/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef GE_OP_NN_POOLING_OPS_H #define GE_OP_NN_POOLING_OPS_H #include "graph/operator_reg.h" #include "graph/operator.h" namespace ge { /** *@brief Performs pooling on the input. *@par Inputs: *@li x: An NCHW tensor of type float16, float32, int8. *@par Attributes: *@li mode: An optional int32, specifying the pooling algorithm, either "1" (max pooling) or "0" (avg pooling). Defaults to "0". *@li global_pooling: An optional bool. Defaults to "false". *@li window: Optional, including: \n *window[0]: An optional int32, specifying the window size along in the H dimension. The value range is [1, 32768]. Defaults to "1". \n *window[1]: An optional int32, specifying the window size along in the W dimension. The value range is [1, 32768]. Defaults to "1". \n *@li stride: Optional, including: \n *stride[0]: An optional int32, specifying the stride along in the H dimension. The value range is [1, 63]. Defaults to "1". \n *stride[1]: An optional int32, specifying the stride along in the W dimension. The value range is [1, 63]. Defaults to "1". \n *@li pad: Optional, including: \n *pad[0]: An optional int32, specifying the up padding. Defaults to "0". \n *pad[1]: An optional int32, specifying the bottom padding. Defaults to "0". \n *pad[2]: An optional int32, specifying the left padding. Defaults to "0". \n *pad[3]: An optional int32, specifying the right padding. Defaults to "0". \n *@li dilation: Optional, including: \n *dilation[0]: An optional int32, specifying the up dilation. Defaults to "1". \n *dilation[1]: An optional int32, specifying the bottom dilation. Defaults to "1". \n *dilation[2]: An optional int32, specifying the left dilation. Defaults to "1". \n *dilation[3]: An optional int32, specifying the right dilation. Defaults to "1". \n *@li ceil_mode: An optional int32, either "0" (ceil mode) or "1" (floor mode). Defaults to "0". *@par Outputs: *y: An NCHW tensor of type float16, float32, int32. *@attention Constraints:\n *@li window[0] * window[1] < 256; *@li 1<=input_h<=4096,1<=input_w<=4096 *@li If input tensor N is a prime number, it should be less than 65535. *@par Third-party framework compatibility *@li Compatible with the Caffe operator Pooling. *@li Compatible with the TensorFlow operator Pooling. */ REG_OP(Pooling) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32, DT_INT8})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT32, DT_INT32})) .ATTR(mode, Int, 0) // 0:max pooling or 1:avg pooling .ATTR(global_pooling, Bool, false) .ATTR(window, ListInt, {1,1}) // kernel size .ATTR(stride, ListInt, {1,1}) // stride size .ATTR(pad, ListInt, {0,0,0,0}) // pad size .ATTR(dilation, ListInt, {1,1,1,1}) .ATTR(ceil_mode, Int, 0) .OP_END_FACTORY_REG(Pooling) /** *@brief Performs average pooling on the input. *@par Inputs: *x: A tensor of type float16, float32, double. *@par Attributes: *@li ksize: A required list of 4 ints, specifying the size (N, C, H, and W) of the sliding window, where N = C = 1, and H and W are positive integers within the range [1, 32768]. *@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimensions are 1. The strides of the H and W dimensions are positive integers within the range [1, 63]. *@li padding: A required string, specifying the padding algorithm, either "VALID" or "SAME". With "SAME" means that the outputs will have the same spatial dimensions as its inputs. With "VALID" means no padding. *@li data_format: An optional string, specifying the data format of "ksize" and "strides", either "NCHW", "NC1HWC0", or "NHWC" (default). *@par Outputs: *y: The average pooled output tensor. Has the same type and format as input "x". *@attention Constraints: *@li This operator applies only to a TensorFlow network. *@li