/** * Copyright 2019 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file string_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_STRING_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_STRING_OPS_H_ #include #include "graph/operator_reg.h" namespace ge { /** *@brief Creates ngrams from ragged string data . \n *@par Inputs: include: *@li data:1-D.The values tensor of the ragged string tensor to make ngrams out of. *@li data_splits:The splits tensor of the ragged string tensor to make ngrams out of . \n *@par Attributes: * separator:The string to append between elements of the token. Use "" for no separator. * ngram_widths:The sizes of the ngrams to create. * left_pad:The string to use to pad the left side of the ngram sequence. Only used if pad_width != 0. * right_pad:The string to use to pad the right side of the ngram sequence. Only used if pad_width != 0. * pad_width:The number of padding elements to add to each side of each sequence. * preserve_short_sequences: Preserve short sequences. \n *@par Outputs: *@li ngrams:The values tensor of the output ngrams ragged tensor. *@li ngrams_splits:The splits tensor of the output ngrams ragged tensor. \n *@see StringNGrams() *@par Third-party framework compatibility *compatible with StringNGrams op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(StringNGrams) .INPUT(data, TensorType({DT_STRING})) .INPUT(data_splits, TensorType({DT_INT32, DT_INT64})) .OUTPUT(ngrams, TensorType({DT_STRING})) .OUTPUT(ngrams_splits, TensorType({DT_INT32, DT_INT64})) .REQUIRED_ATTR(separator, String) .ATTR(ngram_widths, ListInt, {}) .REQUIRED_ATTR(left_pad, String) .REQUIRED_ATTR(right_pad, String) .REQUIRED_ATTR(pad_width, Int) .REQUIRED_ATTR(preserve_short_sequences, Bool) .OP_END_FACTORY_REG(StringNGrams) /** *@brief Decodes each string in `input` into a sequence of Unicode code points . \n *@par Inputs: include: *@li input:The text to be decoded. Can have any shape. Note that the output is flattened to a vector of char values. \n *@par Attributes: * input_encoding:Text encoding of the input strings. This is any of the encodings supported by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. * errors:Error handling policy when there is invalid formatting found in the input. The value of 'strict' will cause the operation to produce a InvalidArgument error on any invalid input formatting. A value of 'replace' (the default) will cause the operation to replace any invalid formatting in the input with the `replacement_char` codepoint. A value of 'ignore' will cause the operation to skip any invalid formatting in the input and produce no corresponding output character. * replacement_char:The replacement character codepoint to be used in place of any invalid formatting in the input when `errors='replace'`. Any valid unicode codepoint may be used. The default value is the default unicode replacement character is 0xFFFD or U+65533. * replace_control_characters:Whether to replace the C0 control characters (00-1F) with the `replacement_char`. Default is false. \n *@par Outputs: *@li row_splits:A 1D tensor containing the row splits. *@li char_values:A 1D tensor containing the decoded codepoints. *@li char_to_byte_starts:A 1D int32 Tensor containing the byte index in the input string where each character in `char_values` starts. \n *@see UnicodeDecodeWithOffsets() *@par Third-party framework compatibility *compatible with UnicodeDecodeWithOffsets op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(UnicodeDecodeWithOffsets) .INPUT(input, TensorType({DT_STRING})) .OUTPUT(row_splits, TensorType({DT_INT64})) .OUTPUT(char_values, TensorType({DT_INT32})) .OUTPUT(char_to_byte_starts, TensorType({DT_INT64})) .REQUIRED_ATTR(input_encoding, String) .ATTR(errors, String, "replace") .ATTR(replacement_char, Int, 65533) .ATTR(replace_control_characters, Bool, false) .ATTR(Tsplits, Type, DT_INT64) .OP_END_FACTORY_REG(UnicodeDecodeWithOffsets) /** *@brief Decodes each string in `input` into a sequence of Unicode code points. \n *@par Inputs: include: *@li input:The text to be decoded. Can have any shape. Note that the output is flattened to a vector of char values. \n *@par Attributes: * input_encoding:Text encoding of the input strings. This is any of the encodings supported by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. * errors:Error