_manager/task_info/event_record_task_info.cc" | ||||
"../graph/load/model_manager/task_info/event_wait_task_info.cc" | "../graph/load/model_manager/task_info/event_wait_task_info.cc" | ||||
"../graph/load/model_manager/task_info/ffts_task_info.cc" | |||||
"../graph/load/model_manager/task_info/fusion_start_task_info.cc" | "../graph/load/model_manager/task_info/fusion_start_task_info.cc" | ||||
"../graph/load/model_manager/task_info/fusion_stop_task_info.cc" | "../graph/load/model_manager/task_info/fusion_stop_task_info.cc" | ||||
"../graph/load/model_manager/task_info/kernel_ex_task_info.cc" | "../graph/load/model_manager/task_info/kernel_ex_task_info.cc" | ||||
@@ -1,113 +0,0 @@ | |||||
syntax = "proto3"; | |||||
package toolkit.dump; | |||||
enum OutputDataType { | |||||
DT_UNDEFINED = 0; | |||||
DT_FLOAT = 1; | |||||
DT_FLOAT16 = 2; | |||||
DT_INT8 = 3; | |||||
DT_UINT8 = 4; | |||||
DT_INT16 = 5; | |||||
DT_UINT16 = 6; | |||||
DT_INT32 = 7; | |||||
DT_INT64 = 8; | |||||
DT_UINT32 = 9; | |||||
DT_UINT64 = 10; | |||||
DT_BOOL = 11; | |||||
DT_DOUBLE = 12; | |||||
DT_STRING = 13; | |||||
DT_DUAL_SUB_INT8 = 14; | |||||
DT_DUAL_SUB_UINT8 = 15; | |||||
DT_COMPLEX64 = 16; | |||||
DT_COMPLEX128 = 17; | |||||
DT_QINT8 = 18; | |||||
DT_QINT16 = 19; | |||||
DT_QINT32 = 20; | |||||
DT_QUINT8 = 21; | |||||
DT_QUINT16 = 22; | |||||
DT_RESOURCE = 23; | |||||
DT_STRING_REF = 24; | |||||
DT_DUAL = 25; | |||||
DT_VARIANT = 26; | |||||
} | |||||
enum OutputFormat { | |||||
FORMAT_NCHW = 0; | |||||
FORMAT_NHWC = 1; | |||||
FORMAT_ND = 2; | |||||
FORMAT_NC1HWC0 = 3; | |||||
FORMAT_FRACTAL_Z = 4; | |||||
FORMAT_NC1C0HWPAD = 5; | |||||
FORMAT_NHWC1C0 = 6; | |||||
FORMAT_FSR_NCHW = 7; | |||||
FORMAT_FRACTAL_DECONV = 8; | |||||
FORMAT_C1HWNC0 = 9; | |||||
FORMAT_FRACTAL_DECONV_TRANSPOSE = 10; | |||||
FORMAT_FRACTAL_DECONV_SP_STRIDE_TRANS = 11; | |||||
FORMAT_NC1HWC0_C04 = 12; | |||||
FORMAT_FRACTAL_Z_C04 = 13; | |||||
FORMAT_CHWN = 14; | |||||
FORMAT_FRACTAL_DECONV_SP_STRIDE8_TRANS = 15; | |||||
FORMAT_HWCN = 16; | |||||
FORMAT_NC1KHKWHWC0 = 17; | |||||
FORMAT_BN_WEIGHT = 18; | |||||
FORMAT_FILTER_HWCK = 19; | |||||
FORMAT_HASHTABLE_LOOKUP_LOOKUPS=20; | |||||
FORMAT_HASHTABLE_LOOKUP_KEYS = 21; | |||||
FORMAT_HASHTABLE_LOOKUP_VALUE = 22; | |||||
FORMAT_HASHTABLE_LOOKUP_OUTPUT = 23; | |||||
FORMAT_HASHTABLE_LOOKUP_HITS=24; | |||||
FORMAT_C1HWNCoC0 = 25; | |||||
FORMAT_MD = 26; | |||||
FORMAT_NDHWC = 27; | |||||
FORMAT_FRACTAL_ZZ = 28; | |||||
FORMAT_FRACTAL_NZ = 29; | |||||
FORMAT_RESERVED = 30; | |||||
} | |||||
message OriginalOp { | |||||
string name = 1; | |||||
uint32 output_index = 2; | |||||
OutputDataType data_type = 3; | |||||
OutputFormat format = 4; | |||||
} | |||||
message Shape { | |||||
repeated uint64 dim = 1; | |||||
} | |||||
message OpOutput { | |||||
OutputDataType data_type = 1; | |||||
OutputFormat format = 2; | |||||
Shape shape = 3; | |||||
OriginalOp original_op = 4; // the original op corresponding to the output | |||||
bytes data = 5; | |||||
uint64 size = 6; | |||||
} | |||||
message OpInput { | |||||
OutputDataType data_type = 1; | |||||
OutputFormat format = 2; | |||||
Shape shape = 3; | |||||
bytes data = 4; | |||||
uint64 size = 5; | |||||
} | |||||
enum BufferType { | |||||
L1 = 0; | |||||
} | |||||
message OpBuffer { | |||||
BufferType buffer_type = 1; | |||||
bytes data = 2; | |||||
uint64 size = 3; | |||||
} | |||||
message DumpData{ | |||||
string version = 1; | |||||
uint64 dump_time = 2; | |||||
repeated OpOutput output = 3; | |||||
repeated OpInput input = 4; | |||||
repeated OpBuffer buffer = 5; | |||||
string op_name = 6; | |||||
} |
@@ -1,193 +0,0 @@ | |||||
syntax = "proto3"; | |||||
package ge.proto; | |||||
enum DataType | |||||
{ | |||||
DT_UNDEFINED = 0; // Used to indicate a DataType field has not been set. | |||||
DT_FLOAT = 1; // float type | |||||
DT_FLOAT16 = 2; // fp16 type | |||||
DT_INT8 = 3; // int8 type | |||||
DT_UINT8 = 4; // uint8 type | |||||
DT_INT16 = 5; // int16 type | |||||
DT_UINT16 = 6; // uint16 type | |||||
DT_INT32 = 7; // | |||||
DT_INT64 = 8; // int64 type | |||||
DT_UINT32 = 9; // unsigned int32 | |||||
DT_UINT64 = 10; // unsigned int64 | |||||
DT_BOOL = 11; // bool type | |||||
DT_DOUBLE = 12; // double type | |||||
DT_STRING = 13; // string type | |||||
DT_DUAL_SUB_INT8 = 14; /**< dual output int8 type */ | |||||
DT_DUAL_SUB_UINT8 = 15; /**< dual output uint8 type */ | |||||
DT_COMPLEX64 = 16; // complex64 type | |||||
DT_COMPLEX128 = 17; // complex128 type | |||||
DT_QINT8 = 18; // qint8 type | |||||
DT_QINT16 = 19; // qint16 type | |||||
DT_QINT32 = 20; // qint32 type | |||||
DT_QUINT8 = 21; // quint8 type | |||||
DT_QUINT16 = 22; // quint16 type | |||||
DT_RESOURCE = 23; // resource type | |||||
DT_STRING_REF = 24; // string_ref type | |||||
DT_DUAL = 25; /**< dual output type */ | |||||
DT_VARIANT = 26; // variant type | |||||
DT_BF16 = 27; // bf16 type | |||||
DT_INT4 = 28; // int4 type | |||||
} | |||||
message AttrDef | |||||
{ | |||||
message ListValue | |||||
{ | |||||
enum ListValueType{ | |||||
VT_LIST_NONE = 0; | |||||
VT_LIST_STRING = 1; | |||||
VT_LIST_INT = 2; | |||||
VT_LIST_FLOAT = 3; | |||||
VT_LIST_BOOL = 4; | |||||
VT_LIST_BYTES = 5; | |||||
VT_LIST_TENSOR_DESC = 6; | |||||
VT_LIST_TENSOR = 7; | |||||
VT_LIST_GRAPH = 8; | |||||
VT_LIST_NAMED_ATTRS = 9; | |||||
VT_LIST_DATA_TYPE = 10; | |||||
} | |||||
repeated bytes s = 2; // "list(string)" | |||||
repeated int64 i = 3; // "list(int)" | |||||
repeated float f = 4; // "list(float)" | |||||
repeated bool b = 5; // "list(bool)" | |||||
repeated bytes bt = 7; | |||||
repeated TensorDescriptor td = 8; | |||||
repeated TensorDef t = 9; | |||||
repeated GraphDef g = 10; | |||||
repeated NamedAttrs na = 11; | |||||
repeated int64 dt = 12; // list ge::DataType | |||||
ListValueType val_type = 20; | |||||
} | |||||
message ListListInt{ | |||||
message ListInt{ | |||||
repeated int64 list_i = 1; // list int | |||||
} | |||||
repeated ListInt list_list_i = 1; // list list int | |||||
} | |||||
oneof value | |||||
{ | |||||
bytes s = 2; // "string" | |||||
int64 i = 3; // "int" | |||||
float f = 4; // "float" | |||||
bool b = 5; // "bool" | |||||
bytes bt = 7; | |||||
ListValue list = 1; // any "list(...)" | |||||
NamedAttrs func = 10; // Used to support attr nesting | |||||
TensorDescriptor td = 11; // GeTensorDesc type | |||||
TensorDef t = 12; // GeTensor type | |||||
GraphDef g = 13; // Graph type | |||||
ListListInt list_list_int = 14; // List List Int type | |||||
int64 dt = 15; // ge::DataType | |||||
} | |||||
} | |||||
// A list of attr names and their values. The whole list is attached | |||||
// with a string name. E.g., MatMul[T=float]. | |||||
message NamedAttrs | |||||
{ | |||||
string name = 1; | |||||
map<string, AttrDef> attr = 2; | |||||
} | |||||
// Shape / dimension description, using row-major order | |||||
message ShapeDef | |||||
{ | |||||
repeated int64 dim = 1; // Size of each dimension | |||||
} | |||||
// Multidimensional data description | |||||
message TensorDescriptor | |||||
{ | |||||
string name = 1; // Optional parameter, tensor name | |||||
DataType dtype = 2; // tensor datatype | |||||
ShapeDef shape = 3; // Shape / dimension | |||||
string layout = 4; // Tensor format, eg: "NCHW", "NHWC", "CHW", "ND" | |||||
bool has_out_attr = 9; | |||||
int64 size = 10; | |||||
int64 weight_size = 11; | |||||
bool reuse_input = 12; | |||||
bool output_tensor = 13; | |||||
string device_type = 14; | |||||
bool input_tensor =15; | |||||
int64 real_dim_cnt = 16; | |||||
int64 reuse_input_index = 17; | |||||
int64 data_offset = 18; | |||||
int64 cmps_size = 19; | |||||
string cmps_tab = 20; | |||||
int64 cmps_tab_offset = 21; | |||||
map<string, AttrDef> attr = 5; // Set of extra parameter fields | |||||
} | |||||
// GeTensor definition | |||||
message TensorDef | |||||
{ | |||||
TensorDescriptor desc = 1; // Tensor description | |||||
bytes data = 2; // Tensor data | |||||
} | |||||
// Operator description | |||||
message OpDef | |||||
{ | |||||
string name = 1; // name | |||||
string type = 2; // type | |||||
repeated string input = 5; // input original op name + outgoing index. op_name:index | |||||
map<string, AttrDef> attr = 10; // Set of operator parameter fields | |||||
bool has_out_attr = 20; | |||||
int64 id = 21; | |||||
int64 stream_id =22; | |||||
repeated string input_name = 23; | |||||
repeated string src_name = 24; | |||||
repeated int64 src_index = 25; | |||||
repeated string dst_name = 26; | |||||
repeated int64 dst_index = 27; | |||||
repeated int64 input_i = 28; | |||||
repeated int64 output_i = 29; | |||||
repeated int64 workspace = 30; | |||||
repeated int64 workspace_bytes = 31; | |||||
repeated bool is_input_const = 32; | |||||
repeated TensorDescriptor input_desc = 33; | |||||
repeated TensorDescriptor output_desc = 34; | |||||
repeated string subgraph_name = 35; | |||||
} | |||||
// Graph definition | |||||
message GraphDef | |||||
{ | |||||
string name = 1; // name | |||||
repeated string input = 4; // Graph input | |||||
repeated string output = 5; // Graph output | |||||
repeated OpDef op = 6; // List of operators | |||||
map<string, AttrDef> attr = 11; // Extended field | |||||
} | |||||
// model definition | |||||
message ModelDef | |||||
{ | |||||
string name = 1; // name | |||||
uint32 version = 2; // IR Proto verion | |||||
string custom_version = 3; // User model version number, passed in by user | |||||
repeated GraphDef graph = 7; // Graph definition,graph[0] represents the main diagram in modeldef | |||||
map<string, AttrDef> attr = 11; // Extended field | |||||
} | |||||
@@ -1,140 +0,0 @@ | |||||
syntax = "proto3"; | |||||
package domi; | |||||
message InsertNewOps { | |||||
repeated AippOpParams aipp_op = 1; | |||||
repeated MultiShapeOpParams multi_shape_op = 2; | |||||
} | |||||
message AippOpParams { | |||||
enum InputFormat { | |||||
UNDEFINED = 0; | |||||
YUV420SP_U8 = 1; | |||||
XRGB8888_U8 = 2; | |||||
RGB888_U8 = 3; | |||||
YUV400_U8 = 4; | |||||
NC1HWC0DI_FP16 = 5; | |||||
NC1HWC0DI_S8 = 6; | |||||
ARGB8888_U8 = 7; | |||||
YUYV_U8 = 8; | |||||
YUV422SP_U8 = 9; | |||||
AYUV444_U8 = 10; | |||||
RAW10 = 11; | |||||
RAW12 = 12; | |||||
RAW16 = 13; | |||||
RAW24 = 14; | |||||
RGB16 = 15; | |||||
RGB20 = 16; | |||||
RGB24 = 17; | |||||
RGB8_IR = 18; | |||||
RGB16_IR = 19; | |||||
RGB24_IR = 20; | |||||
} | |||||
enum AippMode { | |||||
undefined = 0; | |||||
static = 1; | |||||
dynamic = 2; | |||||
} | |||||
// AIPP模式,区分静态AIPP和动态AIPP | |||||
AippMode aipp_mode = 1; | |||||
// related_input_rank参数为必填,类型为整型,配置范围>=0, <=输入Data算子的个数,默认值为0。 | |||||
// 标识对模型的第几个输入做AIPP处理,例如模型有两个输入,需要对第2个输入做AIPP,则配置related_input_rank为1。 | |||||
uint32 related_input_rank = 2; | |||||
// related_input_name is optional and the top name of data node which inserts aipp | |||||
string related_input_name = 6; | |||||
// input_edge_idx参数为可选,类型为整型,配置范围为>=0。 | |||||
// 配置该参数的作用,在于对Data算子不同的输出做不同的AIPP处理,如果该参数没有配置,默认对related_input_rank指定的模型输入的所有输出边做AIPP。 | |||||
// 配置值 <= Data算子输出边的个数。 | |||||
repeated uint32 input_edge_idx = 3; | |||||
// [Begin] 动态AIPP参数,配置静态AIPP时无效 | |||||
uint32 max_src_image_size = 4; | |||||
// 是否支持旋转。默认不支持,开启支持旋转时,会有额外的空间和性能损失 | |||||
bool support_rotation = 5; | |||||
// [End] 动态AIPP参数 | |||||
// [Begin] 静态AIPP参数,配置动态AIPP时无效 | |||||
InputFormat input_format = 51; | |||||
bool csc_switch = 52; | |||||
float cpadding_value = 53; | |||||
bool rbuv_swap_switch = 54; | |||||
bool ax_swap_switch = 55; | |||||
bool single_line_mode = 56; | |||||
int32 src_image_size_w = 57; | |||||
int32 src_image_size_h = 58; | |||||
bool crop = 59; | |||||
int32 load_start_pos_w = 60; | |||||
int32 load_start_pos_h = 61; | |||||
int32 crop_size_w = 62; | |||||
int32 crop_size_h = 63; | |||||
bool resize = 64; | |||||
int32 resize_output_w = 65; | |||||
int32 resize_output_h = 66; | |||||
bool padding = 67; | |||||
int32 left_padding_size = 68; | |||||
int32 right_padding_size = 69; | |||||
int32 top_padding_size = 70; | |||||
int32 bottom_padding_size = 71; | |||||
float padding_value = 72; | |||||
int32 mean_chn_0 = 10; | |||||
int32 mean_chn_1 = 11; | |||||
int32 mean_chn_2 = 12; | |||||
int32 mean_chn_3 = 19; | |||||
float min_chn_0 = 13; | |||||
float min_chn_1 = 14; | |||||
float min_chn_2 = 15; | |||||
float min_chn_3 = 20; | |||||
repeated float var_reci_chn_0 = 16; | |||||
repeated float var_reci_chn_1 = 17; | |||||
repeated float var_reci_chn_2 = 18; | |||||
repeated float var_reci_chn_3 = 21; | |||||
repeated int32 matrix_r0c0 = 30; | |||||
repeated int32 matrix_r0c1 = 31; | |||||
repeated int32 matrix_r0c2 = 32; | |||||
repeated int32 matrix_r1c0 = 33; | |||||
repeated int32 matrix_r1c1 = 34; | |||||
repeated int32 matrix_r1c2 = 35; | |||||
repeated int32 matrix_r2c0 = 36; | |||||
repeated int32 matrix_r2c1 = 37; | |||||
repeated int32 matrix_r2c2 = 38; | |||||
repeated int32 output_bias_0 = 39; | |||||
repeated int32 output_bias_1 = 40; | |||||
repeated int32 output_bias_2 = 41; | |||||
repeated int32 input_bias_0 = 42; | |||||
repeated int32 input_bias_1 = 43; | |||||
repeated int32 input_bias_2 = 44; | |||||
// [End] 静态AIPP参数 | |||||
// The n number that is used for raw/rgbir data into f16 transformation. | |||||
// The transformation equation is x/(2^n). If set to 0, no transform is performed. | |||||
uint32 raw_rgbir_to_f16_n = 45; | |||||
} | |||||
message MultiShapeOpParams { | |||||
enum MultiShapeMode { | |||||
batch = 0; //动态batch | |||||
resolution = 1; //动态分辨率,扩展用 | |||||
} | |||||
MultiShapeMode mode = 1; //算子模式 | |||||
uint32 related_input_rank = 2; //新增算子插入到哪个输入 | |||||
repeated uint32 batch_list = 11; //batch_list值,batch_list的个数是2到8之间 | |||||
} |
@@ -1,396 +0,0 @@ | |||||
/* Copyright (C) 2018. Huawei Technologies Co., Ltd. All rights reserved. | |||||
* | |||||
* This program is free software; you can redistribute it and/or modify | |||||
* it under the terms of the Apache License Version 2.0.You may not use this file except in compliance with the License. | |||||
* | |||||
* This program is distributed in the hope that it will be useful, | |||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||||
* Apache License for more details at | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi; | |||||
enum TargetType | |||||
{ | |||||
MINI = 0; | |||||
TINY = 1; | |||||
LITE = 2; | |||||
} | |||||
// offline model | |||||
message ModelDef { | |||||
string name = 1; | |||||
uint32 version = 2; | |||||
uint64 memory_size = 10; | |||||
uint32 stream_num = 11; | |||||
uint32 event_num = 12; | |||||
uint64 weight_size = 13; | |||||
uint32 label_num = 15; | |||||
repeated OpDef op = 20; | |||||
TargetType target_type = 23; | |||||
map<string, AttrDef> attr = 30; | |||||
}; | |||||
// operator define | |||||
message OpDef { | |||||
string name = 1; | |||||
string type = 2; | |||||
uint32 id = 3; | |||||
uint32 stream_id = 4; | |||||
repeated string input_name = 5; | |||||
repeated string src_name = 8; | |||||
repeated int32 src_index = 9; | |||||
repeated int64 input = 10; | |||||
repeated int64 output = 11; | |||||
repeated TensorDescriptor input_desc = 12; | |||||
repeated TensorDescriptor output_desc = 13; | |||||
repeated WeightDef weights = 14; | |||||
repeated string dst_name = 15; | |||||
repeated int32 dst_index = 16; | |||||
repeated int64 workspace = 20; | |||||
repeated uint32 workspace_bytes = 21; | |||||
repeated string weight_name = 22; | |||||
repeated bool is_input_const = 23; | |||||
map<string, AttrDef> attr = 30; | |||||
QuantizeFactorParams quantize_factor = 31; | |||||
oneof op_params { | |||||
// start at 100 here | |||||
SendOpParams sender_param = 100; | |||||
RecvOpParams receiver_param = 200; | |||||
ConvolutionOpParams convolution_param = 300; | |||||
PoolingOpParams pooling_param = 400; | |||||
EltwiseOpParams eltwise_param = 500; | |||||
BatchNormOpParams batchnorm_param = 600; | |||||
ScaleOpParams scale_param = 700; | |||||
FullConnectionOpParams full_connection_param = 800; | |||||
SoftmaxOpParams softmax_param = 900; | |||||
ActivationOpParams activation_param = 1000; | |||||
ReshapeOpParams reshape_param = 1100; | |||||
} | |||||
}; | |||||
message SendOpParams { | |||||
uint32 event_id = 1; | |||||
}; | |||||
message RecvOpParams { | |||||
uint32 event_id = 1; | |||||
}; | |||||
enum QuantizeScaleType | |||||
{ | |||||
VECTOR_SCALE = 0; | |||||
SCALAR_SCALE = 1; | |||||
} | |||||
enum QuantizeScaleMode | |||||
{ | |||||
NORMAL_MODE = 0; | |||||
SQRT_MODE = 1; | |||||
} | |||||
enum QuantizeAlgorithm | |||||
{ | |||||
NON_OFFSET_ALGO = 0; | |||||
HALF_OFFSET_ALGO = 1; | |||||
ALL_OFFSET_ALGO = 2; | |||||
} | |||||
message QuantizeFactor | |||||
{ | |||||
QuantizeScaleMode scale_mode = 1; | |||||
bytes scale_value = 2; | |||||
int64 scale_offset = 3; | |||||
bytes offset_data_value = 4; | |||||
int64 offset_data_offset = 5; | |||||
bytes offset_weight_value = 6; | |||||
int64 offset_weight_offset = 7; | |||||
bytes offset_pad_value = 8; | |||||
int64 offset_pad_offset = 9; | |||||
}; | |||||
message QuantizeCalcFactor | |||||
{ | |||||
bytes offsetw = 1; | |||||
int64 offsetw_offset = 2; | |||||
bytes offsetd = 3; | |||||
int64 offsetd_offset = 4; | |||||
bytes scalereq = 5; | |||||
int64 scaledreq_offset = 6; | |||||
bytes offsetdnext = 7; | |||||
int64 offsetdnext_offset = 8; | |||||
} | |||||
message QuantizeFactorParams | |||||
{ | |||||
QuantizeAlgorithm quantize_algo = 1; | |||||
QuantizeScaleType scale_type = 2; | |||||
QuantizeFactor quantize_param = 3; | |||||
QuantizeFactor dequantize_param = 4; | |||||
QuantizeFactor requantize_param = 5; | |||||
QuantizeCalcFactor quantizecalc_param = 6; | |||||
}; | |||||
message ConvolutionOpParams { | |||||
int32 mode = 1; | |||||
int32 algo = 2; | |||||
int32 pad_mode = 3; | |||||
uint32 group = 4; | |||||
uint32 num_output = 5; | |||||
repeated uint32 pad = 10; | |||||
repeated uint32 stride = 11; | |||||
repeated uint32 dilation = 12; | |||||
repeated uint32 kernel = 13; | |||||
float alpha = 20; | |||||
float beta = 21; | |||||
WeightDef filter = 40; | |||||
WeightDef bias = 41; | |||||
bool relu_flag = 62; | |||||
repeated uint32 adj = 70; | |||||
repeated uint32 target_shape = 71; | |||||
repeated uint32 before_pad = 72; | |||||
}; | |||||
message PoolingOpParams { | |||||
int32 mode = 1; | |||||
int32 nan_opt = 2; | |||||
int32 pad_mode = 3; | |||||
bool global_pooling = 4; | |||||
repeated uint32 window = 10; | |||||
repeated uint32 pad = 11; | |||||
repeated uint32 stride = 12; | |||||
bool ceil_mode = 13; | |||||
int32 data_mode = 14; | |||||
float alpha = 20; | |||||
float beta = 21; | |||||
repeated uint32 before_pad = 22; | |||||
}; | |||||
message EltwiseOpParams { | |||||
int32 mode = 1; | |||||
repeated float coeff = 2; | |||||
float alpha = 3; | |||||
float beta = 4; | |||||
repeated WeightDef weight = 5; | |||||
bool relu_flag = 6; | |||||
}; | |||||
message ActivationOpParams { | |||||
int32 mode = 1; | |||||
float coef = 2; | |||||
float alpha = 3; | |||||
float beta = 4; | |||||
}; | |||||
message BatchNormOpParams { | |||||
int32 mode = 1; | |||||
float alpha = 2; | |||||
float beta = 3; | |||||
double epsilon = 4;//optinal,[default = 1e-5] | |||||
bool use_global_stats = 5; //optinal,by default true,testing mode | |||||
float moving_average_fraction = 6; //optinal,[default = .999]; | |||||
WeightDef estimated_mean = 7; | |||||
WeightDef estimated_variance = 8; | |||||
WeightDef scale = 9; | |||||
WeightDef bias = 10; | |||||
}; | |||||
message ScaleOpParams { | |||||
WeightDef scale = 1; | |||||
WeightDef bias = 2; | |||||
}; | |||||
message ReshapeOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
ShapeDef shape = 3; | |||||
int32 axis = 4; | |||||
int32 num_axes = 5; | |||||
int32 format = 6; | |||||
}; | |||||
message SoftmaxOpParams { | |||||
int32 algo = 1; | |||||
int32 mode = 2; | |||||
float alpha = 3; | |||||
float beta = 4; | |||||
}; | |||||
message FullConnectionOpParams { | |||||
WeightDef filter = 1; | |||||
WeightDef bias = 2; | |||||
uint32 num_output = 3; | |||||
bool relu_flag = 12; | |||||
}; | |||||
message FlattenOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
int32 start_axis = 3; | |||||
int32 end_axis = 4; | |||||
} | |||||
message AddLimitedOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
int32 axis = 3; | |||||
bool broadcast = 4; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message MulLimitedOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
int32 axis = 3; | |||||
bool broadcast = 4; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message AddOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message MulOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message SubOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
repeated WeightDef weight = 10; | |||||
}; | |||||
message BiasAddOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
WeightDef bias = 10; | |||||
}; | |||||
message MatMulOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
bool transposeX = 3; | |||||
bool transposeW = 4; | |||||
WeightDef filter = 10; | |||||
WeightDef bias = 12; | |||||
}; | |||||
message RsqrtOpParams { | |||||
float alpha = 1; | |||||
float beta = 2; | |||||
}; | |||||
message WeightDef { | |||||
int32 format = 1; | |||||
int32 data_type = 2; | |||||
ShapeDef shape = 3; | |||||
bytes data = 4; | |||||
int64 data_offset = 5; | |||||
uint32 cmps_size = 6; | |||||
bytes cmps_tab = 7; | |||||
int64 cmps_tab_offset = 10; | |||||
CompressInfo cmps_info = 8; | |||||
AllOffsetQuantizeInfo alloffset_quantize_info = 11; | |||||
} | |||||
message ShapeDef { | |||||
repeated int64 dim = 1; | |||||
} | |||||
enum DeviceType { | |||||
NPU = 0; // In default, we will use NPU. | |||||
CPU = 1; // CPU | |||||
} | |||||
message AllOffsetQuantizeInfo { | |||||
float scale = 1; | |||||
int32 offset = 2; | |||||
} | |||||
message TensorDescriptor { | |||||
int32 format = 1; | |||||
int32 data_type = 2; | |||||
repeated int64 dim = 3; | |||||
uint32 size = 4; | |||||
bool reuse_input = 5; | |||||
bool output_tensor = 7; | |||||
DeviceType device_type = 8; | |||||
bool input_tensor = 9; | |||||
uint32 real_dim_cnt = 10; | |||||
uint32 reuse_input_index = 11; | |||||
AllOffsetQuantizeInfo alloffset_quantize_info = 12; | |||||
} | |||||
message CompressInfo { | |||||
int32 blockRow = 1; // block row | |||||
int32 blockCol = 2; // block col | |||||
int32 fractalK = 3; // fractal K | |||||
int32 fractalN = 4; // fractal N | |||||
int32 lastFractalK = 5; // K of last fractal | |||||
int32 lastFractalN = 6; // N of last fractal | |||||
int32 cubeSize = 7; // cube's length | |||||
int32 loadDir = 8; // data load directtiono 0:col load 1:row load | |||||
} | |||||
message AttrDef { | |||||
message ListValue { | |||||
repeated string s = 2; // "list(string)" | |||||
repeated int64 i = 3 [packed = true]; // "list(int)" | |||||
repeated float f = 4 [packed = true]; // "list(float)" | |||||
repeated bool b = 5 [packed = true]; // "list(bool)" | |||||
repeated uint32 u = 6 [packed = true]; // "list(uint)" | |||||
repeated bytes bt = 7; | |||||
} | |||||
oneof value { | |||||
string s = 2; // "string" | |||||
int64 i = 3; // "int" | |||||
float f = 4; // "float" | |||||
bool b = 5; // "bool" | |||||
uint32 u = 6; // "uint32" | |||||
bytes bt = 7; | |||||
ListValue list = 1; // any "list(...)" | |||||
NamedAttrs func = 10; | |||||
} | |||||
} | |||||
// A list of attr names and their values. The whole list is attached | |||||
// with a string name. E.g., MatMul[T=float]. | |||||
message NamedAttrs { | |||||
string name = 1; | |||||
map<string, AttrDef> attr = 2; | |||||
} | |||||
@@ -1,75 +0,0 @@ | |||||
syntax = "proto3"; | |||||
package toolkit.aicpu.dump; | |||||
message Shape { | |||||
repeated uint64 dim = 1; | |||||
} | |||||
message Output { | |||||
int32 data_type = 1; | |||||
int32 format = 2; | |||||
Shape shape = 3; | |||||
uint64 address = 4; | |||||
string original_name = 5; | |||||
int32 original_output_index = 6; | |||||
int32 original_output_data_type = 7; | |||||
int32 original_output_format = 8; | |||||
uint64 size = 9; | |||||
Shape origin_shape = 10; | |||||
} | |||||
message Input { | |||||
int32 data_type =1; | |||||
int32 format = 2; | |||||
Shape shape = 3; | |||||
uint64 address = 4; | |||||
uint64 size = 5; | |||||
Shape origin_shape = 6; | |||||
} | |||||
enum BufferType { | |||||
L1 = 0; | |||||
} | |||||
message OpBuffer { | |||||
BufferType buffer_type = 1; | |||||
uint64 address = 2; | |||||
uint64 size = 3; | |||||
} | |||||
message Op { | |||||
string op_name = 1; | |||||
string op_type = 2; | |||||
} | |||||
message Task { | |||||
uint32 task_id = 1; | |||||
uint32 stream_id = 2; | |||||
Op op = 3; | |||||
repeated Output output = 4; | |||||
bool end_graph = 5; | |||||
repeated Input input = 6; | |||||
repeated OpBuffer buffer = 7; | |||||
} | |||||
message OpMappingInfo { | |||||
string dump_path = 1; | |||||
oneof model_name_param { | |||||
string model_name = 2; | |||||
} | |||||
oneof model_id_param { | |||||
uint32 model_id = 3; | |||||
} | |||||
oneof step_id { | |||||
uint64 step_id_addr = 4; | |||||
} | |||||
oneof iterations_per_loop { | |||||
uint64 iterations_per_loop_addr = 5; | |||||
} | |||||
oneof loop_cond { | |||||
uint64 loop_cond_addr = 6; | |||||
} | |||||
uint32 flag = 7; // 0x01 load, 0x00 unload | |||||
repeated Task task = 8; | |||||
string dump_step = 9; | |||||
} |
@@ -1,179 +0,0 @@ | |||||
/* Copyright (C) 2018. Huawei Technologies Co., Ltd. All rights reserved. | |||||
* | |||||
* This program is free software; you can redistribute it and/or modify | |||||
* it under the terms of the Apache License Version 2.0.You may not use this file except in compliance with the License. | |||||
* | |||||
* This program is distributed in the hope that it will be useful, | |||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||||
* Apache License for more details at | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi; | |||||
message ModelTaskDef { | |||||
string version = 1; | |||||
map<string, string> attr = 9; // Extended field | |||||
repeated TaskDef task = 10; | |||||
uint64 memory_size = 11; | |||||
uint32 stream_num = 12; | |||||
uint32 event_num = 13; | |||||
uint64 weight_size = 14; | |||||
repeated bytes op = 15; // input/output opdef in bytes | |||||
uint64 base_addr = 16; // base addr | |||||
uint64 weight_addr = 17; // weight addr | |||||
uint32 batch_num = 18; | |||||
} | |||||
message TaskDef { | |||||
uint32 id = 1; | |||||
uint32 type = 2; | |||||
uint32 stream_id = 10; | |||||
uint32 event_id = 11; | |||||
KernelDef kernel = 20; | |||||
KernelExDef kernel_ex = 21; | |||||
KernelHcclDef kernel_hccl = 25; | |||||
EventExDef event_ex = 26; | |||||
LogTimeStampDef log_timestamp = 28; | |||||
uint32 label_id = 30; | |||||
MemcpyAsyncDef memcpy_async = 31; | |||||
StreamSwitchDef stream_switch = 32; | |||||
StreamActiveDef stream_active = 33; | |||||
bytes private_def = 34; | |||||
uint64 ops_kernel_store_ptr = 35; // adjustments to other fields in the future | |||||
StreamSwitchNDef stream_switch_n = 36; | |||||
LabelSetDef label_set = 37; | |||||
LabelGotoExDef label_goto_ex = 38; | |||||
LabelSwitchByIndexDef label_switch_by_index = 39; | |||||
KernelDefWithHandle kernel_with_handle = 40; | |||||
} | |||||
message KernelDef { | |||||
KernelContext context = 1; | |||||
string stub_func = 10; | |||||
uint32 block_dim = 11; | |||||
uint32 args_size = 12; | |||||
bytes args = 13; | |||||
bytes sm_desc = 14; | |||||
bytes flowtable = 15; | |||||
string so_name = 16; | |||||
string kernel_name = 17; | |||||
bytes kernel_ext_info = 18; | |||||