Only single input and single output are supported. *@li Global pooling is supported. *@li "ksize_H" and "ksize_W" are positive integers within the range [1, 32768]. ksize_H * ksize_W < 256 *@li Due to instruction restrictions, the values of "strides_h" and "strides_w" are positive integers within the range [1, 63]. *@par Third-party framework compatibility * Compatible with the TensorFlow operator AvgPool. */ REG_OP(AvgPool) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) .REQUIRED_ATTR(ksize, ListInt) .REQUIRED_ATTR(strides, ListInt) .REQUIRED_ATTR(padding, String) .ATTR(data_format, String, "NHWC") .OP_END_FACTORY_REG(AvgPool) /** *@brief Performs max_pool_ext2 on the input. *@par Inputs: * One input: *x: An NC1HWC0 Tensor of type float16. *@par Attributes: *@li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for each dimension of the input tensor. No default value. *@li strides: A required list of int8, int16, int32, or int64 values, specifying the stride of the sliding window for each dimension of the input tensor. No default value. *@li padding: A required string. No default value. *@li data_format: An optional string. Defaults to "NC1HWC0". *@par Outputs: *y: A Tensor. Has the same type and format as input "x". *@attention Constraints: *@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, ksize[1] * ksize[2] <= 255. *@li "stride is a list that has length 4: strides[0] = 1 or strides[3] = 1, strides[1] <= 63, strides[0] >= 1, strides[2] <= 63, strides[2] >= 1. *@li "padding" is either "SAME" or "VALID". *@par Third-party framework compatibility * Compatible with the TensorFlow operator MaxPoolV2. */ REG_OP(MaxPoolExt2) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_QINT8})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_QINT8})) .REQUIRED_ATTR(ksize, ListInt) .REQUIRED_ATTR(strides, ListInt) .REQUIRED_ATTR(padding, String) .ATTR(data_format, String, "NHWC") .OP_END_FACTORY_REG(MaxPoolExt2) /** *@brief Performs max pooling on the input. *@par Inputs: * One input: *x: An NC1HWC0 Tensor. Supported type:float16, float32, double, int8, int16, * int32, int64, uint8, uint16, qint8 *@par Attributes: *@li ksize: A required list of int8, int16, int32, or int64 values, * specifying the size of the window for each dimension of the input tensor. * No default value. *@li strides: A required list of int8, int16, int32, or int64 values, * specifying the stride of the sliding window for each dimension of * the input tensor. No default value. *@li padding: A required string. No default value. *@li data_format: An optional string. Defaults to "NHWC". *@par Outputs: *y: A Tensor. Has the same type and format as input "x". *@attention Constraints: *@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, * ksize[1] * ksize[2] <= 255. *@li "stride is a list that has length 4: strides[0] = 1 or strides[3] = 1, * strides[1] <= 63, strides[0] >= 1, strides[2] <= 63, strides[2] >= 1. *@li "padding" is either "SAME" or "VALID". *@par Third-party framework compatibility * Compatible with the TensorFlow operator MaxPool. */ REG_OP(MaxPool) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_QINT8})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_QINT8})) .REQUIRED_ATTR(ksize, ListInt) .REQUIRED_ATTR(strides, ListInt) .REQUIRED_ATTR(padding, String) .ATTR(data_format, String, "NHWC") .OP_END_FACTORY_REG(MaxPool) REG_OP(MaxPool3D) .INPUT(x, TensorType({DT_FLOAT16})) .OUTPUT(y, TensorType({DT_FLOAT16})) .REQUIRED_ATTR(ksize, ListInt) .REQUIRED_ATTR(strides, ListInt) .REQUIRED_ATTR(padding, String) .ATTR(pads, ListInt, {0,0,0}) .ATTR(dilation, ListInt, {0,0,0}) .ATTR(ceil_mode, Int, 0) .ATTR(data_format, String, "NDHWC") .OP_END_FACTORY_REG(MaxPool3D) /** * @brief Computes gradients of