handling policy when there is invalid formatting found in the input. The value of 'strict' will cause the operation to produce a InvalidArgument error on any invalid input formatting. A value of 'replace' (the default) will cause the operation to replace any invalid formatting in the input with the `replacement_char` codepoint. A value of 'ignore' will cause the operation to skip any invalid formatting in the input and produce no corresponding output character. * replacement_char:The replacement character codepoint to be used in place of any invalid formatting in the input when `errors='replace'`. Any valid unicode codepoint may be used. The default value is the default unicode replacement character is 0xFFFD or U+65533. * replace_control_characters:Whether to replace the C0 control characters (00-1F) with the `replacement_char`. Default is false. \n *@par Outputs: *@li row_splits:A 1D tensor containing the row splits. *@li char_values:A 1D tensor containing the decoded codepoints. \n *@see UnicodeDecode() *@par Third-party framework compatibility *compatible with UnicodeDecode op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(UnicodeDecode) .INPUT(input, TensorType({DT_STRING})) .OUTPUT(row_splits, TensorType({DT_INT64})) .OUTPUT(char_values, TensorType({DT_INT32})) .REQUIRED_ATTR(input_encoding, String) .ATTR(errors, String, "replace") .ATTR(replacement_char, Int, 65533) .ATTR(replace_control_characters, Bool, false) .ATTR(Tsplits, Type, DT_INT64) .OP_END_FACTORY_REG(UnicodeDecode) /** *@brief Transcode the input text from a source encoding to a destination encoding. \n *@par Inputs: include: *@li input:The text to be processed. Can have any shape. \n *@par Attributes: * input_encoding:Text encoding of the input strings. This is any of the encodings supported by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. * output_encoding:The unicode encoding to use in the output. Must be one of `"UTF-8", "UTF-16-BE", "UTF-32-BE"`. Multi-byte encodings will be big-endian. * errors:Error handling policy when there is invalid formatting found in the input. The value of 'strict' will cause the operation to produce a InvalidArgument error on any invalid input formatting. A value of 'replace' (the default) will cause the operation to replace any invalid formatting in the input with the `replacement_char` codepoint. A value of 'ignore' will cause the operation to skip any invalid formatting in the input and produce no corresponding output character. * replacement_char:The replacement character codepoint to be used in place of any invalid formatting in the input when `errors='replace'`. Any valid unicode codepoint may be used. The default value is the default unicode replacement character is 0xFFFD or U+65533. * replace_control_characters:Whether to replace the C0 control characters (00-1F) with the `replacement_char`. Default is false. \n *@par Outputs: *@li output:A string tensor containing unicode text encoded using `output_encoding`. \n *@see UnicodeTranscode() *@par Third-party framework compatibility *compatible with UnicodeTranscode op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(UnicodeTranscode) .INPUT(input, TensorType({DT_STRING})) .OUTPUT(output, TensorType({DT_STRING})) .REQUIRED_ATTR(input_encoding, String) .ATTR(output_encoding, String, "UTF-8") .ATTR(errors, String, "replace") .ATTR(replacement_char, Int, 65533) .ATTR(replace_control_characters, Bool, false) .OP_END_FACTORY_REG(UnicodeTranscode) /** *@brief Encode a tensor of ints into unicode strings. \n *@par Inputs: include: *@li input_values:A 1D tensor containing the unicode codepoints that should be encoded. *@li input_splits:A 1D tensor specifying how the unicode codepoints should be split into strings. \n *@par Attributes: * output_encoding:The unicode encoding to use in the output. Must be one of `"UTF-8", "UTF-16-BE", "UTF-32-BE"`. Multi-byte encodings will be big-endian. * errors:Error handling policy when there is invalid formatting found in the input. The value of 'strict' will cause the operation to produce a InvalidArgument error on any invalid input formatting. A value of 'replace' (the default) will cause the operation to replace any invalid formatting in the input with the `replacement_char` codepoint. A value of 'ignore' will cause the operation to skip any