uint32 kernel_ext_info_size = 19; | |||||
} | |||||
message KernelDefWithHandle { | |||||
KernelContext context = 1; | |||||
uint64 handle = 10; | |||||
string dev_func = 11; | |||||
uint32 block_dim = 12; | |||||
uint32 args_size = 13; | |||||
bytes args = 14; | |||||
bytes sm_desc = 15; | |||||
string original_kernel_key = 16; | |||||
string node_info = 17; | |||||
} | |||||
message KernelContext { | |||||
uint32 kernel_type = 1; | |||||
uint32 op_id = 2; // OP type in CCE | |||||
uint32 kernel_func_id = 3; | |||||
uint32 op_index = 4; // TE/Custom operator | |||||
bool is_flowtable = 5; // Identify whether args is a flowtable structure | |||||
bytes args_offset = 6; // args offset information | |||||
uint32 args_count = 7; // args count | |||||
repeated uint32 origin_op_index = 8; | |||||
} | |||||
message KernelExDef { | |||||
uint32 flags = 1; | |||||
uint32 op_index = 4; | |||||
uint32 args_size = 12; | |||||
bytes args = 13; | |||||
bytes task_info = 14; // serialized nodeDef, funcDef, inputoutput | |||||
uint32 task_info_size = 15; | |||||
bytes kernel_ext_info = 16; | |||||
uint32 kernel_ext_info_size = 17; | |||||
} | |||||
message KernelHcclDef { | |||||
uint32 op_index = 8; | |||||
string hccl_type = 9; | |||||
} | |||||
message EventExDef { | |||||
uint32 op_index = 1; | |||||
uint32 event_type = 2; | |||||
} | |||||
message LogTimeStampDef { | |||||
uint64 logid = 1; | |||||
bool notify = 2; | |||||
uint32 flat = 3; | |||||
} | |||||
message MemcpyAsyncDef { | |||||
uint64 dst = 1; | |||||
uint64 dst_max = 2; | |||||
uint64 src = 3; | |||||
uint64 count = 4; | |||||
uint32 kind = 5; | |||||
uint32 op_index = 6; | |||||
} | |||||
message StreamSwitchDef { | |||||
uint32 op_index = 1; | |||||
uint32 true_stream_id = 2; | |||||
int64 value = 3; | |||||
uint64 value_ptr = 4; | |||||
uint32 data_type = 5; | |||||
} | |||||
message StreamActiveDef { | |||||
uint32 op_index = 1; | |||||
uint32 active_stream_id = 2; | |||||
} | |||||
message StreamSwitchNDef { | |||||
uint32 op_index = 1; | |||||
uint32 size = 2; | |||||
repeated int64 target_value = 3; | |||||
repeated uint32 true_stream_id = 4; | |||||
uint32 element_size = 5; | |||||
uint32 data_type = 6; | |||||
} | |||||
message LabelSetDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_id = 2; | |||||
uint32 model_id = 3; | |||||
} | |||||
message LabelGotoExDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_id = 2; | |||||
uint32 model_id = 3; | |||||
} | |||||
message LabelSwitchByIndexDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_max = 2; | |||||
} |
@@ -13,15 +13,15 @@ | |||||
* See the License for the specific language governing permissions and | * See the License for the specific language governing permissions and | ||||
* limitations under the License. | * limitations under the License. | ||||
*/ | */ | ||||
#include "host_cpu_engine.h" | |||||
#include "graph/common/omg_util.h" | |||||
#include "ge_local_engine/engine/host_cpu_engine.h" | |||||
#include "graph/utils/op_desc_utils.h" | #include "graph/utils/op_desc_utils.h" | ||||
#include "graph/utils/tensor_adapter.h" | #include "graph/utils/tensor_adapter.h" | ||||
#include "graph/utils/node_utils.h" | |||||
#include "graph/utils/type_utils.h" | |||||
#include "register/op_kernel_registry.h" | #include "register/op_kernel_registry.h" | ||||
#include "register/host_cpu_context.h" | #include "register/host_cpu_context.h" | ||||
#include "common/ge/ge_util.h" | #include "common/ge/ge_util.h" | ||||
#include "common/ge/plugin_manager.h" | #include "common/ge/plugin_manager.h" | ||||
#include "graph/utils/type_utils.h" | |||||
#include "common/fp16_t.h" | #include "common/fp16_t.h" | ||||
#include "common/math/math_util.h" | #include "common/math/math_util.h" | ||||
@@ -123,10 +123,7 @@ bool HostCpuEngine::CheckSupported(const string &op_type) { | |||||
} | } | ||||
Status HostCpuEngine::FindOpKernel(const ge::NodePtr &node, std::unique_ptr<HostCpuOp> &op_kernel) { | Status HostCpuEngine::FindOpKernel(const ge::NodePtr &node, std::unique_ptr<HostCpuOp> &op_kernel) { | ||||
std::string op_type; | |||||
auto status = GetOriginalType(node, op_type); | |||||
GE_CHK_BOOL_EXEC_NOLOG(status == SUCCESS, return status); | |||||
const std::string op_type = NodeUtils::GetNodeType(node); | |||||
auto kernel = OpKernelRegistry::GetInstance().CreateHostCpuOp(op_type); | auto kernel = OpKernelRegistry::GetInstance().CreateHostCpuOp(op_type); | ||||
if (kernel == nullptr) { | if (kernel == nullptr) { | ||||
GELOGD("Op of type %s is not supported by host cpu engine", op_type.c_str()); | GELOGD("Op of type %s is not supported by host cpu engine", op_type.c_str()); | ||||
@@ -1,179 +0,0 @@ | |||||
/* Copyright (C) 2018. Huawei Technologies Co., Ltd. All rights reserved. | |||||
* | |||||
* This program is free software; you can redistribute it and/or modify | |||||
* it under the terms of the Apache License Version 2.0.You may not use this file except in compliance with the License. | |||||
* | |||||
* This program is distributed in the hope that it will be useful, | |||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||||
* Apache License for more details at | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
*/ | |||||
syntax = "proto3"; | |||||
package domi; | |||||
message ModelTaskDef { | |||||
string version = 1; | |||||
map<string, string> attr = 9; // Extended field | |||||
repeated TaskDef task = 10; | |||||
uint64 memory_size = 11; | |||||
uint32 stream_num = 12; | |||||
uint32 event_num = 13; | |||||
uint64 weight_size = 14; | |||||
repeated bytes op = 15; // input/output opdef in bytes | |||||
uint64 base_addr = 16; // base addr | |||||
uint64 weight_addr = 17; // weight addr | |||||
uint32 batch_num = 18; | |||||
} | |||||
message TaskDef { | |||||
uint32 id = 1; | |||||
uint32 type = 2; | |||||
uint32 stream_id = 10; | |||||
uint32 event_id = 11; | |||||
KernelDef kernel = 20; | |||||
KernelExDef kernel_ex = 21; | |||||
KernelHcclDef kernel_hccl = 25; | |||||
EventExDef event_ex = 26; | |||||
LogTimeStampDef log_timestamp = 28; | |||||
uint32 label_id = 30; | |||||
MemcpyAsyncDef memcpy_async = 31; | |||||
StreamSwitchDef stream_switch = 32; | |||||
StreamActiveDef stream_active = 33; | |||||
bytes private_def = 34; | |||||
uint64 ops_kernel_store_ptr = 35; // adjustments to other fields in the future | |||||
StreamSwitchNDef stream_switch_n = 36; | |||||
LabelSetDef label_set = 37; | |||||
LabelGotoExDef label_goto_ex = 38; | |||||
LabelSwitchByIndexDef label_switch_by_index = 39; | |||||
KernelDefWithHandle kernel_with_handle = 40; | |||||
} | |||||
message KernelDef { | |||||
KernelContext context = 1; | |||||
string stub_func = 10; | |||||
uint32 block_dim = 11; | |||||
uint32 args_size = 12; | |||||
bytes args = 13; | |||||
bytes sm_desc = 14; | |||||
bytes flowtable = 15; | |||||
string so_name = 16; | |||||
string kernel_name = 17; | |||||
bytes kernel_ext_info = 18; | |||||
uint32 kernel_ext_info_size = 19; | |||||
} | |||||
message KernelDefWithHandle { | |||||
KernelContext context = 1; | |||||
uint64 handle = 10; | |||||
string dev_func = 11; | |||||
uint32 block_dim = 12; | |||||
uint32 args_size = 13; | |||||
bytes args = 14; | |||||
bytes sm_desc = 15; | |||||
string original_kernel_key = 16; | |||||
string node_info = 17; | |||||
} | |||||
message KernelContext { | |||||
uint32 kernel_type = 1; | |||||
uint32 op_id = 2; // OP type in CCE | |||||
uint32 kernel_func_id = 3; | |||||
uint32 op_index = 4; // TE/Custom operator | |||||
bool is_flowtable = 5; // Identify whether args is a flowtable structure | |||||
bytes args_offset = 6; // args offset information | |||||
uint32 args_count = 7; // args count | |||||
repeated uint32 origin_op_index = 8; | |||||
} | |||||
message KernelExDef { | |||||
uint32 flags = 1; | |||||
uint32 op_index = 4; | |||||
uint32 args_size = 12; | |||||
bytes args = 13; | |||||
bytes task_info = 14; // serialized nodeDef, funcDef, inputoutput | |||||
uint32 task_info_size = 15; | |||||
bytes kernel_ext_info = 16; | |||||
uint32 kernel_ext_info_size = 17; | |||||
} | |||||
message KernelHcclDef { | |||||
uint32 op_index = 8; | |||||
string hccl_type = 9; | |||||
} | |||||
message EventExDef { | |||||
uint32 op_index = 1; | |||||
uint32 event_type = 2; | |||||
} | |||||
message LogTimeStampDef { | |||||
uint64 logid = 1; | |||||
bool notify = 2; | |||||
uint32 flat = 3; | |||||
} | |||||
message MemcpyAsyncDef { | |||||
uint64 dst = 1; | |||||
uint64 dst_max = 2; | |||||
uint64 src = 3; | |||||
uint64 count = 4; | |||||
uint32 kind = 5; | |||||
uint32 op_index = 6; | |||||
} | |||||
message StreamSwitchDef { | |||||
uint32 op_index = 1; | |||||
uint32 true_stream_id = 2; | |||||
int64 value = 3; | |||||
uint64 value_ptr = 4; | |||||
uint32 data_type = 5; | |||||
} | |||||
message StreamActiveDef { | |||||
uint32 op_index = 1; | |||||
uint32 active_stream_id = 2; | |||||
} | |||||
message StreamSwitchNDef { | |||||
uint32 op_index = 1; | |||||
uint32 size = 2; | |||||
repeated int64 target_value = 3; | |||||
repeated uint32 true_stream_id = 4; | |||||
uint32 element_size = 5; | |||||
uint32 data_type = 6; | |||||
} | |||||
message LabelSetDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_id = 2; | |||||
uint32 model_id = 3; | |||||
} | |||||
message LabelGotoExDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_id = 2; | |||||
uint32 model_id = 3; | |||||
} | |||||
message LabelSwitchByIndexDef { | |||||
uint32 op_index = 1; | |||||
uint32 label_max = 2; | |||||
} |
@@ -0,0 +1,58 @@ | |||||
/** | |||||
* Copyright 2021 Huawei Technologies Co., Ltd | |||||
* | |||||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||||
* you may not use this file except in compliance with the License. | |||||
* You may obtain a copy of the License at | |||||
* | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, software | |||||
* distributed under the License is distributed on an "AS IS" BASIS, | |||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
* See the License for the specific language governing permissions and | |||||
* limitations under the License. | |||||
*/ | |||||
#include "ge_opt_info/ge_opt_info.h" | |||||
#include <string> | |||||
#include <map> | |||||
#include "graph/ge_local_context.h" | |||||
#include "ge/ge_api_types.h" | |||||
#include "common/debug/ge_log.h" | |||||
#include "opt_info.h" | |||||
namespace ge { | |||||
Status GeOptInfo::SetOptInfo() { | |||||
std::string soc_ver; | |||||
graphStatus ret = GetThreadLocalContext().GetOption(SOC_VERSION, soc_ver); | |||||
if (ret != GRAPH_SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "Get soc version failed."); | |||||
GELOGE(FAILED, "[Get][SocVersion]Get soc version failed."); | |||||
return FAILED; | |||||
} | |||||
GELOGD("Soc version:%s.", soc_ver.c_str()); | |||||
std::map<std::string, std::string> opt_info; | |||||
// the first arg does not work at present. | |||||
if (gelc::GetOptInfo(gelc::kOffline, soc_ver, opt_info) != gelc::SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "Get optional information failed, is_offline:%d, soc version:%s", | |||||
gelc::kOffline, soc_ver.c_str()); | |||||
GELOGE(FAILED, "[Get][OptInfo]Get optional information failed, is_offline:%d, soc version:%s", | |||||
gelc::kOffline, soc_ver.c_str()); | |||||
return FAILED; | |||||
} | |||||
// do nothing if get empty information | |||||
if (opt_info.empty()) { | |||||
GELOGI("Optional information is empty."); | |||||
return SUCCESS; | |||||
} | |||||
std::map<std::string, std::string> graph_options = GetThreadLocalContext().GetAllGraphOptions(); | |||||
for (const auto &itr : opt_info) { | |||||
graph_options.emplace(itr.first, itr.second); | |||||
GELOGI("Get optional information success, key:%s, value:%s.", itr.first.c_str(), itr.second.c_str()); | |||||
} | |||||
GetThreadLocalContext().SetGraphOption(graph_options); | |||||
return SUCCESS; | |||||
} | |||||
} // namespace ge |
@@ -0,0 +1,32 @@ | |||||
/** | |||||
* Copyright 2021 Huawei Technologies Co., Ltd | |||||
* | |||||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||||
* you may not use this file except in compliance with the License. | |||||
* You may obtain a copy of the License at | |||||
* | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, software | |||||
* distributed under the License is distributed on an "AS IS" BASIS, | |||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
* See the License for the specific language governing permissions and | |||||
* limitations under the License. | |||||
*/ | |||||
#ifndef GE_OPT_INFO_GE_OPT_INFO_H_ | |||||
#define GE_OPT_INFO_GE_OPT_INFO_H_ | |||||
#include "ge/ge_api_error_codes.h" | |||||
#include "register/register_types.h" | |||||
namespace ge { | |||||
class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY GeOptInfo { | |||||
public: | |||||
GeOptInfo() = default; | |||||
~GeOptInfo() = default; | |||||
static Status SetOptInfo(); | |||||
}; | |||||
} // namespace ge | |||||
#endif // GE_OPT_INFO_GE_OPT_INFO_H_ |
@@ -72,7 +72,7 @@ bool LabelGotoTask::Distribute() { | |||||
return false; | return false; | ||||
} | } | ||||
rt_ret = rtLabelListCpy((void**)label_list.data(), label_list.size(), label_info_, label_info_size); | |||||
rt_ret = rtLabelListCpy(reinterpret_cast<void**>(label_list.data()), label_list.size(), label_info_, label_info_size); | |||||
if (rt_ret != RT_ERROR_NONE) { | if (rt_ret != RT_ERROR_NONE) { | ||||
GELOGE(RT_FAILED, "Call rt api failed, ret: %#x", rt_ret); | GELOGE(RT_FAILED, "Call rt api failed, ret: %#x", rt_ret); | ||||
return false; | return false; | ||||
@@ -674,6 +674,12 @@ Status GeGenerator::GenerateModel(const Graph &graph, const string &file_name_pr | |||||
GELOGD("Current ctx is null."); | GELOGD("Current ctx is null."); | ||||
ctx = nullptr; | ctx = nullptr; | ||||
} | } | ||||
std::function<void()> callback = [&]() { | |||||
if (ctx != nullptr) { | |||||
(void)rtCtxSetCurrent(ctx); | |||||
} | |||||
}; | |||||
GE_MAKE_GUARD(restore, callback); | |||||
GeRootModelPtr ge_root_model = nullptr; | GeRootModelPtr ge_root_model = nullptr; | ||||
GE_CHECK_NOTNULL_EXEC(impl_, return PARAM_INVALID); | GE_CHECK_NOTNULL_EXEC(impl_, return PARAM_INVALID); | ||||
@@ -712,11 +718,6 @@ Status GeGenerator::GenerateModel(const Graph &graph, const string &file_name_pr | |||||
} | } | ||||
return ret; | return ret; | ||||
} | } | ||||
if (ctx != nullptr) { | |||||
(void)rtCtxSetCurrent(ctx); | |||||
} | |||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
@@ -806,7 +807,7 @@ Status GeGenerator::CheckForSingleOp(OpDescPtr &op_desc, const vector<GeTensor> | |||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
Status GeGenerator::InferFormatForSingleOp(OpDescPtr &op_desc) { | |||||
Status GeGenerator::InferFormatForSingleOp(OpDescPtr &op_desc, Graph &graph) { | |||||
GE_CHECK_NOTNULL(op_desc); | GE_CHECK_NOTNULL(op_desc); | ||||
if (OperatorFactoryImpl::GetInferFormatFunc(op_desc->GetType()) != nullptr) { | if (OperatorFactoryImpl::GetInferFormatFunc(op_desc->GetType()) != nullptr) { | ||||
auto node_op = ge::OperatorFactoryImpl::CreateOperator("node_op", op_desc->GetType()); | auto node_op = ge::OperatorFactoryImpl::CreateOperator("node_op", op_desc->GetType()); | ||||
@@ -830,7 +831,11 @@ Status GeGenerator::InferFormatForSingleOp(OpDescPtr &op_desc) { | |||||
} | } | ||||
node_op.BreakConnect(); | node_op.BreakConnect(); | ||||
} | } | ||||
auto op = OpDescUtils::CreateOperatorFromOpDesc(op_desc); | |||||
auto comp_graph = GraphUtils::GetComputeGraph(graph); | |||||
GE_CHECK_NOTNULL(comp_graph); | |||||
auto node = comp_graph->FindNode(op_desc->GetName()); | |||||
GE_CHECK_NOTNULL(node); | |||||
auto op = OpDescUtils::CreateOperatorFromNode(node); | |||||
auto ret = op_desc->CallInferFormatFunc(op); | auto ret = op_desc->CallInferFormatFunc(op); | ||||
if (ret != GRAPH_SUCCESS) { | if (ret != GRAPH_SUCCESS) { | ||||
REPORT_INNER_ERROR("E19999", "call InferFormatFunc for single op:%s fail", | REPORT_INNER_ERROR("E19999", "call InferFormatFunc for single op:%s fail", | ||||
@@ -877,7 +882,7 @@ Status GeGenerator::BuildSingleOp(OpDescPtr &op_desc, const vector<GeTensor> &in | |||||
Graph graph; | Graph graph; | ||||
GE_CHK_STATUS(BuildSingleOpGraph(op_desc, inputs, outputs, name, graph), | GE_CHK_STATUS(BuildSingleOpGraph(op_desc, inputs, outputs, name, graph), | ||||
"[Build][Graph] for single op:%s fail.", op_desc->GetName().c_str()); | "[Build][Graph] for single op:%s fail.", op_desc->GetName().c_str()); | ||||
GE_CHK_STATUS_RET_NOLOG(InferFormatForSingleOp(op_desc)); | |||||
GE_CHK_STATUS_RET_NOLOG(InferFormatForSingleOp(op_desc, graph)); | |||||
// 2. check engine type when compile online | // 2. check engine type when compile online | ||||
if (model_file_name == kFileNameSuffix) { | if (model_file_name == kFileNameSuffix) { | ||||
@@ -86,6 +86,11 @@ bool LabelAllocator::CollectFunctionalNode(ComputeGraphPtr &graph, std::set<Node | |||||
return false; | return false; | ||||
} | } | ||||
if (func_node->GetOpDesc() != nullptr && func_node->GetOpDesc()->HasAttr(ATTR_NAME_FFTS_SUB_GRAPH)) { | |||||
GELOGD("Graph[%s] is ffts subgraph, skip label allocator.", graph->GetName().c_str()); | |||||
return true; | |||||
} | |||||
ComputeGraphPtr owner_graph = func_node->GetOwnerComputeGraph(); | ComputeGraphPtr owner_graph = func_node->GetOwnerComputeGraph(); | ||||
if (owner_graph == nullptr) { | if (owner_graph == nullptr) { | ||||
REPORT_INNER_ERROR("E19999", "ComputeGraph owner not set in node:%s(%s), graph:%s", | REPORT_INNER_ERROR("E19999", "ComputeGraph owner not set in node:%s(%s), graph:%s", | ||||
@@ -474,6 +474,11 @@ Status UpdateForSkippedEnginePass::Run(ComputeGraphPtr graph, const vector<Subgr | |||||
for (ge::NodePtr &node : graph->GetDirectNode()) { | for (ge::NodePtr &node : graph->GetDirectNode()) { | ||||
auto op_desc = node->GetOpDesc(); | auto op_desc = node->GetOpDesc(); | ||||
GE_CHECK_NOTNULL(op_desc); | GE_CHECK_NOTNULL(op_desc); | ||||
if (op_desc->HasAttr(ATTR_NAME_THREAD_SCOPE_ID)) { | |||||
op_desc->SetStreamId(kInvalidStream); | |||||
GELOGI("Ffts node %s of type %s reassign to invalid stream.", node->GetName().c_str(), node->GetType().c_str()); | |||||
continue; | |||||
} | |||||
int64_t stream_id = op_desc->GetStreamId(); | int64_t stream_id = op_desc->GetStreamId(); | ||||
if (ops_without_label.find(op_desc) != ops_without_label.end()) { | if (ops_without_label.find(op_desc) != ops_without_label.end()) { | ||||
if (AreAllPredStreamsInvalid(node) && op_desc->GetSubgraphInstanceNames().empty()) { | if (AreAllPredStreamsInvalid(node) && op_desc->GetSubgraphInstanceNames().empty()) { | ||||
@@ -707,7 +707,7 @@ Status ModelBuilder::SaveDataToModel(ge::Model &model, ge::GeModel &ge_model) { | |||||
if (!kernel_name.empty() && (kernel_buffer.GetSize() > 0)) { | if (!kernel_name.empty() && (kernel_buffer.GetSize() > 0)) { | ||||
GE_CHECK_NOTNULL(kernel_buffer.GetData()); | GE_CHECK_NOTNULL(kernel_buffer.GetData()); | ||||
std::vector<char> data(kernel_buffer.GetData(), kernel_buffer.GetData() + kernel_buffer.GetSize()); | std::vector<char> data(kernel_buffer.GetData(), kernel_buffer.GetData() + kernel_buffer.GetSize()); | ||||
tbe_kernel = std::make_shared<OpKernelBin>(kernel_name, std::move(data)); | |||||
tbe_kernel = MakeShared<OpKernelBin>(kernel_name, std::move(data)); | |||||
GE_CHECK_NOTNULL(tbe_kernel); | GE_CHECK_NOTNULL(tbe_kernel); | ||||
GELOGI("Node [%s][%s] start recovery extra attr %s from %s", node_op_desc->GetName().c_str(), | GELOGI("Node [%s][%s] start recovery extra attr %s from %s", node_op_desc->GetName().c_str(), | ||||
node_op_desc->GetType().c_str(), ge::OP_EXTATTR_NAME_TBE_KERNEL, ATTR_NAME_TBE_KERNEL_NAME.c_str()); | node_op_desc->GetType().c_str(), ge::OP_EXTATTR_NAME_TBE_KERNEL, ATTR_NAME_TBE_KERNEL_NAME.c_str()); | ||||
@@ -432,7 +432,11 @@ Status StreamAllocator::SetActiveStreamsForSubgraphs() { | |||||
// Insert the send/recv event id to the graph | // Insert the send/recv event id to the graph | ||||
Status StreamAllocator::InsertSyncEvents() { | Status StreamAllocator::InsertSyncEvents() { | ||||
for (const auto &cur_node : whole_graph_->GetNodes(whole_graph_->GetGraphUnknownFlag())) { | |||||
auto ffts_filter = [](const Node &node, const char *, const ComputeGraphPtr &) { | |||||
return !node.GetOpDesc()->HasAttr(ATTR_NAME_FFTS_SUB_GRAPH); | |||||
}; | |||||
for (const auto &cur_node : whole_graph_->GetNodes(whole_graph_->GetGraphUnknownFlag(), nullptr, ffts_filter)) { | |||||
// Take the adjacent points, then judge whether need to insert the event | // Take the adjacent points, then judge whether need to insert the event | ||||
for (const OutDataAnchorPtr &anchor : cur_node->GetAllOutDataAnchors()) { | for (const OutDataAnchorPtr &anchor : cur_node->GetAllOutDataAnchors()) { | ||||
for (const InDataAnchorPtr &peer_in_anchor : anchor->GetPeerInDataAnchors()) { | for (const InDataAnchorPtr &peer_in_anchor : anchor->GetPeerInDataAnchors()) { | ||||
@@ -531,6 +535,11 @@ Status StreamAllocator::InsertOneEventInTwoNodes(const NodePtr &cur_node, const | |||||
Status StreamAllocator::InsertEventsForSubgraph() { | Status StreamAllocator::InsertEventsForSubgraph() { | ||||
for (const auto &subgraph : whole_graph_->GetAllSubgraphs()) { | for (const auto &subgraph : whole_graph_->GetAllSubgraphs()) { | ||||
GE_CHECK_NOTNULL(subgraph); | GE_CHECK_NOTNULL(subgraph); | ||||
const auto parent_node = subgraph->GetParentNode(); | |||||
if (parent_node != nullptr && parent_node->GetOpDesc()->HasAttr(ATTR_NAME_FFTS_SUB_GRAPH)) { | |||||
GELOGD("Skip ffts subgraph, parent node is %s.", parent_node->GetName().c_str()); | |||||
continue; | |||||
} | |||||
for (const auto &node : subgraph->GetDirectNode()) { | for (const auto &node : subgraph->GetDirectNode()) { | ||||
auto op_desc = node->GetOpDesc(); | auto op_desc = node->GetOpDesc(); | ||||
GE_CHECK_NOTNULL(op_desc); | GE_CHECK_NOTNULL(op_desc); | ||||
@@ -354,7 +354,10 @@ Status TaskGenerator::GenerateTask(RunContext &run_context, ComputeGraphPtr &gra | |||||
}; | }; | ||||
GE_MAKE_GUARD(release, callback); | GE_MAKE_GUARD(release, callback); | ||||
for (auto &node : graph->GetNodes(graph->GetGraphUnknownFlag())) { | |||||
auto ffts_filter = [](const Node &node, const char *, const ComputeGraphPtr &) { | |||||
return !node.GetOpDesc()->HasAttr(ATTR_NAME_FFTS_SUB_GRAPH); | |||||
}; | |||||
for (auto &node : graph->GetNodes(graph->GetGraphUnknownFlag(), nullptr, ffts_filter)) { | |||||
OpDescPtr op_desc = node->GetOpDesc(); | OpDescPtr op_desc = node->GetOpDesc(); | ||||
GE_CHECK_NOTNULL(op_desc); | GE_CHECK_NOTNULL(op_desc); | ||||
node_index++; | node_index++; | ||||
@@ -380,10 +383,8 @@ Status TaskGenerator::GenerateTask(RunContext &run_context, ComputeGraphPtr &gra | |||||
GELOGI("Fusion node[name:%s, type:%s] do not need generate task again.", name.c_str(), type.c_str()); | GELOGI("Fusion node[name:%s, type:%s] do not need generate task again.", name.c_str(), type.c_str()); | ||||
continue; | continue; | ||||
} | } | ||||
if (op_kernel_lib_name.empty()) { | |||||
GELOGI("Node[name:%s, type:%s] does not need to generate task.", name.c_str(), type.c_str()); | |||||
continue; | |||||
} | |||||
GE_CHK_BOOL_EXEC_INFO(!op_kernel_lib_name.empty(), continue, | |||||
"Node[name:%s, type:%s] does not need to generate task.", name.c_str(), type.c_str()); | |||||
auto kernel_info_store = ops_kernel_manager.GetOpsKernelInfoStore(op_kernel_lib_name); | auto kernel_info_store = ops_kernel_manager.GetOpsKernelInfoStore(op_kernel_lib_name); | ||||
if (kernel_info_store == nullptr) { | if (kernel_info_store == nullptr) { | ||||
REPORT_INNER_ERROR("E19999", "Get ops kernel info store failed for op:%s(%s), op_kernel_name:%s", | REPORT_INNER_ERROR("E19999", "Get ops kernel info store failed for op:%s(%s), op_kernel_name:%s", | ||||
@@ -394,6 +395,10 @@ Status TaskGenerator::GenerateTask(RunContext &run_context, ComputeGraphPtr &gra | |||||
} | } | ||||
GE_CHK_STATUS_RET(UpdateAnchorStatus(node), "[Call][UpdateAnchorStatus] node:%s(%s) failed", name.c_str(), | GE_CHK_STATUS_RET(UpdateAnchorStatus(node), "[Call][UpdateAnchorStatus] node:%s(%s) failed", name.c_str(), | ||||
type.c_str()); | type.c_str()); | ||||
if (node->GetOpDesc()->HasAttr(ATTR_NAME_FFTS_SUB_GRAPH)) { | |||||
GE_CHK_STATUS_RET(UpdateAnchorStatusForFfts(node), "[Call][UpdateAnchorStatusForFfts] node:%s(%s) failed", | |||||
name.c_str(), type.c_str()); | |||||
} | |||||
// Profiling task | // Profiling task | ||||
size_t task_list_size_before = task_def_list.size(); | size_t task_list_size_before = task_def_list.size(); | ||||
GE_CHK_STATUS_RET(InsertProfilingTaskBefore(op_desc, profiling_point, all_reduce_nodes, node_index, task_def_list)); | GE_CHK_STATUS_RET(InsertProfilingTaskBefore(op_desc, profiling_point, all_reduce_nodes, node_index, task_def_list)); | ||||
@@ -571,7 +576,24 @@ Status TaskGenerator::GenerateTaskForFusionNode(FusionTaskInfo &fusion_task_info | |||||
return ret; | return ret; | ||||
} | } | ||||
Status TaskGenerator::UpdateAnchorStatusForFfts(const NodePtr &node) { | |||||
GELOGD("Start UpdateAnchorStatusForFfts for %s.", node->GetName().c_str()); | |||||
if (!node->GetOpDesc()->GetSubgraphInstanceNames().empty()) { | |||||
for (size_t i = 0; i < node->GetOpDesc()->GetSubgraphInstanceNames().size(); ++i) { | |||||
auto sub_graph = NodeUtils::GetSubgraph(*node, i); | |||||
GE_CHECK_NOTNULL(sub_graph); | |||||
GELOGD("Start update anchor status for %s.", sub_graph->GetName().c_str()); | |||||
for (auto &ffts_node : sub_graph->GetDirectNode()) { | |||||
GE_CHK_STATUS_RET(UpdateAnchorStatus(ffts_node), "[Call][UpdateAnchorStatus] node:%s(%s) failed", | |||||
ffts_node->GetName().c_str(), ffts_node->GetType().c_str()); | |||||
} | |||||
} | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
Status TaskGenerator::UpdateAnchorStatus(const NodePtr &node) { | Status TaskGenerator::UpdateAnchorStatus(const NodePtr &node) { | ||||
GELOGD("Start UpdateAnchorStatus for %s.", node->GetName().c_str()); | |||||
if (NodeUtils::SetAllAnchorStatus(node) != GRAPH_SUCCESS) { | if (NodeUtils::SetAllAnchorStatus(node) != GRAPH_SUCCESS) { | ||||
REPORT_CALL_ERROR("E19999", "SetAllAnchorStatus fail for op:%s(%s)", | REPORT_CALL_ERROR("E19999", "SetAllAnchorStatus fail for op:%s(%s)", | ||||
node->GetName().c_str(), node->GetType().c_str()); | node->GetName().c_str(), node->GetType().c_str()); | ||||
@@ -771,7 +793,6 @@ Status TaskGenerator::AutoFindBpOpIndex(const ComputeGraphPtr &graph, ProfilingP | |||||
GELOGI("Start AutoFindBpOpIndex"); | GELOGI("Start AutoFindBpOpIndex"); | ||||
NodePtr bp_node = nullptr; | NodePtr bp_node = nullptr; | ||||
uint32_t current_idx = 0; | uint32_t current_idx = 0; | ||||
uint32_t netoutput_idx = 0; | |||||
for (auto &node : graph->GetNodes(graph->GetGraphUnknownFlag())) { | for (auto &node : graph->GetNodes(graph->GetGraphUnknownFlag())) { | ||||
OpDescPtr op_desc = node->GetOpDesc(); | OpDescPtr op_desc = node->GetOpDesc(); | ||||
GE_CHECK_NOTNULL(op_desc); | GE_CHECK_NOTNULL(op_desc); | ||||
@@ -789,7 +810,6 @@ Status TaskGenerator::AutoFindBpOpIndex(const ComputeGraphPtr &graph, ProfilingP | |||||
if (op_desc->GetName() == NODE_NAME_NET_OUTPUT) { | if (op_desc->GetName() == NODE_NAME_NET_OUTPUT) { | ||||
if (bp_node == nullptr) { | if (bp_node == nullptr) { | ||||
bp_node = node; | bp_node = node; | ||||
netoutput_idx = current_idx - 1; | |||||
} | } | ||||
} | } | ||||
if (graph->GetNeedIteration()) { | if (graph->GetNeedIteration()) { | ||||