the maxpooling function. * @par Inputs: * @li x1: A mutable NC1HWC0 tensor of type RealNumberType. * @li x2: A mutable NC1HWC0 tensor of type RealNumberTypex. * @li grad: A mutable NC1HWC0 tensor of type RealNumberType. * @par Attributes: * @li ksize: A required tuple or list, specifying the size of the window for * each dimension of the input tensor. * @li strides: A required tuple or list, specifying the stride of the sliding * window for each dimension of the input tensor. * @li padding: A required string, specifying the type of padding algorithm * to use. * @li data_format: An optional string, Specify the data format of the input and * output data. With the default format "NHWC". * @par Outputs: * y: A mutable tensor. Has the same shape and type as "x1". * @attention Constraints: * @li Computing gradients of global pooling is not supported, which means * "ksize < x1". * @li "ksize" is in the range [1, 255]. "strides" is in the range [1, 63] * @par Third-party framework compatibility * Compatible with the TensorFlow operator MaxPoolGrad. */ REG_OP(MaxPoolGrad) .INPUT(x1, TensorType::RealNumberType()) .INPUT(x2, TensorType::RealNumberType()) .INPUT(grad, TensorType::RealNumberType()) .OUTPUT(y, TensorType::RealNumberType()) .REQUIRED_ATTR(ksize, ListInt) .REQUIRED_ATTR(strides, ListInt) .REQUIRED_ATTR(padding, String) .ATTR(data_format, String, "NHWC") .OP_END_FACTORY_REG(MaxPoolGrad) /** * @brief Computes second-order gradients of the maxpooling function. * @par Inputs: * @li x1: Original forward input tensor of type RealNumberType * @li x2: Original forward output tensor of type RealNumberType * @li grad: Gradient tensor of type RealNumberType * @par Attributes: * @li ksize: A required list or tuple, * specifying the size of the sliding window. * @li strides: A required list or tuple, * specifying the stride of the sliding window. * @li padding: A required string, window sliding mode. Either SAME or VALID. * @li data_format: An optional string. * Format of the original input, either NCHW or NHWC. Defaults to NHWC. * @attention Constraints: * @li Only the Ascend 910 platform is supported. * @li "x1" and "grads" must have the same shape. * @li "x2" and "y" must have the same shape. Otherwise, an error is reported. * @li "x1", "x2", "grads", and "y" must be 5D tensors. * @li ksize[H] and ksize[W] is in the range [1, 255]. * @li strides[H] and strides[W] is in the range [1, 63]. * @li Other dimensions of ksize and strides is 1. * @par Outputs: * @li y: Result tensor of type RealNumberType * @par Third-party framework compatibility * @li Compatible with the TensorFlow operator MaxPoolGradGrad. */ REG_OP(MaxPoolGradGrad) .INPUT(x1, TensorType::RealNumberType()) .INPUT(x2, TensorType::RealNumberType()) .INPUT(grad, TensorType::RealNumberType()) .OUTPUT(y, TensorType::RealNumberType()) .REQUIRED_ATTR(ksize, ListInt) .REQUIRED_ATTR(strides, ListInt) .REQUIRED_ATTR(padding, String) .ATTR(data_format, String, "NHWC") .OP_END_FACTORY_REG(MaxPoolGradGrad) /** *@brief Performs max_pool_ext2 on the input. *@par Inputs: * Two inputs: *@li x: An NC1HWC0 Tensor of type float16. *@li strides: A required type of int32 values, specifying the stride of the sliding window for each dimension of the input tensor. No default value. *@li ksize: A required type of int32 values, specifying the size of the window for each dimension of the input tensor. No default value. *@par Attributes: *@li padding: A required string. No default value. *@li data_format: An optional string. Defaults to "NC1HWC0". *@par Outputs: *y: A Tensor. Has the same type and format as input "x". *@attention Constraints: *@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, ksize[1] * ksize[2] <= 255. *@li "stride is a list that has length 4: strides[0] = 1 or strides[3] = 1, strides[1] <= 63, strides[0] >= 1, strides[2] <= 63, strides[2] >= 1. *@li "padding" is either "SAME" or "VALID". *@par Third-party framework compatibility * Compatible with the TensorFlow operator MaxPoolV2. */ REG_OP(MaxPoolV2) .INPUT(x, TensorType({DT_FLOAT16})) .INPUT(ksize, TensorType({DT_INT32})) .INPUT(strides, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT16})) .REQUIRED_ATTR(padding, String) .ATTR(data_format, String, "NHWC") .OP_END_FACTORY_REG(MaxPoolV2) /** *@brief Performs max pooling on the input and outputs both max values and * indices. *@par Inputs: * One input: *x: An NC1HWC0 Tensor. Supported type: float, double, int32, * uint8, int16, int8, int64, uint16, half, uint32, uint64. *@par Attributes: *@li ksize: A required list of int8, int16, int32, or int64 values, * specifying the size of the window for each dimension of the input tensor. * No default value. *@li strides: A required list of int8, int16, int32, or int64 values, * specifying the stride of the sliding window for each dimension of * the input tensor. No default value. *@li padding: A required string. No default value. *@par Outputs: *y: A Tensor. Has the same type and format as input "x". *argmax: A Tensor. Has the same type and format as input "x". *@attention Constraints: *@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, * ksize[1] * ksize[2] <= 255. *@li "stride is a list that has length 4: strides[0] = 1 or strides[3] = 1, * strides[1] <= 63, strides[0] >= 1, strides[2] <= 63, strides[2] >= 1. *@li "padding" is either "SAME" or "VALID". *@par Third-party framework compatibility * Compatible with the TensorFlow operator MaxPoolWithArgmax. */ REG_OP(MaxPoolWithArgmax) .INPUT(x, TensorType::RealNumberType()) .OUTPUT(y, TensorType::RealNumberType()) .OUTPUT(argmax, TensorType::IndexNumberType()) .REQUIRED_ATTR(ksize, ListInt) .REQUIRED_ATTR(strides, ListInt) .REQUIRED_ATTR(padding, String) .ATTR(Targmax, Int, 7) .OP_END_FACTORY_REG(MaxPoolWithArgmax) /** *@brief Performs the backpropagation of MaxPoolWithArgmax. *@par Inputs: * Three inputs, including: *@li x: An NC1HWC0 tensor. Supported type: float, double, int32, * uint8, int16, int8, int64, uint16, half, uint32, uint64. *@li grad: An NC1HWC0 tensor. Supported type: float, double, int32, * uint8, int16, int8, int64, uint16, half, uint32, uint64. *@li argmx: An NC1HWC0 tensor of type int32 or int64. *@par Attributes: *@li ksize: A required list of int8, int16, int32, or int64 values, * specifying the size of the window for each dimension of the input tensor. * No default value. *@li strides: A required list of int8, int16, int32, or int64 values, * specifying the stride of the sliding window for each dimension of * the input tensor. No default value. *@li padding: A required string. No default value. *@par Outputs: *y: A Tensor. Has the same type and format as input "x". *@attention Constraints: *@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, * ksize[1] * ksize[2] <= 255. *@li "strides" is a list that has length 4: strides[0] = 1 or strides[3] = 1 *@li "padding" is either "SAME" or "VALID". *@see max_pool_with_argmax *@par Third-party framework compatibility * Compatible with the TensorFlow operator MaxPoolGradWithArgmax. */ REG_OP(MaxPoolGradWithArgmax) .INPUT(x, TensorType::RealNumberType()) .INPUT(grad, TensorType::RealNumberType()) .INPUT(argmax, TensorType::IndexNumberType()) .OUTPUT(y, TensorType::RealNumberType()) .REQUIRED_ATTR(ksize, ListInt) .REQUIRED_ATTR(strides, ListInt) .REQUIRED_ATTR(padding, String) .OP_END_FACTORY_REG(MaxPoolGradWithArgmax) /** * @brief Computes second-order gradients of the maxpooling function. * @par Inputs: * @li x: Original forward input tensor of type RealNumberType * @li grad: Gradient tensor of type RealNumberType * @li argmax: An tensor of type IndexNumberType * @par Attributes: * @li ksize: A required list, specifying the size of the sliding window. * @li strides: A required list, specifying the stride of the sliding window. * @li padding: A required string, window sliding mode. Either SAME or VALID. * @par Outputs: * @li y:Result tensor of type RealNumberType * @attention Constraints: * @li Only the cloud platform is supported. * @li "x1" and "grads" must have the same shape. * @li length of the shape of x, grads, argmax, y must be 5. * @li shape of argmax must be (fmap_n, fmap_c1, kernel_h * kernel_w, * (shape_max_pool[2] * shape_max_pool[3] + 15) // 16 * 16, 1), * or (fmap_n, fmap_c1, kernel_h * kernel_w, * (shape_max_pool[2] * shape_max_pool[3] + 31) // 16, 16), else failed. * @par Third-party framework compatibility * @li Compatible with the TensorFlow operator MaxPoolGradGradWithArgmax. */ REG_OP(MaxPoolGradGradWithArgmax) .INPUT(x, TensorType::RealNumberType()) .INPUT(grad, TensorType::RealNumberType()) .INPUT(argmax, TensorType::IndexNumberType()) .OUTPUT(y, TensorType::RealNumberType()) .REQUIRED_ATTR(ksize, ListInt) .REQUIRED_ATTR(strides, ListInt) .REQUIRED_ATTR(padding, String) .OP_END_FACTORY_REG(MaxPoolGradGradWithArgmax) /** * @brief Computes avgpoograd function. * @par Inputs: * @li orig_input_shape: An NHWC tensor of type int32. * @li input_grad: An NHWC tensor of type float16, float32, or double. * @par Attributes: * @li ksize: A required tuple or list, specifying the size of the window for * each dimension of the input tensor. * @li strides: A required tuple or list, specifying the stride of the sliding * window for each dimension of the input tensor. * @li padding: A required string, specifying the type of * the padding algorithm to use. * @li data_format: An optional string. Defaults to "NHWC". * @par Outputs: * @out_grad: A mutable tensor with the same shape and type as "orig_input". * @par Third-party framework compatibility * @li Compatible with the TensorFlow operator AvgPoolGrad. */ REG_OP(AvgPoolGrad) .INPUT(orig_input_shape, TensorType({DT_INT32})) .INPUT(input_grad, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) .OUTPUT(out_grad, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) .REQUIRED_ATTR(ksize, ListInt) .REQUIRED_ATTR(strides, ListInt) .REQUIRED_ATTR(padding, String) .ATTR(data_format, String, "NHWC") .OP_END_FACTORY_REG(AvgPoolGrad) /** * @brief Computes gradients of average pooling function. * @par Inputs: * @input_grad: An NHWC tensor of type float16, float32, or double. * @par Attributes: * @li orig_input_shape: A required Original input dimensions. * @li ksize: A required tuple or list, specifying the size of the window * for each dimension of the input tensor. * @li strides: A required tuple or list, specifying the stride of * the sliding window for each dimension of the input tensor. * @li padding: A required string, specifying the type of the padding algorithm * to use. * @li data_format: An optional string. Defaults to "NHWC". * @par Outputs: * @out_grad: A mutable tensor with the same shape and type as "orig_input". */ REG_OP(AvgPoolGradD) .INPUT(input_grad, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) .OUTPUT(out_grad, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) .REQUIRED_ATTR(orig_input_shape, ListInt) .REQUIRED_ATTR(ksize, ListInt) .REQUIRED_ATTR(strides, ListInt) .REQUIRED_ATTR(padding, String) .ATTR(data_format, String, "NHWC") .OP_END_FACTORY_REG(AvgPoolGradD) REG_OP(MaxPoolWithArgmaxCCE) .INPUT(x, TensorType::ALL()) .OUTPUT(y, TensorType::ALL()) .OUTPUT(argmax, TensorType::ALL()) .ATTR(mode, Int, 0) .ATTR(pad_mode, Int, 