invalid formatting in the input and produce no corresponding output character. * replacement_char:The replacement character codepoint to be used in place of any invalid formatting in the input when `errors='replace'`. Any valid unicode codepoint may be used. The default value is the default unicode replacement character is 0xFFFD or U+65533. \n *@par Outputs: *@li output:The 1-D Tensor of strings encoded from the provided unicode codepoints. \n *@see UnicodeEncode() *@par Third-party framework compatibility *compatible with UnicodeEncode op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(UnicodeEncode) .INPUT(input_values, TensorType({DT_INT32})) .INPUT(input_splits, TensorType({DT_INT32, DT_INT64})) .OUTPUT(output, TensorType({DT_STRING})) .ATTR(errors, String, "replace") .ATTR(output_encoding, String, "UTF-8") .ATTR(replacement_char, Int, 65533) .OP_END_FACTORY_REG(UnicodeEncode) /** *@brief Split elements of input based on delimiter into a SparseTensor . \n *@par Inputs: include: *@li input:1-D. Strings to split. *@li delimiter:0-D. Delimiter characters (bytes), or empty string . \n *@par Attributes: * skip_empty:A bool. If True, skip the empty strings from the result . \n *@par Outputs: *@li indices:A dense matrix of int64 representing the indices of the sparse tensor. *@li values:A vector of strings corresponding to the splited values. *@li shape:A length-2 vector of int64 representing the shape of the sparse tensor, *where the first value is N and the second value is the maximum number of tokens *in a single input entry . \n *@see StringSplit() *@par Third-party framework compatibility *compatible with StringSplit op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(StringSplit) .INPUT(input, TensorType({DT_STRING})) .INPUT(delimiter, TensorType({DT_STRING})) .OUTPUT(indices, TensorType({DT_INT64})) .OUTPUT(values, TensorType({DT_STRING})) .OUTPUT(shape, TensorType({DT_INT64})) .ATTR(skip_empty, Bool, true) .OP_END_FACTORY_REG(StringSplit) /** *@brief Replaces the match of pattern in input with rewrite. \n *@par Inputs: include: *@li input:A Tensor of type string. The text to be processed. \n *@par Attributes: *@li pattern:A string. The regular expression to match the input. *@li rewrite:A string. The rewrite to be applied to the matched expression. *@li replace_global:An optional bool. Defaults to True. If True, the replacement is global, otherwise the replacement is done only on the first match. *@par output: *@li output::A Tensor of type string. */ REG_OP(StaticRegexReplace) .INPUT(input, TensorType({DT_STRING})) .OUTPUT(output, TensorType({DT_STRING})) .ATTR(pattern, String, "") .ATTR(rewrite, String, "") .ATTR(replace_global, Bool, true) .OP_END_FACTORY_REG(StaticRegexReplace) /** *@brief The input is a string tensor of any shape. The pattern is the *regular expression to be matched with every element of the input tensor. *The boolean values (True or False) of the output tensor indicate *if the input matches the regex pattern provided. *@par Inputs: include: *@li input:A Tensor of type string. The text to be processed. \n *@par Attributes: *@li pattern:A string. The regular expression to match the input. *@par output: *@li output::A bool tensor with the same shape as `input`. */ REG_OP(StaticRegexFullMatch) .INPUT(input, TensorType({DT_STRING})) .OUTPUT(output, TensorType({DT_BOOL})) .ATTR(pattern, String, "") .OP_END_FACTORY_REG(StaticRegexFullMatch) /** *@brief A Tensor of type string. The input to be joined. \n *@par Inputs: include: *@li input:A Tensor of type string. The text to be processed. *@li segment_ids:A Tensor. Must be one of the following types: int32, int64. *A tensor whose shape is a prefix of data.shape. Negative segment ids are not supported. *@li num_segments:A Tensor. Must be one of the following types: int32, int64. A scalar. *@par Attributes: *@li separator:An optional string. Defaults to "". The separator to use when joining. *@par output: *@li output::A Tensor of type string.. */ REG_OP(UnsortedSegmentJoin) .INPUT(input, TensorType({DT_STRING})) .INPUT(segment_ids, TensorType({DT_INT32,DT_INT64})) .INPUT(num_segments, TensorType({DT_INT32,DT_INT64})) .OUTPUT(output, TensorType({DT_STRING})) .ATTR(separator, String, "") .OP_END_FACTORY_REG(UnsortedSegmentJoin) /** *@brief Inputs to TensorFlow operations are outputs