@@ -814,34 +834,30 @@ Status TaskGenerator::AutoFindBpOpIndex(const ComputeGraphPtr &graph, ProfilingP | |||||
if (bp_node == nullptr) { | if (bp_node == nullptr) { | ||||
GELOGW("not find bp_node."); | GELOGW("not find bp_node."); | ||||
return SUCCESS; | return SUCCESS; | ||||
} else if (bp_node->GetName() == NODE_NAME_NET_OUTPUT) { | |||||
profiling_point.bp_index = netoutput_idx; | |||||
GELOGI("First bp name %s, idx %u", bp_node->GetName().c_str(), netoutput_idx); | |||||
} else { | |||||
profiling_point.bp_index = FindLastBpFromBpNode(graph, bp_node); | |||||
} | } | ||||
return SUCCESS; | |||||
return FindLastBpFromBpNode(graph, bp_node, profiling_point.bp_index); | |||||
} | } | ||||
uint32_t TaskGenerator::FindLastBpFromBpNode(const ComputeGraphPtr &graph, const NodePtr &bp_node) const { | |||||
uint32_t last_bp = 0; | |||||
Status TaskGenerator::FindLastBpFromBpNode(const ComputeGraphPtr &graph, const NodePtr &target_node, | |||||
uint32_t &bp_index) const { | |||||
bp_index = 0; | |||||
auto target_desc = target_node->GetOpDesc(); | |||||
GE_CHECK_NOTNULL(target_desc); | |||||
OpDescPtr bp_op_desc = nullptr; | OpDescPtr bp_op_desc = nullptr; | ||||
for (auto &in_anchor : bp_node->GetAllInDataAnchors()) { | |||||
auto out_anchor = in_anchor->GetPeerOutAnchor(); | |||||
if (out_anchor == nullptr || out_anchor->GetOwnerNode() == nullptr) { | |||||
continue; | |||||
for (auto &in_node : target_node->GetInAllNodes()) { | |||||
GE_CHECK_NOTNULL(in_node); | |||||
auto in_node_desc = in_node->GetOpDesc(); | |||||
GE_CHECK_NOTNULL(in_node_desc); | |||||
if ((bp_op_desc == nullptr || (in_node_desc->GetId() > bp_op_desc->GetId())) && | |||||
(in_node_desc->GetStreamId() == target_desc->GetStreamId())){ | |||||
bp_op_desc = in_node_desc; | |||||
} | } | ||||
auto out_node_desc = out_anchor->GetOwnerNode()->GetOpDesc(); | |||||
GE_CHECK_NOTNULL(out_node_desc); | |||||
if (bp_op_desc == nullptr || ((out_node_desc->GetId()) > (bp_op_desc->GetId()))) { | |||||
bp_op_desc = out_node_desc; | |||||
} | |||||
GELOGI("bp_op_desc is %s, id is %ld", bp_op_desc->GetName().c_str(), bp_op_desc->GetId()); | |||||
} | } | ||||
if (bp_op_desc == nullptr) { | if (bp_op_desc == nullptr) { | ||||
return last_bp; | |||||
GELOGI("Did not find bp node."); | |||||
return SUCCESS; | |||||
} | } | ||||
uint32_t current_idx = 0; | uint32_t current_idx = 0; | ||||
for (auto &node : graph->GetNodes(graph->GetGraphUnknownFlag())) { | for (auto &node : graph->GetNodes(graph->GetGraphUnknownFlag())) { | ||||
@@ -849,12 +865,14 @@ uint32_t TaskGenerator::FindLastBpFromBpNode(const ComputeGraphPtr &graph, const | |||||
GE_CHECK_NOTNULL(op_desc); | GE_CHECK_NOTNULL(op_desc); | ||||
current_idx++; | current_idx++; | ||||
if (op_desc->GetName() == bp_op_desc->GetName()) { | if (op_desc->GetName() == bp_op_desc->GetName()) { | ||||
last_bp = current_idx; | |||||
GELOGI("First bp name %s, idx %u", op_desc->GetName().c_str(), last_bp); | |||||
bp_index = current_idx; | |||||
GELOGI("Find bp name %s, idx %u", op_desc->GetName().c_str(), bp_index); | |||||
break; | break; | ||||
} | } | ||||
} | } | ||||
return last_bp; | |||||
GELOGI("Last bp node[%s], type[%s], index[%u], stream id[%ld]", bp_op_desc->GetName().c_str(), | |||||
bp_op_desc->GetType().c_str(), bp_index, bp_op_desc->GetStreamId()); | |||||
return SUCCESS; | |||||
} | } | ||||
Status TaskGenerator::FindFpOfEnv(const ComputeGraphPtr &graph, const std::string &fp_point_str, | Status TaskGenerator::FindFpOfEnv(const ComputeGraphPtr &graph, const std::string &fp_point_str, | ||||
@@ -80,6 +80,7 @@ class TaskGenerator { | |||||
Status FindProfilingNodeIndex(const ComputeGraphPtr &graph, ProfilingPoint &profiling_point, | Status FindProfilingNodeIndex(const ComputeGraphPtr &graph, ProfilingPoint &profiling_point, | ||||
std::vector<uint32_t> &all_reduce_nodes); | std::vector<uint32_t> &all_reduce_nodes); | ||||
private: | private: | ||||
Status UpdateAnchorStatusForFfts(const NodePtr &node); | |||||
Status UpdateAnchorStatus(const NodePtr &node); | Status UpdateAnchorStatus(const NodePtr &node); | ||||
Status UpdateOpIsVarAttr(const OpDescPtr &op_desc, uint64_t session_id); | Status UpdateOpIsVarAttr(const OpDescPtr &op_desc, uint64_t session_id); | ||||
@@ -115,7 +116,7 @@ class TaskGenerator { | |||||
Status AutoFindFpOpIndex(const ComputeGraphPtr &graph, ProfilingPoint &profiling_point) const; | Status AutoFindFpOpIndex(const ComputeGraphPtr &graph, ProfilingPoint &profiling_point) const; | ||||
Status AutoFindBpOpIndex(const ComputeGraphPtr &graph, ProfilingPoint &profiling_point, | Status AutoFindBpOpIndex(const ComputeGraphPtr &graph, ProfilingPoint &profiling_point, | ||||
vector<uint32_t> &all_reduce_nodes) const; | vector<uint32_t> &all_reduce_nodes) const; | ||||
uint32_t FindLastBpFromBpNode(const ComputeGraphPtr &graph, const NodePtr &bp_node) const; | |||||
Status FindLastBpFromBpNode(const ComputeGraphPtr &graph, const NodePtr &bp_node, uint32_t &bp_index) const; | |||||
Status FindFpOfEnv(const ComputeGraphPtr &graph, const std::string &fp_point_str, | Status FindFpOfEnv(const ComputeGraphPtr &graph, const std::string &fp_point_str, | ||||
ProfilingPoint &profiling_point) const; | ProfilingPoint &profiling_point) const; | ||||
@@ -275,21 +275,6 @@ bool IsUnknownShapeTensor(const GeTensorDesc &tensor_desc) { | |||||
} | } | ||||
/// | /// | ||||
/// @brief Set Op _force_unknown_shape flag | |||||
/// @param [in] node | |||||
/// @param [in] force_unknown, set attribute if true | |||||
/// @param [in] group_index, condition group index of node. | |||||
/// @return | |||||
/// | |||||
void MarkForceUnknownShape(const NodePtr &node, bool force_unknown, int64_t group_index) { | |||||
if (!force_unknown) { | |||||
return; | |||||
} | |||||
SetControlFlowGroup(node, group_index); | |||||
} | |||||
/// | |||||
/// @brief Set Op _control_flow_group flag | /// @brief Set Op _control_flow_group flag | ||||
/// @param [in] node | /// @param [in] node | ||||
/// @param [in] group, condition group index of node. | /// @param [in] group, condition group index of node. | ||||
@@ -126,15 +126,6 @@ Status GetMemorySize(const NodePtr &node, int64_t &output_size); | |||||
bool IsUnknownShapeTensor(const GeTensorDesc &tensor_desc); | bool IsUnknownShapeTensor(const GeTensorDesc &tensor_desc); | ||||
/// | /// | ||||
/// @brief Set Op _force_unknown_shape flag | |||||
/// @param [in] node | |||||
/// @param [in] force_unknown, set attribute if true | |||||
/// @param [in] group_index, condition group index of node. | |||||
/// @return | |||||
/// | |||||
void MarkForceUnknownShape(const NodePtr &node, bool force_unknown, int64_t group_index); | |||||
/// | |||||
/// @brief Set Op _control_flow_group flag | /// @brief Set Op _control_flow_group flag | ||||
/// @param [in] node | /// @param [in] node | ||||
/// @param [in] group, condition group index of node. | /// @param [in] group, condition group index of node. | ||||
@@ -99,6 +99,9 @@ const uint32_t kEndOfSequenceNew = 507005; | |||||
const int32_t kModelAbortNormal = 0x0704000e; | const int32_t kModelAbortNormal = 0x0704000e; | ||||
const int32_t kModelAbortNormalNew = 507024; | const int32_t kModelAbortNormalNew = 507024; | ||||
const uint32_t kInteval = 2; | const uint32_t kInteval = 2; | ||||
const uint32_t kFftsTbeHandleElementSize = 2; | |||||
const uint32_t kNonTailBlock = 0; | |||||
const uint32_t kTailBlock = 1; | |||||
const char *const kModelName = "model_name"; | const char *const kModelName = "model_name"; | ||||
const char *const kModeleId = "model_id"; | const char *const kModeleId = "model_id"; | ||||
const char *const kLoadStartTime = "load_start_time"; | const char *const kLoadStartTime = "load_start_time"; | ||||
@@ -116,14 +119,15 @@ const char *const kWorkSpaceSize = "workspace_size"; | |||||
const char *const kTotalSize = "total_size"; | const char *const kTotalSize = "total_size"; | ||||
const char *const kTaskCount = "task_count"; | const char *const kTaskCount = "task_count"; | ||||
const char *const kTaskId = "task_id"; | const char *const kTaskId = "task_id"; | ||||
const char* const kRequestId = "request_id"; | |||||
const char* const kThreadId = "thread_id"; | |||||
const char* const kInputBeginTime = "input_begin_time"; | |||||
const char* const kInputEndTime = "input_end_time"; | |||||
const char* const kInferBeginTime = "infer_begin_time"; | |||||
const char* const kInferEndTime = "infer_end_time"; | |||||
const char* const kOutputBeginTime = "output_start_time"; | |||||
const char* const kOutputEndTime = "output_end_time"; | |||||
const char *const kRequestId = "request_id"; | |||||
const char *const kThreadId = "thread_id"; | |||||
const char *const kInputBeginTime = "input_begin_time"; | |||||
const char *const kInputEndTime = "input_end_time"; | |||||
const char *const kInferBeginTime = "infer_begin_time"; | |||||
const char *const kInferEndTime = "infer_end_time"; | |||||
const char *const kOutputBeginTime = "output_start_time"; | |||||
const char *const kOutputEndTime = "output_end_time"; | |||||
const char *const kStubFuncName = "_register_stub_func"; | |||||
const uint32_t kStringHeadElems = 2; | const uint32_t kStringHeadElems = 2; | ||||
const uint32_t kPlacementHostData = 0; | const uint32_t kPlacementHostData = 0; | ||||
const size_t kAlignment = 64; | const size_t kAlignment = 64; | ||||
@@ -902,10 +906,8 @@ Status DavinciModel::InitNodes(const ComputeGraphPtr &compute_graph) { | |||||
SetLabelForDynamic(node); | SetLabelForDynamic(node); | ||||
auto it = op_desc_handle.find(op_desc->GetType()); | auto it = op_desc_handle.find(op_desc->GetType()); | ||||
if (it != op_desc_handle.end()) { | if (it != op_desc_handle.end()) { | ||||
if ((this->*it->second)(op_desc) != SUCCESS) { | |||||
GELOGE(PARAM_INVALID, "[Init][Node] failed, Name:%s", op_desc->GetName().c_str()); | |||||
return PARAM_INVALID; | |||||
} | |||||
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG((this->*it->second)(op_desc) != SUCCESS, return PARAM_INVALID, | |||||
"[Init][Node] failed, Name:%s", op_desc->GetName().c_str()); | |||||
continue; | continue; | ||||
} | } | ||||
@@ -935,7 +937,8 @@ Status DavinciModel::InitNodes(const ComputeGraphPtr &compute_graph) { | |||||
GE_TIMESTAMP_RESTART(InitTbeHandle); | GE_TIMESTAMP_RESTART(InitTbeHandle); | ||||
if (IsTbeTask(op_desc)) { | if (IsTbeTask(op_desc)) { | ||||
Status status = InitTbeHandle(op_desc); | |||||
Status status = | |||||
op_desc->HasAttr(ATTR_NAME_THREAD_SCOPE_ID) ? InitTbeHandleWithFfts(op_desc) : InitTbeHandle(op_desc); | |||||
if (status != SUCCESS) { | if (status != SUCCESS) { | ||||
GELOGE(status, "[Init][TbeHandle] failed. op:%s", op_desc->GetName().c_str()); | GELOGE(status, "[Init][TbeHandle] failed. op:%s", op_desc->GetName().c_str()); | ||||
return status; | return status; | ||||
@@ -1477,6 +1480,11 @@ Status DavinciModel::GetLabelGotoAddr(uint32_t label_index, rtMemType_t mem_type | |||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
void DavinciModel::SetGlobalStep(void *global_step, uint64_t global_step_size) { | |||||
global_step_addr_ = global_step; | |||||
global_step_size_ = global_step_size; | |||||
} | |||||
/// @ingroup ge | /// @ingroup ge | ||||
/// @brief LabelSet Op Initialize. | /// @brief LabelSet Op Initialize. | ||||
/// @param [in] op_desc: LabelSet Op descriptor. | /// @param [in] op_desc: LabelSet Op descriptor. | ||||
@@ -1539,14 +1547,16 @@ Status DavinciModel::InitLabelSet(const OpDescPtr &op_desc) { | |||||
} | } | ||||
Status DavinciModel::InitVariable(const OpDescPtr &op_desc, map<string, OpDescPtr> &variable_by_name) { | Status DavinciModel::InitVariable(const OpDescPtr &op_desc, map<string, OpDescPtr> &variable_by_name) { | ||||
if (op_desc->GetName() == NODE_NAME_GLOBAL_STEP) { | |||||
const auto output_sizes = ModelUtils::GetOutputSize(op_desc); | |||||
if (!output_sizes.empty()) { | |||||
global_step_size_ = output_sizes[0]; | |||||
} | |||||
const auto output_addrs = ModelUtils::GetOutputDataAddrs(runtime_param_, op_desc); | |||||
if (!output_addrs.empty()) { | |||||
global_step_addr_ = output_addrs[0]; | |||||
if (!known_node_) { | |||||
if (op_desc->GetName() == NODE_NAME_GLOBAL_STEP) { | |||||
const auto output_sizes = ModelUtils::GetOutputSize(op_desc); | |||||
if (!output_sizes.empty()) { | |||||
global_step_size_ = output_sizes[0]; | |||||
} | |||||
const auto output_addrs = ModelUtils::GetOutputDataAddrs(runtime_param_, op_desc); | |||||
if (!output_addrs.empty()) { | |||||
global_step_addr_ = output_addrs[0]; | |||||
} | |||||
} | } | ||||
} | } | ||||
@@ -3673,6 +3683,7 @@ Status DavinciModel::InitConstant(const OpDescPtr &op_desc) { | |||||
elem_num = 1; | elem_num = 1; | ||||
} | } | ||||
uint64_t *buff = reinterpret_cast<uint64_t *>(tensor->MutableData().data()); | uint64_t *buff = reinterpret_cast<uint64_t *>(tensor->MutableData().data()); | ||||
GE_CHECK_NOTNULL(buff); | |||||
if (ge::CheckInt64Uint32MulOverflow(elem_num, kBytes * kStringHeadElems) != SUCCESS) { | if (ge::CheckInt64Uint32MulOverflow(elem_num, kBytes * kStringHeadElems) != SUCCESS) { | ||||
GELOGE(FAILED, "[Call][CheckInt64Uint32MulOverflow] Shape size:%ld is invalid", elem_num); | GELOGE(FAILED, "[Call][CheckInt64Uint32MulOverflow] Shape size:%ld is invalid", elem_num); | ||||
return FAILED; | return FAILED; | ||||
@@ -3700,6 +3711,7 @@ Status DavinciModel::InitConstant(const OpDescPtr &op_desc) { | |||||
/// @return Status | /// @return Status | ||||
/// | /// | ||||
Status DavinciModel::InitTbeHandle(const OpDescPtr &op_desc) { | Status DavinciModel::InitTbeHandle(const OpDescPtr &op_desc) { | ||||
string bin_file = op_desc->GetName(); | |||||
auto kernel = ge_model_->GetTBEKernelStore().FindKernel(op_desc->GetName()); | auto kernel = ge_model_->GetTBEKernelStore().FindKernel(op_desc->GetName()); | ||||
auto tbe_kernel = (kernel != nullptr) ? kernel : op_desc->TryGetExtAttr(OP_EXTATTR_NAME_TBE_KERNEL, TBEKernelPtr()); | auto tbe_kernel = (kernel != nullptr) ? kernel : op_desc->TryGetExtAttr(OP_EXTATTR_NAME_TBE_KERNEL, TBEKernelPtr()); | ||||
if (tbe_kernel == nullptr) { | if (tbe_kernel == nullptr) { | ||||
@@ -3708,12 +3720,61 @@ Status DavinciModel::InitTbeHandle(const OpDescPtr &op_desc) { | |||||
GELOGE(INTERNAL_ERROR, "[Check][Param] TBE: %s can't find tvm bin file!", op_desc->GetName().c_str()); | GELOGE(INTERNAL_ERROR, "[Check][Param] TBE: %s can't find tvm bin file!", op_desc->GetName().c_str()); | ||||
return INTERNAL_ERROR; | return INTERNAL_ERROR; | ||||
} | } | ||||
GE_CHK_STATUS_RET(FunctionRegister(op_desc, bin_file, tbe_kernel, false), "Function register of bin file: %s failed", | |||||
bin_file.c_str()); | |||||
return SUCCESS; | |||||
} | |||||
std::string session_graph_model_id; | |||||
GetUniqueId(op_desc, session_graph_model_id); | |||||
const char *bin_file_key = GetRegisterStub(op_desc->GetName(), session_graph_model_id); // from set, always valid. | |||||
TBEHandleStore &kernel_store = TBEHandleStore::GetInstance(); | |||||
Status DavinciModel::InitTbeHandleWithFfts(const OpDescPtr &op_desc) { | |||||
std::vector<OpKernelBinPtr> tbe_kernel; | |||||
tbe_kernel = op_desc->TryGetExtAttr(OP_EXTATTR_NAME_THREAD_TBE_KERNEL, tbe_kernel); | |||||
GELOGD("Kernel bin ptr vec size is %zu.", tbe_kernel.size()); | |||||
if (tbe_kernel.size() != kFftsTbeHandleElementSize) { | |||||
REPORT_INNER_ERROR("E19999", "Get tbe_kernel for op:%s(%s) fail, model_id:%u", | |||||
op_desc->GetName().c_str(), op_desc->GetType().c_str(), model_id_); | |||||
GELOGE(INTERNAL_ERROR, "[Check][Param] TBE: %s can't find tvm bin file, size is %zu when ffts", | |||||
op_desc->GetName().c_str(), tbe_kernel.size()); | |||||
return INTERNAL_ERROR; | |||||
} | |||||
if (tbe_kernel[0] == nullptr || tbe_kernel[1] == nullptr) { | |||||
REPORT_INNER_ERROR("E19999", "Tbe kernel for op:%s is nullptr.", op_desc->GetName().c_str()); | |||||
GELOGE(INTERNAL_ERROR, "[Check][Param] TBE: tvm bin file of %s is nullptr when ffts.", op_desc->GetName().c_str()); | |||||
return INTERNAL_ERROR; | |||||
} | |||||
vector<string> bin_file_keys; | |||||
(void)AttrUtils::GetListStr(op_desc, kStubFuncName, bin_file_keys); | |||||
if (bin_file_keys.size() != kFftsTbeHandleElementSize) { | |||||
REPORT_INNER_ERROR("E19999", "Get bin_file for op:%s(%s) fail.", op_desc->GetName().c_str(), | |||||
op_desc->GetType().c_str()); | |||||
GELOGE(INTERNAL_ERROR, "[Check][Param] TBE: %s can't find bin file keys, size is %zu when ffts", | |||||
op_desc->GetName().c_str(), bin_file_keys.size()); | |||||
return INTERNAL_ERROR; | |||||
} | |||||
GE_CHK_STATUS_RET(FunctionRegister(op_desc, bin_file_keys[kNonTailBlock], tbe_kernel[kNonTailBlock], true, | |||||
kNonTailBlock), | |||||
"Function register of first bin file %s failed.", bin_file_keys[kNonTailBlock].c_str()); | |||||
GE_CHK_STATUS_RET(FunctionRegister(op_desc, bin_file_keys[kTailBlock], tbe_kernel[kTailBlock], true, kTailBlock), | |||||
"Function register of second bin file %s failed.", bin_file_keys[kTailBlock].c_str()); | |||||
return SUCCESS; | |||||
} | |||||
Status DavinciModel::FunctionRegister(const OpDescPtr &op_desc, string &bin_file, OpKernelBinPtr &tbe_kernel, | |||||
bool is_ffts, size_t thread_index) { | |||||
if (thread_index > 1) { | |||||
GELOGE(INTERNAL_ERROR, "[Check][Param] failed. Thread index: %zu should less than 1.", thread_index); | |||||
return INTERNAL_ERROR; | |||||
} | |||||
const char *bin_file_key; | |||||
if (is_ffts) { | |||||
bin_file_key = GetRegisterStub(bin_file, ""); | |||||
GELOGI("Node:%s inherit func name:%s directly.", op_desc->GetName().c_str(), bin_file_key); | |||||
} else { | |||||
std::string session_graph_model_id; | |||||
GetUniqueId(op_desc, session_graph_model_id); | |||||
bin_file_key = GetRegisterStub(bin_file, session_graph_model_id); // from set, always valid. | |||||
} | |||||
TBEHandleStore &kernel_store = TBEHandleStore::GetInstance(); | |||||
std::lock_guard<std::mutex> lock(tvm_bin_mutex_); | std::lock_guard<std::mutex> lock(tvm_bin_mutex_); | ||||
if (rtQueryFunctionRegistered(bin_file_key) != RT_ERROR_NONE) { | if (rtQueryFunctionRegistered(bin_file_key) != RT_ERROR_NONE) { | ||||
void *bin_handle = nullptr; | void *bin_handle = nullptr; | ||||
@@ -3721,59 +3782,115 @@ Status DavinciModel::InitTbeHandle(const OpDescPtr &op_desc) { | |||||
GELOGD("TBE: can't find the kernel_name[%s] in HandleMap", bin_file_key); | GELOGD("TBE: can't find the kernel_name[%s] in HandleMap", bin_file_key); | ||||
rtDevBinary_t binary; | rtDevBinary_t binary; | ||||
std::string json_string; | |||||
GE_IF_BOOL_EXEC(AttrUtils::GetStr(op_desc, TVM_ATTR_NAME_MAGIC, json_string), | |||||
GELOGD("Get original type of session_graph_id.")); | |||||
if (json_string == "RT_DEV_BINARY_MAGIC_ELF_AICPU") { | |||||
binary.magic = RT_DEV_BINARY_MAGIC_ELF_AICPU; | |||||
} else if (json_string == "RT_DEV_BINARY_MAGIC_ELF") { | |||||
binary.magic = RT_DEV_BINARY_MAGIC_ELF; | |||||
} else if (json_string == "RT_DEV_BINARY_MAGIC_ELF_AIVEC") { | |||||
binary.magic = RT_DEV_BINARY_MAGIC_ELF_AIVEC; | |||||
} else if (json_string == "RT_DEV_BINARY_MAGIC_ELF_AICUBE") { | |||||
binary.magic = RT_DEV_BINARY_MAGIC_ELF_AICUBE; | |||||
} else { | |||||
REPORT_INNER_ERROR("E19999", "Attr:%s value:%s in op:%s(%s), model_id:%u, check invalid", | |||||
TVM_ATTR_NAME_MAGIC.c_str(), json_string.c_str(), | |||||
op_desc->GetName().c_str(), op_desc->GetType().c_str(), model_id_); | |||||
GELOGE(PARAM_INVALID, "[Check][Param] Attr:%s value:%s in op:%s(%s), model_id:%u, check invalid", | |||||
TVM_ATTR_NAME_MAGIC.c_str(), json_string.c_str(), | |||||
op_desc->GetName().c_str(), op_desc->GetType().c_str(), model_id_); | |||||
return PARAM_INVALID; | |||||
} | |||||
GE_CHK_STATUS_RET(InitBinaryMagic(op_desc, is_ffts, thread_index, binary), "Init binary magic of %s failed.", | |||||
op_desc->GetName().c_str()); | |||||
binary.version = 0; | binary.version = 0; | ||||
binary.data = tbe_kernel->GetBinData(); | binary.data = tbe_kernel->GetBinData(); | ||||
binary.length = tbe_kernel->GetBinDataSize(); | binary.length = tbe_kernel->GetBinDataSize(); | ||||
GELOGD("TBE: binary.length: %lu", binary.length); | GELOGD("TBE: binary.length: %lu", binary.length); | ||||
GE_CHK_RT_RET(rtDevBinaryRegister(&binary, &bin_handle)); | GE_CHK_RT_RET(rtDevBinaryRegister(&binary, &bin_handle)); | ||||
std::string meta_data; | |||||
GE_IF_BOOL_EXEC(AttrUtils::GetStr(op_desc, TVM_ATTR_NAME_METADATA, meta_data), | |||||
GELOGI("Get original type of json_string")); | |||||
GELOGD("TBE: meta data: %s", meta_data.empty() ? "null" : meta_data.c_str()); | |||||
GE_IF_BOOL_EXEC(!meta_data.empty(), GE_CHK_RT_RET(rtMetadataRegister(bin_handle, meta_data.c_str()))); | |||||
GE_CHK_STATUS_RET(InitMetaData(op_desc, is_ffts, thread_index, bin_handle), "Init tvm meta data of %s failed.", | |||||
op_desc->GetName().c_str()); | |||||
kernel_store.StoreTBEHandle(bin_file_key, bin_handle, tbe_kernel); | kernel_store.StoreTBEHandle(bin_file_key, bin_handle, tbe_kernel); | ||||
} else { | } else { | ||||
GELOGI("TBE: find the kernel_name[%s] in HandleMap", bin_file_key); | GELOGI("TBE: find the kernel_name[%s] in HandleMap", bin_file_key); | ||||
kernel_store.ReferTBEHandle(bin_file_key); | kernel_store.ReferTBEHandle(bin_file_key); | ||||
} | } | ||||
std::string kernel_name; | std::string kernel_name; | ||||
GE_IF_BOOL_EXEC(AttrUtils::GetStr(op_desc, op_desc->GetName() + "_kernelname", kernel_name), | |||||
GELOGD("Get original type of kernel_name")); | |||||
GE_CHK_STATUS_RET(InitKernelName(op_desc, is_ffts, thread_index, kernel_name), "Init kernel name of %s failed.", | |||||
op_desc->GetName().c_str()); | |||||
GE_CHK_RT_RET(rtFunctionRegister(bin_handle, bin_file_key, bin_file_key, kernel_name.c_str(), 0)); | GE_CHK_RT_RET(rtFunctionRegister(bin_handle, bin_file_key, bin_file_key, kernel_name.c_str(), 0)); | ||||
used_tbe_handle_map_[bin_file_key] = 1; // Init used num to 1. | used_tbe_handle_map_[bin_file_key] = 1; // Init used num to 1. | ||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
// Kernel registed, Increase used num in store. | // Kernel registed, Increase used num in store. | ||||
StoreTbeHandle(bin_file_key); | StoreTbeHandle(bin_file_key); | ||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
Status DavinciModel::InitBinaryMagic(const OpDescPtr &op_desc, bool is_ffts, size_t thread_index, | |||||
rtDevBinary_t &binary) { | |||||
string json_string; | |||||
const string &tvm_magic = is_ffts ? TVM_ATTR_NAME_THREAD_MAGIC : TVM_ATTR_NAME_MAGIC; | |||||
const static std::map<std::string, uint32_t> binary_magics = { | |||||
{"RT_DEV_BINARY_MAGIC_ELF_AICPU", RT_DEV_BINARY_MAGIC_ELF_AICPU}, | |||||
{"RT_DEV_BINARY_MAGIC_ELF", RT_DEV_BINARY_MAGIC_ELF}, | |||||
{"RT_DEV_BINARY_MAGIC_ELF_AIVEC", RT_DEV_BINARY_MAGIC_ELF_AIVEC}, | |||||
{"RT_DEV_BINARY_MAGIC_ELF_AICUBE", RT_DEV_BINARY_MAGIC_ELF_AICUBE} | |||||
}; | |||||
if (is_ffts) { | |||||
vector<string> json_list; | |||||
(void)AttrUtils::GetListStr(op_desc, tvm_magic, json_list); | |||||
if (json_list.size() != kFftsTbeHandleElementSize) { | |||||
GELOGE(INTERNAL_ERROR, "[Check][Param] failed. Attr is %s, thread index is %zu, json list size is %zu.", | |||||
tvm_magic.c_str(), thread_index, json_list.size()); | |||||
return INTERNAL_ERROR; | |||||
} | |||||
json_string = json_list[thread_index]; | |||||
} else { | |||||
(void)AttrUtils::GetStr(op_desc, tvm_magic, json_string); | |||||
} | |||||
auto iter = binary_magics.find(json_string); | |||||
if (iter == binary_magics.end()) { | |||||
REPORT_INNER_ERROR("E19999", "Attr:%s value:%s in op:%s(%s), model_id:%u, check invalid", | |||||
tvm_magic.c_str(), json_string.c_str(), op_desc->GetName().c_str(), | |||||
op_desc->GetType().c_str(), model_id_); | |||||
GELOGE(PARAM_INVALID, "[Check][Param] Attr:%s value:%s in op:%s(%s), model_id:%u, check invalid", | |||||
TVM_ATTR_NAME_MAGIC.c_str(), json_string.c_str(), | |||||
op_desc->GetName().c_str(), op_desc->GetType().c_str(), model_id_); | |||||
return PARAM_INVALID; | |||||
} | |||||
binary.magic = iter->second; | |||||
return SUCCESS; | |||||
} | |||||
Status DavinciModel::InitMetaData(const OpDescPtr &op_desc, bool is_ffts, size_t thread_index, void *bin_handle) { | |||||
string meta_data; | |||||
const string &tvm_metadata = is_ffts ? TVM_ATTR_NAME_THREAD_METADATA : TVM_ATTR_NAME_METADATA; | |||||
if (is_ffts) { | |||||
vector<string> meta_data_list; | |||||
(void)AttrUtils::GetListStr(op_desc, tvm_metadata, meta_data_list); | |||||
if (meta_data_list.size() != kFftsTbeHandleElementSize) { | |||||
GELOGE(INTERNAL_ERROR, "[Check][Param] failed, attr is %s, thread index is %zu, meta data list size is %zu.", | |||||
tvm_metadata.c_str(), thread_index, meta_data_list.size()); | |||||
return INTERNAL_ERROR; | |||||
} | |||||
meta_data = meta_data_list[thread_index]; | |||||
} else { | |||||
(void)AttrUtils::GetStr(op_desc, tvm_metadata, meta_data); | |||||
} | |||||
GELOGD("TBE: meta data: %s", meta_data.empty() ? "null" : meta_data.c_str()); | |||||
if (!meta_data.empty()) { | |||||
GE_CHK_RT_RET(rtMetadataRegister(bin_handle, meta_data.c_str())); | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
Status DavinciModel::InitKernelName(const OpDescPtr &op_desc, bool is_ffts, size_t thread_index, string &kernel_name) { | |||||
if (is_ffts) { | |||||
// delete prefix, eg: *sgt_graph_nodes*/loss_scale/gradient/fp32_vals/Mean_grad/Tile | |||||
vector<string> kernel_name_list; | |||||
auto pos = op_desc->GetName().find("/"); | |||||
if (pos == std::string::npos) { | |||||
GELOGE(INTERNAL_ERROR, "[Check][Param] failed, subgraph node name: %s.", op_desc->GetName().c_str()); | |||||
return INTERNAL_ERROR; | |||||
} | |||||
string attr_kernel_name = op_desc->GetName().substr(pos + 1) + "_thread_kernelname"; | |||||
(void)AttrUtils::GetListStr(op_desc, attr_kernel_name, kernel_name_list); | |||||
if (kernel_name_list.size() != kFftsTbeHandleElementSize) { | |||||
GELOGE(INTERNAL_ERROR, "[Check][Param] failed, attr is %s, thread index is %zu, kernel name list size is %zu.", | |||||
attr_kernel_name.c_str(), thread_index, kernel_name_list.size()); | |||||
return INTERNAL_ERROR; | |||||
} | |||||
kernel_name = kernel_name_list[thread_index]; | |||||
} else { | |||||
string attr_kernel_name = op_desc->GetName() + "_kernelname"; | |||||
(void)AttrUtils::GetStr(op_desc, attr_kernel_name, kernel_name); | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
void DavinciModel::StoreTbeHandle(const std::string &handle_key) { | void DavinciModel::StoreTbeHandle(const std::string &handle_key) { | ||||
// Online mode FE may call rtFunctionRegister. | // Online mode FE may call rtFunctionRegister. | ||||
TBEHandleStore &kernel_store = TBEHandleStore::GetInstance(); | TBEHandleStore &kernel_store = TBEHandleStore::GetInstance(); | ||||
@@ -4256,7 +4373,7 @@ void DavinciModel::SetDataDumperArgs(const ComputeGraphPtr &graph, const map<str | |||||
data_dumper_.SetDeviceId(device_id); | data_dumper_.SetDeviceId(device_id); | ||||
if (known_node_) { | if (known_node_) { | ||||
data_dumper_.SetLoopAddr(known_shape_global_step_, nullptr, nullptr); | |||||
data_dumper_.SetLoopAddr(global_step_addr_, nullptr, nullptr); | |||||
} else { | } else { | ||||
// set loop count addr | // set loop count addr | ||||
auto get_var_addr = [&](const string &name) -> void *{ | auto get_var_addr = [&](const string &name) -> void *{ | ||||
@@ -300,6 +300,7 @@ class DavinciModel { | |||||
return op_list_.at(index); | return op_list_.at(index); | ||||
} | } | ||||
void SetGlobalStep(void *global_step, uint64_t global_step_size); | |||||
