/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #define protected public #define private public #include "graph/passes/infershape_pass.h" #include "graph/utils/tensor_utils.h" #include "graph/utils/graph_utils.h" #include "graph_builder_utils.h" #include "inc/external/graph/operator_reg.h" #include "inc/external/graph/operator.h" #include "inc/external/graph/operator_factory.h" #include "inc/graph/operator_factory_impl.h" using namespace std; using namespace testing; namespace ge { class UtestGraphInfershapePass : public testing::Test { protected: void SetUp() {} void TearDown() {} }; /* * data1 const1 * \ / * case1 * | * relu10 * | * netoutput */ ut::GraphBuilder ParentGraphBuilder() { ut::GraphBuilder builder = ut::GraphBuilder("g1"); auto data1 = builder.AddNode("data1", "Data", 0, 1); std::vector const_shape = {1}; auto const1 = builder.AddNode("const1", "Const", 0, 1, FORMAT_NCHW, DT_INT32, const_shape); auto case1 = builder.AddNode("case1", CASE, 2, 1); auto relu1 = builder.AddNode("relu10", "Relu", 1, 1); auto netoutput = builder.AddNode("netoutput", NETOUTPUT, 1, 0); int32_t weight[1] = {1}; GeTensorDesc weight_desc(GeShape({1}), FORMAT_NHWC, DT_INT32); GeTensorPtr tensor = std::make_shared(weight_desc, (uint8_t *)weight, sizeof(weight)); OpDescUtils::SetWeights(const1, {tensor}); builder.AddDataEdge(data1, 0, case1, 0); builder.AddDataEdge(const1, 0, case1, 1); builder.AddDataEdge(case1, 0, relu1, 0); builder.AddDataEdge(relu1, 0, netoutput, 0); return builder; } /* * data1 data2 * \ / * switch * / \ * relu1 relu2 * \ / * merge * | * netoutput */ ut::GraphBuilder SwitchSubgraphBuilder(string graph_name, uint32_t num) { ut::GraphBuilder builder = ut::GraphBuilder(graph_name); std::vector shape1 = {2,2}; string data1_name = "data1_" + std::to_string(num); auto data1 = builder.AddNode(data1_name, "Data", 1, 1, FORMAT_NCHW, DT_INT32, shape1); auto data1_desc = data1->GetOpDesc(); EXPECT_NE(data1_desc, nullptr); AttrUtils::SetInt(data1_desc, "_parent_node_index", 0); std::vector shape2 = {3,3}; string data2_name = "data2_" + std::to_string(num); auto data2 = builder.AddNode(data2_name, "Data", 1, 1, FORMAT_NCHW, DT_INT32, shape2); auto data2_desc = data2->GetOpDesc(); EXPECT_NE(data2_desc, nullptr); AttrUtils::SetInt(data2_desc, "_parent_node_index", 1); string switch_name = "switch_" + std::to_string(num); auto switch1 = builder.AddNode(switch_name, "Switch", 2, 2); string relu1_name = "relu1_" + std::to_string(num); auto relu1 = builder.AddNode(relu1_name, "Relu", 1, 1); string relu2_name = "relu2_" + std::to_string(num); auto relu2 = builder.AddNode(relu2_name, "Relu", 1, 1); string merge_name = "merge_" + std::to_string(num); auto merge = builder.AddNode(merge_name, "Merge", 2, 1); std::vector shape7 = {8,8}; string output_name = "output_" + std::to_string(num); auto netoutput = builder.AddNode(output_name, NETOUTPUT, 1, 0, FORMAT_NCHW, DT_INT32, shape7); auto input0_desc = netoutput->GetOpDesc()->MutableInputDesc(0); EXPECT_NE(input0_desc, nullptr); AttrUtils::SetInt(input0_desc, "_parent_node_index", 0); builder.AddDataEdge(data1, 0, switch1, 0); builder.AddDataEdge(data2, 0, switch1, 1); builder.AddDataEdge(switch1, 