of another TensorFlow operation. *This method is used to obtain a symbolic handle that represents the computation of the input. *@par Inputs: include: *@li input:A Tensor of type string. The text to be processed. *@par Attributes: *@li encoding:An optional string. Defaults to "". *@par output: *@li output::A Tensor of type string.. */ REG_OP(StringLower) .INPUT(input, TensorType({DT_STRING})) .OUTPUT(output, TensorType({DT_STRING})) .ATTR(encoding, String, "") .OP_END_FACTORY_REG(StringLower) /** *@brief Inputs to TensorFlow operations are outputs of another TensorFlow operation. *This method is used to obtain a symbolic handle that represents the computation of the input. *@par Inputs: include: *@li input:A Tensor of type string. The text to be processed. *@par Attributes: *@li encoding:An optional string. Defaults to "". *@par output: *@li output::A Tensor of type string.. */ REG_OP(StringUpper) .INPUT(input, TensorType({DT_STRING})) .OUTPUT(output, TensorType({DT_STRING})) .ATTR(encoding, String, "") .OP_END_FACTORY_REG(StringUpper) /** *@brief Split elements of source based on sep into a SparseTensor . \n *@par Inputs: include: *@li input:1-D. Strings to split. *@li sep:0-D string Tensor, the delimiter character . \n *@par Attributes: * maxsplit:An int. If maxsplit > 0, limit of the split of the result . \n *@par Outputs: *@li indices:A dense matrix of int64 representing the indices of the sparse tensor. *@li values:A vector of strings corresponding to the splited values. *@li shape:A length-2 vector of int64 representing the shape of the sparse tensor, *where the first value is N and the second value is the maximum number of tokens *in a single input entry . \n *@see StringSplitV2() *@par Third-party framework compatibility *compatible with StringSplitV2 op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(StringSplitV2) .INPUT(input, TensorType({DT_STRING})) .INPUT(sep, TensorType({DT_STRING})) .OUTPUT(indices, TensorType({DT_INT64})) .OUTPUT(values, TensorType({DT_STRING})) .OUTPUT(shape, TensorType({DT_INT64})) .ATTR(maxsplit, Int, -1) .OP_END_FACTORY_REG(StringSplitV2) /** *@brief Determine the script codes of a given tensor of Unicode integer code points . \n *@par Inputs: include: *x:A Tensor of int32 Unicode code points . \n *@par Outputs: *y:A Tensor of int32 script codes corresponding to each input code point . \n *@attention Constraints: *This operation converts Unicode code points to script codes corresponding to *each code point. Script codes correspond to International Components for *Unicode (ICU) UScriptCode values. *See http://icu-project.org/apiref/icu4c/uscript_8h.html. *Returns -1 (USCRIPT_INVALID_CODE) for invalid codepoints. *Output shape will match input shape . \n *@see UnicodeScript() *@par Third-party framework compatibility *compatible with UnicodeScript op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(UnicodeScript) .INPUT(x, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_INT32})) .OP_END_FACTORY_REG(UnicodeScript) /** *@brief Return substrings from Tensor of strings . \n *@par Inputs: include: *@li input:Tensor of strings. *@li pos:Scalar defining the position of first character in each substring. *@li len:Scalar defining the number of characters to include in each substring . \n *@par Outputs: *output:Tensor of substrings . \n *@attention Constraints: *The hash function is deterministic on the content of the string within *the process and will never change. However, it is not suitable for *cryptography. This function may be used when CPU time is scarce and *inputs are trusted or unimportant. There is a risk of adversaries *constructing inputs that all hash to the same bucket. *To prevent this problem, use a strong hash function with *tf.string_to_hash_bucket_strong . \n *@see Substr() *@par Third-party framework compatibility *compatible with Substr op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(Substr) .INPUT(input, TensorType({DT_STRING})) .INPUT(pos, TensorType({DT_INT32, DT_INT64})) .INPUT(len, TensorType({DT_INT32, DT_INT64})) .OUTPUT(output, TensorType({DT_STRING})) .OP_END_FACTORY_REG(Substr) /** *@brief Converts each string in the input Tensor to its hash mod by a number of buckets . \n *@par Inputs: include: *string_tensor:The strings to assign a hash bucket . \n *@par Outputs: *y:A Tensor