void *GetGlobalStep() const { return global_step_addr_; } | void *GetGlobalStep() const { return global_step_addr_; } | ||||
// get task info for profiling | // get task info for profiling | ||||
@@ -498,10 +499,6 @@ class DavinciModel { | |||||
return exception_dumper_.DumpExceptionInfo(exception_infos); | return exception_dumper_.DumpExceptionInfo(exception_infos); | ||||
} | } | ||||
void SetKnownShapeGlobalStep(void *global_step) { | |||||
known_shape_global_step_ = global_step; | |||||
} | |||||
void DumperShrink() { | void DumperShrink() { | ||||
data_dumper_.DumpShrink(); | data_dumper_.DumpShrink(); | ||||
} | } | ||||
@@ -771,6 +768,12 @@ class DavinciModel { | |||||
/// @return Status | /// @return Status | ||||
/// | /// | ||||
Status InitTbeHandle(const OpDescPtr &op_desc); | Status InitTbeHandle(const OpDescPtr &op_desc); | ||||
Status InitTbeHandleWithFfts(const OpDescPtr &op_desc); | |||||
Status FunctionRegister(const OpDescPtr &op_desc, string &bin_file, OpKernelBinPtr &tbe_kernel, bool is_ffts, | |||||
size_t thread_index = 0); | |||||
Status InitBinaryMagic(const OpDescPtr &op_desc, bool is_ffts, size_t thread_index, rtDevBinary_t &binary); | |||||
Status InitMetaData(const OpDescPtr &op_desc, bool is_ffts, size_t thread_index, void *bin_handle); | |||||
Status InitKernelName(const OpDescPtr &op_desc, bool is_ffts, size_t thread_index, string &kernel_name); | |||||
void StoreTbeHandle(const string &handle_key); | void StoreTbeHandle(const string &handle_key); | ||||
void CleanTbeHandle(); | void CleanTbeHandle(); | ||||
@@ -1102,9 +1105,6 @@ class DavinciModel { | |||||
vector<InputOutputDescInfo> output_descs_; | vector<InputOutputDescInfo> output_descs_; | ||||
vector<uint32_t> output_formats_; | vector<uint32_t> output_formats_; | ||||
// known shape node for dump | |||||
void *known_shape_global_step_; | |||||
// op name to attrs mapping | // op name to attrs mapping | ||||
std::map<std::string, std::map<std::string, std::vector<std::string>>> op_name_to_attrs_; | std::map<std::string, std::map<std::string, std::vector<std::string>>> op_name_to_attrs_; | ||||
}; | }; | ||||
@@ -570,6 +570,7 @@ Status ModelManager::DataInputTensor(uint32_t model_id, const std::vector<ge::Te | |||||
uint32_t length = static_cast<uint32_t>(cur_dynamic_dims.size() * sizeof(int32_t)); | uint32_t length = static_cast<uint32_t>(cur_dynamic_dims.size() * sizeof(int32_t)); | ||||
GE_CHK_BOOL_EXEC(memcpy_s(data.data, length, cur_dynamic_dims.data(), length) == EOK, | GE_CHK_BOOL_EXEC(memcpy_s(data.data, length, cur_dynamic_dims.data(), length) == EOK, | ||||
REPORT_CALL_ERROR("E19999", "memcpy data failed, size:%u", length); | REPORT_CALL_ERROR("E19999", "memcpy data failed, size:%u", length); | ||||
delete[] reinterpret_cast<int32_t *>(data.data); | |||||
return INTERNAL_ERROR, "[Memcpy][Data] failed, size:%u.", length); | return INTERNAL_ERROR, "[Memcpy][Data] failed, size:%u.", length); | ||||
data.length = length; | data.length = length; | ||||
input_data.blobs.push_back(data); | input_data.blobs.push_back(data); | ||||
@@ -1378,7 +1379,9 @@ Status ModelManager::LoadCustAicpuSo(const OpDescPtr &op_desc, const string &so_ | |||||
Status ModelManager::LaunchKernelCustAicpuSo(const string &kernel_name) { | Status ModelManager::LaunchKernelCustAicpuSo(const string &kernel_name) { | ||||
GELOGD("Aicpu kernel launch task in, kernel name %s.", kernel_name.c_str()); | GELOGD("Aicpu kernel launch task in, kernel name %s.", kernel_name.c_str()); | ||||
std::lock_guard<std::mutex> lock(cust_aicpu_mutex_); | std::lock_guard<std::mutex> lock(cust_aicpu_mutex_); | ||||
if (cust_aicpu_so_.size() == 0) return SUCCESS; | |||||
if (cust_aicpu_so_.empty()) { | |||||
return SUCCESS; | |||||
} | |||||
// get current context | // get current context | ||||
rtContext_t rt_cur_ctx = nullptr; | rtContext_t rt_cur_ctx = nullptr; | ||||
auto rt_error = rtCtxGetCurrent(&rt_cur_ctx); | auto rt_error = rtCtxGetCurrent(&rt_cur_ctx); | ||||
@@ -1394,9 +1397,19 @@ Status ModelManager::LaunchKernelCustAicpuSo(const string &kernel_name) { | |||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
rtStream_t stream = nullptr; | |||||
vector<void *> allocated_mem; | vector<void *> allocated_mem; | ||||
std::function<void()> callback = [&]() { | |||||
for (auto mem : allocated_mem) { | |||||
GE_CHK_RT(rtFree(mem)); | |||||
} | |||||
if (stream != nullptr) { | |||||
GE_CHK_RT(rtStreamDestroy(stream)); | |||||
} | |||||
}; | |||||
GE_MAKE_GUARD(release, callback); | |||||
rtError_t status; | rtError_t status; | ||||
rtStream_t stream = nullptr; | |||||
vector<CustAicpuSoBuf> v_cust_so; | vector<CustAicpuSoBuf> v_cust_so; | ||||
void *args = nullptr; | void *args = nullptr; | ||||
@@ -1471,13 +1484,6 @@ Status ModelManager::LaunchKernelCustAicpuSo(const string &kernel_name) { | |||||
GELOGE(RT_FAILED, "[Call][RtStreamSynchronize] fail, ret = 0x%X", status); | GELOGE(RT_FAILED, "[Call][RtStreamSynchronize] fail, ret = 0x%X", status); | ||||
return RT_ERROR_TO_GE_STATUS(status); | return RT_ERROR_TO_GE_STATUS(status); | ||||
} | } | ||||
std::function<void()> callback = [&]() { | |||||
for (auto mem : allocated_mem) { | |||||
GE_CHK_RT(rtFree(mem)); | |||||
} | |||||
GE_CHK_RT(rtStreamDestroy(stream)); | |||||
}; | |||||
GE_MAKE_GUARD(release, callback); | |||||
GELOGI("Cpu kernel launch task success."); | GELOGI("Cpu kernel launch task success."); | ||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
@@ -1786,7 +1792,8 @@ Status ModelManager::LaunchKernelCheckAicpuOp(std::vector<std::string> &aicpu_op | |||||
std::vector<char> op_name; | std::vector<char> op_name; | ||||
op_name.clear(); | op_name.clear(); | ||||
op_name.resize(kOpNameMaxSize); | op_name.resize(kOpNameMaxSize); | ||||
GE_CHK_RT(rtMemcpy(op_name.data(), aicpu_info.opLen, reinterpret_cast<void *>(aicpu_info.opType), | |||||
GE_CHK_RT(rtMemcpy(op_name.data(), aicpu_info.opLen, | |||||
reinterpret_cast<void *>(static_cast<uintptr_t>(aicpu_info.opType)), | |||||
aicpu_info.opLen, RT_MEMCPY_DEVICE_TO_HOST)); | aicpu_info.opLen, RT_MEMCPY_DEVICE_TO_HOST)); | ||||
std::string kernel_type = | std::string kernel_type = | ||||
(static_cast<OpKernelType>(aicpu_info.kernelsType) == TF_KERNEL) ? "TF_KERNEL" : "CPU_KERNEL"; | (static_cast<OpKernelType>(aicpu_info.kernelsType) == TF_KERNEL) ? "TF_KERNEL" : "CPU_KERNEL"; | ||||
@@ -0,0 +1,393 @@ | |||||
/** | |||||
* Copyright 2021 Huawei Technologies Co., Ltd | |||||
* | |||||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||||
* you may not use this file except in compliance with the License. | |||||
* You may obtain a copy of the License at | |||||
* | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, software | |||||
* distributed under the License is distributed on an "AS IS" BASIS, | |||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
* See the License for the specific language governing permissions and | |||||
* limitations under the License. | |||||
*/ | |||||
#include "graph/load/model_manager/task_info/ffts_task_info.h" | |||||
#include <vector> | |||||
#include "graph/load/model_manager/davinci_model.h" | |||||
namespace { | |||||
constexpr uint32_t kAddrLen = sizeof(void *); | |||||
} | |||||
namespace ge { | |||||
FftsTaskInfo::~FftsTaskInfo() { | |||||
GE_FREE_RT_LOG(args_); | |||||
} | |||||
Status FftsTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davinci_model) { | |||||
GELOGI("FftsTaskInfo Init Start."); | |||||
GE_CHECK_NOTNULL(davinci_model); | |||||
davinci_model_ = davinci_model; | |||||
GE_CHK_STATUS_RET_NOLOG(SetStream(task_def.stream_id(), davinci_model_->GetStreamList())); | |||||
const domi::FftsTaskDef &ffts_task_def = task_def.ffts_task(); | |||||
OpDescPtr op_desc = davinci_model_->GetOpByIndex(ffts_task_def.op_index()); | |||||
GE_CHECK_NOTNULL(op_desc); | |||||
if ((ffts_task_def.sub_task_size() > static_cast<int>(RT_FFTS_MAX_SUB_TASK_NUM)) || | |||||
(ffts_task_def.ticket_cache_size() > static_cast<int>(RT_FFTS_MAX_TICKET_CACHE_NUM))) { | |||||
GELOGE(INTERNAL_ERROR, "[Check][Param] failed. Node: %s, sub task desc size: %d, ticket cache size: %d", | |||||
op_desc->GetName().c_str(), ffts_task_def.sub_task_size(), ffts_task_def.ticket_cache_size()); | |||||
return INTERNAL_ERROR; | |||||
} | |||||
args_size_ = kAddrLen * ffts_task_def.addr_size(); | |||||
GE_CHK_RT_RET(rtMalloc(&args_, args_size_, RT_MEMORY_HBM)); | |||||
InitFftsDescInfo(ffts_task_def.ffts_desc(), sub_task_info_.fftsDesc); | |||||
sub_task_info_.fftsType = static_cast<rtFftsType_t>(ffts_task_def.ffts_type()); | |||||
sub_task_info_.subTaskNum = ffts_task_def.sub_task_size(); | |||||
for (int idx = 0; idx < ffts_task_def.sub_task_size(); ++idx) { | |||||
GE_CHK_STATUS_RET_NOLOG(InitSubTaskInfo(ffts_task_def.sub_task(idx), sub_task_info_.subTask[idx])); | |||||
} | |||||
sub_task_info_.tickCacheNum = ffts_task_def.ticket_cache_size(); | |||||
for (int idx = 0; idx < ffts_task_def.ticket_cache_size(); ++idx) { | |||||
GE_CHK_STATUS_RET_NOLOG(InitTicketCache(ffts_task_def.ticket_cache(idx), sub_task_info_.ticketCache[idx])); | |||||
} | |||||
size_t data_size = kAddrLen * io_addrs_.size(); | |||||
GE_CHK_RT_RET(rtMemcpy(args_, args_size_, io_addrs_.data(), data_size, RT_MEMCPY_HOST_TO_DEVICE)); | |||||
GELOGI("FftsTaskInfo::Init Success. Node: %s, input/output size: %zu", op_desc->GetName().c_str(), io_addrs_.size()); | |||||
return SUCCESS; | |||||
} | |||||
void FftsTaskInfo::InitFftsDescInfo(const domi::FftsDescInfoDef &ffts_desc_def, rtFftsDescInfo_t &ffts_desc) { | |||||
ffts_desc.tm = static_cast<uint8_t>(ffts_desc_def.tm()); | |||||
ffts_desc.di = static_cast<uint8_t>(ffts_desc_def.di()); | |||||
ffts_desc.dw = static_cast<uint8_t>(ffts_desc_def.dw()); | |||||
ffts_desc.df = static_cast<uint8_t>(ffts_desc_def.df()); | |||||
ffts_desc.dataSplitUnit = static_cast<uint8_t>(ffts_desc_def.data_split_unit()); | |||||
ffts_desc.prefetchOstNum = static_cast<uint8_t>(ffts_desc_def.prefetch_ost_num()); | |||||
ffts_desc.cacheMaintainOstNum = static_cast<uint8_t>(ffts_desc_def.cache_maintain_ost_num()); | |||||
ffts_desc.aicPrefetchUpper = static_cast<uint8_t>(ffts_desc_def.aic_prefetch_upper()); | |||||
ffts_desc.aicPrefetchLower = static_cast<uint8_t>(ffts_desc_def.aic_prefetch_lower()); | |||||
ffts_desc.aivPrefetchUpper = static_cast<uint8_t>(ffts_desc_def.aiv_prefetch_upper()); | |||||
ffts_desc.aivPrefetchLower = static_cast<uint8_t>(ffts_desc_def.aiv_prefetch_lower()); | |||||
} | |||||
Status FftsTaskInfo::InitSubTaskInfo(const domi::FftsSubTaskDef &sub_task_def, rtFftsSubTaskInfo_t &sub_task_desc) { | |||||
if ((sub_task_def.dst_tick_cache_id_size() > static_cast<int>(RT_FFTS_MAX_TICKET_CACHE_PER_SUBTASK)) || | |||||
(sub_task_def.src_tick_cache_id_size() > static_cast<int>(RT_FFTS_MAX_TICKET_CACHE_PER_SUBTASK))) { | |||||
GELOGE(FAILED, "[Check][Param] Invalid FftsSubTaskInfo, dst tick cache id size: %d, src tick cache id size: %d", | |||||
sub_task_def.dst_tick_cache_id_size(), sub_task_def.src_tick_cache_id_size()); | |||||
return FAILED; | |||||
} | |||||
if (sub_task_def.has_auto_thread_aic_aiv() == sub_task_def.has_manual_thread_aic_aiv()) { | |||||
GELOGE(FAILED, "[Check][Param] Invalid FftsSubTaskInfo, auto thread aic/aiv: %d, manual thread aic/aiv: %d", | |||||
sub_task_def.has_auto_thread_aic_aiv(), sub_task_def.has_manual_thread_aic_aiv()); | |||||
return FAILED; | |||||
} | |||||
thread_dim_ = sub_task_def.thread_dim(); | |||||
GE_CHK_BOOL_RET_STATUS(thread_dim_ != 0, FAILED, "[Get][thread_dim] failed, Invalid thread dim: %u!", thread_dim_); | |||||
sub_task_desc.subTaskType = static_cast<rtFftsSubTaskType_t>(sub_task_def.sub_task_type()); | |||||
sub_task_desc.threadDim = sub_task_def.thread_dim(); | |||||
sub_task_desc.dstTickCacheVldBitmap = sub_task_def.dst_tick_cache_vld_bitmap(); | |||||
sub_task_desc.srcTickCacheVldBitmap = sub_task_def.src_tick_cache_vld_bitmap(); | |||||
sub_task_desc.srcDataOutOfSubGraphBitmap = sub_task_def.src_data_out_of_subgraph_bitmap(); | |||||
for (int idx = 0; idx < sub_task_def.dst_tick_cache_id_size(); ++idx) { | |||||
sub_task_desc.dstTickCacheID[idx] = sub_task_def.dst_tick_cache_id(idx); | |||||
} | |||||
for (int idx = 0; idx < sub_task_def.src_tick_cache_id_size(); ++idx) { | |||||
sub_task_desc.srcTickCacheID[idx] = sub_task_def.src_tick_cache_id(idx); | |||||
} | |||||
if (sub_task_def.has_auto_thread_aic_aiv()) { | |||||
GE_CHK_STATUS_RET_NOLOG(InitAutoAicAiv(sub_task_def.auto_thread_aic_aiv(), sub_task_desc.custom.autoThreadAicAiv)); | |||||
} | |||||
if (sub_task_def.has_manual_thread_aic_aiv()) { | |||||
GE_CHK_STATUS_RET_NOLOG( | |||||
InitManualAicAiv(sub_task_def.manual_thread_aic_aiv(), sub_task_desc.custom.manualThreadAicAiv)); | |||||
} | |||||
if (sub_task_def.has_manual_thread_nop()) { | |||||
GE_CHK_STATUS_RET_NOLOG(InitManualNop(sub_task_def.manual_thread_nop(), sub_task_desc.custom.manualThreadNop)); | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
Status FftsTaskInfo::InitTicketCache(const domi::TicketCacheDef &ticket_cache_def, rtTicketCache_t &ticket_cache) { | |||||
if (ticket_cache_def.has_auto_thread_cache() == ticket_cache_def.has_manual_thread_cache()) { | |||||
GELOGE(FAILED, "[Check][Param] Invalid TicketCacheDef, has auto thread cache: %d, has manual thread cache: %d", | |||||
ticket_cache_def.has_auto_thread_cache(), ticket_cache_def.has_manual_thread_cache()); | |||||
return FAILED; | |||||
} | |||||
ticket_cache.cacheOption = static_cast<rtCacheOp_t>(ticket_cache_def.cache_option()); | |||||
ticket_cache.ticketCacheWindow = ticket_cache_def.ticket_cache_window(); | |||||
if (ticket_cache_def.has_auto_thread_cache()) { | |||||
InitAutoCacheInfo(ticket_cache_def.auto_thread_cache(), ticket_cache.custom.autoThreadCache); | |||||
} | |||||
if (ticket_cache_def.has_manual_thread_cache()) { | |||||
GE_CHK_STATUS_RET_NOLOG( | |||||
InitManualCacheInfo(ticket_cache_def.manual_thread_cache(), ticket_cache.custom.manualThreadCache)); | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
// task_addr = {0,200,700,1000,2000, 3500} | |||||
// task_addr_offset = {20,40,2,100,200} | |||||
template <typename T> | |||||
Status FftsTaskInfo::InitIoAddrs(const RuntimeParam &rts_param, const T &aic_aiv_def, uint32_t thread_dim, | |||||
uint32_t addr_count) { | |||||
for (uint32_t i = 0; i < addr_count; ++i) { | |||||
uintptr_t logic_addr = aic_aiv_def.task_addr(i) + thread_dim * aic_aiv_def.task_addr_offset(i); | |||||
uint8_t *io_addr = nullptr; | |||||
if (ModelUtils::GetRtAddress(rts_param, logic_addr, io_addr) != SUCCESS) { | |||||
GELOGE(INTERNAL_ERROR, "[Check][GetRtAddress]GetRtAddress failed."); | |||||
return INTERNAL_ERROR; | |||||
} | |||||
GELOGD("aic_aiv_def task base addr is %ld, offset is %ld, thread is %d, logic addrs is 0x%lx, io addr is %p", | |||||
aic_aiv_def.task_addr(i), aic_aiv_def.task_addr_offset(i), thread_dim, logic_addr, io_addr); | |||||
io_addrs_.emplace_back(io_addr); | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
Status FftsTaskInfo::InitAutoAicAiv(const domi::AutoThreadAicAivDef &aic_aiv_def, rtAutoThreadAicAivInfo_t &aic_aiv) { | |||||
if (aic_aiv_def.src_prefetch_size() > static_cast<int>(RT_FFTS_MAX_TICKET_CACHE_PER_SUBTASK)) { | |||||
GELOGE(FAILED, "[Check][Param] Invalid AutoThreadAicAivInfo, prefetch size: %d", aic_aiv_def.src_prefetch_size()); | |||||
return FAILED; | |||||
} | |||||
aic_aiv.taskParamAddr = reinterpret_cast<uintptr_t>(args_) + kAddrLen * io_addrs_.size(); | |||||
GELOGD("AutoThreadAicAivDef: task param addr is %lu.", aic_aiv.taskParamAddr); | |||||
const auto &rts_param = davinci_model_->GetRuntimeParam(); | |||||
for (uint32_t i = 0; i < thread_dim_ - 1; ++i) { | |||||
GE_CHK_STATUS_RET_NOLOG(InitIoAddrs(rts_param, aic_aiv_def, i, | |||||
static_cast<uint32_t>(aic_aiv_def.task_addr_offset_size()))); | |||||
} | |||||
GE_CHK_STATUS_RET_NOLOG(InitIoAddrs(rts_param, aic_aiv_def, thread_dim_ - 1, aic_aiv_def.input_output_count())); | |||||
int last_thread_workspace_size = aic_aiv_def.task_addr_size() - aic_aiv_def.task_addr_offset_size(); | |||||
for (int k = 0; k < last_thread_workspace_size; ++k) { | |||||
uintptr_t logic_addr = aic_aiv_def.task_addr(aic_aiv_def.task_addr_offset_size() + k); | |||||
uint8_t *io_addr = nullptr; | |||||
GE_CHK_STATUS_RET_NOLOG(ModelUtils::GetRtAddress(rts_param, logic_addr, io_addr)); | |||||
GELOGD("logic addr is 0x%lx, io addr is %p.", logic_addr, io_addr); | |||||
io_addrs_.emplace_back(io_addr); | |||||
} | |||||
aic_aiv.taskParamOffset = aic_aiv_def.task_param_offset(); | |||||
GELOGD("args_: %p, io_addrs size: %zu, task param offset: %u.", args_, io_addrs_.size(), aic_aiv.taskParamOffset); | |||||
aic_aiv.satMode = aic_aiv_def.sat_mode(); | |||||
aic_aiv.scheduleMode = aic_aiv_def.schedule_mode(); | |||||
aic_aiv.iCachePrefetchCnt = aic_aiv_def.cache_prefetch_cnt(); | |||||
aic_aiv.prefetchEnableBitmap = aic_aiv_def.prefetch_enable_bitmap(); | |||||
aic_aiv.prefetchOnceBitmap = aic_aiv_def.prefetch_once_bitmap(); | |||||
aic_aiv.tailBlkDim = aic_aiv_def.tail_blk_dim(); | |||||
aic_aiv.nonTailBlkDim = aic_aiv_def.non_tail_blk_dim(); | |||||
aic_aiv.nonTailTaskFuncStub = davinci_model_->GetRegisterStub(aic_aiv_def.non_tail_task_func_stub(), ""); | |||||
aic_aiv.tailTaskFuncStub = davinci_model_->GetRegisterStub(aic_aiv_def.tail_task_func_stub(), ""); | |||||
GELOGI("Set func name[%s][%s] succ.", aic_aiv.nonTailTaskFuncStub, aic_aiv.tailTaskFuncStub); | |||||
for (int idx = 0; idx < aic_aiv_def.src_prefetch_size(); ++idx) { | |||||
InitAutoPrefetch(aic_aiv_def.src_prefetch(idx), aic_aiv.srcPrefetch[idx]); | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
void FftsTaskInfo::InitAutoCacheInfo(const domi::AutoThreadCacheDef &cache_def, rtAutoThreadCacheInfo_t &cache) { | |||||
cache.dataAddr = cache_def.data_addr(); | |||||
cache.dataAddrOffset = cache_def.data_addr_offset(); | |||||
cache.nonTailDataLen = cache_def.non_tail_data_len(); | |||||
cache.tailDataLen = cache_def.tail_data_len(); | |||||
cache.ticketCacheRefCnt = cache_def.ticket_cache_ref_cnt(); | |||||
} | |||||
void FftsTaskInfo::InitAutoPrefetch(const domi::AutoThreadPrefetchDef &prefetch_def, rtAutoThreadPrefetch_t &prefetch) { | |||||
prefetch.dataAddr = prefetch_def.data_addr(); | |||||
prefetch.dataAddrOffset = prefetch_def.data_addr_offset(); | |||||
prefetch.nonTailDataLen = prefetch_def.non_tail_data_len(); | |||||
prefetch.tailDataLen = prefetch_def.tail_data_len(); | |||||
} | |||||
Status FftsTaskInfo::InitManualAicAiv(const domi::ManualThreadAicAivDef &aic_aiv_def, | |||||
rtManualThreadAicAivInfo_t &aic_aiv) { | |||||
if ((aic_aiv_def.thread_prefetch_dmu_idx_size() > static_cast<int>(RT_FFTS_MAX_MANUAL_THREAD_NUM)) || | |||||
(aic_aiv_def.thread_blk_dim_size() > static_cast<int>(RT_FFTS_MAX_MANUAL_THREAD_NUM)) || | |||||
(aic_aiv_def.thread_task_func_stub_size() > static_cast<int>(RT_FFTS_MAX_MANUAL_THREAD_NUM)) || | |||||
(aic_aiv_def.src_dep_tbl_size() > static_cast<int>(RT_FFTS_MAX_TICKET_CACHE_PER_SUBTASK))) { | |||||
GELOGE(FAILED, "[Check][Param] Invalid ManualThreadAicAivInfo, thread prefetch dmu desc size: %d, " | |||||
"thread blk dim size: %d, thread task func stub size: %d, src dep tbl size: %d", | |||||
aic_aiv_def.thread_prefetch_dmu_idx_size(), aic_aiv_def.thread_blk_dim_size(), | |||||
aic_aiv_def.thread_task_func_stub_size(), aic_aiv_def.src_dep_tbl_size()); | |||||
return FAILED; | |||||
} | |||||
aic_aiv.taskParamAddr = reinterpret_cast<uintptr_t>(args_) + kAddrLen * io_addrs_.size(); | |||||
GELOGD("ManualThreadAicAivDef: task param addr is %lu.", aic_aiv.taskParamAddr); | |||||
const auto &rts_param = davinci_model_->GetRuntimeParam(); | |||||
for (uint32_t i = 0; i < thread_dim_ - 1; ++i) { | |||||
GE_CHK_STATUS_RET_NOLOG(InitIoAddrs(rts_param, aic_aiv_def, i, | |||||
static_cast<uint32_t>(aic_aiv_def.task_addr_offset_size()))); | |||||
} | |||||
GE_CHK_STATUS_RET_NOLOG(InitIoAddrs(rts_param, aic_aiv_def, thread_dim_ - 1, aic_aiv_def.input_output_count())); | |||||
int last_thread_workspace_size = aic_aiv_def.task_addr_size() - aic_aiv_def.task_addr_offset_size(); | |||||
for (int k = 0; k < last_thread_workspace_size; ++k) { | |||||
uintptr_t logic_addr = aic_aiv_def.task_addr(aic_aiv_def.task_addr_offset_size() + k); | |||||
uint8_t *io_addr = nullptr; | |||||
GE_CHK_STATUS_RET_NOLOG(ModelUtils::GetRtAddress(rts_param, logic_addr, io_addr)); | |||||
io_addrs_.emplace_back(io_addr); | |||||
} | |||||
aic_aiv.taskParamOffset = aic_aiv_def.task_param_offset(); | |||||
aic_aiv.satMode = aic_aiv_def.sat_mode(); | |||||
aic_aiv.scheduleMode = aic_aiv_def.schedule_mode(); | |||||
aic_aiv.iCachePrefetchCnt = aic_aiv_def.cache_prefetch_cnt(); | |||||
aic_aiv.prefetchEnableBitmap = aic_aiv_def.prefetch_enable_bitmap(); // 8 bit bitmap 1 0 1 0 | |||||
aic_aiv.prefetchOnceBitmap = aic_aiv_def.prefetch_once_bitmap(); // 8 bit bitmap 1 0 1 0 | |||||
aic_aiv.prefetchOnceDmuNum = aic_aiv_def.prefetch_once_dmu_num(); | |||||
for (int idx = 0; idx < aic_aiv_def.thread_prefetch_dmu_idx_size(); ++idx) { | |||||
aic_aiv.threadPrefetchDmuIdx[idx] = aic_aiv_def.thread_prefetch_dmu_idx(idx); | |||||
} | |||||
for (int idx = 0; idx < aic_aiv_def.thread_blk_dim_size(); ++idx) { | |||||
aic_aiv.threadBlkDim[idx] = aic_aiv_def.thread_blk_dim(idx); | |||||
} | |||||
for (int idx = 0; idx < aic_aiv_def.thread_task_func_stub_size(); ++idx) { | |||||
aic_aiv.threadTaskFuncStub[idx] = aic_aiv_def.thread_task_func_stub(idx).c_str(); | |||||
} | |||||
InitManualDmuInfo(aic_aiv_def, aic_aiv.prefetchList); | |||||
for (int idx = 0; idx < aic_aiv_def.src_dep_tbl_size(); ++idx) { | |||||
GE_CHK_STATUS_RET_NOLOG(InitManualDependency(aic_aiv_def.src_dep_tbl(idx), aic_aiv.srcDepTbl[idx])); | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
Status FftsTaskInfo::InitManualCacheInfo(const domi::ManualThreadCacheDef &cache_def, | |||||
rtManualThreadCacheInfo_t &cache_info) { | |||||
if ((cache_def.slice_dmu_idx_size() > static_cast<int>(RT_FFTS_MAX_MANUAL_THREAD_NUM)) || | |||||
(cache_def.ticket_cache_ref_cnt_tbl_size() > static_cast<int>(RT_FFTS_MAX_MANUAL_THREAD_NUM))) { | |||||
GELOGE(FAILED, "[Check][Param] Invalid ManualThreadCacheInfo slice dum desc index %d, ticket cache ref cnt %d", | |||||
cache_def.slice_dmu_idx_size(), cache_def.ticket_cache_ref_cnt_tbl_size()); | |||||
return FAILED; | |||||
} | |||||
InitManualDmuInfo(cache_def, cache_info.dmuList); | |||||
for (int idx = 0; idx < cache_def.slice_dmu_idx_size(); ++idx) { | |||||
cache_info.sliceDmuIdx[idx] = cache_def.slice_dmu_idx(idx); | |||||
} | |||||
for (int idx = 0; idx < cache_def.ticket_cache_ref_cnt_tbl_size(); ++idx) { | |||||
cache_info.ticketCacheRefCntTbl[idx] = cache_def.ticket_cache_ref_cnt_tbl(idx); | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
Status FftsTaskInfo::InitManualDependency(const domi::ManualThreadDependencyDef &dependency_def, | |||||
rtManualThreadDependency_t &dependency) { | |||||
if (dependency_def.dependency_size() > static_cast<int>(RT_FFTS_MANUAL_SRC_DEPEND_TBL_LEN)) { | |||||
GELOGE(FAILED, "[Check][Param] Invalid ManualThreadDependency size: %d", dependency_def.dependency_size()); | |||||
return FAILED; | |||||
} | |||||
for (int idx = 0; idx < dependency_def.dependency_size(); ++idx) { | |||||
dependency.dependency[idx] = dependency_def.dependency(idx); | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
Status FftsTaskInfo::InitManualNop(const domi::ManualThreadNopDef &nop_def, rtManualThreadNopInfo_t &nop_info) { | |||||
if (nop_def.src_dep_tbl_size() > static_cast<int>(RT_FFTS_MAX_TICKET_CACHE_PER_SUBTASK)) { | |||||
GELOGE(FAILED, "[Check][Param] Invalid ManualThreadNopInfo, src dep tbl size: %d", nop_def.src_dep_tbl_size()); | |||||
return FAILED; | |||||
} | |||||
for (int idx = 0; idx < nop_def.src_dep_tbl_size(); ++idx) { | |||||
GE_CHK_STATUS_RET_NOLOG(InitManualDependency(nop_def.src_dep_tbl(idx), nop_info.srcDepTbl[idx])); | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
void FftsTaskInfo::InitManualDmuInfo(const domi::ManualThreadAicAivDef &aic_aiv_def, rtManualThreadDmuInfo_t *&dmu) { | |||||
if (aic_aiv_def.prefetch_list().empty()) { | |||||
return; | |||||
} | |||||
std::vector<uint8_t> buffer(sizeof(rtManualThreadDmuInfo_t) * aic_aiv_def.prefetch_list_size()); | |||||
dmu = reinterpret_cast<rtManualThreadDmuInfo_t *>(buffer.data()); | |||||
for (int idx = 0; idx < aic_aiv_def.prefetch_list_size(); ++idx) { | |||||
InitManualDmuInfo(aic_aiv_def.prefetch_list(idx), dmu[idx]); | |||||
} | |||||
} | |||||
void FftsTaskInfo::InitManualDmuInfo(const domi::ManualThreadCacheDef &cache_def, rtManualThreadDmuInfo_t *&dmu) { | |||||
if (cache_def.dmu_list().empty()) { | |||||
return; | |||||
} | |||||
std::vector<uint8_t> buffer(sizeof(rtManualThreadDmuInfo_t) * cache_def.dmu_list_size()); | |||||
dmu = reinterpret_cast<rtManualThreadDmuInfo_t *>(buffer.data()); | |||||
for (int idx = 0; idx < cache_def.dmu_list_size(); ++idx) { | |||||
InitManualDmuInfo(cache_def.dmu_list(idx), dmu[idx]); | |||||
} | |||||
} | |||||
void FftsTaskInfo::InitManualDmuInfo(const domi::ManualThreadDmuDef &dmu_def, rtManualThreadDmuInfo_t &dmu) { | |||||
dmu.dataAddr = dmu_def.data_addr(); | |||||
dmu.numOuter = dmu_def.num_outer(); | |||||
dmu.numInner = dmu_def.num_inner(); | |||||
dmu.strideOuter = dmu_def.stride_outer(); | |||||
dmu.lenInner = dmu_def.len_inner(); | |||||
dmu.strideInner = dmu_def.stride_inner(); | |||||
} | |||||
Status FftsTaskInfo::CalculateArgs(const domi::TaskDef &task_def, DavinciModel *davinci_model) { | |||||
return SUCCESS; | |||||
} | |||||
Status FftsTaskInfo::UpdateArgs() { | |||||
GE_CHECK_NOTNULL(davinci_model_); | |||||
std::vector<void *> io_addrs = io_addrs_; | |||||
davinci_model_->UpdateKnownZeroCopyAddr(io_addrs); | |||||
auto addr_size = kAddrLen * io_addrs.size(); | |||||
GE_CHK_RT_RET(rtMemcpy(args_, args_size_, io_addrs.data(), addr_size, RT_MEMCPY_HOST_TO_DEVICE)); | |||||
return SUCCESS; | |||||
} | |||||
Status FftsTaskInfo::Distribute() { | |||||
GELOGI("FftsTaskInfo Distribute Start."); | |||||
rtError_t rt_ret = rtFftsTaskLaunch(&sub_task_info_, stream_); | |||||
if (rt_ret != RT_ERROR_NONE) { | |||||
GELOGE(RT_FAILED, "[Check][RT_ret] Call rtFftsTaskLaunch failed, ret: 0x%X", rt_ret); | |||||
return RT_ERROR_TO_GE_STATUS(rt_ret); | |||||
} | |||||
GELOGI("FftsTaskInfo Distribute Success."); | |||||
return SUCCESS; | |||||
} | |||||
REGISTER_TASK_INFO(RT_MODEL_TASK_FFTS_TASK, FftsTaskInfo); | |||||
} // namespace ge |
@@ -0,0 +1,66 @@ | |||||
/** | |||||
* Copyright 2021 Huawei Technologies Co., Ltd | |||||
* | |||||
* Licensed under the Apache License, Version 2.0 (the "License"); | |||||
* you may not use this file except in compliance with the License. | |||||
* You may obtain a copy of the License at | |||||
* | |||||
* http://www.apache.org/licenses/LICENSE-2.0 | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, software | |||||
* distributed under the License is distributed on an "AS IS" BASIS, | |||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
* See the License for the specific language governing permissions and | |||||
* limitations under the License. | |||||
*/ | |||||
#ifndef GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_FFTS_TASK_INFO_H_ | |||||
#define GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_FFTS_TASK_INFO_H_ | |||||
#include "graph/load/model_manager/task_info/task_info.h" | |||||
#include "graph/op_desc.h" | |||||
namespace ge { | |||||
class FftsTaskInfo : public TaskInfo { | |||||
public: | |||||
FftsTaskInfo() = default; | |||||
~FftsTaskInfo() override; | |||||
