/** * Copyright 2019 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file avg_pool_1d_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_AVGPOOL1DOPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_AVGPOOL1DOPS_H_ #include "graph/operator_reg.h" namespace ge { /** *@brief Generate an auxiliary matrix . \n *@par Inputs: * @li x: A tensor. Must be one of the following types:uint8, int8,int16, int32, int64, float16, float, double.The format must be NHWC/NCHW. *@par Attributes: *@li ksize: Kernel size. Input type is int. *@li strides: Input type is int. *@li pads: Input type is listInt . *@li ceil_mode: Bool, default value is false. *@li count_include_pad: Bool, default value is false. \n *@par Outputs: *y_tensor: A tensor with the same types as "x" . \n *@par Third-party framework compatibility *Compatible with the TensorFlow operator Unbatch. */ REG_OP(AvgPool1DAvgMatrix) .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE})) .REQUIRED_ATTR(ksize, Int) .REQUIRED_ATTR(strides, Int) .REQUIRED_ATTR(pads, ListInt) .ATTR(ceil_mode, Bool, false) .ATTR(count_include_pad, Bool, false) .OP_END_FACTORY_REG(AvgPool1DAvgMatrix) } #endif