0, relu1, 0); builder.AddDataEdge(switch1, 1, relu2, 0); builder.AddDataEdge(relu1, 0, merge, 0); builder.AddDataEdge(relu2, 0, merge, 1); builder.AddDataEdge(merge, 0, netoutput, 0); return builder; } void AddCaseSubgraph(ComputeGraphPtr &parent_graph, uint32_t branch_num) { auto case_node = parent_graph->FindNode("case1"); EXPECT_NE(case_node, nullptr); for (uint32_t i = 0; i < branch_num; ++i) { string name = "Branch_Graph_" + std::to_string(i); auto builder_subgraph = SwitchSubgraphBuilder(name, i); auto switch_subgraph = builder_subgraph.GetGraph(); case_node->GetOpDesc()->AddSubgraphName(switch_subgraph->GetName()); case_node->GetOpDesc()->SetSubgraphInstanceName(i, switch_subgraph->GetName()); switch_subgraph->SetParentNode(case_node); switch_subgraph->SetParentGraph(parent_graph); EXPECT_EQ(parent_graph->AddSubgraph(switch_subgraph->GetName(), switch_subgraph), GRAPH_SUCCESS); } } static NodePtr CreateNode(ComputeGraph &graph, const string &name, const string &type, int in_num, int out_num) { OpDescPtr op_desc = std::make_shared(name, type); op_desc->SetStreamId(0); static int32_t index = 0; op_desc->SetId(index++); GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); TensorUtils::SetSize(tensor, 512); vector input_offset; for (int i = 0; i < in_num; i++) { op_desc->AddInputDesc(tensor); input_offset.emplace_back(1024); } op_desc->SetInputOffset(input_offset); vector output_offset; for (int i = 0; i < out_num; i++) { op_desc->AddOutputDesc(tensor); output_offset.emplace_back(1024); } op_desc->SetOutputOffset(output_offset); op_desc->SetWorkspace({}); op_desc->SetWorkspaceBytes({}); op_desc->SetOpKernelLibName("DNN_VM_RTS_OP_STORE"); const auto stub_func = [](Operator &op) { return GRAPH_SUCCESS; }; op_desc->AddInferFunc(stub_func); op_desc->AddInferFormatFunc(stub_func); op_desc->AddVerifierFunc(stub_func); return graph.AddNode(op_desc); } TEST_F(UtestGraphInfershapePass, infershape_pass_failed) { GeTensorDesc ge_tensor_desc(GeShape({-2, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT16); string type = "AddN"; auto addn_op_desc = std::make_shared("AddN", type); addn_op_desc->AddInputDesc(ge_tensor_desc); addn_op_desc->AddOutputDesc(ge_tensor_desc); auto graph = std::make_shared("test"); auto addn_node = std::make_shared(addn_op_desc, graph); addn_node->Init(); InferShapePass infershape_pass; EXPECT_EQ(infershape_pass.Run(addn_node), GE_GRAPH_INFERSHAPE_FAILED); } TEST_F(UtestGraphInfershapePass, delete_need_infer_again) { auto graph = std::make_shared("test"); auto no_op_desc = std::make_shared("No", "NoOp"); auto no_op_node = graph->AddNode(no_op_desc); AttrUtils::SetBool(no_op_desc, "_need_infer_again", false); InferShapePass infershape_pass; infershape_pass.options_[kOptimizeAfterSubGraph] = "yes"; EXPECT_EQ(infershape_pass.Run(no_op_node), SUCCESS); } TEST_F(UtestGraphInfershapePass, stop_node_for_while_loop) { /******************************************************************************* * Exit Identify * \ / \. * \ / \. * Switch Add * / | | * / | | * / | | * LoopCond | | * \ | | * \ | | * \ | | * Less | | * \ | NextIteration * \ | | * \ | | * Merge <---------| * | * | * Enter ******************************************************************************/ auto graph = std::make_shared("test_infer_shape"); auto data1 = CreateNode(*graph, "data", DATA, 1, 1); auto enter1 = CreateNode(*graph, "enter", ENTER, 1, 1); auto merge1 = CreateNode(*graph, "merge", MERGE, 2, 2); auto less1 = CreateNode(*graph, "less", LESS, 2, 1); auto loop1 = CreateNode(*graph, "loopcond", LOOPCOND, 1, 1); auto switch1 = CreateNode(*graph, "switch", SWITCH, 2, 2); auto ident1 = CreateNode(*graph, "identity", IDENTITY, 1, 1); auto add1 = CreateNode(*graph, "add", ADD, 2, 1); auto next1 = CreateNode(*graph, "next", NEXTITERATION, 1, 1); auto exit1 = CreateNode(*graph, "exit", EXIT, 1, 1); auto value0 = CreateNode(*graph, "const", CONSTANT, 0, 1); auto value1 = CreateNode(*graph, "const", CONSTANT, 0, 1); auto output1 = CreateNode(*graph, "net_output", NETOUTPUT, 1, 1); GraphUtils::AddEdge(data1->GetOutDataAnchor(0), enter1->GetInDataAnchor(0)); GraphUtils::AddEdge(enter1->GetOutDataAnchor(0), merge1->GetInDataAnchor(0)); GraphUtils::AddEdge(merge1->GetOutDataAnchor(0), less1->GetInDataAnchor(0)); GraphUtils::AddEdge(value1->GetOutDataAnchor(0), less1->GetInDataAnchor(1)); GraphUtils::AddEdge(less1->GetOutDataAnchor(0), loop1->GetInDataAnchor(0)); GraphUtils::AddEdge(loop1->GetOutDataAnchor(0), switch1->GetInDataAnchor(0)); GraphUtils::AddEdge(merge1->GetOutDataAnchor(0), switch1->GetInDataAnchor(1)); GraphUtils::AddEdge(switch1->GetOutDataAnchor(0), exit1->GetInDataAnchor(0)); GraphUtils::AddEdge(switch1->GetOutDataAnchor(1), ident1->GetInDataAnchor(0)); GraphUtils::AddEdge(ident1->GetOutDataAnchor(0), add1->GetInDataAnchor(0)); GraphUtils::AddEdge(value1->GetOutDataAnchor(0), add1->GetInDataAnchor(1)); GraphUtils::AddEdge(add1->GetOutDataAnchor(0), next1->GetInDataAnchor(0)); GraphUtils::AddEdge(next1->GetOutDataAnchor(0), merge1->GetInDataAnchor(1)); GraphUtils::AddEdge(exit1->GetOutDataAnchor(0), output1->GetInDataAnchor(0)); GEPass ge_passes(graph); NamesToPass names_to_passes; InferShapePass infer_shape_pass; names_to_passes.emplace_back("InferShapePass", &infer_shape_pass); EXPECT_EQ(ge_passes.Run(names_to_passes), SUCCESS); } TEST_F(UtestGraphInfershapePass, infer_with_case_subgraph) { auto builder = ParentGraphBuilder(); auto parent_graph = builder.GetGraph(); AddCaseSubgraph(parent_graph, 2); auto subgraphs = parent_graph->GetAllSubgraphs(); EXPECT_EQ(subgraphs.size(), 2); auto case_node = parent_graph->FindNode("case1"); EXPECT_NE(case_node, nullptr); InferShapePass infershape_pass; EXPECT_EQ(infershape_pass.Run(case_node), SUCCESS); std::vector target_dims_0 = {1, 1, 224, 224}; std::vector target_dims_1 = {1}; { auto data_node = subgraphs[0]->FindNode("data1_0"); auto dims = data_node->GetOpDesc()->GetInputDescPtr(0)->GetShape().GetDims(); EXPECT_EQ(dims, target_dims_0); data_node = subgraphs[0]->FindNode("data2_0"); dims = data_node->GetOpDesc()->GetInputDescPtr(0)->GetShape().GetDims(); EXPECT_EQ(dims, target_dims_1); } infershape_pass.options_[kOptimizeAfterSubGraph] = "yes"; EXPECT_EQ(infershape_pass.Run(case_node), SUCCESS); { auto dims = case_node->GetOpDesc()->GetOutputDescPtr(0)->GetShape().GetDims(); std::vector