Status Init(const domi::TaskDef &task_def, DavinciModel *davinci_model) override; | |||||
Status Distribute() override; | |||||
Status UpdateArgs() override; | |||||
Status CalculateArgs(const domi::TaskDef &task_def, DavinciModel *davinci_model) override; | |||||
private: | |||||
void InitFftsDescInfo(const domi::FftsDescInfoDef &ffts_desc_def, rtFftsDescInfo_t &ffts_desc); | |||||
Status InitSubTaskInfo(const domi::FftsSubTaskDef &task_def, rtFftsSubTaskInfo_t &task); | |||||
Status InitTicketCache(const domi::TicketCacheDef &cache_def, rtTicketCache_t &cache); | |||||
Status InitAutoAicAiv(const domi::AutoThreadAicAivDef &aic_aiv_def, rtAutoThreadAicAivInfo_t &aic_aiv); | |||||
void InitAutoCacheInfo(const domi::AutoThreadCacheDef &cache_def, rtAutoThreadCacheInfo_t &cache); | |||||
void InitAutoPrefetch(const domi::AutoThreadPrefetchDef &prefetch_def, rtAutoThreadPrefetch_t &prefetch); | |||||
Status InitManualAicAiv(const domi::ManualThreadAicAivDef &aic_aiv_def, rtManualThreadAicAivInfo_t &aic_aiv); | |||||
Status InitManualCacheInfo(const domi::ManualThreadCacheDef &cache_def, rtManualThreadCacheInfo_t &cache); | |||||
Status InitManualDependency(const domi::ManualThreadDependencyDef &depend_def, rtManualThreadDependency_t &depend); | |||||
Status InitManualNop(const domi::ManualThreadNopDef &nop_def, rtManualThreadNopInfo_t &nop); | |||||
void InitManualDmuInfo(const domi::ManualThreadDmuDef &dmu_def, rtManualThreadDmuInfo_t &dmu); | |||||
void InitManualDmuInfo(const domi::ManualThreadCacheDef &cache_def, rtManualThreadDmuInfo_t *&dmu); | |||||
void InitManualDmuInfo(const domi::ManualThreadAicAivDef &aic_aiv_def, rtManualThreadDmuInfo_t *&dmu); | |||||
template<typename T> | |||||
Status InitIoAddrs(const RuntimeParam &rts_param, const T &aic_aiv_def, uint32_t thread_dim, uint32_t addr_count); | |||||
DavinciModel *davinci_model_{nullptr}; | |||||
rtFftsTaskInfo_t sub_task_info_; | |||||
std::vector<void *> io_addrs_; | |||||
uint32_t thread_dim_{0}; | |||||
void *args_{nullptr}; // runtime args memory | |||||
uint32_t args_size_{0}; // runtime args memory length | |||||
}; | |||||
} // namespace ge | |||||
#endif // GE_GRAPH_LOAD_NEW_MODEL_MANAGER_TASK_INFO_FFTS_TASK_INFO_H_ |
@@ -329,7 +329,7 @@ void HcclTaskInfo::GetPrivateDefByTaskDef(const domi::TaskDef &task) { | |||||
// Get privateDef and opsKernelStorePtr from taskDef and save them in taskInfo | // Get privateDef and opsKernelStorePtr from taskDef and save them in taskInfo | ||||
GELOGI("get custom info in modelTaskDef."); | GELOGI("get custom info in modelTaskDef."); | ||||
ops_kernel_store_ = nullptr; | ops_kernel_store_ = nullptr; | ||||
void *ops_kernel_store_name_temp = reinterpret_cast<void *>(task.ops_kernel_store_ptr()); | |||||
void *ops_kernel_store_name_temp = reinterpret_cast<void *>(static_cast<uintptr_t>(task.ops_kernel_store_ptr())); | |||||
if (ops_kernel_store_name_temp != nullptr) { | if (ops_kernel_store_name_temp != nullptr) { | ||||
ops_kernel_store_ = std::move(ops_kernel_store_name_temp); | ops_kernel_store_ = std::move(ops_kernel_store_name_temp); | ||||
std::string private_def_temp = task.private_def(); | std::string private_def_temp = task.private_def(); | ||||
@@ -645,6 +645,7 @@ Status KernelTaskInfo::InitTVMTask(uint16_t offset, const domi::KernelDef &kerne | |||||
GE_CHECK_NOTNULL(op_desc); | GE_CHECK_NOTNULL(op_desc); | ||||
args_addr = std::unique_ptr<uint8_t[]>(new (std::nothrow) uint8_t[args_size_]); | args_addr = std::unique_ptr<uint8_t[]>(new (std::nothrow) uint8_t[args_size_]); | ||||
GE_CHECK_NOTNULL(args_addr); | |||||
errno_t sec_ret = memcpy_s(args_addr.get(), args_size_, kernel_def.args().data(), args_size_); | errno_t sec_ret = memcpy_s(args_addr.get(), args_size_, kernel_def.args().data(), args_size_); | ||||
if (sec_ret != EOK) { | if (sec_ret != EOK) { | ||||
REPORT_CALL_ERROR("E19999", "Call memcpy_s fail, size:%u, ret:0x%X", args_size_, sec_ret); | REPORT_CALL_ERROR("E19999", "Call memcpy_s fail, size:%u, ret:0x%X", args_size_, sec_ret); | ||||
@@ -1000,6 +1001,7 @@ Status KernelTaskInfo::InitAicpuTask(uint32_t op_index, const domi::KernelDef &k | |||||
// copy args to new host memory | // copy args to new host memory | ||||
args_addr = std::unique_ptr<uint8_t[]>(new (std::nothrow) uint8_t[args_size_]); | args_addr = std::unique_ptr<uint8_t[]>(new (std::nothrow) uint8_t[args_size_]); | ||||
GE_CHECK_NOTNULL(args_addr); | |||||
GE_PRINT_DYNAMIC_MEMORY(new, "cce task physical memory.", sizeof(uint8_t) * args_size_) | GE_PRINT_DYNAMIC_MEMORY(new, "cce task physical memory.", sizeof(uint8_t) * args_size_) | ||||
errno_t sec_ret = memcpy_s(args_addr.get(), args_size_, kernel_def.args().data(), args_size_); | errno_t sec_ret = memcpy_s(args_addr.get(), args_size_, kernel_def.args().data(), args_size_); | ||||
if (sec_ret != EOK) { | if (sec_ret != EOK) { | ||||
@@ -47,7 +47,7 @@ class MemcpyAsyncTaskInfo : public TaskInfo { | |||||
uint64_t count_; | uint64_t count_; | ||||
uint32_t kind_; | uint32_t kind_; | ||||
vector<void *> io_addrs_; | vector<void *> io_addrs_; | ||||
int64_t fixed_addr_offset_; | |||||
int64_t fixed_addr_offset_ = 0; | |||||
DavinciModel *davinci_model_ = nullptr; | DavinciModel *davinci_model_ = nullptr; | ||||
uint32_t args_offset_ = 0; | uint32_t args_offset_ = 0; | ||||
}; | }; | ||||
@@ -62,7 +62,8 @@ Status ZeroCopyOffset::InitInputDataInfo(int64_t output_size, void *virtual_addr | |||||
for (size_t index = 0; index < zero_copy_basic_offset_.size(); ++index) { | for (size_t index = 0; index < zero_copy_basic_offset_.size(); ++index) { | ||||
if (zero_copy_basic_offset_.at(index) == virtual_addr_offset) { | if (zero_copy_basic_offset_.at(index) == virtual_addr_offset) { | ||||
out_count++; | out_count++; | ||||
uint64_t out_offset = reinterpret_cast<uint64_t>(virtual_addr) + zero_copy_relative_offset_.at(index); | |||||
uint64_t out_offset = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(virtual_addr)) + | |||||
zero_copy_relative_offset_.at(index); | |||||
data_info_.emplace_back(output_size, reinterpret_cast<void *>(static_cast<uintptr_t>(out_offset))); | data_info_.emplace_back(output_size, reinterpret_cast<void *>(static_cast<uintptr_t>(out_offset))); | ||||
relative_offset_.emplace_back(zero_copy_relative_offset_.at(index)); | relative_offset_.emplace_back(zero_copy_relative_offset_.at(index)); | ||||
GELOGI("[ZCPY] virtual_addr: %p has been l2-fusion to %lu, need copy data_size is %ld.", basic_addr_, | GELOGI("[ZCPY] virtual_addr: %p has been l2-fusion to %lu, need copy data_size is %ld.", basic_addr_, | ||||
@@ -117,7 +118,8 @@ Status ZeroCopyOffset::InitOutputDataInfo(const vector<int64_t> &input_size_list | |||||
for (size_t index = 0; index < zero_copy_basic_offset_.size(); ++index) { | for (size_t index = 0; index < zero_copy_basic_offset_.size(); ++index) { | ||||
if (zero_copy_basic_offset_.at(index) == virtual_addr_offset) { | if (zero_copy_basic_offset_.at(index) == virtual_addr_offset) { | ||||
in_count++; | in_count++; | ||||
uint64_t in_offset = reinterpret_cast<uint64_t>(virtual_addr_list[idx]) + zero_copy_relative_offset_.at(index); | |||||
uint64_t in_offset = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(virtual_addr_list[idx])) + | |||||
zero_copy_relative_offset_.at(index); | |||||
int64_t real_data_size = ModelUtils::GetInputSize(op_desc).at(idx); | int64_t real_data_size = ModelUtils::GetInputSize(op_desc).at(idx); | ||||
data_info_.emplace_back(real_data_size, reinterpret_cast<void *>(static_cast<uintptr_t>(in_offset))); | data_info_.emplace_back(real_data_size, reinterpret_cast<void *>(static_cast<uintptr_t>(in_offset))); | ||||
relative_offset_.emplace_back(zero_copy_relative_offset_.at(index)); | relative_offset_.emplace_back(zero_copy_relative_offset_.at(index)); | ||||
@@ -27,6 +27,7 @@ | |||||
#include "common/math/math_util.h" | #include "common/math/math_util.h" | ||||
#include "common/thread_pool.h" | #include "common/thread_pool.h" | ||||
#include "common/dump/dump_manager.h" | #include "common/dump/dump_manager.h" | ||||
#include "ge_opt_info/ge_opt_info.h" | |||||
#include "analyzer/analyzer.h" | #include "analyzer/analyzer.h" | ||||
#include "graph/common/ge_call_wrapper.h" | #include "graph/common/ge_call_wrapper.h" | ||||
#include "graph/common/local_context.h" | #include "graph/common/local_context.h" | ||||
@@ -120,7 +121,6 @@ const char *const kCheckPointForGetVar = "CheckPointGraphForGetVar"; | |||||
const char *const kCheckPointGraph = "checkpoint_graph"; | const char *const kCheckPointGraph = "checkpoint_graph"; | ||||
const char *const kVectorEngine = "VectorEngine"; | const char *const kVectorEngine = "VectorEngine"; | ||||
const char *const kAIcoreEngine = "AIcoreEngine"; | const char *const kAIcoreEngine = "AIcoreEngine"; | ||||
const char *const kRunFlagOffline = "0"; | |||||
const int32_t kDynamicDimsTypeIsGetNext = 0; | const int32_t kDynamicDimsTypeIsGetNext = 0; | ||||
const int32_t kDynamicDimsTypeIsData = 1; | const int32_t kDynamicDimsTypeIsData = 1; | ||||
const char *const kGetNextName = "IteratorV2"; | const char *const kGetNextName = "IteratorV2"; | ||||
@@ -950,7 +950,7 @@ Status GraphManager::SetRtContext(rtContext_t rt_context, rtCtxMode_t mode, uint | |||||
rtError_t rt_ret = rtCtxCreate(&rt_context, mode, ge::GetContext().DeviceId()); | rtError_t rt_ret = rtCtxCreate(&rt_context, mode, ge::GetContext().DeviceId()); | ||||
if (rt_ret != RT_ERROR_NONE) { | if (rt_ret != RT_ERROR_NONE) { | ||||
REPORT_CALL_ERROR("E19999", "Call rtCtxCreate faileded, session_id:%lu, graph_id:%u, mode:%d", | |||||
REPORT_CALL_ERROR("E19999", "Call rtCtxCreate failed, session_id:%lu, graph_id:%u, mode:%d", | |||||
session_id, graph_id, mode); | session_id, graph_id, mode); | ||||
GELOGE(FAILED, "[Call][RtCtxCreate] faileded, session_id:%lu, graph_id:%u, mode:%d", session_id, graph_id, mode); | GELOGE(FAILED, "[Call][RtCtxCreate] faileded, session_id:%lu, graph_id:%u, mode:%d", session_id, graph_id, mode); | ||||
return FAILED; | return FAILED; | ||||
@@ -1002,6 +1002,12 @@ Status GraphManager::PreRun(const GraphNodePtr &graph_node, const std::vector<Ge | |||||
return ret; | return ret; | ||||
} | } | ||||
ret = GeOptInfo::SetOptInfo(); | |||||
if (ret != SUCCESS) { | |||||
GELOGE(ret, "[Set][OptInfo] Set optional information failed."); | |||||
return ret; | |||||
} | |||||
/// 1. BUILD_MODE_TUNING with BUILD_STEP_AFTER_UB_MATCH no need PreRunOptimizeOriginalGraph; | /// 1. BUILD_MODE_TUNING with BUILD_STEP_AFTER_UB_MATCH no need PreRunOptimizeOriginalGraph; | ||||
/// 2. BUILD_MODE_TUNING with BUILD_STEP_AFTER_MERGE no need PreRunOptimizeOriginalGraph. | /// 2. BUILD_MODE_TUNING with BUILD_STEP_AFTER_MERGE no need PreRunOptimizeOriginalGraph. | ||||
/// 3. BUILD_MODE_TUNING with BUILD_STEP_AFTER_BUILDER_SUB no need PreRunOptimizeOriginalGraph. | /// 3. BUILD_MODE_TUNING with BUILD_STEP_AFTER_BUILDER_SUB no need PreRunOptimizeOriginalGraph. | ||||
@@ -1789,8 +1795,7 @@ Status GraphManager::ParseOptions(const std::map<std::string, std::string> &opti | |||||
return GE_GRAPH_OPTIONS_INVALID); | return GE_GRAPH_OPTIONS_INVALID); | ||||
// ge.graphType | // ge.graphType | ||||
ret = | |||||
ParseTrainGraphFlag(options_.run_graph_flag, options_.train_graph_flag); | |||||
ret = ParseTrainGraphFlag(options_.run_graph_flag, options_.train_graph_flag); | |||||
GE_IF_BOOL_EXEC(ret != SUCCESS, | GE_IF_BOOL_EXEC(ret != SUCCESS, | ||||
GELOGE(GE_GRAPH_OPTIONS_INVALID, "[Parse][TrainGraphFlag] Key:ge.runFlag value is invalid"); | GELOGE(GE_GRAPH_OPTIONS_INVALID, "[Parse][TrainGraphFlag] Key:ge.runFlag value is invalid"); | ||||
return GE_GRAPH_OPTIONS_INVALID); | return GE_GRAPH_OPTIONS_INVALID); | ||||
@@ -2436,6 +2441,8 @@ Status GraphManager::RemoveIsolatedConstInThisGraph(ge::ComputeGraphPtr &compute | |||||
continue; | continue; | ||||
} | } | ||||
if (n->GetOpDesc()->GetType() == CONSTANT || n->GetOpDesc()->GetType() == CONSTANTOP) { | if (n->GetOpDesc()->GetType() == CONSTANT || n->GetOpDesc()->GetType() == CONSTANTOP) { | ||||
// reset const type depend on train_flag | |||||
options_.train_graph_flag ? n->GetOpDesc()->SetType(CONSTANTOP) : n->GetOpDesc()->SetType(CONSTANT); | |||||
if (n->GetOutAllNodes().empty() && n->GetInAllNodes().empty()) { | if (n->GetOutAllNodes().empty() && n->GetInAllNodes().empty()) { | ||||
// it is an isolated constant, just remove it | // it is an isolated constant, just remove it | ||||
if (GraphUtils::RemoveJustNode(compute_graph, n) != GRAPH_SUCCESS) { | if (GraphUtils::RemoveJustNode(compute_graph, n) != GRAPH_SUCCESS) { | ||||
@@ -2762,35 +2769,22 @@ Status GraphManager::OptimizeStage2(ge::ComputeGraphPtr &compute_graph) { | |||||
"Please pay attention to it."); | "Please pay attention to it."); | ||||
} | } | ||||
GE_CHK_STATUS_RET(ChangeConstType(compute_graph)); | |||||
ChangeConstTypeWhenTraining(compute_graph); | |||||
GELOGI("End optimize after merge sub graph."); | GELOGI("End optimize after merge sub graph."); | ||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
Status GraphManager::ChangeConstType(const ComputeGraphPtr &compute_graph) { | |||||
// run_flag off means offline, on means online | |||||
string run_flag; | |||||
(void)ge::GetContext().GetOption(ge::RUN_FLAG, run_flag); | |||||
// The constant for online is CONSTANTOP, and is CONSTANT for offline. They will be unified in future. | |||||
if (run_flag == kRunFlagOffline) { | |||||
GELOGI("Offline mode, change all Constant to Const."); | |||||
} else { | |||||
GELOGI("Online mode, change all Const to Constant."); | |||||
} | |||||
for (NodePtr &n : compute_graph->GetAllNodes()) { | |||||
GE_CHECK_NOTNULL(n); | |||||
if (n->GetType() == CONSTANT || n->GetType() == CONSTANTOP) { | |||||
auto op_desc = n->GetOpDesc(); | |||||
GE_CHECK_NOTNULL(op_desc); | |||||
if (run_flag == kRunFlagOffline) { | |||||
op_desc->SetType(CONSTANT); | |||||
} else { | |||||
op_desc->SetType(CONSTANTOP); | |||||
void GraphManager::ChangeConstTypeWhenTraining(const ComputeGraphPtr &compute_graph) { | |||||
// The constant for train is CONSTANTOP, and is CONSTANT for inference. They will be unified in future. | |||||
if (options_.train_graph_flag) { | |||||
for (NodePtr &n : compute_graph->GetAllNodes()) { | |||||
// This can ensure that n is not a null pointer | |||||
if (n->GetOpDesc()->GetType() == CONSTANT) { | |||||
n->GetOpDesc()->SetType(CONSTANTOP); | |||||
} | } | ||||
} | } | ||||
} | } | ||||
return SUCCESS; | |||||
} | } | ||||
Status GraphManager::LoadGraphAsync(const GeRootModelPtr &ge_root_model, const GraphNodePtr &graph_node) { | Status GraphManager::LoadGraphAsync(const GeRootModelPtr &ge_root_model, const GraphNodePtr &graph_node) { | ||||
@@ -3145,10 +3139,10 @@ void GraphManager::PreRunThread(GraphManager *graph_manager) { | |||||
} | } | ||||
// Avoid repeatively prerun for graphs owns same graph_id in online inference concurrency | // Avoid repeatively prerun for graphs owns same graph_id in online inference concurrency | ||||
if (count > 1 && graph_node->GetBuildFlag()) { | if (count > 1 && graph_node->GetBuildFlag()) { | ||||
graph_node->Lock(); | |||||
GELOGD("Avoid repeatively prerun, graph_id:%u.", args.graph_id); | GELOGD("Avoid repeatively prerun, graph_id:%u.", args.graph_id); | ||||
// In online inference concurrency senario, graph_node is allowed to be locked for 'count' times | // In online inference concurrency senario, graph_node is allowed to be locked for 'count' times | ||||
graph_node->SetSemSize(count); | graph_node->SetSemSize(count); | ||||
graph_node->Lock(); | |||||
graph_manager->run_args_q_.Push(RunArgs( { graph_node, args.graph_id, args.session_id, args.error_context, | graph_manager->run_args_q_.Push(RunArgs( { graph_node, args.graph_id, args.session_id, args.error_context, | ||||
args.input_tensor, graph_node->GetGeRootModel(), GetThreadLocalContext(), args.callback })); | args.input_tensor, graph_node->GetGeRootModel(), GetThreadLocalContext(), args.callback })); | ||||
GELOGI("[PreRunThread] Loop end. Start to run with cached build model."); | GELOGI("[PreRunThread] Loop end. Start to run with cached build model."); | ||||
@@ -375,7 +375,7 @@ class GraphManager { | |||||
static void ReturnError(GraphManager *graph_manager, GraphNodePtr &graph_node, RunAsyncCallback callback, | static void ReturnError(GraphManager *graph_manager, GraphNodePtr &graph_node, RunAsyncCallback callback, | ||||
Status ret, const string &log); | Status ret, const string &log); | ||||
Status ChangeConstType(const ComputeGraphPtr &compute_graph); | |||||
void ChangeConstTypeWhenTraining(const ComputeGraphPtr &compute_graph); | |||||
Status PreRunOptimizeOriginalGraph(const GraphNodePtr &graph_node, const std::vector<GeTensor> &inputs, | Status PreRunOptimizeOriginalGraph(const GraphNodePtr &graph_node, const std::vector<GeTensor> &inputs, | ||||
ge::ComputeGraphPtr &compute_graph, uint64_t session_id); | ge::ComputeGraphPtr &compute_graph, uint64_t session_id); | ||||
@@ -20,6 +20,7 @@ | |||||
#include "graph/manager/graph_mem_manager.h" | #include "graph/manager/graph_mem_manager.h" | ||||
#include "graph/manager/trans_var_data_utils.h" | #include "graph/manager/trans_var_data_utils.h" | ||||
#include "graph/utils/type_utils.h" | #include "graph/utils/type_utils.h" | ||||
#include "graph/ge_context.h" | |||||
using std::map; | using std::map; | ||||
using std::string; | using std::string; | ||||
@@ -816,25 +817,60 @@ Status VarManager::GetChangedGraphId(const std::string &var_name, uint32_t &grap | |||||
return var_resource_->GetChangedGraphId(var_name, graph_id); | return var_resource_->GetChangedGraphId(var_name, graph_id); | ||||
} | } | ||||
Status VarManager::GetTotalMemorySize(size_t &total_mem_size) { | |||||
rtError_t rt_ret = rtSetDevice(GetContext().DeviceId()); | |||||
if (rt_ret != RT_ERROR_NONE) { | |||||
REPORT_CALL_ERROR("E19999", "Call rtSetDevice failed, device_id:%u, ret:0x%X", | |||||
GetContext().DeviceId(), rt_ret); | |||||
GELOGE(RT_FAILED, "[Call][RtSetDevice] failed, device_id:%u, ret:0x%X", GetContext().DeviceId(), rt_ret); | |||||
return RT_FAILED; | |||||
} | |||||
size_t free_mem = 0; | |||||
rt_ret = rtMemGetInfoEx(RT_MEMORYINFO_HBM, &free_mem, &total_mem_size); | |||||
if (rt_ret != RT_ERROR_NONE) { | |||||
REPORT_CALL_ERROR("E19999", "Call rtMemGetInfo failed, ret:0x%X", rt_ret); | |||||
GELOGE(RT_FAILED, "[Call][RtMemGetInfo] failed, ret:0x%X", rt_ret); | |||||
return RT_FAILED; | |||||
} | |||||
if (total_mem_size == 0) { | |||||
rt_ret = rtMemGetInfoEx(RT_MEMORYINFO_DDR, &free_mem, &total_mem_size); | |||||
if (rt_ret != RT_ERROR_NONE) { | |||||
REPORT_CALL_ERROR("E19999", "Call rtMemGetInfo failed, ret:0x%X", rt_ret); | |||||
GELOGE(RT_FAILED, "[Call][RtMemGetInfo] failed, ret:0x%X", rt_ret); | |||||
return RT_FAILED; | |||||
} | |||||
} | |||||
rt_ret = rtDeviceReset(GetContext().DeviceId()); | |||||
if (rt_ret != RT_ERROR_NONE) { | |||||
REPORT_CALL_ERROR("E19999", "Call rtDeviceReset failed, device_id:%u, ret:0x%X", | |||||
GetContext().DeviceId(), rt_ret); | |||||
GELOGE(RT_FAILED, "[Call][RtDeviceReset] failed, device_id:%u, ret:0x%X", GetContext().DeviceId(), rt_ret); | |||||
return RT_FAILED; | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
Status VarManager::SetMemoryMallocSize(const map<string, string> &options) { | Status VarManager::SetMemoryMallocSize(const map<string, string> &options) { | ||||
auto it = options.find(GRAPH_MEMORY_MAX_SIZE); | |||||
if (it == options.end()) { | |||||
graph_mem_max_size_ = kGraphMemoryManagerMallocMaxSize; | |||||
} else { | |||||
string graph_memory_manager_malloc_max_size = it->second; | |||||
size_t total_mem_size = 0; | |||||
GE_CHK_STATUS_RET_NOLOG(VarManager::GetTotalMemorySize(total_mem_size)); | |||||
GEEVENT("Total memory size is %zu", total_mem_size); | |||||
graph_mem_max_size_ = floor(total_mem_size * kGraphMemoryManagerMallocRatio); | |||||
var_mem_max_size_ = floor(total_mem_size * kVarMemoryManagerMallocRatio); | |||||
auto it1 = options.find(GRAPH_MEMORY_MAX_SIZE); | |||||
if (it1 != options.end()) { | |||||
string graph_memory_manager_malloc_max_size = it1->second; | |||||
ge::Status ret = ParseMemoryMallocSize(graph_memory_manager_malloc_max_size, graph_mem_max_size_); | ge::Status ret = ParseMemoryMallocSize(graph_memory_manager_malloc_max_size, graph_mem_max_size_); | ||||
if (ret != SUCCESS) { | if (ret != SUCCESS) { | ||||
GELOGE(ge::GE_GRAPH_OPTIONS_INVALID, "[Call][ParseMemoryMallocSize] failed, session id:%lu.", session_id_); | GELOGE(ge::GE_GRAPH_OPTIONS_INVALID, "[Call][ParseMemoryMallocSize] failed, session id:%lu.", session_id_); | ||||
return ge::GE_GRAPH_OPTIONS_INVALID; | return ge::GE_GRAPH_OPTIONS_INVALID; | ||||
} | } | ||||
GELOGI("The max size for graph mem is set to %zu", graph_mem_max_size_); | |||||
} | } | ||||
it = options.find(VARIABLE_MEMORY_MAX_SIZE); | |||||
if (it == options.end()) { | |||||
var_mem_max_size_ = kMemoryVarManagerMallocSize; | |||||
} else { | |||||
string memory_var_manager_malloc_size = it->second; | |||||
auto it2 = options.find(VARIABLE_MEMORY_MAX_SIZE); | |||||
if (it2 != options.end()) { | |||||
string memory_var_manager_malloc_size = it2->second; | |||||
ge::Status ret = ParseMemoryMallocSize(memory_var_manager_malloc_size, var_mem_max_size_); | ge::Status ret = ParseMemoryMallocSize(memory_var_manager_malloc_size, var_mem_max_size_); | ||||
if (ret != SUCCESS) { | if (ret != SUCCESS) { | ||||
GELOGE(ge::GE_GRAPH_OPTIONS_INVALID, "[Call][ParseMemoryMallocSize] failed, session id:%lu.", session_id_); | GELOGE(ge::GE_GRAPH_OPTIONS_INVALID, "[Call][ParseMemoryMallocSize] failed, session id:%lu.", session_id_); | ||||
@@ -842,6 +878,8 @@ Status VarManager::SetMemoryMallocSize(const map<string, string> &options) { | |||||
} | } | ||||
} | } | ||||
GEEVENT("The graph_mem_max_size is %zu and the var_mem_max_size is %zu", graph_mem_max_size_, var_mem_max_size_); | |||||
var_mem_logic_base_ = graph_mem_max_size_ + kGraphMemoryBuffer; | var_mem_logic_base_ = graph_mem_max_size_ + kGraphMemoryBuffer; | ||||
if (var_mem_logic_base_ > kMaxMemorySize) { | if (var_mem_logic_base_ > kMaxMemorySize) { | ||||
REPORT_INNER_ERROR("E19999", "var_login_base:%zu can not exeed limit:%zu, session_id:%lu, check invalid", | REPORT_INNER_ERROR("E19999", "var_login_base:%zu can not exeed limit:%zu, session_id:%lu, check invalid", | ||||
@@ -43,6 +43,8 @@ const size_t kMaxMemorySize = 256UL * 1024UL * 1024UL * 1024UL; | |||||
const char kEnvGeuseStaticMemory[] = "GE_USE_STATIC_MEMORY"; | const char kEnvGeuseStaticMemory[] = "GE_USE_STATIC_MEMORY"; | ||||
const uint64_t kSessionMemAlignSize = 512; | const uint64_t kSessionMemAlignSize = 512; | ||||
const size_t kSessionMemAlignUnit = 2; | const size_t kSessionMemAlignUnit = 2; | ||||
const double kGraphMemoryManagerMallocRatio = 26.0 / 32.0; | |||||
const double kVarMemoryManagerMallocRatio = 5.0 / 32.0; | |||||
enum MemStatus { | enum MemStatus { | ||||
NORMAL = 0, | NORMAL = 0, | ||||
@@ -316,6 +318,7 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY VarManager { | |||||
mutable std::recursive_mutex mutex_; | mutable std::recursive_mutex mutex_; | ||||
Status ParseMemoryMallocSize(std::string &memory_size, size_t &my_size); | Status ParseMemoryMallocSize(std::string &memory_size, size_t &my_size); | ||||
Status GetTotalMemorySize(size_t &total_mem_size); | |||||
}; | }; | ||||
class VarManagerPool { | class VarManagerPool { | ||||
@@ -336,10 +336,8 @@ Status GraphOptimize::OptimizeAfterStage1(ComputeGraphPtr &compute_graph) { | |||||
GELOGI("[OptimizeAfterStage1]: engine type will exclude:%s.", exclude_core_type.c_str()); | GELOGI("[OptimizeAfterStage1]: engine type will exclude:%s.", exclude_core_type.c_str()); | ||||
continue; | continue; | ||||
} | } | ||||
#ifndef ONLY_COMPILE_OPEN_SRC | |||||
GELOGI("Begin to optimize graph after stage1 by engine %s.", iter->first.c_str()); | GELOGI("Begin to optimize graph after stage1 by engine %s.", iter->first.c_str()); | ||||
ret = (iter->second)->OptimizeAfterStage1(*compute_graph); | ret = (iter->second)->OptimizeAfterStage1(*compute_graph); | ||||
#endif | |||||
if (ret != SUCCESS) { | if (ret != SUCCESS) { | ||||
REPORT_INNER_ERROR("E19999", "Call OptimizeAfterStage1 failed, ret:%d, engine_name:%s, " | REPORT_INNER_ERROR("E19999", "Call OptimizeAfterStage1 failed, ret:%d, engine_name:%s, " | ||||
"graph_name:%s.", ret, iter->first.c_str(), compute_graph->GetName().c_str()); | "graph_name:%s.", ret, iter->first.c_str(), compute_graph->GetName().c_str()); | ||||
@@ -284,9 +284,6 @@ Status DynamicShapePartitioner::InitClusters() { | |||||
auto cluster = MakeShared<Cluster>(rank++, type, node, this); | auto cluster = MakeShared<Cluster>(rank++, type, node, this); | ||||
REQUIRE_NOT_NULL(cluster, "[New][Memory] for cluster failed."); | REQUIRE_NOT_NULL(cluster, "[New][Memory] for cluster failed."); | ||||
node_2_cluster_[node] = cluster; | node_2_cluster_[node] = cluster; | ||||
if (cluster->IsUnknownShape()) { | |||||
ordered_cluster_.push_back(cluster); | |||||
} | |||||
int64_t group_index = -1; | int64_t group_index = -1; | ||||
if (AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_CONTROL_FLOW_GROUP, group_index)) { | if (AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_CONTROL_FLOW_GROUP, group_index)) { | ||||
@@ -306,7 +303,7 @@ Status DynamicShapePartitioner::InitClusters() { | |||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
Status DynamicShapePartitioner::TopologicalSortClusters() { | |||||
Status DynamicShapePartitioner::TopologicalSortClusters(const OrderedFilter &ordered_filter) { | |||||
ordered_cluster_.clear(); | ordered_cluster_.clear(); | ||||
// BFS topological sort clusters for known shape cluster | // BFS topological sort clusters for known shape cluster | ||||
std::queue<ClusterPtr> ready_clusters; | std::queue<ClusterPtr> ready_clusters; | ||||
@@ -331,7 +328,7 @@ Status DynamicShapePartitioner::TopologicalSortClusters() { | |||||
auto cluster = ready_clusters.front(); | auto cluster = ready_clusters.front(); | ||||
ready_clusters.pop(); | ready_clusters.pop(); | ||||
cluster->UpdateRank(rank++); | cluster->UpdateRank(rank++); | ||||
if (cluster->IsKnownShape() || cluster->IsInputNode()) { | |||||
if (ordered_filter == nullptr || ordered_filter(cluster)) { | |||||
ordered_cluster_.push_back(cluster); | ordered_cluster_.push_back(cluster); | ||||
} | } | ||||
for (const auto &out_cluster : cluster->Outputs()) { | for (const auto &out_cluster : cluster->Outputs()) { | ||||
@@ -364,6 +361,7 @@ static std::string ToString(const std::vector<ClusterPtr> &clusters) { | |||||
} | } | ||||
void DynamicShapePartitioner::MergeClustersControlFlow() { | void DynamicShapePartitioner::MergeClustersControlFlow() { | ||||
std::unordered_set<ClusterPtr> all_merged_clusters; | |||||
for (const auto &item : control_clusters_) { | for (const auto &item : control_clusters_) { | ||||
const auto &control_cluster = item.second; | const auto &control_cluster = item.second; | ||||
auto rit = control_cluster.rbegin(); | auto rit = control_cluster.rbegin(); | ||||
@@ -373,12 +371,21 @@ void DynamicShapePartitioner::MergeClustersControlFlow() { | |||||
} | } | ||||
const auto &cluster = *rit; | const auto &cluster = *rit; | ||||
if (all_merged_clusters.count(cluster) > 0) { | |||||
continue; | |||||
} | |||||
for (++rit; rit != control_cluster.rend(); ++rit) { | for (++rit; rit != control_cluster.rend(); ++rit) { | ||||
const auto &cluster_from = *rit; | const auto &cluster_from = *rit; | ||||
if (all_merged_clusters.count(cluster_from) > 0) { | |||||