of the same shape as the input x . \n *@attention Constraints: *The hash function is deterministic on the content of the string within *the process and will never change. However, it is not suitable for cryptography. *This function may be used when CPU time is scarce and inputs are trusted or *unimportant. There is a risk of adversaries constructing inputs that all hash *to the same bucket. To prevent this problem, use a strong hash function with *tf.string_to_hash_bucket_strong . \n *@see StringToHashBucketFast() *@par Third-party framework compatibility *compatible with StringToHashBucketFast op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(StringToHashBucketFast) .INPUT(x, TensorType({DT_STRING})) .OUTPUT(y, TensorType({DT_INT64})) .ATTR(num_buckets, Int, 1) .OP_END_FACTORY_REG(StringToHashBucketFast) /** *@brief Converts each string in the input Tensor to its hash mod by a number of buckets . \n *@par Inputs: include: *x:The strings to assign a hash bucket . \n *@par Attributes: *num_buckets:The number of buckets . \n *@par Outputs: *y:A Tensor of the same shape as the input x . \n *@attention Constraints: *@li A strong hash is important when inputs may be malicious, e.g. URLs with *additional components. Adversaries could try to make their inputs hash to *the same bucket for a denial-of-service attack or to skew the results. *A strong hash can be used to make it difficult to find inputs with a skewed * hash value distribution over buckets. This requires that the hash function\ *is seeded by a high-entropy (random) "key" unknown to the adversary. *@li The additional robustness comes at a cost of roughly 4x higher *compute time than tf.string_to_hash_bucket_fast . \n *@see StringToHashBucketStrong() *@par Third-party framework compatibility *compatible with StringToHashBucketStrong op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(StringToHashBucketStrong) .INPUT(x, TensorType({DT_STRING})) .OUTPUT(y, TensorType({DT_INT64})) .ATTR(num_buckets, Int, 1) .REQUIRED_ATTR(key, ListInt) .OP_END_FACTORY_REG(StringToHashBucketStrong) /** *@brief Converts each string in the input Tensor to its hash mod by a number of buckets . \n *@par Inputs: include: *string_tensor:The strings to assign a hash bucket . \n *@par Attributes: *num_buckets:The number of buckets . \n *@par Outputs: *y:A Tensor of the same shape as the input string_tensor . \n *@see StringToHashBucket() *@par Third-party framework compatibility *compatible with StringToHashBucket op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(StringToHashBucket) .INPUT(string_tensor, TensorType({DT_STRING})) .OUTPUT(y, TensorType({DT_INT64})) .ATTR(num_buckets, Int, 1) .OP_END_FACTORY_REG(StringToHashBucket) /** *@brief Strip leading and trailing whitespaces from the Tensor . \n *@par Inputs: include: *x:A string Tensor of any shape . \n *@par Outputs: *y:A string Tensor of the same shape as the input . \n *@see StringStrip() *@par Third-party framework compatibility *compatible with StringStrip op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(StringStrip) .INPUT(x, TensorType({DT_STRING})) .OUTPUT(y, TensorType({DT_STRING})) .OP_END_FACTORY_REG(StringStrip) /** *@brief Computes the length of each string given in the input tensor . \n *@par Inputs: include: *x:The string for which to compute the length . \n *@par Attributes: *unit:The unit that is counted to compute string length. *One of: "BYTE" (for the number of bytes in each string) or *"UTF8_CHAR" (for the number of UTF-8 encoded Unicode code points in each string). *Results are undefined if unit=UTF8_CHAR and the input strings do not contain *structurally valid UTF-8 . \n *@par Outputs: *y:Integer tensor that has the same shape as input. *The output contains the element-wise string lengths of input . \n *@see StringLength() *@par Third-party framework compatibility *compatible with StringLength op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(StringLength) .INPUT(x, TensorType({DT_STRING})) .OUTPUT(y, TensorType({DT_INT32})) .ATTR(unit, String, "BYTE") .OP_END_FACTORY_REG(StringLength) /** *@brief Joins the strings in the given list of string tensors into one tensor . \n *@par Inputs: *The input is a string tensor of any shape. The pattern is a scalar string tensor *which is applied to every element of the input tensor. The