/** * Copyright 2019 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file nn_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_NN_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_NN_OPS_H_ #include "graph/operator_reg.h" #include "nn_pooling_ops.h" namespace ge { /** * @brief Says whether the targets are in the top "k" predictions . \n * @par Inputs: * Three inputs, including: * @li predictions: A 2D Tensor of type float32. A "batch_size * classes" tensor. * @li targets: A 1D Tensor of type IndexNumberType. A batch_size tensor of class ids. * @li k: A 1D Tensor of the same type as "targets". * Specifies the number of top elements to look at for computing precision . \n * @par Outputs: * precision: A Tensor of type bool . \n * @attention Constraints: * @li targets must be non-negative tensor. * @par Third-party framework compatibility * @li Compatible with the TensorFlow operator InTopKV2. */ REG_OP(InTopKV2) .INPUT(predictions, TensorType({DT_FLOAT})) .INPUT(targets, TensorType(IndexNumberType)) .INPUT(k, TensorType({IndexNumberType})) .OUTPUT(precision, TensorType({DT_BOOL})) .OP_END_FACTORY_REG(InTopKV2) }// namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_OPS_H_