continue; | |||||
} | |||||
auto merged_clusters = cluster->MergeAllPathFrom(cluster_from); | auto merged_clusters = cluster->MergeAllPathFrom(cluster_from); | ||||
GELOGD("Merge all path cluster from %lu to %lu %s.", cluster_from->Id(), cluster->Id(), | GELOGD("Merge all path cluster from %lu to %lu %s.", cluster_from->Id(), cluster->Id(), | ||||
ToString(merged_clusters).c_str()); | ToString(merged_clusters).c_str()); | ||||
for (const auto &merged_cluster : merged_clusters) { | for (const auto &merged_cluster : merged_clusters) { | ||||
all_merged_clusters.emplace(merged_cluster); | |||||
for (const auto &node : merged_cluster->Nodes()) { | for (const auto &node : merged_cluster->Nodes()) { | ||||
node_2_cluster_[node] = cluster; | node_2_cluster_[node] = cluster; | ||||
} | } | ||||
@@ -459,9 +466,19 @@ void DynamicShapePartitioner::MergeClustersInputData() { | |||||
} | } | ||||
Status DynamicShapePartitioner::MergeClusters() { | Status DynamicShapePartitioner::MergeClusters() { | ||||
const auto filter_known = [](const ClusterPtr &cluster) { | |||||
return cluster->IsKnownShape() || cluster->IsInputNode(); | |||||
}; | |||||
const auto filter_unknown = [](const ClusterPtr &cluster) { | |||||
return cluster->IsUnknownShape(); | |||||
}; | |||||
MergeClustersControlFlow(); | MergeClustersControlFlow(); | ||||
REQUIRE_SUCCESS(TopologicalSortClusters(filter_unknown), | |||||
"[TopologicalSort][Clusters] after merge control flow clusters failed."); | |||||
MergeClustersUnknownShape(); | MergeClustersUnknownShape(); | ||||
REQUIRE_SUCCESS(TopologicalSortClusters(), "[TopologicalSort][Clusters] after merge unknown shape clusters failed."); | |||||
REQUIRE_SUCCESS(TopologicalSortClusters(filter_known), | |||||
"[TopologicalSort][Clusters] after merge unknown shape clusters failed."); | |||||
MergeClustersKnownShape(); | MergeClustersKnownShape(); | ||||
MergeClustersInputData(); | MergeClustersInputData(); | ||||
return SUCCESS; | return SUCCESS; | ||||
@@ -703,7 +720,12 @@ void Cluster::Merge(ClusterPtr other) { | |||||
if (other->min_ < min_) { | if (other->min_ < min_) { | ||||
min_ = other->min_; | min_ = other->min_; | ||||
} | } | ||||
}; | |||||
if (!IsUnknownShape() && other->IsUnknownShape()) { | |||||
type_ = UNKNOWN_SHAPE; | |||||
} | |||||
} | |||||
bool Cluster::TryMerge(ClusterPtr other) { | bool Cluster::TryMerge(ClusterPtr other) { | ||||
std::queue<ClusterPtr> forward_reached; | std::queue<ClusterPtr> forward_reached; | ||||
forward_reached.push(other); | forward_reached.push(other); | ||||
@@ -111,6 +111,8 @@ class DynamicShapePartitioner { | |||||
Status Partition(); | Status Partition(); | ||||
using OrderedFilter = std::function<bool(const std::shared_ptr<Cluster> &cluster)>; | |||||
private: | private: | ||||
Status PartitionImpl(); | Status PartitionImpl(); | ||||
// Collect nodes that satisfy the unknowshape rules: | // Collect nodes that satisfy the unknowshape rules: | ||||
@@ -138,7 +140,7 @@ class DynamicShapePartitioner { | |||||
// Merge clusters step3 | // Merge clusters step3 | ||||
void MergeClustersInputData(); | void MergeClustersInputData(); | ||||
// Topological sort clusters after merge unknown shape clusters. | // Topological sort clusters after merge unknown shape clusters. | ||||
Status TopologicalSortClusters(); | |||||
Status TopologicalSortClusters(const OrderedFilter &ordered_filter); | |||||
// Deduplicate merged clusters | // Deduplicate merged clusters | ||||
void PruneUniqueClusters(); | void PruneUniqueClusters(); | ||||
// Establish the input-output anchors for each partition of the cluster and record links to other clusters | // Establish the input-output anchors for each partition of the cluster and record links to other clusters | ||||
@@ -161,7 +163,7 @@ class DynamicShapePartitioner { | |||||
ge::ComputeGraphPtr root_graph_; // The original graph to partition | ge::ComputeGraphPtr root_graph_; // The original graph to partition | ||||
std::unordered_map<NodePtr, std::shared_ptr<Cluster>> node_2_cluster_; // Record nodes and the cluster it belongs to | std::unordered_map<NodePtr, std::shared_ptr<Cluster>> node_2_cluster_; // Record nodes and the cluster it belongs to | ||||
// V1 control flow cluster, need merge to one Graph. | // V1 control flow cluster, need merge to one Graph. | ||||
std::unordered_map<int64_t, std::vector<std::shared_ptr<Cluster>>> control_clusters_; | |||||
std::map<int64_t, std::vector<std::shared_ptr<Cluster>>> control_clusters_; | |||||
// topological sorted clusters, this field will change with the splitting. | // topological sorted clusters, this field will change with the splitting. | ||||
// When partitioning UNKNOWN_SHAPE cluster, it is a collection of all topological sorted UNKNOWN_SHAPE clusters | // When partitioning UNKNOWN_SHAPE cluster, it is a collection of all topological sorted UNKNOWN_SHAPE clusters | ||||
// When partitioning KNOWN_SHAPE cluster, it is a collection of all topological sorted KNOWN_SHAPE clusters | // When partitioning KNOWN_SHAPE cluster, it is a collection of all topological sorted KNOWN_SHAPE clusters | ||||
@@ -179,6 +179,7 @@ Status ge::GraphPartitioner::MergeAfterSubGraphOptimization(ge::ComputeGraphPtr | |||||
GELOGE(ret, "[Merge][SubGraph] Failed, ret:%d", ret); | GELOGE(ret, "[Merge][SubGraph] Failed, ret:%d", ret); | ||||
} | } | ||||
GE_CHECK_NOTNULL(original_compute_graph); | GE_CHECK_NOTNULL(original_compute_graph); | ||||
output_merged_compute_graph->SetName(original_compute_graph->GetName()); | |||||
// partition sub graph | // partition sub graph | ||||
for (const auto &sub_graph : original_compute_graph->GetAllSubgraphs()) { | for (const auto &sub_graph : original_compute_graph->GetAllSubgraphs()) { | ||||
ComputeGraphPtr merged_sub_graph = nullptr; | ComputeGraphPtr merged_sub_graph = nullptr; | ||||
@@ -188,8 +189,16 @@ Status ge::GraphPartitioner::MergeAfterSubGraphOptimization(ge::ComputeGraphPtr | |||||
GELOGE(ret, "[Merge][SubGraph] Failed, ret:%d", ret); | GELOGE(ret, "[Merge][SubGraph] Failed, ret:%d", ret); | ||||
continue; | continue; | ||||
} | } | ||||
// this means subgraph added in optimize subgraph and without partitions, so just add to root graph | |||||
if (merged_sub_graph == sub_graph) { | |||||
GELOGI("Just add subgraph %s (parent node is %s) to root graph %s.", sub_graph->GetName().c_str(), | |||||
sub_graph->GetParentNode()->GetName().c_str(), output_merged_compute_graph->GetName().c_str()); | |||||
sub_graph->SetParentGraph(sub_graph->GetParentNode()->GetOwnerComputeGraph()); | |||||
GE_IF_BOOL_EXEC(output_merged_compute_graph->AddSubgraph(sub_graph->GetName(), merged_sub_graph) != SUCCESS, | |||||
return FAILED;) | |||||
continue; | |||||
} | |||||
// add sub graph | // add sub graph | ||||
output_merged_compute_graph->SetName(original_compute_graph->GetName()); | |||||
merged_sub_graph->SetName(sub_graph->GetName()); | merged_sub_graph->SetName(sub_graph->GetName()); | ||||
merged_sub_graph->SetInputSize(sub_graph->GetInputSize()); | merged_sub_graph->SetInputSize(sub_graph->GetInputSize()); | ||||
merged_sub_graph->SetOutputSize(sub_graph->GetOutputSize()); | merged_sub_graph->SetOutputSize(sub_graph->GetOutputSize()); | ||||
@@ -245,12 +254,9 @@ Status ge::GraphPartitioner::MergeSubGraph(ge::ComputeGraphPtr &output_merged_co | |||||
} | } | ||||
if ((graph_2_graph_partition_info_.find(original_compute_graph) == graph_2_graph_partition_info_.end()) || | if ((graph_2_graph_partition_info_.find(original_compute_graph) == graph_2_graph_partition_info_.end()) || | ||||
(graph_2_subgraph_list_.find(original_compute_graph) == graph_2_subgraph_list_.end())) { | (graph_2_subgraph_list_.find(original_compute_graph) == graph_2_subgraph_list_.end())) { | ||||
REPORT_INNER_ERROR("E19999", "original_compute_graph:%s is not find in graph_2_graph_partition_info_.", | |||||
original_compute_graph->GetName().c_str()); | |||||
GELOGE(GE_GRAPH_NULL_INPUT, | |||||
"[Check][Param] original_compute_graph:%s is not find in graph_2_graph_partition_info_.", | |||||
original_compute_graph->GetName().c_str()); | |||||
return FAILED; | |||||
GELOGW("[GraphPartition]: compute_graph has not found, just return original."); | |||||
output_merged_compute_graph = original_compute_graph; | |||||
return SUCCESS; | |||||
} | } | ||||
GraphPartitionInfo &subgraph_info = graph_2_graph_partition_info_[original_compute_graph]; | GraphPartitionInfo &subgraph_info = graph_2_graph_partition_info_[original_compute_graph]; | ||||
const auto &sub_graph_list = graph_2_subgraph_list_[original_compute_graph]; | const auto &sub_graph_list = graph_2_subgraph_list_[original_compute_graph]; | ||||
@@ -708,6 +714,7 @@ Status ge::GraphPartitioner::AddPartitionsToGraphNode(vector<ge::SubGraphInfoPtr | |||||
} | } | ||||
auto &engine_name = graph_info_.partitions_.at(sub_graph); | auto &engine_name = graph_info_.partitions_.at(sub_graph); | ||||
(void)AttrUtils::SetStr(sub_graph, ATTR_NAME_PARENT_GRAPH_NAME, compute_graph->GetName()); | (void)AttrUtils::SetStr(sub_graph, ATTR_NAME_PARENT_GRAPH_NAME, compute_graph->GetName()); | ||||
(void)sub_graph->SetExtAttr("part_src_graph", compute_graph); | |||||
GELOGD("set attr success. subgraph(%s) with parent graph(%s)", sub_graph->GetName().c_str(), | GELOGD("set attr success. subgraph(%s) with parent graph(%s)", sub_graph->GetName().c_str(), | ||||
compute_graph->GetName().c_str()); | compute_graph->GetName().c_str()); | ||||
GE_DUMP(sub_graph, sub_graph->GetName() + "_" + mode_2_str_[graph_info_.mode_]); | GE_DUMP(sub_graph, sub_graph->GetName() + "_" + mode_2_str_[graph_info_.mode_]); | ||||
@@ -16,8 +16,6 @@ | |||||
#include "mark_force_unknown_for_cond_pass.h" | #include "mark_force_unknown_for_cond_pass.h" | ||||
#include <queue> | |||||
#include "graph/utils/node_utils.h" | #include "graph/utils/node_utils.h" | ||||
#include "graph/common/omg_util.h" | #include "graph/common/omg_util.h" | ||||
@@ -26,17 +24,7 @@ namespace { | |||||
inline bool IsMergeInLoop(const NodePtr &node) { | inline bool IsMergeInLoop(const NodePtr &node) { | ||||
const static std::set<std::string> kLoopMergeInputs{ ENTER, REFENTER, NEXTITERATION, REFNEXTITERATION }; | const static std::set<std::string> kLoopMergeInputs{ ENTER, REFENTER, NEXTITERATION, REFNEXTITERATION }; | ||||
std::string node_type; | |||||
(void)GetOriginalType(node, node_type); | |||||
return kLoopMergeInputs.count(node_type) > 0; | |||||
} | |||||
inline bool IsSwitchInLoop(const NodePtr &node) { | |||||
const static std::set<std::string> kLoopSwitchInputs{ MERGE, REFMERGE, LOOPCOND }; | |||||
std::string node_type; | |||||
(void)GetOriginalType(node, node_type); | |||||
return kLoopSwitchInputs.count(node_type) > 0; | |||||
return kLoopMergeInputs.count(NodeUtils::GetNodeType(node)) > 0; | |||||
} | } | ||||
} | } | ||||
@@ -44,10 +32,7 @@ Status MarkForceUnknownForCondPass::Run(ComputeGraphPtr graph) { | |||||
GELOGD("MarkForceUnknownForCondPass Enter"); | GELOGD("MarkForceUnknownForCondPass Enter"); | ||||
std::map<NodePtr, std::vector<NodePtr>> switch_groups; | std::map<NodePtr, std::vector<NodePtr>> switch_groups; | ||||
for (const auto &node : graph->GetDirectNode()) { | for (const auto &node : graph->GetDirectNode()) { | ||||
std::string node_type; | |||||
GE_CHK_STATUS_RET(GetOriginalType(node, node_type), | |||||
"[Get][OriginalType] of node in graph:%s failed.", graph->GetName().c_str()); | |||||
if (kMergeOpTypes.count(node_type) == 0) { | |||||
if (kMergeOpTypes.count(NodeUtils::GetNodeType(node)) == 0) { | |||||
continue; | continue; | ||||
} | } | ||||
@@ -65,6 +50,51 @@ Status MarkForceUnknownForCondPass::Run(ComputeGraphPtr graph) { | |||||
} | } | ||||
/// | /// | ||||
/// @brief Deal with Switch node for LoopCond | |||||
/// @param [in] Switch node | |||||
/// @param [in] dest span | |||||
/// @param [out] Search queue | |||||
/// @return true: Switch In while loop / false: Not in while Loop. | |||||
/// | |||||
bool MarkForceUnknownForCondPass::DealAsLoopSwitch(const NodePtr &node, uint32_t dst_span, | |||||
std::queue<std::pair<NodePtr, uint32_t>> &search_queue) { | |||||
/// LoopCond --->\. | |||||
/// \. | |||||
/// Enter-----------+ \. | |||||
/// +--> Merge --> Switch --> Exit | |||||
/// NextIteration---+ | |||||
const auto is_loop_op = [](const NodePtr &n) { | |||||
return NodeUtils::GetNodeType(n) == LOOPCOND; | |||||
}; | |||||
const auto is_exit_op = [](const NodePtr &n) { | |||||
return kExitOpTypes.count(NodeUtils::GetNodeType(n)) > 0; | |||||
}; | |||||
const auto src_nodes = node->GetInAllNodes(); | |||||
const auto dst_nodes = node->GetOutAllNodes(); | |||||
if (std::none_of(src_nodes.begin(), src_nodes.end(), is_loop_op) && | |||||
std::none_of(dst_nodes.begin(), dst_nodes.end(), is_exit_op)) { | |||||
return false; | |||||
} | |||||
for (const auto &m : src_nodes) { | |||||
if (kMergeOpTypes.count(NodeUtils::GetNodeType(m)) > 0) { | |||||
for (const auto &n : m->GetInAllNodes()) { | |||||
if (kNextIterationOpTypes.count(NodeUtils::GetNodeType(n)) > 0) { | |||||
continue; | |||||
} | |||||
search_queue.push({n, dst_span}); | |||||
GELOGD("Travel in Loop: %s <-- %s <-- %s, span is: %u", node->GetName().c_str(), m->GetName().c_str(), | |||||
n->GetName().c_str(), dst_span); | |||||
} | |||||
} | |||||
} | |||||
return true; | |||||
} | |||||
/// | |||||
/// @brief Mark force unknown shape for Switch node | /// @brief Mark force unknown shape for Switch node | ||||
/// @param [in] merge node | /// @param [in] merge node | ||||
/// @param [out] switch group | /// @param [out] switch group | ||||
@@ -72,6 +102,7 @@ Status MarkForceUnknownForCondPass::Run(ComputeGraphPtr graph) { | |||||
/// | /// | ||||
void MarkForceUnknownForCondPass::MarkUnknownForSwitch(const NodePtr &node, std::vector<NodePtr> &switch_group) { | void MarkForceUnknownForCondPass::MarkUnknownForSwitch(const NodePtr &node, std::vector<NodePtr> &switch_group) { | ||||
// Switch --> {Switch --> Merge} --> Merge | // Switch --> {Switch --> Merge} --> Merge | ||||
GELOGD("Search Switch node for Merge: %s", node->GetName().c_str()); | |||||
std::unordered_set<NodePtr> nodes_seen; | std::unordered_set<NodePtr> nodes_seen; | ||||
std::queue<std::pair<NodePtr, uint32_t>> search_queue({{node, 0}}); | std::queue<std::pair<NodePtr, uint32_t>> search_queue({{node, 0}}); | ||||
while (!search_queue.empty()) { | while (!search_queue.empty()) { | ||||
@@ -79,43 +110,25 @@ void MarkForceUnknownForCondPass::MarkUnknownForSwitch(const NodePtr &node, std: | |||||
const auto dst_span = search_queue.front().second; | const auto dst_span = search_queue.front().second; | ||||
search_queue.pop(); | search_queue.pop(); | ||||
// Switch --> Identity --> Constant | |||||
for (const auto &in_node : dst_node->GetInControlNodes()) { | |||||
for (const auto &in_node : dst_node->GetInAllNodes()) { | |||||
if (nodes_seen.count(in_node) > 0) { | if (nodes_seen.count(in_node) > 0) { | ||||
GELOGD("Travel node: %s, Skip already seen node: %s", dst_node->GetName().c_str(), in_node->GetName().c_str()); | GELOGD("Travel node: %s, Skip already seen node: %s", dst_node->GetName().c_str(), in_node->GetName().c_str()); | ||||
continue; | continue; | ||||
} | } | ||||
nodes_seen.insert(in_node); | nodes_seen.insert(in_node); | ||||
if (in_node->GetType() == IDENTITY) { | |||||
GELOGD("Travel node: %s, In control: %s, span is: %u", dst_node->GetName().c_str(), | |||||
in_node->GetName().c_str(), dst_span); | |||||
search_queue.push({in_node, dst_span}); | |||||
} | |||||
} | |||||
for (const auto &in_node : dst_node->GetInDataNodes()) { | |||||
if (nodes_seen.count(in_node) > 0) { | |||||
GELOGD("Travel node: %s, Skip already seen node: %s", dst_node->GetName().c_str(), in_node->GetName().c_str()); | |||||
continue; | |||||
} | |||||
nodes_seen.insert(in_node); | |||||
std::string node_type; | |||||
(void)GetOriginalType(in_node, node_type); | |||||
const std::string node_type = NodeUtils::GetNodeType(in_node); | |||||
GELOGD("Travel node: %s, %s node: %s, span is: %u", dst_node->GetName().c_str(), node_type.c_str(), | GELOGD("Travel node: %s, %s node: %s, span is: %u", dst_node->GetName().c_str(), node_type.c_str(), | ||||
in_node->GetName().c_str(), dst_span); | in_node->GetName().c_str(), dst_span); | ||||
if (kSwitchOpTypes.count(node_type) > 0) { // Switch input node. | if (kSwitchOpTypes.count(node_type) > 0) { // Switch input node. | ||||
if (DealAsLoopSwitch(in_node, dst_span, search_queue)) { | |||||
continue; | |||||
} | |||||
if (dst_span > 0) { | if (dst_span > 0) { | ||||
search_queue.push({in_node, dst_span - 1}); | search_queue.push({in_node, dst_span - 1}); | ||||
} else { | } else { | ||||
const auto &all_in_nodes = in_node->GetInDataNodes(); | |||||
if (std::any_of(all_in_nodes.begin(), all_in_nodes.end(), IsSwitchInLoop)) { | |||||
GELOGW("Travel node: %s, %s node: %s, Skip LoopCond switch", dst_node->GetName().c_str(), node_type.c_str(), | |||||
in_node->GetName().c_str()); | |||||
} else { | |||||
switch_group.emplace_back(in_node); | |||||
} | |||||
switch_group.emplace_back(in_node); | |||||
} | } | ||||
} else if (kMergeOpTypes.count(node_type) > 0) { // Merge input node. | } else if (kMergeOpTypes.count(node_type) > 0) { // Merge input node. | ||||
search_queue.push({in_node, dst_span + 1}); | search_queue.push({in_node, dst_span + 1}); | ||||
@@ -132,39 +145,63 @@ void MarkForceUnknownForCondPass::MarkUnknownForSwitch(const NodePtr &node, std: | |||||
/// @return | /// @return | ||||
/// | /// | ||||
void MarkForceUnknownForCondPass::MarkUnknownForSwitch(const std::map<NodePtr, std::vector<NodePtr>> &switch_groups) { | void MarkForceUnknownForCondPass::MarkUnknownForSwitch(const std::map<NodePtr, std::vector<NodePtr>> &switch_groups) { | ||||
std::function<bool(const NodePtr &)> callback = [](const NodePtr &n) { | |||||
return n->GetOpDesc()->HasAttr(ATTR_NAME_CONTROL_FLOW_GROUP); | |||||
}; | |||||
// Step 0: no group assigned. such as: | |||||
// Merge1{id=0, group=} => {Switch1{id=1, group=}, Switch2{id=2, group=}} | |||||
// Merge2{id=3, group=} => {Switch1{id=1, group=}, Switch3{id=4, group=}} | |||||
// Merge3{id=5, group=} => {Switch4{id=6, group=}, Switch5{id=7, group=}} | |||||
// Merge4{id=8, group=} => {Switch1{id=1, group=}, Switch5{id=7, group=}} | |||||
std::map<int64_t, int64_t> unique_groups; | |||||
const auto get_group_index = [&unique_groups](const NodePtr &merge, const std::vector<NodePtr> &switch_group) { | |||||
int64_t group_index = merge->GetOpDesc()->GetId(); | |||||
std::set<int64_t> group_ids{group_index}; | |||||
for (const auto &node : switch_group) { | |||||
if (AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_CONTROL_FLOW_GROUP, group_index)) { | |||||
GELOGI("[%s] Get group from [%s], index[%ld]", merge->GetName().c_str(), node->GetName().c_str(), group_index); | |||||
group_ids.insert(group_index); | |||||
} | |||||
} | |||||
for (auto it1 = switch_groups.begin(); it1 != switch_groups.end(); ++it1) { | |||||
const auto &op_node1 = it1->first; | |||||
const auto &op_desc1 = op_node1->GetOpDesc(); | |||||
if (op_desc1->HasAttr(ATTR_NAME_CONTROL_FLOW_GROUP)) { | |||||
continue; | |||||
const auto it = unique_groups.find(group_index); | |||||
if (it != unique_groups.end()) { | |||||
group_index = it->second; | |||||
} | } | ||||
if (IsUnknownShapeTensor(op_desc1->GetOutputDesc(0))) { | |||||
int64_t group_index = op_desc1->GetId(); | |||||
GELOGI("Mark %s as unknown shape control flow, group index: %ld", op_desc1->GetName().c_str(), group_index); | |||||
MarkForceUnknownShape(op_node1, true, group_index); | |||||
for (const auto &n : it1->second) { | |||||
MarkForceUnknownShape(n, true, group_index); | |||||
} | |||||
for (auto id : group_ids) { | |||||
unique_groups[id] = group_index; | |||||
} | |||||
for (auto it2 = switch_groups.begin(); it2 != switch_groups.end(); ++it2) { | |||||
const auto &op_node2 = it2->first; | |||||
const auto &op_desc2 = op_node2->GetOpDesc(); | |||||
if (op_desc2->HasAttr(ATTR_NAME_CONTROL_FLOW_GROUP)) { | |||||
continue; | |||||
} | |||||
return group_index; | |||||
}; | |||||
if (std::any_of(it2->second.begin(), it2->second.end(), callback)) { | |||||
MarkForceUnknownShape(op_node2, true, group_index); | |||||
for (const auto &n : it2->second) { | |||||
MarkForceUnknownShape(n, true, group_index); | |||||
} | |||||
} | |||||
} | |||||
const auto set_group_index = [](const NodePtr &merge, const std::vector<NodePtr> &switch_group, int64_t group_index) { | |||||
SetControlFlowGroup(merge, group_index); | |||||
for (const auto &node : switch_group) { | |||||
SetControlFlowGroup(node, group_index); | |||||
} | |||||
}; | |||||
// Step 1: Set group index to merge, if switch already has group, use assigned group. | |||||
// Merge1{id=0, group=0} => {Switch1{id=1, group=0}, Switch2{id=2, group=0}} | |||||
// Merge2{id=3, group=0} => {Switch1{id=1, group=0}, Switch3{id=4, group=0}} | |||||
// Merge3{id=5, group=5} => {Switch4{id=6, group=5}, Switch5{id=7, group=5}} | |||||
// Merge4{id=8, group=0} => {Switch1{id=1, group=0}, Switch5{id=7, group=0}} | |||||
for (const auto group : switch_groups) { | |||||
int64_t group_index = get_group_index(group.first, group.second); | |||||
set_group_index(group.first, group.second, group_index); | |||||
} | |||||
// Step 2: Adjust crossed merge group for unique group. | |||||
// Merge1{id=0, group=0} => {Switch1{id=1, group=0}, Switch2{id=2, group=0}} | |||||
// Merge2{id=3, group=0} => {Switch1{id=1, group=0}, Switch3{id=4, group=0}} | |||||
// Merge3{id=5, group=0} => {Switch4{id=6, group=0}, Switch5{id=7, group=0}} | |||||
// Merge4{id=8, group=0} => {Switch1{id=1, group=0}, Switch5{id=7, group=0}} | |||||
for (const auto group : switch_groups) { | |||||
int64_t group_index = -1; | |||||
(void)AttrUtils::GetInt(group.first->GetOpDesc(), ATTR_NAME_CONTROL_FLOW_GROUP, group_index); | |||||
const auto it = unique_groups.find(group_index); | |||||
if (it != unique_groups.end() && it->first != it->second) { | |||||
set_group_index(group.first, group.second, it->second); | |||||
} | } | ||||
} | } | ||||
} | } | ||||
@@ -19,6 +19,8 @@ | |||||
#include "inc/graph_pass.h" | #include "inc/graph_pass.h" | ||||
#include <queue> | |||||
namespace ge { | namespace ge { | ||||
class MarkForceUnknownForCondPass : public GraphPass { | class MarkForceUnknownForCondPass : public GraphPass { | ||||
public: | public: | ||||
@@ -26,6 +28,15 @@ class MarkForceUnknownForCondPass : public GraphPass { | |||||
private: | private: | ||||
/// | /// | ||||
/// @brief Deal with Switch node for LoopCond | |||||
/// @param [in] Switch node | |||||
/// @param [in] dest span | |||||
/// @param [out] Search queue | |||||
/// @return true: Switch In while loop / false: Not in while Loop. | |||||
/// | |||||
bool DealAsLoopSwitch(const NodePtr &node, uint32_t dst_span, std::queue<std::pair<NodePtr, uint32_t>> &search_queue); | |||||
/// | |||||
/// @brief Mark force unknown shape for Switch node | /// @brief Mark force unknown shape for Switch node | ||||
/// @param [in] merge node | /// @param [in] merge node | ||||
/// @param [out] switch group | /// @param [out] switch group | ||||
@@ -40,6 +40,12 @@ Status MarkGraphUnknownStatusPass::Run(ComputeGraphPtr graph) { | |||||
} | } | ||||
} | } | ||||
const auto &node = graph->GetParentNode(); | |||||
if (!is_unknown_shape && node != nullptr && node->GetType() == PARTITIONEDCALL) { | |||||
GE_CHK_GRAPH_STATUS_RET(NodeUtils::GetNodeUnknownShapeStatus(*node, is_unknown_shape), | |||||
"[Get][ShapeStatus] of node[%s] failed!", node->GetName().c_str()); | |||||
} | |||||
for (const auto &node : graph->GetDirectNode()) { | for (const auto &node : graph->GetDirectNode()) { | ||||
GELOGD("Set OwnerGraphIsUnknown attr to node[%s]", node->GetName().c_str()); | GELOGD("Set OwnerGraphIsUnknown attr to node[%s]", node->GetName().c_str()); | ||||
(void)AttrUtils::SetBool(node->GetOpDesc(), kOwnerGraphIsUnknown, is_unknown_shape); | (void)AttrUtils::SetBool(node->GetOpDesc(), kOwnerGraphIsUnknown, is_unknown_shape); | ||||
@@ -89,8 +89,7 @@ Status MergeToStreamMergePass::AddActiveNodes(const ComputeGraphPtr &graph, cons | |||||
REPORT_INNER_ERROR("E19999", "Param node is nullptr, check invalid"); | REPORT_INNER_ERROR("E19999", "Param node is nullptr, check invalid"); | ||||
return FAILED, "[Check][Param] Param of pre node is nullptr."); | return FAILED, "[Check][Param] Param of pre node is nullptr."); | ||||
int64_t group_index = -1; | int64_t group_index = -1; | ||||
bool force_unknown = AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_CONTROL_FLOW_GROUP, group_index); | |||||
MarkForceUnknownShape(node, force_unknown, group_index); | |||||
(void)AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_CONTROL_FLOW_GROUP, group_index); | |||||
for (const InDataAnchorPtr &in_data_anchor : node->GetAllInDataAnchors()) { | for (const InDataAnchorPtr &in_data_anchor : node->GetAllInDataAnchors()) { | ||||
OutDataAnchorPtr peer_out_anchor = in_data_anchor->GetPeerOutAnchor(); | OutDataAnchorPtr peer_out_anchor = in_data_anchor->GetPeerOutAnchor(); | ||||
GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, continue); | GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, continue); | ||||
@@ -109,7 +108,7 @@ Status MergeToStreamMergePass::AddActiveNodes(const ComputeGraphPtr &graph, cons | |||||
GELOGE(FAILED, "[Set][ActiveLabelList] for node %s failed.", active_node->GetName().c_str()); | GELOGE(FAILED, "[Set][ActiveLabelList] for node %s failed.", active_node->GetName().c_str()); | ||||
return FAILED; | return FAILED; | ||||
} | } | ||||
MarkForceUnknownShape(active_node, force_unknown, group_index); | |||||
SetControlFlowGroup(active_node, group_index); | |||||
} | } | ||||
return SUCCESS; | return SUCCESS; | ||||
@@ -24,7 +24,9 @@ using std::string; | |||||
namespace ge { | namespace ge { | ||||
namespace { | namespace { | ||||
const int64_t kLoopType = 1; | |||||
constexpr int64_t kLoopType = 1; | |||||
constexpr uint8_t kMaxTransOp = 3; | |||||
constexpr uint8_t kTransOpIoSize = 1; | |||||
} | } | ||||
Status NextIterationPass::Run(ComputeGraphPtr graph) { | Status NextIterationPass::Run(ComputeGraphPtr graph) { | ||||
@@ -284,13 +286,28 @@ Status NextIterationPass::HandleWhileGroup(ComputeGraphPtr &graph) { | |||||
/// @return void | /// @return void | ||||
/// | /// | ||||
void NextIterationPass::HandleSwitchExitNodes(const LoopCondGroup &loop_group, int64_t group_index) { | void NextIterationPass::HandleSwitchExitNodes(const LoopCondGroup &loop_group, int64_t group_index) { | ||||
std::string node_type; | |||||
for (const auto &switch_node : loop_group.switch_nodes) { | for (const auto &switch_node : loop_group.switch_nodes) { | ||||
SetControlFlowGroup(switch_node, group_index); | SetControlFlowGroup(switch_node, group_index); | ||||
for (const auto &node : switch_node->GetOutDataNodes()) { | |||||
std::string node_type; | |||||
(void)GetOriginalType(node, node_type); | |||||
if (kExitOpTypes.count(node_type) > 0) { | |||||
SetControlFlowGroup(node, group_index); | |||||
for (auto node : switch_node->GetOutDataNodes()) { | |||||
// Switch --> Exit | |||||
// Switch --> Cast --> Exit | |||||
// Switch --> TransData --> Cast --> Exit | |||||
for (uint8_t i = 0; i < kMaxTransOp; ++i) { | |||||
if (node->GetInDataNodes().size() != kTransOpIoSize || node->GetAllOutDataAnchorsSize() != kTransOpIoSize) { | |||||
break; | |||||
} | |||||
if (kExitOpTypes.count(NodeUtils::GetNodeType(node)) > 0) { | |||||
SetControlFlowGroup(node, group_index); | |||||
break; | |||||
} | |||||
