/** * Copyright 2019 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file parsing_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_PARSING_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_PARSING_OPS_H_ #include "graph/operator_reg.h" #include "graph/operator.h" namespace ge { /** *@brief Converts each string in the input Tensor to the specified numeric type . \n *@par Inputs: *Inputs include: *x: A Tensor. Must be one of the following types: string . \n *@par Attributes: *out_type: The numeric type to interpret each string in string_tensor as . \n *@par Outputs: *y: A Tensor. Has the same type as x . \n *@attention Constraints: *The implementation for StringToNumber on Ascend uses AICPU, with bad performance. \n *@par Third-party framework compatibility *@li compatible with tensorflow StringToNumber operator. */ REG_OP(StringToNumber) .INPUT(x, TensorType({DT_STRING})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .ATTR(out_type, Type, DT_FLOAT) .OP_END_FACTORY_REG(StringToNumber) /** *@brief Convert serialized tensorflow.TensorProto prototype to Tensor. *@brief Parse an Example prototype. *@par Input: *serialized: A Tensor of type string. *dense_defaults: DYNAMIC INPUT Tensor type as string, float, int64. \n *@par Attributes: *num_sparse: type int num of inputs sparse_indices , sparse_values, sparse_shapes *out_type: output type *sparse_keys: ListString *sparse_types: types of sparse_values *dense_keys: ListString *dense_shapes: output of dense_defaults shape *dense_types: output of dense_defaults type \n *@par Outputs: *sparse_indices: A Tensor of type string. *sparse_values: Has the same type as sparse_types. *sparse_shapes: A Tensor of type int64 *dense_values: Has the same type as dense_defaults. *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. **/ REG_OP(ParseSingleExample) .INPUT(serialized, TensorType({DT_STRING})) .DYNAMIC_INPUT(dense_defaults, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) .DYNAMIC_OUTPUT(sparse_indices, TensorType({DT_INT64})) .DYNAMIC_OUTPUT(sparse_values, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) .DYNAMIC_OUTPUT(sparse_shapes, TensorType({DT_INT64})) .DYNAMIC_OUTPUT(dense_values, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) .ATTR(num_sparse, Int, 0) .ATTR(sparse_keys, ListString, {}) .ATTR(dense_keys, ListString, {}) .ATTR(sparse_types, ListType, {}) .ATTR(Tdense, ListType, {}) .ATTR(dense_shapes, ListListInt, {}) .OP_END_FACTORY_REG(ParseSingleExample) /** *@brief Decodes raw file into tensor . \n *@par Input: *bytes: A Tensor of type string. *@par Attributes: *little_endian: bool ture *out_type: output type *@par Outputs: *Output: A Tensor **/ REG_OP(DecodeRaw) .INPUT(bytes, TensorType({DT_STRING})) .OUTPUT(output, TensorType({DT_BOOL,DT_FLOAT16,DT_DOUBLE,DT_FLOAT, DT_INT64,DT_INT32,DT_INT8,DT_UINT8,DT_INT16, DT_UINT16,DT_COMPLEX64,DT_COMPLEX128})) .ATTR(out_type, Type, DT_FLOAT) .ATTR(little_endian, Bool, true) .OP_END_FACTORY_REG(DecodeRaw) /** *@brief Convert serialized tensorflow.TensorProto prototype to Tensor. \n *@par Inputs: *serialized: A Tensor of string type. Scalar string containing serialized *TensorProto prototype. \n *@par Attributes: *out_type: The type of the serialized tensor. The provided type must match the *type of the serialized tensor and no implicit conversion will take place. \n *@par Outputs: *output: A Tensor of type out_type. \n *@attention Constraints: *The implementation for StringToNumber on Ascend uses AICPU, *with badperformance. \n *@par Third-party framework compatibility *@li compatible with tensorflow ParseTensor operator. */ REG_OP(ParseTensor) .INPUT(serialized, TensorType({DT_STRING})) .OUTPUT(output, TensorType(DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE, DT_STRING, DT_COMPLEX64, DT_COMPLEX128})) .ATTR(out_type, Type, DT_FLOAT) .OP_END_FACTORY_REG(ParseTensor) /** *@brief Converts each string in the input Tensor to the specified numeric *type . \n *@par Inputs: *Inputs include: *records: Each string is a record/row in the csv and all records should have the *same format. \n *record_defaults: One tensor per column of the input record, with either a *scalar default value for that column or an empty vector if the column is *required. \n *@par Attributes: *OUT_TYPE: The numeric type to interpret each string in string_tensor as . \n *field_delim: char delimiter to separate fields in a record. \n *use_quote_delim: If false, treats double quotation marks as regular characters *inside of the string fields (ignoring RFC 4180, Section 2, Bullet 5). \n *na_value: Additional string to recognize as NA/NaN. \n *@par Outputs: *output: A Tensor. Has the same type as x . \n *@attention Constraints: *The implementation for StringToNumber on Ascend uses AICPU, with bad *performance. \n *@par Third-party framework compatibility *@li compatible with tensorflow StringToNumber operator. */ REG_OP(DecodeCSV) .INPUT(records, TensorType({DT_STRING})) .DYNAMIC_INPUT(record_defaults, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_STRING})) .DYNAMIC_OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_STRING})) .ATTR(OUT_TYPE, ListType, {}) .ATTR(field_delim, String, ",") .ATTR(use_quote_delim, Bool, true) .ATTR(na_value, String, ",") .ATTR(select_cols, ListInt, {}) .OP_END_FACTORY_REG(DecodeCSV) /** *@brief