boolean values *(True or False) of the output tensor indicate if the input matches the regex *pattern provided. The pattern follows the re2 syntax *(https://github.com/google/re2/wiki/Syntax).: include: *x:A list of string tensors. The tensors must all have the same shape, *or be scalars. Scalars may be mixed in; these will be broadcast to the shape *of non-scalar inputs . It's a dynamic input. \n *@par Attributes: *@li N:The length of input x. *@li separator:string, an optional join separator . \n *@par Outputs: *y:The output tensor . \n *@see StringJoin() *@par Third-party framework compatibility *compatible with StringJoin op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(StringJoin) .DYNAMIC_INPUT(x, TensorType({DT_STRING})) .OUTPUT(y, TensorType({DT_STRING})) .REQUIRED_ATTR(N, Int) .ATTR(separator, String, "") .OP_END_FACTORY_REG(StringJoin) /** *@brief Formats a string template using a list of tensors . \n *@par Inputs: *The input is a string tensor of any shape. The pattern is a scalar string tensor *which is applied to every element of the input tensor. *The boolean values (True or False) of the output tensor indicate if the input *matches the regex pattern provided. The pattern follows the re2 syntax *(https://github.com/google/re2/wiki/Syntax).: include: *x:The tensors to format into the placeholder string . It's a dynamic input. \n *@par Attributes: *@li template:A string, the template to format tensor summaries into. *@li placeholder:A string, at each placeholder in the template a subsequent tensor summary will be inserted. *@li summarize:When formatting the tensor summaries print the first and last summarize entries of each tensor dimension . \n *@par Outputs: *y:The resulting string scalar . \n *@see StringFormat() *@par Third-party framework compatibility * compatible with StringFormat op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(StringFormat) .DYNAMIC_INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \ DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_STRING, DT_FLOAT16, \ DT_FLOAT, DT_DOUBLE, DT_BOOL})) .OUTPUT(y, TensorType({DT_STRING})) .ATTR(template, String, "%s") .ATTR(placeholder, String, "%s") .ATTR(summarize, Int, 3) .OP_END_FACTORY_REG(StringFormat) /** *@brief Check if the input matches the regex pattern . \n *@par Inputs: *The input is a string tensor of any shape. The pattern is a scalar string tensor *which is applied to every element of the input tensor. The boolean values *(True or False) of the output tensor indicate if the input matches the regex *pattern provided. The pattern follows the re2 syntax *(https://github.com/google/re2/wiki/Syntax).: include: *@li x:A string tensor of the text to be processed. *@li pattern:A scalar string tensor containing the regular expression to match the input . \n *@par Outputs: *y:A bool tensor with the same shape as input . \n *@see RegexFullMatch() *@par Third-party framework compatibility *compatible with RegexFullMatch op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(RegexFullMatch) .INPUT(x, TensorType({DT_STRING})) .INPUT(pattern, TensorType({DT_STRING})) .OUTPUT(y, TensorType({DT_BOOL})) .OP_END_FACTORY_REG(RegexFullMatch) /** *@brief Replaces matches of the pattern regular expression in input with the *replacement string provided in rewrite . \n *@par Inputs: *It follows the re2 syntax (https://github.com/google/re2/wiki/Syntax).: include: *@li x:The text to be processed. *@li pattern:The regular expression to be matched in the input strings. *@li rewrite:The rewrite string to be substituted for the pattern expression *where it is matched in the input strings . \n *@par Attributes: *replace_global:If True, the replacement is global *(that is, all matches of the pattern regular expression in each input string *are rewritten), otherwise the rewrite substitution is only made for the first * pattern match . \n *@par Outputs: *y:The text after applying pattern match and rewrite substitution . \n *@see RegexReplace() *@par Third-party framework compatibility *compatible with RegexReplace op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(RegexReplace) .INPUT(x, TensorType({DT_STRING})) .INPUT(pattern, TensorType({DT_STRING})) .INPUT(rewrite, TensorType({DT_STRING})) .OUTPUT(y, TensorType({DT_STRING})) .ATTR(replace_global, Bool, true) .OP_END_FACTORY_REG(RegexReplace) /** *@brief