const auto &all_nodes = node->GetOutAllNodes(); | |||||
if (all_nodes.size() != kTransOpIoSize) { | |||||
break; | |||||
} | |||||
node = all_nodes.at(0); | |||||
} | } | ||||
} | } | ||||
} | } | ||||
@@ -15,7 +15,7 @@ | |||||
*/ | */ | ||||
#include "graph/passes/parallel_group_pass.h" | #include "graph/passes/parallel_group_pass.h" | ||||
#include <queue> | |||||
#include "framework/common/debug/ge_log.h" | #include "framework/common/debug/ge_log.h" | ||||
#include "common/ge/ge_util.h" | #include "common/ge/ge_util.h" | ||||
#include "framework/common/ge_inner_error_codes.h" | #include "framework/common/ge_inner_error_codes.h" | ||||
@@ -299,24 +299,19 @@ Status ParallelGroupPass::ReplaceWithSwitchAndMerge(NodePtr pre_node, NodePtr cu | |||||
for (const auto &switch_node : cur_itr->second.first) { | for (const auto &switch_node : cur_itr->second.first) { | ||||
int64_t pre_id = pre_node->GetOpDesc()->GetId(); | int64_t pre_id = pre_node->GetOpDesc()->GetId(); | ||||
int64_t switch_id = switch_node->GetOpDesc()->GetId(); | int64_t switch_id = switch_node->GetOpDesc()->GetId(); | ||||
// avoid ring | |||||
if (pre_id > switch_id) { | |||||
auto merge_node = cur_itr->second.second; | |||||
if (AddCtrlEdge(merge_node, pre_node) != SUCCESS) { | |||||
GELOGE(FAILED, "[AddEdge][Node]Add edge for nodes: %s->%s failed.", | |||||
pre_node->GetName().c_str(), switch_node->GetName().c_str()); | |||||
REPORT_CALL_ERROR("E19999", "[AddEdge][Node]Add edge for nodes: %s->%s failed.", | |||||
pre_node->GetName().c_str(), switch_node->GetName().c_str()); | |||||
return FAILED; | |||||
} | |||||
} else { | |||||
if (AddCtrlEdge(pre_node, switch_node) != SUCCESS) { | |||||
GELOGE(FAILED, "[AddEdge][Node]Add edge for nodes: %s->%s failed.", | |||||
pre_node->GetName().c_str(), switch_node->GetName().c_str()); | |||||
REPORT_CALL_ERROR("E19999", "[AddEdge][Node]Add edge for nodes: %s->%s failed.", | |||||
pre_node->GetName().c_str(), switch_node->GetName().c_str()); | |||||
return FAILED; | |||||
} | |||||
NodePtr first_node = pre_node; | |||||
NodePtr second_node = switch_node; | |||||
if (pre_id > switch_id && IsIndirectConnect(switch_node, pre_node)) { | |||||
// avoid ring, merge->pre_node | |||||
first_node = cur_itr->second.second; | |||||
second_node = pre_node; | |||||
} | |||||
if (AddCtrlEdge(first_node, second_node) != SUCCESS) { | |||||
GELOGE(FAILED, "[AddEdge][Node]Add edge for nodes: %s->%s failed.", | |||||
first_node->GetName().c_str(), second_node->GetName().c_str()); | |||||
REPORT_CALL_ERROR("E19999", "[AddEdge][Node]Add edge for nodes: %s->%s failed.", | |||||
first_node->GetName().c_str(), second_node->GetName().c_str()); | |||||
return FAILED; | |||||
} | } | ||||
} | } | ||||
} else { | } else { | ||||
@@ -345,4 +340,29 @@ bool ParallelGroupPass::IsWhileStreamSwitch(OpDescPtr switch_op_desc) { | |||||
return (AttrUtils::GetInt(switch_op_desc, ATTR_NAME_STREAM_SWITCH_TYPE, stream_switch_type) && | return (AttrUtils::GetInt(switch_op_desc, ATTR_NAME_STREAM_SWITCH_TYPE, stream_switch_type) && | ||||
stream_switch_type == kLoopType); | stream_switch_type == kLoopType); | ||||
} | } | ||||
bool ParallelGroupPass::IsIndirectConnect(const NodePtr &node_a, const NodePtr &node_b) { | |||||
if (node_a == nullptr || node_b == nullptr) { | |||||
GELOGW("node_a or node_b is nullptr."); | |||||
return false; | |||||
} | |||||
int64_t end_id = node_b->GetOpDesc()->GetId(); | |||||
std::queue<NodePtr> nodes; | |||||
nodes.push(node_a); | |||||
while (!nodes.empty()) { | |||||
NodePtr tmp_node = nodes.front(); | |||||
nodes.pop(); | |||||
if (tmp_node == nullptr || tmp_node->GetOpDesc() == nullptr || | |||||
tmp_node->GetOpDesc()->GetId() > end_id) { | |||||
continue; | |||||
} | |||||
if (tmp_node == node_b) { | |||||
return true; | |||||
} | |||||
for (const auto &out_node : tmp_node->GetOutAllNodes()) { | |||||
nodes.push(out_node); | |||||
} | |||||
} | |||||
return false; | |||||
} | |||||
} // namespace ge | } // namespace ge |
@@ -48,6 +48,7 @@ class ParallelGroupPass : public GraphPass { | |||||
bool IsBigSmallLoopStreamSwitch(OpDescPtr switch_op_desc); | bool IsBigSmallLoopStreamSwitch(OpDescPtr switch_op_desc); | ||||
bool IsWhileStreamSwitch(OpDescPtr switch_op_desc); | bool IsWhileStreamSwitch(OpDescPtr switch_op_desc); | ||||
bool IsIndirectConnect(const NodePtr &node_a, const NodePtr &node_b); | |||||
}; | }; | ||||
} // namespace ge | } // namespace ge | ||||
#endif // GE_GRAPH_PASSES_PARALLEL_GROUP_PASS_H | #endif // GE_GRAPH_PASSES_PARALLEL_GROUP_PASS_H |
@@ -21,7 +21,23 @@ | |||||
#include "framework/common/debug/ge_log.h" | #include "framework/common/debug/ge_log.h" | ||||
#include "framework/common/ge_inner_error_codes.h" | #include "framework/common/ge_inner_error_codes.h" | ||||
#include "graph/utils/graph_utils.h" | #include "graph/utils/graph_utils.h" | ||||
#include "graph/utils/node_utils.h" | |||||
namespace { | |||||
const std::unordered_set<std::string> kControlFlowOps = { | |||||
ge::SWITCH, | |||||
ge::REFSWITCH, | |||||
ge::MERGE, | |||||
ge::REFMERGE, | |||||
ge::ENTER, | |||||
ge::REFENTER, | |||||
ge::NEXTITERATION, | |||||
ge::REFNEXTITERATION, | |||||
ge::EXIT, | |||||
ge::REFEXIT, | |||||
ge::LOOPCOND | |||||
}; | |||||
} | |||||
namespace ge { | namespace ge { | ||||
Status ReplaceWithEmptyConstPass::Run(NodePtr &node) { | Status ReplaceWithEmptyConstPass::Run(NodePtr &node) { | ||||
GELOGD("ReplaceWithEmptyConstPass in."); | GELOGD("ReplaceWithEmptyConstPass in."); | ||||
@@ -39,6 +55,10 @@ Status ReplaceWithEmptyConstPass::Run(NodePtr &node) { | |||||
GELOGI("Node %s is const. Ignore current pass.", node->GetName().c_str()); | GELOGI("Node %s is const. Ignore current pass.", node->GetName().c_str()); | ||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
if (kControlFlowOps.count(NodeUtils::GetNodeType(node)) != 0) { | |||||
GELOGI("Node %s is control flow op. Ignore current pass.", node->GetName().c_str()); | |||||
return SUCCESS; | |||||
} | |||||
// Node like no op, it has no output | // Node like no op, it has no output | ||||
if (node->GetOpDesc()->GetAllOutputsDescPtr().empty()) { | if (node->GetOpDesc()->GetAllOutputsDescPtr().empty()) { | ||||
GELOGI("Node %s has no output desc. Ignore current pass.", node->GetName().c_str()); | GELOGI("Node %s has no output desc. Ignore current pass.", node->GetName().c_str()); | ||||
@@ -395,8 +395,9 @@ NodePtr SwitchToStreamSwitchPass::CreateStreamSwitchNode(const ComputeGraphPtr & | |||||
peer_cond_anchor->GetOwnerNode()->GetName().c_str(), stream_switch->GetName().c_str()); | peer_cond_anchor->GetOwnerNode()->GetName().c_str(), stream_switch->GetName().c_str()); | ||||
int64_t group_index = -1; | int64_t group_index = -1; | ||||
bool force_unknown = AttrUtils::GetInt(switch_node->GetOpDesc(), ATTR_NAME_CONTROL_FLOW_GROUP, group_index); | |||||
MarkForceUnknownShape(stream_switch, force_unknown, group_index); | |||||
if (AttrUtils::GetInt(switch_node->GetOpDesc(), ATTR_NAME_CONTROL_FLOW_GROUP, group_index)) { | |||||
SetControlFlowGroup(stream_switch, group_index); | |||||
} | |||||
return stream_switch; | return stream_switch; | ||||
} | } | ||||
@@ -491,8 +492,8 @@ int64_t SwitchToStreamSwitchPass::GetGroupId(const NodePtr &node) { | |||||
Status SwitchToStreamSwitchPass::CombineSwitchNode(const ComputeGraphPtr &graph) { | Status SwitchToStreamSwitchPass::CombineSwitchNode(const ComputeGraphPtr &graph) { | ||||
for (auto iter = cond_node_map_.begin(); iter != cond_node_map_.end(); ++iter) { | for (auto iter = cond_node_map_.begin(); iter != cond_node_map_.end(); ++iter) { | ||||
for (auto group_iter = iter->second.begin(); group_iter != iter->second.end(); ++group_iter) { | for (auto group_iter = iter->second.begin(); group_iter != iter->second.end(); ++group_iter) { | ||||
std::list<NodePtr> false_switch_list = group_iter->second[SWITCH_FALSE_OUTPUT]; | |||||
std::list<NodePtr> true_switch_list = group_iter->second[SWITCH_TRUE_OUTPUT]; | |||||
const std::list<NodePtr> &false_switch_list = group_iter->second[SWITCH_FALSE_OUTPUT]; | |||||
const std::list<NodePtr> &true_switch_list = group_iter->second[SWITCH_TRUE_OUTPUT]; | |||||
std::set<NodePtr> same_cond_switch; | std::set<NodePtr> same_cond_switch; | ||||
same_cond_switch.insert(false_switch_list.begin(), false_switch_list.end()); | same_cond_switch.insert(false_switch_list.begin(), false_switch_list.end()); | ||||
same_cond_switch.insert(true_switch_list.begin(), true_switch_list.end()); | same_cond_switch.insert(true_switch_list.begin(), true_switch_list.end()); | ||||
@@ -524,13 +525,13 @@ Status SwitchToStreamSwitchPass::CombineSwitchNode(const ComputeGraphPtr &graph) | |||||
std::function<bool(const NodePtr &)> callback = [&group_index](const NodePtr &n) { | std::function<bool(const NodePtr &)> callback = [&group_index](const NodePtr &n) { | ||||
return AttrUtils::GetInt(n->GetOpDesc(), ATTR_NAME_CONTROL_FLOW_GROUP, group_index); | return AttrUtils::GetInt(n->GetOpDesc(), ATTR_NAME_CONTROL_FLOW_GROUP, group_index); | ||||
}; | }; | ||||
bool is_unknown_shape = std::any_of(same_cond_switch.begin(), same_cond_switch.end(), callback); | |||||
MarkForceUnknownShape(active_node, is_unknown_shape, group_index); | |||||
(void)std::any_of(same_cond_switch.begin(), same_cond_switch.end(), callback); | |||||
SetControlFlowGroup(active_node, group_index); | |||||
const std::string &cond_group = cond_node->GetName(); | const std::string &cond_group = cond_node->GetName(); | ||||
for (uint32_t i = 0; i < SWITCH_OUTPUT_NUM; ++i) { | for (uint32_t i = 0; i < SWITCH_OUTPUT_NUM; ++i) { | ||||
bool true_branch_flag = (i == SWITCH_TRUE_OUTPUT); | bool true_branch_flag = (i == SWITCH_TRUE_OUTPUT); | ||||
std::list<NodePtr> &switch_list = (true_branch_flag ? true_switch_list : false_switch_list); | |||||
const std::list<NodePtr> &switch_list = (true_branch_flag ? true_switch_list : false_switch_list); | |||||
GE_IF_BOOL_EXEC(switch_list.empty(), continue); | GE_IF_BOOL_EXEC(switch_list.empty(), continue); | ||||
// select first stream_switch | // select first stream_switch | ||||
@@ -559,7 +560,7 @@ Status SwitchToStreamSwitchPass::CombineSwitchNode(const ComputeGraphPtr &graph) | |||||
"[Add][Edge] between %s and %s failed.", | "[Add][Edge] between %s and %s failed.", | ||||
cast_node->GetName().c_str(), stream_switch->GetName().c_str()); | cast_node->GetName().c_str(), stream_switch->GetName().c_str()); | ||||
MarkForceUnknownShape(stream_switch, is_unknown_shape, group_index); | |||||
SetControlFlowGroup(stream_switch, group_index); | |||||
for (const NodePtr &node : switch_list) { | for (const NodePtr &node : switch_list) { | ||||
GE_IF_BOOL_EXEC(node != stream_switch, { | GE_IF_BOOL_EXEC(node != stream_switch, { | ||||
GE_CHK_STATUS(GraphUtils::RemoveEdge(peer_cond_anchor, node->GetInDataAnchor(0)), | GE_CHK_STATUS(GraphUtils::RemoveEdge(peer_cond_anchor, node->GetInDataAnchor(0)), | ||||
@@ -1420,9 +1420,10 @@ Status GraphPrepare::AdjustDataOpOutput(const NodePtr &node) { | |||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
Status GraphPrepare::CheckInternalFormat(const NodePtr &input_node, const GeTensorDesc &desc, bool tune_flag) { | |||||
Status GraphPrepare::CheckInternalFormat(const NodePtr &input_node, const GeTensorDesc &desc) { | |||||
auto format = desc.GetFormat(); | auto format = desc.GetFormat(); | ||||
auto origin_format = desc.GetOriginFormat(); | auto origin_format = desc.GetOriginFormat(); | ||||
auto tune_flag = (options_.build_mode == BUILD_MODE_TUNING) && (options_.build_step == BUILD_STEP_AFTER_BUILDER); | |||||
bool need_check_internal_format = (!IsTansDataOpData(input_node)) && (!options_.is_single_op) && (!tune_flag); | bool need_check_internal_format = (!IsTansDataOpData(input_node)) && (!options_.is_single_op) && (!tune_flag); | ||||
if (need_check_internal_format) { | if (need_check_internal_format) { | ||||
bool is_internal = TypeUtils::IsInternalFormat(format) || TypeUtils::IsInternalFormat(origin_format); | bool is_internal = TypeUtils::IsInternalFormat(format) || TypeUtils::IsInternalFormat(origin_format); | ||||
@@ -1439,6 +1440,63 @@ Status GraphPrepare::CheckInternalFormat(const NodePtr &input_node, const GeTens | |||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
Status GraphPrepare::UpdateDataInputOutputDesc(GeAttrValue::INT index, OpDescPtr &op, GeTensorDesc &desc) { | |||||
auto data_type = desc.GetDataType(); | |||||
uint32_t length = 1; | |||||
bool type_ret = TypeUtils::GetDataTypeLength(data_type, length); | |||||
if (!type_ret) { | |||||
std::string reason = "Input datatype[" + TypeUtils::DataTypeToSerialString(data_type) + "] of index:" + | |||||
std::to_string(index) + " input tensor is not support"; | |||||
REPORT_INPUT_ERROR("E19025", std::vector<std::string>({"reason"}), std::vector<std::string>({reason})); | |||||
GELOGE(PARAM_INVALID, "[Check][Param] Input datatype %s is not support.", | |||||
TypeUtils::DataTypeToSerialString(data_type).c_str()); | |||||
return FAILED; | |||||
} | |||||
int64_t desc_shape = desc.GetShape().GetShapeSize(); | |||||
FMK_INT64_UINT32_MULCHECK(desc_shape, length); | |||||
int64_t shape_size = desc_shape * length; | |||||
GE_IF_BOOL_EXEC(shape_size == 0 && desc.GetShape().GetDimNum() == 0, shape_size = static_cast<int64_t>(length)); | |||||
int64_t size = 0; | |||||
GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(desc, size) != GRAPH_SUCCESS, | |||||
REPORT_CALL_ERROR("E19999", "Get size of user input tensor failed, index:%ld", index); | |||||
GELOGE(INTERNAL_ERROR, "[Get][Size] of user input tensor failed, index:%ld", index); return FAILED); | |||||
bool size_check = (size != 0 && shape_size != size); | |||||
if (size_check) { | |||||
std::string reason = "input tensor[index:" + std::to_string(index) + "]'s data size[" + std::to_string(size) + | |||||
"] != shape_size[" + std::to_string(size) + "], check invalid"; | |||||
REPORT_INPUT_ERROR("E19025", std::vector<std::string>({"reason"}), std::vector<std::string>({reason})); | |||||
GELOGE(PARAM_INVALID, "[Check][Param] input data size = %ld, shape_size = %ld.", size, shape_size); | |||||
return FAILED; | |||||
} | |||||
ge::TensorUtils::SetSize(desc, shape_size); | |||||
auto tune_flag = (options_.build_mode == BUILD_MODE_TUNING) && (options_.build_step == BUILD_STEP_AFTER_BUILDER); | |||||
if (!tune_flag) { | |||||
graphStatus graph_ret = op->UpdateInputDesc(0, desc); | |||||
if (graph_ret != GRAPH_SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "Update input desc of op:%s(%s) failed, index:0", | |||||
op->GetName().c_str(), op->GetType().c_str()); | |||||
GELOGE(graph_ret, "[Update][InputDesc] of op:%s(%s) failed, index:0", | |||||
op->GetName().c_str(), op->GetType().c_str()); | |||||
return graph_ret; | |||||
} | |||||
// Size will be recalculated in the build stage | |||||
ge::TensorUtils::SetSize(desc, 0); | |||||
graph_ret = op->UpdateOutputDesc(0, desc); | |||||
if (graph_ret != GRAPH_SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "Update output desc of op:%s(%s) failed, index:0", | |||||
op->GetName().c_str(), op->GetType().c_str()); | |||||
GELOGE(graph_ret, "[Update][OutputDesc] of op:%s(%s) failed, index:0", | |||||
op->GetName().c_str(), op->GetType().c_str()); | |||||
return graph_ret; | |||||
} | |||||
} else { | |||||
GELOGI("data %s skip update info in tune mode", op->GetName().c_str()); | |||||
} | |||||
return SUCCESS; | |||||
} | |||||
Status GraphPrepare::UpdateInput(const std::vector<GeTensor> &user_input, | Status GraphPrepare::UpdateInput(const std::vector<GeTensor> &user_input, | ||||
const std::map<string, string> &graph_option) { | const std::map<string, string> &graph_option) { | ||||
// Get shape range of input in dynamic_execute mode | // Get shape range of input in dynamic_execute mode | ||||
@@ -1471,63 +1529,18 @@ Status GraphPrepare::UpdateInput(const std::vector<GeTensor> &user_input, | |||||
} | } | ||||
GeTensorDesc desc(user_input[index].GetTensorDesc()); | GeTensorDesc desc(user_input[index].GetTensorDesc()); | ||||
// data maybe internal format [FRACTAL_NZ] at singleop process such as GEMM. | // data maybe internal format [FRACTAL_NZ] at singleop process such as GEMM. | ||||
auto tune_flag = (options_.build_mode == BUILD_MODE_TUNING) && (options_.build_step == BUILD_STEP_AFTER_BUILDER); | |||||
ret = CheckInternalFormat(input_node, desc, tune_flag); | |||||
ret = CheckInternalFormat(input_node, desc); | |||||
if (ret != SUCCESS) { | if (ret != SUCCESS) { | ||||
GELOGE(INTERNAL_ERROR, "[Check][InternalFormat] on %s failed", op->GetName().c_str()); | GELOGE(INTERNAL_ERROR, "[Check][InternalFormat] on %s failed", op->GetName().c_str()); | ||||
return ret; | return ret; | ||||
} | } | ||||
auto data_type = desc.GetDataType(); | |||||
uint32_t length = 1; | |||||
bool type_ret = TypeUtils::GetDataTypeLength(data_type, length); | |||||
if (!type_ret) { | |||||
std::string reason = "Input datatype[" + TypeUtils::DataTypeToSerialString(data_type) + "] of index:" + | |||||
std::to_string(index) + " input tensor is not support"; | |||||
REPORT_INPUT_ERROR("E19025", std::vector<std::string>({"reason"}), std::vector<std::string>({reason})); | |||||
GELOGE(PARAM_INVALID, "[Check][Param] Input datatype %s is not support.", | |||||
TypeUtils::DataTypeToSerialString(data_type).c_str()); | |||||
return FAILED; | |||||
} | |||||
int64_t desc_shape = desc.GetShape().GetShapeSize(); | |||||
FMK_INT64_UINT32_MULCHECK(desc_shape, length); | |||||
int64_t shape_size = desc_shape * length; | |||||
GE_IF_BOOL_EXEC(shape_size == 0 && desc.GetShape().GetDimNum() == 0, shape_size = static_cast<int64_t>(length)); | |||||
int64_t size = 0; | |||||
GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(desc, size) != GRAPH_SUCCESS, | |||||
REPORT_CALL_ERROR("E19999", "Get size of user input tensor failed, index:%ld", index); | |||||
GELOGE(INTERNAL_ERROR, "[Get][Size] of user input tensor failed, index:%ld", index); | |||||
return FAILED); | |||||
bool size_check = (size != 0 && shape_size != size); | |||||
if (size_check) { | |||||
std::string reason = "input tensor[index:" + std::to_string(index) + "]'s data size[" + std::to_string(size) + | |||||
"] != shape_size[" + std::to_string(size) + "], check invalid"; | |||||
REPORT_INPUT_ERROR("E19025", std::vector<std::string>({"reason"}), std::vector<std::string>({reason})); | |||||
GELOGE(PARAM_INVALID, "[Check][Param] input data size = %ld, shape_size = %ld.", size, shape_size); | |||||
return FAILED; | |||||
} | |||||
ge::TensorUtils::SetSize(desc, shape_size); | |||||
if (!tune_flag) { | |||||
graphStatus graph_ret = op->UpdateInputDesc(0, desc); | |||||
if (graph_ret != GRAPH_SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "Update input desc of op:%s(%s) failed, index:0", | |||||
op->GetName().c_str(), op->GetType().c_str()); | |||||
GELOGE(graph_ret, "[Update][InputDesc] of op:%s(%s) failed, index:0", | |||||
op->GetName().c_str(), op->GetType().c_str()); | |||||
return graph_ret; | |||||
} | |||||
// Size will be recalculated in the build stage | |||||
ge::TensorUtils::SetSize(desc, 0); | |||||
graph_ret = op->UpdateOutputDesc(0, desc); | |||||
if (graph_ret != GRAPH_SUCCESS) { | |||||
REPORT_CALL_ERROR("E19999", "Update output desc of op:%s(%s) failed, index:0", | |||||
op->GetName().c_str(), op->GetType().c_str()); | |||||
GELOGE(graph_ret, "[Update][OutputDesc] of op:%s(%s) failed, index:0", | |||||
op->GetName().c_str(), op->GetType().c_str()); | |||||
return graph_ret; | |||||
} | |||||
} else { | |||||
GELOGI("data %s skip update info in tune mode", op->GetName().c_str()); | |||||
ret = UpdateDataInputOutputDesc(index, op, desc); | |||||
if (ret != SUCCESS) { | |||||
GELOGE(FAILED, "[Update][DataInputOutputDesc] on %s failed", op->GetName().c_str()); | |||||
return ret; | |||||
} | } | ||||
if (!dynamic_shape_range_vec.empty()) { | if (!dynamic_shape_range_vec.empty()) { | ||||
ret = UpdateDynamicInputShapeRange(index, dynamic_shape_range_vec, op, desc); | ret = UpdateDynamicInputShapeRange(index, dynamic_shape_range_vec, op, desc); | ||||
GE_CHK_STATUS_RET(ret, "[Update][DynamicInputShapeRange] on %s failed.", op->GetName().c_str()); | GE_CHK_STATUS_RET(ret, "[Update][DynamicInputShapeRange] on %s failed.", op->GetName().c_str()); | ||||
@@ -1742,8 +1755,8 @@ Status GraphPrepare::CtrlFlowPreProcess() { | |||||
PassManager graph_pass; | PassManager graph_pass; | ||||
// After InferShape Mark v1 control flow for unknown shape. | // After InferShape Mark v1 control flow for unknown shape. | ||||
auto mark_force_unknown_pass = new (std::nothrow) MarkForceUnknownForCondPass; | |||||
GE_CHK_STATUS_RET(graph_pass.AddPass("PreRun::MarkForceUnknownForCondPass", mark_force_unknown_pass)); | |||||
GE_CHK_STATUS_RET(graph_pass.AddPass("PreRun::MarkForceUnknownForCondPass", | |||||
new (std::nothrow) MarkForceUnknownForCondPass)); | |||||
GE_CHK_STATUS_RET(graph_pass.Run(compute_graph_)); | GE_CHK_STATUS_RET(graph_pass.Run(compute_graph_)); | ||||
return SUCCESS; | return SUCCESS; | ||||
@@ -63,7 +63,8 @@ class GraphPrepare { | |||||
Status CheckRefOp(); | Status CheckRefOp(); | ||||
Status SetRtContext(rtContext_t rt_context, rtCtxMode_t mode); | Status SetRtContext(rtContext_t rt_context, rtCtxMode_t mode); | ||||
Status AdjustDataOpOutput(const NodePtr &node); | Status AdjustDataOpOutput(const NodePtr &node); | ||||
Status CheckInternalFormat(const NodePtr &input_node, const GeTensorDesc &desc, bool tune_flag); | |||||
Status CheckInternalFormat(const NodePtr &input_node, const GeTensorDesc &desc); | |||||
Status UpdateDataInputOutputDesc(GeAttrValue::INT index, OpDescPtr &op, GeTensorDesc &desc); | |||||
Status UpdateInput(const std::vector<GeTensor> &user_input, const std::map<string, string> &graph_option); | Status UpdateInput(const std::vector<GeTensor> &user_input, const std::map<string, string> &graph_option); | ||||
Status CheckAndUpdateInput(const std::vector<GeTensor> &user_input, const std::map<string, string> &graph_option); | Status CheckAndUpdateInput(const std::vector<GeTensor> &user_input, const std::map<string, string> &graph_option); | ||||
Status CheckConstOp(); | Status CheckConstOp(); | ||||
@@ -568,6 +568,7 @@ Status InsertNewOpUtil::GetDataRelatedNode(NodePtr &node, std::map<NodePtr, std: | |||||
} | } | ||||
std::unique_ptr<domi::AippOpParams> aipp_params(new (std::nothrow) domi::AippOpParams()); | std::unique_ptr<domi::AippOpParams> aipp_params(new (std::nothrow) domi::AippOpParams()); | ||||
GE_CHECK_NOTNULL(aipp_params); | |||||
ge::GeAttrValue::NAMED_ATTRS aipp_attr; | ge::GeAttrValue::NAMED_ATTRS aipp_attr; | ||||
GE_CHK_BOOL_RET_STATUS(AttrUtils::GetNamedAttrs(data_op, ATTR_NAME_AIPP, aipp_attr), ACL_ERROR_GE_AIPP_NOT_EXIST, | GE_CHK_BOOL_RET_STATUS(AttrUtils::GetNamedAttrs(data_op, ATTR_NAME_AIPP, aipp_attr), ACL_ERROR_GE_AIPP_NOT_EXIST, | ||||
"[Get][Attr] %s from op:%s failed", ATTR_NAME_AIPP.c_str(), data_op->GetName().c_str()); | "[Get][Attr] %s from op:%s failed", ATTR_NAME_AIPP.c_str(), data_op->GetName().c_str()); | ||||
@@ -1206,7 +1206,7 @@ Status MultiBatchGraphCopyer::CheckCopyResult(const std::vector<NodePtr> &start_ | |||||
auto dims = NodeUtils::GetOutputDesc(*node, kDataOutIndex).GetShape().GetDims(); | auto dims = NodeUtils::GetOutputDesc(*node, kDataOutIndex).GetShape().GetDims(); | ||||
if (!IsAllDimsPositive(dims)) { | if (!IsAllDimsPositive(dims)) { | ||||
REPORT_CALL_ERROR("E19999", "Failed to copy multi batch graph, the node %s still has unknown shape %s", | REPORT_CALL_ERROR("E19999", "Failed to copy multi batch graph, the node %s still has unknown shape %s", | ||||
node->GetName().c_str(), formats::ShapeToString(dims).c_str()); | |||||
node->GetName().c_str(), formats::ShapeToString(dims).c_str()); | |||||
GELOGE(INTERNAL_ERROR, "[Check][Param] Failed to copy multi batch graph, the node %s still has unknown shape %s", | GELOGE(INTERNAL_ERROR, "[Check][Param] Failed to copy multi batch graph, the node %s still has unknown shape %s", | ||||
node->GetName().c_str(), formats::ShapeToString(dims).c_str()); | node->GetName().c_str(), formats::ShapeToString(dims).c_str()); | ||||
return INTERNAL_ERROR; | return INTERNAL_ERROR; | ||||
@@ -45,6 +45,7 @@ Status FillKernel::Compute(const ge::OpDescPtr op_desc_ptr, const std::vector<ge | |||||
GELOGE(PARAM_INVALID, "Parameter's invalid, Input opDescPtr is nullptr."); | GELOGE(PARAM_INVALID, "Parameter's invalid, Input opDescPtr is nullptr."); | ||||
return PARAM_INVALID; | return PARAM_INVALID; | ||||
} | } | ||||
GELOGD("FillKernel in, name: %s.", op_desc_ptr->GetName().c_str()); | |||||
GE_CHECK_NOTNULL(input.at(kFillDimsInputIndex)); | GE_CHECK_NOTNULL(input.at(kFillDimsInputIndex)); | ||||
GE_CHECK_NOTNULL(input.at(kFillDataInputIndex)); | GE_CHECK_NOTNULL(input.at(kFillDataInputIndex)); | ||||
@@ -57,6 +58,13 @@ Status FillKernel::Compute(const ge::OpDescPtr op_desc_ptr, const std::vector<ge | |||||
return NOT_CHANGED; | return NOT_CHANGED; | ||||
} | } | ||||
auto output_desc = op_desc_ptr->GetOutputDescPtr(0); | |||||
GE_CHECK_NOTNULL(output_desc); | |||||
if (output_desc->GetShape().IsUnknownShape()) { | |||||
GELOGD("Output is unknown shape, [%s] skip FillKernel.", op_desc_ptr->GetName().c_str()); | |||||
return NOT_CHANGED; | |||||
} | |||||
GeTensorPtr output_ptr; | GeTensorPtr output_ptr; | ||||
output_ptr = MakeShared<GeTensor>(op_desc_ptr->GetOutputDesc(0)); | output_ptr = MakeShared<GeTensor>(op_desc_ptr->GetOutputDesc(0)); | ||||
if (output_ptr == nullptr) { | if (output_ptr == nullptr) { | ||||
@@ -297,13 +297,15 @@ Status HybridModelAsyncExecutor::PrepareInputs(const InputData ¤t_data, Hy | |||||
} | } | ||||
} | } | ||||
tensor_desc->SetShape(shape); | tensor_desc->SetShape(shape); | ||||
args.input_desc[input_index] = tensor_desc; | |||||
GELOGD("Update shape of input[%zu] to [%s]", input_index, tensor_desc->MutableShape().ToString().c_str()); | |||||
GELOGD("Update shape[%s] of input[%zu] to [%s]", | |||||
shape.ToString().c_str(), input_index, tensor_desc->MutableShape().ToString().c_str()); | |||||
GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, tensor_size), | GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, tensor_size), | ||||
"[Invoke][GetTensorMemorySizeInBytes]Failed to calc tensor size," | "[Invoke][GetTensorMemorySizeInBytes]Failed to calc tensor size," | ||||
"index = %zu, shape = [%s], model_id = %u.", | "index = %zu, shape = [%s], model_id = %u.", | ||||
input_index, tensor_desc->GetShape().ToString().c_str(), model_id_); | input_index, tensor_desc->GetShape().ToString().c_str(), model_id_); | ||||
GELOGD("Input tensor[%zu] size = %zu", input_index, tensor_size); | |||||
GELOGD("Input tensor[%zu] size = %ld", input_index, tensor_size); | |||||
TensorUtils::SetSize(*tensor_desc, tensor_size); | |||||
args.input_desc[input_index] = tensor_desc; | |||||
} | } | ||||
GE_CHECK_GE(tensor_size, 0); | GE_CHECK_GE(tensor_size, 0); | ||||
@@ -41,6 +41,8 @@ HybridModelExecutor::~HybridModelExecutor() { | |||||
Status HybridModelExecutor::Init() { | Status HybridModelExecutor::Init() { | ||||
GELOGD("Start to init HybridGraphEngine."); | GELOGD("Start to init HybridGraphEngine."); | ||||
GE_CHK_STATUS_RET_NOLOG(InitExecutionContext()); | GE_CHK_STATUS_RET_NOLOG(InitExecutionContext()); | ||||
root_graph_executor_.reset(new (std::nothrow) SubgraphExecutor(model_->GetRootGraphItem(), &context_)); | |||||
GE_CHECK_NOTNULL(root_graph_executor_); | |||||
GELOGD("HybridGraphEngine initialized successfully."); | GELOGD("HybridGraphEngine initialized successfully."); | ||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