Convert serialized tensorflow.TensorProto prototype to Tensor. *@brief Parse an Example prototype. *@par Input: *serialized: A Tensor of type string. \n *name:A Tensor of type string. \n *sparse_keys: Dynamic input tensor of string. \n *dense_keys: Dynamic input tensor of string \n *dense_defaults: Dynamic input tensor type as string, float, int64. \n *@par Attributes: *Nsparse: Number of sparse_keys, sparse_indices and sparse_shapes \n *Ndense: Number of dense_keys \n *sparse_types: types of sparse_values \n *Tdense: Type of dense_defaults dense_defaults and dense_values \n *dense_shapes: output of dense_defaults shape \n *@par Outputs: *sparse_indices: A Tensor of type string. \n *sparse_values: Has the same type as sparse_types. \n *sparse_shapes: A Tensor of type int64 \n *dense_values: Has the same type as dense_defaults. \n *@par Third-party framework compatibility \n *@li compatible with tensorflow StringToNumber operator. \n */ REG_OP(ParseExample) .INPUT(serialized, TensorType({DT_STRING})) .INPUT(name, TensorType({DT_STRING})) .DYNAMIC_INPUT(sparse_keys, TensorType({DT_STRING})) .DYNAMIC_INPUT(dense_keys, TensorType({DT_STRING})) .DYNAMIC_INPUT(dense_defaults, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) .DYNAMIC_OUTPUT(sparse_indices, TensorType({DT_INT64})) .DYNAMIC_OUTPUT(sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) .DYNAMIC_OUTPUT(sparse_shapes, TensorType({DT_INT64})) .DYNAMIC_OUTPUT(dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) .ATTR(Nsparse, Int, 0) .ATTR(Ndense, Int, 0) .ATTR(sparse_types, ListType, {}) .ATTR(Tdense, ListType, {}) .ATTR(dense_shapes, ListListInt, {}) .OP_END_FACTORY_REG(ParseExample) /** *@brief Transforms a scalar brain.SequenceExample proto (as strings) into typed *tensors. *@par Input: *serialized: A Tensor of type string. \n *feature_list_dense_missing_assumed_empty:A Tensor of type string. \n *context_sparse_keys: Dynamic input tensor of string. \n *context_dense_keys: Dynamic input tensor of string \n *feature_list_sparse_keys: Dynamic input tensor of string \n *feature_list_dense_keys: Dynamic input tensor of string \n *context_dense_defaults: Dynamic input tensor of string, float, int64 \n *debug_name: A Tensor of type string. \n *@par Attributes: *Ncontext_sparse: Number of context_sparse_keys, context_sparse_indices and context_sparse_shapes \n *Ncontext_dense: Number of context_dense_keys \n *Nfeature_list_sparse: Number of feature_list_sparse_keys \n *Nfeature_list_dense: Number of feature_list_dense_keys \n *context_sparse_types: Types of context_sparse_values \n *Tcontext_dense: Number of dense_keys \n *feature_list_dense_types: Types of feature_list_dense_values \n *context_dense_shapes: Shape of context_dense \n *feature_list_sparse_types: Type of feature_list_sparse_values \n *feature_list_dense_shapes: Shape of feature_list_dense \n *@par Outputs: *context_sparse_indices: Dynamic output tensor of type int64. \n *context_sparse_values: Dynamic output tensor of type string, float, int64. \n *context_sparse_shapes: Dynamic output tensor of type int64 \n *context_dense_values: Dynamic output tensor of type string, float, int64. \n *feature_list_sparse_indices: Dynamic output tensor of type int64. \n *feature_list_sparse_values: Dynamic output tensor of type string, float, int64. \n *feature_list_sparse_shapes: Dynamic output tensor of type int64 \n *feature_list_dense_values: Dynamic output tensor of type string, float, int64. \n *@par Third-party framework compatibility \n *@li compatible with tensorflow StringToNumber operator. \n */ REG_OP(ParseSingleSequenceExample) .INPUT(serialized, TensorType({DT_STRING})) .INPUT(feature_list_dense_missing_assumed_empty, TensorType({DT_STRING})) .DYNAMIC_INPUT(context_sparse_keys, TensorType({DT_STRING})) .DYNAMIC_INPUT(context_dense_keys, TensorType({DT_STRING})) .DYNAMIC_INPUT(feature_list_sparse_keys, TensorType({DT_STRING})) .DYNAMIC_INPUT(feature_list_dense_keys, TensorType({DT_STRING})) .DYNAMIC_INPUT(context_dense_defaults, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) .INPUT(debug_name, TensorType({DT_STRING})) .DYNAMIC_OUTPUT(context_sparse_indices, TensorType({DT_INT64})) .DYNAMIC_OUTPUT(context_sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) .DYNAMIC_OUTPUT(context_sparse_shapes, TensorType({DT_INT64})) .DYNAMIC_OUTPUT(context_dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) .DYNAMIC_OUTPUT(feature_list_sparse_indices, TensorType({DT_INT64})) .DYNAMIC_OUTPUT(feature_list_sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) .DYNAMIC_OUTPUT(feature_list_sparse_shapes, TensorType({DT_INT64})) .DYNAMIC_OUTPUT(feature_list_dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) .ATTR(Ncontext_sparse, Int, 0) .ATTR(Ncontext_dense, Int, 0) .ATTR(Nfeature_list_sparse, Int, 0) .ATTR(Nfeature_list_dense, Int, 0) .ATTR(context_sparse_types, ListType, {}) .ATTR(Tcontext_dense, ListType, {}) .ATTR(feature_list_dense_types, ListType, {}) .ATTR(context_dense_shapes, ListListInt, {}) .ATTR(feature_list_sparse_types, ListType, {}) .ATTR(feature_list_dense_shapes, ListListInt, {}) .OP_END_FACTORY_REG(ParseSingleSequenceExample) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_PARSING_OPS_H_