Converts each entry in the given tensor to strings . \n *@par Inputs: *Supports many numeric types and boolean.: include: *x:A tensor can be trans to string . \n *@par Attributes: *@li precision:The post-decimal precision to use for floating point numbers. *Only used if precision > -1. *@li scientific:Use scientific notation for floating point numbers. *@li shortest:Use shortest representation (either scientific or standard) *for floating point numbers.. *@li width:Pad pre-decimal numbers to this width. Applies to both floating *point and integer numbers. Only used if width > -1. *@li fill:The value to pad if width > -1. If empty, pads with spaces. *Another typical value is '0'. String cannot be longer than 1 character . \n *@par Outputs: *y:The output tensor . \n *@see AsString() *@par Third-party framework compatibility *compatible with AsString op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(AsString) .INPUT(x, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT, \ DT_DOUBLE, DT_BOOL, DT_COMPLEX64, DT_COMPLEX128})) .OUTPUT(y, TensorType({DT_STRING})) .ATTR(precision, Int, -1) .ATTR(scientific, Bool, false) .ATTR(shortest, Bool, false) .ATTR(width, Int, -1) .ATTR(fill, String, "") .OP_END_FACTORY_REG(AsString) /** *@brief Encode strings into web-safe base64 format . \n *@par Inputs: *Input may or may not have padding at the end. See EncodeBase64 for padding. *Web-safe means that input must use - and _ instead of + and /.: include: *x:Strings to be encoded . \n *@par Attributes: *pad:Bool whether padding is applied at the ends . \n *@par Outputs: *y:Input strings encoded in base64 . \n *@attention Constraints: *Refer to the following article for more information on base64 format: *en.wikipedia.org/wiki/Base64. Base64 strings may have padding with '=' *at the end so that the encoded has length multiple of 4. *See Padding section of the link above. Web-safe means that the encoder *uses - and _ instead of + and / . \n *@see EncodeBase64() *@par Third-party framework compatibility *compatible with EncodeBase64 op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(EncodeBase64) .INPUT(x, TensorType({DT_STRING})) .OUTPUT(y, TensorType({DT_STRING})) .ATTR(pad, Bool, false) .OP_END_FACTORY_REG(EncodeBase64) /** *@brief Decode web-safe base64-encoded strings . \n *@par Inputs: *Input may or may not have padding at the end. See EncodeBase64 for padding. *Web-safe means that input must use - and _ instead of + and /.: include: *x:Base64 strings to decode . \n *@par Outputs: *y:Decoded strings . \n *@see DecodeBase64() *@par Third-party framework compatibility *compatible with DecodeBase64 op of tensorflow *@par Restrictions: *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. */ REG_OP(DecodeBase64) .INPUT(x, TensorType({DT_STRING})) .OUTPUT(y, TensorType({DT_STRING})) .OP_END_FACTORY_REG(DecodeBase64) /** *@brief StringNormalization performs string operations for basic cleaning . \n *@par Inputs: *@li input: only accepts [C] or [1, C] UTF-8 strings tensor . \n *@par Outputs: *@li output: UTF-8 strings tensor after cleaning . \n *@par Attributes: *@li stopwords : list of strings (default is empty). *List of stop words. If not set, no word would be removed from input strings tensor. *@li is_case_sensitive : bool (default is false). *Boolean. Whether the identification of stop words in input strings tensor is case-sensitive. Default is false. *@li case_change_action : string (default is "NONE"). *string enum that cases output to be lowercased/uppercases/unchanged. Valid values are "LOWER", "UPPER", "NONE". Default is "NONE". *@li local : string (default is "en_US"). *Environment dependent string that denotes the locale according to which output strings needs to be upper/lowercased.Default en_US or platform specific equivalent as decided by the implementation . \n *@attention Constraints: *@li input can be either a 1-D or 2-D tensor, the shape of 2-D tensor must be [1, C]. */ REG_OP(StringNormalizer) .INPUT(input, TensorType({DT_STRING})) .OUTPUT(output, TensorType({DT_STRING})) .ATTR(stopwords, ListString, {}) .ATTR(is_case_sensitive, Bool, false) .ATTR(case_change_action, String, "NONE") .ATTR(local, String, "en_US") .OP_END_FACTORY_REG(StringNormalizer) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_STRING_OPS_H_