@@ -60,8 +62,7 @@ Status HybridModelExecutor::Execute(HybridModelExecutor::ExecuteArgs &args) { | |||||
GE_CHK_RT_RET(rtMemcpyAsync(context_.global_step, sizeof(uint64_t), &context_.iteration, | GE_CHK_RT_RET(rtMemcpyAsync(context_.global_step, sizeof(uint64_t), &context_.iteration, | ||||
sizeof(uint64_t), RT_MEMCPY_HOST_TO_DEVICE_EX, context_.stream)); | sizeof(uint64_t), RT_MEMCPY_HOST_TO_DEVICE_EX, context_.stream)); | ||||
} | } | ||||
SubgraphExecutor executor(model_->GetRootGraphItem(), &context_); | |||||
auto ret = ExecuteGraphInternal(executor, args); | |||||
auto ret = ExecuteGraphInternal(args); | |||||
Cleanup(); | Cleanup(); | ||||
RECORD_MODEL_EXECUTION_EVENT(&context_, "[Cleanup] End"); | RECORD_MODEL_EXECUTION_EVENT(&context_, "[Cleanup] End"); | ||||
GELOGD("Model executed successfully."); | GELOGD("Model executed successfully."); | ||||
@@ -69,6 +70,7 @@ Status HybridModelExecutor::Execute(HybridModelExecutor::ExecuteArgs &args) { | |||||
context_.profiler->Dump(std::cout); | context_.profiler->Dump(std::cout); | ||||
context_.profiler->Reset(); | context_.profiler->Reset(); | ||||
} | } | ||||
root_graph_executor_->ReleaseContext(); | |||||
context_.iteration += 1; | context_.iteration += 1; | ||||
if (ret == END_OF_SEQUENCE) { | if (ret == END_OF_SEQUENCE) { | ||||
@@ -79,8 +81,7 @@ Status HybridModelExecutor::Execute(HybridModelExecutor::ExecuteArgs &args) { | |||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
Status HybridModelExecutor::ExecuteGraphInternal(SubgraphExecutor &executor, | |||||
HybridModelExecutor::ExecuteArgs &args) { | |||||
Status HybridModelExecutor::ExecuteGraphInternal(HybridModelExecutor::ExecuteArgs &args) { | |||||
RECORD_MODEL_EXECUTION_EVENT(&context_, "[InitContext] Start"); | RECORD_MODEL_EXECUTION_EVENT(&context_, "[InitContext] Start"); | ||||
GE_CHK_STATUS_RET_NOLOG(ResetExecutionContext(context_)); | GE_CHK_STATUS_RET_NOLOG(ResetExecutionContext(context_)); | ||||
RECORD_MODEL_EXECUTION_EVENT(&context_, "[InitContext] End"); | RECORD_MODEL_EXECUTION_EVENT(&context_, "[InitContext] End"); | ||||
@@ -94,7 +95,7 @@ Status HybridModelExecutor::ExecuteGraphInternal(SubgraphExecutor &executor, | |||||
GE_CHK_STATUS_RET_NOLOG(prof_mgr.ProfileStepInfo(index_id, model_id, 0, stream_, device_id)); | GE_CHK_STATUS_RET_NOLOG(prof_mgr.ProfileStepInfo(index_id, model_id, 0, stream_, device_id)); | ||||
} | } | ||||
HYBRID_CHK_STATUS_RET(executor.ExecuteAsync(args.inputs, args.input_desc, args.outputs), | |||||
HYBRID_CHK_STATUS_RET(root_graph_executor_->ExecuteAsync(args.inputs, args.input_desc, args.outputs), | |||||
"Failed to execute partitioned call."); | "Failed to execute partitioned call."); | ||||
RECORD_MODEL_EXECUTION_EVENT(&context_, "[ExecuteAsync] End"); | RECORD_MODEL_EXECUTION_EVENT(&context_, "[ExecuteAsync] End"); | ||||
@@ -103,7 +104,7 @@ Status HybridModelExecutor::ExecuteGraphInternal(SubgraphExecutor &executor, | |||||
} | } | ||||
if (!model_->IsSingleOp()) { | if (!model_->IsSingleOp()) { | ||||
Status ret = executor.Synchronize(); | |||||
Status ret = root_graph_executor_->Synchronize(); | |||||
if (ret != ge::SUCCESS) { | if (ret != ge::SUCCESS) { | ||||
auto model_manager = ModelManager::GetInstance(); | auto model_manager = ModelManager::GetInstance(); | ||||
GE_CHECK_NOTNULL(model_manager); | GE_CHECK_NOTNULL(model_manager); | ||||
@@ -123,7 +124,7 @@ Status HybridModelExecutor::ExecuteGraphInternal(SubgraphExecutor &executor, | |||||
} | } | ||||
args.outputs.clear(); | args.outputs.clear(); | ||||
HYBRID_CHK_STATUS_RET(executor.GetOutputs(args.outputs, args.output_desc), "Failed to get outputs"); | |||||
HYBRID_CHK_STATUS_RET(root_graph_executor_->GetOutputs(args.outputs, args.output_desc), "Failed to get outputs"); | |||||
RECORD_MODEL_EXECUTION_EVENT(&context_, "[GetOutput] End"); | RECORD_MODEL_EXECUTION_EVENT(&context_, "[GetOutput] End"); | ||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
@@ -48,7 +48,7 @@ class HybridModelExecutor { | |||||
Status Execute(ExecuteArgs &args); | Status Execute(ExecuteArgs &args); | ||||
private: | private: | ||||
Status ExecuteGraphInternal(SubgraphExecutor &executor, ExecuteArgs &args); | |||||
Status ExecuteGraphInternal(ExecuteArgs &args); | |||||
Status Cleanup(); | Status Cleanup(); | ||||
Status InitExecutionContext(); | Status InitExecutionContext(); | ||||
static Status ResetExecutionContext(GraphExecutionContext &context); | static Status ResetExecutionContext(GraphExecutionContext &context); | ||||
@@ -58,6 +58,7 @@ class HybridModelExecutor { | |||||
uint32_t device_id_; | uint32_t device_id_; | ||||
rtStream_t stream_; | rtStream_t stream_; | ||||
GraphExecutionContext context_; | GraphExecutionContext context_; | ||||
std::unique_ptr<SubgraphExecutor> root_graph_executor_; | |||||
}; | }; | ||||
} // namespace hybrid | } // namespace hybrid | ||||
} // namespace ge | } // namespace ge | ||||
@@ -172,6 +172,8 @@ HybridModelPipelineExecutor::HybridModelPipelineExecutor(HybridModel *model, uin | |||||
config_.num_executors = kNumExecutors; | config_.num_executors = kNumExecutors; | ||||
config_.num_stages = model_->GetRootGraphItem()->NumGroups(); | config_.num_stages = model_->GetRootGraphItem()->NumGroups(); | ||||
config_.device_id = device_id_; | config_.device_id = device_id_; | ||||
config_.iteration_end = 0; | |||||
config_.rt_context = nullptr; | |||||
} | } | ||||
Status StageExecutor::InitExecutionContext() { | Status StageExecutor::InitExecutionContext() { | ||||
@@ -19,8 +19,9 @@ | |||||
#include "framework/common/debug/log.h" | #include "framework/common/debug/log.h" | ||||
#include "graph/compute_graph.h" | #include "graph/compute_graph.h" | ||||
#include "graph/utils/tensor_utils.h" | #include "graph/utils/tensor_utils.h" | ||||
#include "hybrid_execution_context.h" | |||||
#include "subgraph_context.h" | |||||
#include "hybrid/executor/hybrid_execution_context.h" | |||||
#include "hybrid/executor/subgraph_context.h" | |||||
#include "hybrid/node_executor/task_context.h" | |||||
#define INC_ITERATION_COUNT(iteration) \ | #define INC_ITERATION_COUNT(iteration) \ | ||||
do { \ | do { \ | ||||
@@ -260,6 +261,16 @@ NodeState::NodeState(const NodeItem &node_item, SubgraphContext *subgraph_contex | |||||
this->op_desc_ = node_item.node->GetOpDesc(); | this->op_desc_ = node_item.node->GetOpDesc(); | ||||
} | } | ||||
Status NodeState::Init(int group, const shared_ptr<FrameState> &frame_state) { | |||||
GE_CHECK_NOTNULL(frame_state); | |||||
group_ = group; | |||||
frame_state_ = frame_state; | |||||
auto unique_task_context = TaskContext::Create(this, subgraph_context_); | |||||
GE_CHECK_NOTNULL(unique_task_context); | |||||
task_context_ = std::shared_ptr<TaskContext>(unique_task_context.release()); | |||||
return SUCCESS; | |||||
} | |||||
Status NodeState::AwaitInputTensors(GraphExecutionContext &context) const { | Status NodeState::AwaitInputTensors(GraphExecutionContext &context) const { | ||||
if (node_item_->IsMergeOp()) { | if (node_item_->IsMergeOp()) { | ||||
GELOGD("[%s] merge index %d, input nodes: %zu", GetName().c_str(), merge_index_, node_item_->data_recv_.size()); | GELOGD("[%s] merge index %d, input nodes: %zu", GetName().c_str(), merge_index_, node_item_->data_recv_.size()); | ||||
@@ -314,15 +325,75 @@ std::shared_ptr<TaskContext> NodeState::GetTaskContext() { | |||||
return task_context_; | return task_context_; | ||||
} | } | ||||
void NodeState::SavePersistTensor(int input_idx, const TensorValue &tensor) { | |||||
const auto is_persist_tensor = [](const std::map<const NodeItem *, std::set<int>> &items, int idx) { | |||||
const auto is_exist = [&idx](const std::pair<const NodeItem *, std::set<int>> &items) { | |||||
return items.second.count(idx) > 0; | |||||
}; | |||||
return std::any_of(items.begin(), items.end(), is_exist); | |||||
}; | |||||
if (root_tensor_values_.count(input_idx) > 0) { | |||||
return; | |||||
} | |||||
if (is_persist_tensor(node_item_->root_data_, input_idx)) { | |||||
GELOGD("[%s] Save Root input tensor: %d", GetName().c_str(), input_idx); | |||||
root_tensor_values_[input_idx] = tensor; | |||||
} else if (is_persist_tensor(node_item_->enter_data_, input_idx)) { | |||||
GELOGD("[%s] Save Enter input tensor: %d", GetName().c_str(), input_idx); | |||||
root_tensor_values_[input_idx] = tensor; | |||||
} | |||||
} | |||||
void NodeState::UpdatePersistTensor() { | |||||
const auto update_tensor = [&](const std::map<const NodeItem *, std::set<int>> &items) { | |||||
for (const auto &item : items) { | |||||
for (const auto idx : item.second) { | |||||
UpdatePersistTensor(idx); | |||||
} | |||||
} | |||||
}; | |||||
if (root_tensor_values_.empty()) { | |||||
return; | |||||
} | |||||
update_tensor(node_item_->root_data_); | |||||
if (iteration_count_ > 0) { | |||||
update_tensor(node_item_->enter_data_); | |||||
} | |||||
} | |||||
void NodeState::UpdatePersistTensor(int input_idx) { | |||||
const auto it = root_tensor_values_.find(input_idx); | |||||
if (it == root_tensor_values_.end()) { | |||||
GELOGW("[%s] Not found saved tensor: %d", GetName().c_str(), input_idx); | |||||
return; | |||||
} | |||||
auto tensor = task_context_->MutableInput(input_idx); | |||||
if (tensor == nullptr) { | |||||
GELOGW("[%s] Not found input tensor: %d", GetName().c_str(), input_idx); | |||||
return; | |||||
} | |||||
*tensor = it->second; | |||||
GELOGD("[%s] Update input tensor: %d", GetName().c_str(), input_idx); | |||||
} | |||||
void NodeState::ResetContext(uint64_t iteration) { | void NodeState::ResetContext(uint64_t iteration) { | ||||
switch_index_ = -1; | switch_index_ = -1; | ||||
subgraph_context_->ResetContext(node_item_->node); | subgraph_context_->ResetContext(node_item_->node); | ||||
if (iteration == 0) { | |||||
data_scheduled_ = static_cast<uint32_t>(node_item_->root_data_.size()); | |||||
ctrl_scheduled_ = static_cast<uint32_t>(node_item_->root_ctrl_.size()); | |||||
} else { | |||||
data_scheduled_ = static_cast<uint32_t>(node_item_->root_data_.size() + node_item_->enter_data_.size()); | |||||
ctrl_scheduled_ = static_cast<uint32_t>(node_item_->root_ctrl_.size() + node_item_->enter_ctrl_.size()); | |||||
auto unique_task_context = TaskContext::Create(this, subgraph_context_); | |||||
GE_CHECK_NOTNULL_JUST_RETURN(unique_task_context); | |||||
task_context_ = std::shared_ptr<TaskContext>(unique_task_context.release()); | |||||
data_scheduled_ = static_cast<uint32_t>(node_item_->root_data_.size()); | |||||
ctrl_scheduled_ = static_cast<uint32_t>(node_item_->root_ctrl_.size()); | |||||
if (iteration > 0) { | |||||
data_scheduled_ += static_cast<uint32_t>(node_item_->enter_data_.size()); | |||||
ctrl_scheduled_ += static_cast<uint32_t>(node_item_->enter_ctrl_.size()); | |||||
} | } | ||||
iteration_count_ = iteration; | iteration_count_ = iteration; | ||||
@@ -100,6 +100,8 @@ struct NodeState { | |||||
NodeState(const NodeItem &node_item, SubgraphContext *subgraph_context); | NodeState(const NodeItem &node_item, SubgraphContext *subgraph_context); | ||||
~NodeState() = default; | ~NodeState() = default; | ||||
Status Init(int group, const shared_ptr<FrameState> &frame_state); | |||||
OpDesc *GetOpDesc() const { | OpDesc *GetOpDesc() const { | ||||
return op_desc_.get(); | return op_desc_.get(); | ||||
} | } | ||||
@@ -129,6 +131,9 @@ struct NodeState { | |||||
void RunStreamActive(); | void RunStreamActive(); | ||||
void RunNextIteration(); | void RunNextIteration(); | ||||
void SavePersistTensor(int input_idx, const TensorValue &tensor); | |||||
void UpdatePersistTensor(); | |||||
Status NodeScheduled(const std::function<void(const NodeItem *)> &ready) const; | Status NodeScheduled(const std::function<void(const NodeItem *)> &ready) const; | ||||
void SetScheduleFuture(std::future<Status> &&future); | void SetScheduleFuture(std::future<Status> &&future); | ||||
@@ -150,18 +155,10 @@ struct NodeState { | |||||
return merge_index_; | return merge_index_; | ||||
} | } | ||||
void SetGroup(int group) { | |||||
group_ = group; | |||||
} | |||||
int GetGroup() const { | int GetGroup() const { | ||||
return group_; | return group_; | ||||
} | } | ||||
void SetFrameState(const shared_ptr<FrameState> &frame_state) { | |||||
frame_state_ = frame_state; | |||||
} | |||||
const shared_ptr<NodeTask> &GetKernelTask() const { | const shared_ptr<NodeTask> &GetKernelTask() const { | ||||
return kernel_task_; | return kernel_task_; | ||||
} | } | ||||
@@ -181,12 +178,17 @@ struct NodeState { | |||||
void SetTaskContext(std::shared_ptr<TaskContext> &task_context); | void SetTaskContext(std::shared_ptr<TaskContext> &task_context); | ||||
std::shared_ptr<TaskContext> GetTaskContext(); | std::shared_ptr<TaskContext> GetTaskContext(); | ||||
void SetSkipInferShape(bool skip_infershape) { skip_infershape_ = skip_infershape; } | |||||
bool MaySkipShapeInference() const { return skip_infershape_; } | |||||
private: | private: | ||||
bool IsScheduleReady() const; | bool IsScheduleReady() const; | ||||
void SetDataSchedule(const NodeState &node_state, const std::function<void(const NodeItem *)> &ready); | void SetDataSchedule(const NodeState &node_state, const std::function<void(const NodeItem *)> &ready); | ||||
void SetCtrlSchedule(const NodeState &node_state, const std::function<void(const NodeItem *)> &ready); | void SetCtrlSchedule(const NodeState &node_state, const std::function<void(const NodeItem *)> &ready); | ||||
void ResetContext(uint64_t iteration); | void ResetContext(uint64_t iteration); | ||||
void ScheduleContext(const NodeState &node_state); | void ScheduleContext(const NodeState &node_state); | ||||
void UpdatePersistTensor(int input_idx); | |||||
const NodeItem *node_item_ = nullptr; | const NodeItem *node_item_ = nullptr; | ||||
std::shared_ptr<NodeTask> kernel_task_ = nullptr; | std::shared_ptr<NodeTask> kernel_task_ = nullptr; | ||||
@@ -199,6 +201,7 @@ struct NodeState { | |||||
std::future<Status> schedule_future_; | std::future<Status> schedule_future_; | ||||
std::shared_ptr<FrameState> frame_state_; | std::shared_ptr<FrameState> frame_state_; | ||||
std::map<int, TensorValue> root_tensor_values_; | |||||
uint64_t active_count_ = 0; | uint64_t active_count_ = 0; | ||||
uint64_t iteration_count_ = 0; | uint64_t iteration_count_ = 0; | ||||
uint32_t ctrl_scheduled_ = 0; | uint32_t ctrl_scheduled_ = 0; | ||||
@@ -206,6 +209,7 @@ struct NodeState { | |||||
int merge_index_ = -1; // Use for Execute (Reset after Executed). | int merge_index_ = -1; // Use for Execute (Reset after Executed). | ||||
int switch_index_ = -1; // Use for Schedule (Reset after Prepared). | int switch_index_ = -1; // Use for Schedule (Reset after Prepared). | ||||
int group_ = -1; | int group_ = -1; | ||||
bool skip_infershape_ = false; | |||||
}; | }; | ||||
} // namespace hybrid | } // namespace hybrid | ||||
} // namespace ge | } // namespace ge | ||||
@@ -19,7 +19,7 @@ | |||||
namespace ge { | namespace ge { | ||||
namespace hybrid { | namespace hybrid { | ||||
SubgraphContext::SubgraphContext(const GraphItem *graph_item, const GraphExecutionContext *execution_context) | |||||
SubgraphContext::SubgraphContext(const GraphItem *graph_item, GraphExecutionContext *execution_context) | |||||
: graph_item_(graph_item), execution_context_(execution_context) { | : graph_item_(graph_item), execution_context_(execution_context) { | ||||
} | } | ||||
@@ -79,20 +79,31 @@ NodeStatePtr SubgraphContext::GetOrCreateNodeState(const NodeItem *node_item) { | |||||
return nullptr; | return nullptr; | ||||
} | } | ||||
return CreateNodeState(node_item); | |||||
} | |||||
NodeStatePtr SubgraphContext::CreateNodeState(const NodeItem *node_item) { | |||||
GELOGD("[%s] lock for write", node_item->NodeName().c_str()); | GELOGD("[%s] lock for write", node_item->NodeName().c_str()); | ||||
if (mmRWLockWRLock(&rw_lock_) != EN_OK) { | if (mmRWLockWRLock(&rw_lock_) != EN_OK) { | ||||
REPORT_CALL_ERROR("E19999", "[Node:%s] Lock for write failed", node_item->NodeName().c_str()); | REPORT_CALL_ERROR("E19999", "[Node:%s] Lock for write failed", node_item->NodeName().c_str()); | ||||
GELOGE(INTERNAL_ERROR, "[RWLock][Lock][Node:%s] Lock for write failed", node_item->NodeName().c_str()); | GELOGE(INTERNAL_ERROR, "[RWLock][Lock][Node:%s] Lock for write failed", node_item->NodeName().c_str()); | ||||
return nullptr; | return nullptr; | ||||
} | } | ||||
auto &node_state = node_states_[node_item]; | auto &node_state = node_states_[node_item]; | ||||
if (node_state == nullptr) { | |||||
const auto &guard = node_item->MutexGuard("GetOrCreateNodeState"); | |||||
node_state.reset(new(std::nothrow)NodeState(*node_item, this)); | |||||
node_state->SetFrameState(GetOrCreateFrameState(*node_item)); | |||||
node_state->SetGroup(group_); | |||||
(void)guard; | |||||
} | |||||
do { | |||||
if (node_state == nullptr) { | |||||
const auto &guard = node_item->MutexGuard("GetOrCreateNodeState"); | |||||
node_state.reset(new(std::nothrow)NodeState(*node_item, this)); | |||||
if (node_state == nullptr || node_state->Init(group_, GetOrCreateFrameState(*node_item)) != SUCCESS) { | |||||
GELOGE(INTERNAL_ERROR, "[Create][NodeState] failed for[%s].", node_item->NodeName().c_str()); | |||||
REPORT_CALL_ERROR("E19999", "Create NodeState failed for %s.", node_item->NodeName().c_str()); | |||||
break; | |||||
} | |||||
(void)guard; | |||||
} | |||||
} while (0); | |||||
GELOGD("[%s] unlock for write", node_item->NodeName().c_str()); | GELOGD("[%s] unlock for write", node_item->NodeName().c_str()); | ||||
if (mmWRLockUnLock(&rw_lock_) != EN_OK) { | if (mmWRLockUnLock(&rw_lock_) != EN_OK) { | ||||
REPORT_CALL_ERROR("E19999", "[Node:%s] Unlock for write failed", node_item->NodeName().c_str()); | REPORT_CALL_ERROR("E19999", "[Node:%s] Unlock for write failed", node_item->NodeName().c_str()); | ||||
@@ -30,7 +30,7 @@ namespace ge { | |||||
namespace hybrid { | namespace hybrid { | ||||
class SubgraphContext { | class SubgraphContext { | ||||
public: | public: | ||||
explicit SubgraphContext(const GraphItem *graph_item, const GraphExecutionContext *execution_context); | |||||
explicit SubgraphContext(const GraphItem *graph_item, GraphExecutionContext *execution_context); | |||||
~SubgraphContext(); | ~SubgraphContext(); | ||||
Status Init(); | Status Init(); | ||||
@@ -51,10 +51,11 @@ class SubgraphContext { | |||||
void NodeDone(const NodePtr &node); | void NodeDone(const NodePtr &node); | ||||
private: | private: | ||||
NodeStatePtr CreateNodeState(const NodeItem *node_item); | |||||
FrameStatePtr GetOrCreateFrameState(const NodeItem &node_item); // no lock | FrameStatePtr GetOrCreateFrameState(const NodeItem &node_item); // no lock | ||||
friend class TaskContext; | friend class TaskContext; | ||||
const GraphItem *graph_item_; | const GraphItem *graph_item_; | ||||
const GraphExecutionContext *execution_context_; | |||||
GraphExecutionContext *execution_context_; | |||||
mmRWLock_t rw_lock_; | mmRWLock_t rw_lock_; | ||||
std::vector<TensorValue> all_inputs_; | std::vector<TensorValue> all_inputs_; | ||||
std::vector<TensorValue> all_outputs_; | std::vector<TensorValue> all_outputs_; | ||||
@@ -103,6 +103,13 @@ Status SubgraphExecutor::InitInputsForUnknownShape(const std::vector<TensorValue | |||||
auto node_state = subgraph_context_->GetOrCreateNodeState(input_node); | auto node_state = subgraph_context_->GetOrCreateNodeState(input_node); | ||||
GE_CHECK_NOTNULL(node_state); | GE_CHECK_NOTNULL(node_state); | ||||
node_state->GetShapeInferenceState().UpdateInputShape(0, *tensor_desc); | node_state->GetShapeInferenceState().UpdateInputShape(0, *tensor_desc); | ||||
auto op_desc = input_node->GetOpDesc(); | |||||
GE_CHECK_NOTNULL(op_desc); | |||||
auto output_desc = op_desc->MutableOutputDesc(kDataInputIndex); | |||||
GE_CHECK_NOTNULL(output_desc); | |||||
output_desc->SetShape(tensor_desc->GetShape()); | |||||
output_desc->SetOriginShape(tensor_desc->GetOriginShape()); | |||||
node_state->SetSkipInferShape(true); | |||||
} | } | ||||
} | } | ||||
@@ -175,16 +182,12 @@ Status SubgraphExecutor::ExecuteAsyncForKnownShape(const std::vector<TensorValue | |||||
GE_CHECK_NOTNULL(node_state); | GE_CHECK_NOTNULL(node_state); | ||||
node_state->SetKernelTask(node_item->kernel_task); | node_state->SetKernelTask(node_item->kernel_task); | ||||
known_shape_task_context_ = TaskContext::Create(node_state.get(), context_, subgraph_context_.get()); | |||||
GE_CHECK_NOTNULL(known_shape_task_context_); | |||||
node_state->SetTaskContext(known_shape_task_context_); | |||||
std::function<void()> callback; | std::function<void()> callback; | ||||
GE_CHK_STATUS_RET_NOLOG(InitCallback(node_state.get(), callback)); | GE_CHK_STATUS_RET_NOLOG(InitCallback(node_state.get(), callback)); | ||||
HYBRID_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, known_shape_task_context_, *context_, callback), | |||||
HYBRID_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, node_state->GetTaskContext(), *context_, callback), | |||||
"[%s] Failed to execute node [%s] for known subgraph.", | "[%s] Failed to execute node [%s] for known subgraph.", | ||||
graph_item_->GetName().c_str(), | graph_item_->GetName().c_str(), | ||||
known_shape_task_context_->GetNodeName()); | |||||
node_state->GetName().c_str()); | |||||
GELOGD("[%s] Done execute non-dynamic subgraph successfully.", graph_item_->GetName().c_str()); | GELOGD("[%s] Done execute non-dynamic subgraph successfully.", graph_item_->GetName().c_str()); | ||||
return SUCCESS; | return SUCCESS; | ||||
@@ -271,16 +274,12 @@ Status SubgraphExecutor::PrepareNode(const NodeItem &node_item, int group) { | |||||
} else { | } else { | ||||
node_state->SetKernelTask(node_item.kernel_task); | node_state->SetKernelTask(node_item.kernel_task); | ||||
} | } | ||||
auto unique_task_context = TaskContext::Create(node_state.get(), context_, subgraph_context_.get()); | |||||
GE_CHECK_NOTNULL(unique_task_context); | |||||
const auto &task = node_state->GetKernelTask(); | const auto &task = node_state->GetKernelTask(); | ||||
if (task == nullptr) { | if (task == nullptr) { | ||||
GELOGE(INTERNAL_ERROR, "[Get][KernelTask] failed for[%s], NodeTask is null.", node_state->GetName().c_str()); | GELOGE(INTERNAL_ERROR, "[Get][KernelTask] failed for[%s], NodeTask is null.", node_state->GetName().c_str()); | ||||
REPORT_CALL_ERROR("E19999", "GetKernelTask failed for %s, nodetask is null.", node_state->GetName().c_str()); | REPORT_CALL_ERROR("E19999", "GetKernelTask failed for %s, nodetask is null.", node_state->GetName().c_str()); | ||||
return INTERNAL_ERROR; | return INTERNAL_ERROR; | ||||
} | } | ||||
auto shared_task_context = std::shared_ptr<TaskContext>(unique_task_context.release()); | |||||
node_state->SetTaskContext(shared_task_context); | |||||
GE_CHK_STATUS_RET_NOLOG(NodeEnqueue(p_node_state)); | GE_CHK_STATUS_RET_NOLOG(NodeEnqueue(p_node_state)); | ||||
return AfterPrepared(p_node_state); | return AfterPrepared(p_node_state); | ||||
} | } | ||||
@@ -480,19 +479,15 @@ Status SubgraphExecutor::PrepareForExecution(GraphExecutionContext *ctx, NodeSta | |||||
} else { | } else { | ||||
node_state.SetKernelTask(node_item.kernel_task); | node_state.SetKernelTask(node_item.kernel_task); | ||||
} | } | ||||
auto unique_task_context = TaskContext::Create(&node_state, context_, subgraph_context_.get()); | |||||
GE_CHECK_NOTNULL(unique_task_context); | |||||
const auto &task = node_state.GetKernelTask(); | const auto &task = node_state.GetKernelTask(); | ||||
if (task == nullptr) { | if (task == nullptr) { | ||||
GELOGE(INTERNAL_ERROR, "[Invoke][GetKernelTask] failed for[%s], NodeTask is null.", node_state.GetName().c_str()); | GELOGE(INTERNAL_ERROR, "[Invoke][GetKernelTask] failed for[%s], NodeTask is null.", node_state.GetName().c_str()); | ||||
REPORT_CALL_ERROR("E19999", "invoke GetKernelTask failed for %s, NodeTask is null.", node_state.GetName().c_str()); | REPORT_CALL_ERROR("E19999", "invoke GetKernelTask failed for %s, NodeTask is null.", node_state.GetName().c_str()); | ||||
return INTERNAL_ERROR; | return INTERNAL_ERROR; | ||||
} | } | ||||
auto shared_task_context = std::shared_ptr<TaskContext>(unique_task_context.release()); | |||||
node_state.SetTaskContext(shared_task_context); | |||||
GE_CHK_RT_RET(rtCtxSetCurrent(ctx->rt_context)); | GE_CHK_RT_RET(rtCtxSetCurrent(ctx->rt_context)); | ||||
RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] start"); | RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] start"); | ||||
GE_CHK_STATUS_RET_NOLOG(task->UpdateTilingData(*shared_task_context)); // update op_desc before alloc ws | |||||
GE_CHK_STATUS_RET_NOLOG(task->UpdateTilingData(*node_state.GetTaskContext())); // update op_desc before alloc ws | |||||
RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] end"); | RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] end"); | ||||
return SUCCESS; | return SUCCESS; | ||||
} | } | ||||
@@ -41,6 +41,8 @@ class SubgraphExecutor { | |||||
Status PartialExecuteAsync(int task_group); | Status PartialExecuteAsync(int task_group); | ||||
void ReleaseContext() { subgraph_context_.reset(nullptr); } | |||||
/** | /** | ||||
* Execute subgraph async, output tensor address(not data) and output tensor descriptions are | * Execute subgraph async, output tensor address(not data) and output tensor descriptions are | ||||
* valid after this method returned | * valid after this method returned | ||||
@@ -125,7 +127,6 @@ class SubgraphExecutor { | |||||
ThreadPool pre_run_pool_; | ThreadPool pre_run_pool_; | ||||
BlockingQueue<NodeState *> ready_queue_; | BlockingQueue<NodeState *> ready_queue_; | ||||
std::unique_ptr<ShapeInferenceEngine> shape_inference_engine_; | std::unique_ptr<ShapeInferenceEngine> shape_inference_engine_; | ||||
std::shared_ptr<TaskContext> known_shape_task_context_; | |||||
std::mutex mu_; // Guard for prepare_queues_. | std::mutex mu_; // Guard for prepare_queues_. | ||||
std::map<int, BlockingQueue<const NodeItem *>> prepare_queues_; | std::map<int, BlockingQueue<const NodeItem *>> prepare_queues_; | ||||
@@ -373,6 +373,7 @@ Status ExecutionEngine::DoExecuteAsync(NodeState &node_state, | |||||
auto executor = node_item.node_executor; | auto executor = node_item.node_executor; | ||||
GE_CHECK_NOTNULL(executor); | GE_CHECK_NOTNULL(executor); | ||||
RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] Start"); | RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] Start"); | ||||
node_state.UpdatePersistTensor(); | |||||
GE_CHK_STATUS_RET(executor->PrepareTask(*task, task_context), "[Prepare][Task] for [%s] failed.", | GE_CHK_STATUS_RET(executor->PrepareTask(*task, task_context), "[Prepare][Task] for [%s] failed.", | ||||
node_state.GetName().c_str()); | node_state.GetName().c_str()); | ||||
RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] End"); | RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] End"); | ||||
@@ -427,7 +428,7 @@ Status ExecutionEngine::ValidateInputTensors(const NodeState &node_state, const | |||||
continue; | continue; | ||||
} | } | ||||
int64_t expected_size; | |||||
int64_t expected_size = 0; | |||||
(void)TensorUtils::GetSize(*tensor_desc, expected_size); | (void)TensorUtils::GetSize(*tensor_desc, expected_size); | ||||
GELOGD("[%s] Input[%d] expects [%ld] bytes.", task_context.GetNodeName(), i, expected_size); | GELOGD("[%s] Input[%d] expects [%ld] bytes.", task_context.GetNodeName(), i, expected_size); | ||||
auto size_diff = expected_size - static_cast<int64_t>(input_tensor->GetSize()); | auto size_diff = expected_size - static_cast<int64_t>(input_tensor->GetSize()); | ||||