out_target_dims = {8, 8}; EXPECT_EQ(out_target_dims, dims); } } /* * data1 const1 * \ / * while * / \ * relu1 netoutput */ ut::GraphBuilder ParentWhileGraphBuilder() { ut::GraphBuilder builder = ut::GraphBuilder("g1"); auto data1 = builder.AddNode("data1", "Data", 0, 1); std::vector const_shape = {1}; auto const1 = builder.AddNode("const1", "Const", 0, 1, FORMAT_NCHW, DT_FLOAT, const_shape); auto case1 = builder.AddNode("case1", WHILE, 2, 2); auto relu1 = builder.AddNode("relu1", "Relu", 1, 1); auto netoutput = builder.AddNode("netoutput", NETOUTPUT, 1, 0); int32_t weight[1] = {1}; GeTensorDesc weight_desc(GeShape({1}), FORMAT_NHWC, DT_FLOAT); GeTensorPtr tensor = std::make_shared(weight_desc, (uint8_t *)weight, sizeof(weight)); OpDescUtils::SetWeights(const1, {tensor}); builder.AddDataEdge(data1, 0, case1, 0); builder.AddDataEdge(const1, 0, case1, 1); builder.AddDataEdge(case1, 0, relu1, 0); builder.AddDataEdge(case1, 1, netoutput, 0); return builder; } /* * data1 data2 * \ / * switch * | | * \ / * netoutput */ ut::GraphBuilder WhileSubgraphBuilder(string graph_name, uint32_t num) { ut::GraphBuilder builder = ut::GraphBuilder(graph_name); std::vector shape1 = {2,2}; string data1_name = "data1_" + std::to_string(num); auto data1 = builder.AddNode(data1_name, "Data", 1, 1, FORMAT_NCHW, DT_FLOAT, shape1); auto data1_desc = data1->GetOpDesc(); EXPECT_NE(data1_desc, nullptr); AttrUtils::SetInt(data1_desc, "_parent_node_index", 0); std::vector shape2 = {3,3}; string data2_name = "data2_" + std::to_string(num); auto data2 = builder.AddNode(data2_name, "Data", 1, 1, FORMAT_NCHW, DT_FLOAT, shape2); auto data2_desc = data2->GetOpDesc(); EXPECT_NE(data2_desc, nullptr); AttrUtils::SetInt(data2_desc, "_parent_node_index", 1); string switch_name = "switch_" + std::to_string(num); auto switch1 = builder.AddNode(switch_name, "Switch", 2, 2); std::vector shape7 = {8,8,8,8}; string output_name = "output_" + std::to_string(num); auto netoutput = builder.AddNode(output_name, NETOUTPUT, 2, 0, FORMAT_NCHW, DT_FLOAT, shape7); auto input0_desc = netoutput->GetOpDesc()->MutableInputDesc(0); EXPECT_NE(input0_desc, nullptr); AttrUtils::SetInt(input0_desc, "_parent_node_index", 0); auto input1_desc = netoutput->GetOpDesc()->MutableInputDesc(1); EXPECT_NE(input1_desc, nullptr); AttrUtils::SetInt(input1_desc, "_parent_node_index", 1); builder.AddDataEdge(data1, 0, switch1, 0); builder.AddDataEdge(data2, 0, switch1, 1); builder.AddDataEdge(switch1, 0, netoutput, 0); builder.AddDataEdge(switch1, 1, netoutput, 1); return builder; } void AddWhileSubgraph(ComputeGraphPtr &parent_graph, uint32_t branch_num) { auto case_node = parent_graph->FindNode("case1"); EXPECT_NE(case_node, nullptr); for (uint32_t i = 0; i < branch_num; ++i) { string name = "Branch_Graph_" + std::to_string(i); auto builder_subgraph = WhileSubgraphBuilder(name, i); auto switch_subgraph = builder_subgraph.GetGraph(); case_node->GetOpDesc()->AddSubgraphName(switch_subgraph->GetName()); case_node->GetOpDesc()->SetSubgraphInstanceName(i, switch_subgraph->GetName()); switch_subgraph->SetParentNode(case_node); switch_subgraph->SetParentGraph(parent_graph); EXPECT_EQ(parent_graph->AddSubgraph(switch_subgraph->GetName(), switch_subgraph), GRAPH_SUCCESS); } } TEST_F(UtestGraphInfershapePass, infer_with_while_subgraph) { auto builder = ParentWhileGraphBuilder(); auto parent_graph = builder.GetGraph(); AddWhileSubgraph(parent_graph, 1); auto subgraphs = parent_graph->GetAllSubgraphs(); EXPECT_EQ(subgraphs.size(), 1); auto case_node = parent_graph->FindNode("case1"); EXPECT_NE(case_node, nullptr); InferShapePass infershape_pass; EXPECT_EQ(infershape_pass.Run(case_node), SUCCESS); std::vector target_dims_0 = {1, 1, 224, 224}; std::vector target_dims_1 = {1}; { auto data_node = subgraphs[0]->FindNode("data1_0"); auto dims = data_node->GetOpDesc()->GetInputDescPtr(0)->GetShape().GetDims(); EXPECT_EQ(dims, target_dims_0); data_node = subgraphs[0]->FindNode("data2_0"); dims = data_node->GetOpDesc()->GetInputDescPtr(0)->GetShape().GetDims(); EXPECT_EQ(dims, target_dims_1); } infershape_pass.options_[kOptimizeAfterSubGraph] = "yes"; EXPECT_EQ(infershape_pass.Run(case_node), SUCCESS); { auto dims = case_node->GetOpDesc()->GetOutputDescPtr(0)->GetShape().GetDims(); std::vector out_target_dims = {-1, -1, -1, -1}; EXPECT_EQ(out_target_dims, dims); } } TEST_F(UtestGraphInfershapePass, infer_with_while_subgraph_failed) { auto builder = ParentWhileGraphBuilder(); auto parent_graph = builder.GetGraph(); AddWhileSubgraph(parent_graph, 2); auto subgraphs = parent_graph->GetAllSubgraphs(); EXPECT_EQ(subgraphs.size(), 2); auto case_node = parent_graph->FindNode("case1"); EXPECT_NE(case_node, nullptr); InferShapePass infershape_pass; infershape_pass.options_[kOptimizeAfterSubGraph] = "yes"; EXPECT_EQ(infershape_pass.Run(case_node), GE_GRAPH_INFERSHAPE_FAILED); } auto InferFunc = [&](Operator &op) { return GRAPH_SUCCESS; }; TEST_F(UtestGraphInfershapePass, infer_forrunning_with_while_subgraph) { auto builder = ParentWhileGraphBuilder(); auto parent_graph = builder.GetGraph(); AddWhileSubgraph(parent_graph, 1); auto subgraphs = parent_graph->GetAllSubgraphs(); EXPECT_EQ(subgraphs.size(), 1); OperatorFactoryImpl::RegisterInferShapeFunc("Relu", InferFunc); auto relu_node = parent_graph->FindNode("relu1"); EXPECT_NE(relu_node, nullptr); InferShapeForRunning infershape_for_running; EXPECT_EQ(infershape_for_running.Run(relu_node), SUCCESS); } TEST_F(UtestGraphInfershapePass, infer_static_func) { auto builder = ut::GraphBuilder("test_graph"); auto data_1 = builder.AddNode("data_1", DATA, 0, 1); auto data_2 = builder.AddNode("data_2", DATA, 0, 1); auto add = builder.AddNode("Add", "Add", 2, 1); builder.AddDataEdge(data_1, 0, add, 0); builder.AddDataEdge(data_2, 0, add, 1); auto test_graph = builder.GetGraph(); // OperatorFactoryImpl::CreateOperator("Add", "Flatten"); auto test_node = test_graph->FindNode("Add"); auto ret = InferShapePass::InferShapeAndType(test_node); EXPECT_EQ(ret, GRAPH_SUCCESS); OperatorFactoryImpl::RegisterInferShapeFunc("Add", InferFunc); ret = InferShapePass::InferShapeAndType(test_node); EXPECT_EQ(ret, GRAPH_SUCCESS); ret = InferShapePass::InferShapeAndType(test_node, true); EXPECT_EQ(ret, GRAPH_SUCCESS); ret = InferShapeForRunning::InferShapeAndTypeForRunning(test_node, true); EXPECT_EQ(ret, GRAPH_SUCCESS); } } // namespace ge