0) .ATTR(window, ListInt, {1,1}) .ATTR(stride, ListInt, {1,1}) .ATTR(pad, ListInt, {0,0,0,0}) .ATTR(ceil_mode, Int, 0) .ATTR(data_mode, Int, 1) .ATTR(nan_opt, Int, 0) .OP_END_FACTORY_REG(MaxPoolWithArgmaxCCE) REG_OP(MaxPoolGradWithArgmaxCCE) .INPUT(x, TensorType::ALL()) .INPUT(grad,TensorType::ALL()) .INPUT(arg,TensorType::ALL()) .OUTPUT(output,TensorType::ALL()) .ATTR(mode, Int, 0) .ATTR(max_pool_grad_output_shape, ListInt, {0,0,0,0}) .ATTR(pad_mode, Int, 0) .ATTR(window, ListInt, {1,1}) .ATTR(stride, ListInt, {1,1}) .ATTR(pad, ListInt, {0,0,0,0}) .ATTR(ceil_mode, Int, 0) .ATTR(data_mode, Int, 1) .ATTR(nan_opt, Int, 0) .OP_END_FACTORY_REG(MaxPoolGradWithArgmaxCCE) /** *@brief :upsample the layer *@par Inputs: * one input, including: *@li x: A tensor of type float16 or float32. *@par Attributes: *@li scale: A optional float, scale factor of x. Defaults to "1.0". *@li stride_h: An optional int32, broadcast the axis of h. Defaults to "2". *@li stride_w: An optional int32, broadcast the axis of w. Defaults to "2". *@par Outputs: *y: A tensor of type float16 or float32. */ REG_OP(Upsample) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) .ATTR(scale, Float, 1) .ATTR(stride_h, Int, 2) .ATTR(stride_w, Int, 2) .OP_END_FACTORY_REG(Upsample) /** *@brief Computes gradient of the FractionalMaxPool function. *@par Inputs: *Inputs include: \n * @li orig_input: A Tensor. Must be one of the following types: float32, float64, int32, int64. * @li orig_output: A Tensor. Must have the same type as orig_input. * @li out_backprop: A Tensor. Must have the same type as orig_input. \n 4-D with shape [batch, height, width, channels]. * @li row_pooling_sequence: A Tensor of type int64. * @li col_pooling_sequence: A Tensor of type int64. *@par Attributes: *overlapping: An optional bool. Defaults to False. *@par Outputs: *y: A Tensor. Has the same type as orig_input. *@attention Constraints:\n *-The implementation for FractionalMaxPoolGrad on Ascend uses AICPU, with bad performance.\n *@par Third-party framework compatibility *@li compatible with tensorflow FractionalMaxPoolGrad operator. */ REG_OP(FractionalMaxPoolGrad) .INPUT(orig_input, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .INPUT(orig_output, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .INPUT(out_backprop, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .INPUT(row_pooling_sequence, TensorType({ DT_INT64 })) .INPUT(col_pooling_sequence, TensorType({ DT_INT64 })) .OUTPUT(y, TensorType({ DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64 })) .ATTR(overlapping, Bool, false) .OP_END_FACTORY_REG(FractionalMaxPoolGrad) /** *@brief Performs fractional average pooling on the input. *@par Inputs: *Inputs include: \n *x: A Tensor. Must be one of the following types: float32, float64, int32, int64. \n 4-D with shape [batch, height, width, channels]. *@par Attributes: *@li pooling_ratio: A list of floats that has length >= 4. *@li pseudo_random: An optional bool. Defaults to False. *@li overlapping: An optional bool. Defaults to False. When set to True, it means when pooling. *@li deterministic: An optional bool. Defaults to False. *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0. *@par Outputs: *@li y: A Tensor. Has the same type as x. *@li row_pooling_sequence: A Tensor of type int64. *@li col_pooling_sequence: A Tensor of type int64. *@attention Constraints:\n *-The implementation for FractionalAvgPool on Ascend uses AICPU, with bad performance.\n *@par Third-party framework compatibility *@li compatible with tensorflow FractionalAvgPool operator. */ REG_OP(FractionalAvgPool) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .OUTPUT(row_pooling_sequence, TensorType({DT_INT64})) .OUTPUT(col_pooling_sequence, TensorType({DT_INT64})) .ATTR(pooling_ratio, ListFloat, {}) .ATTR(pseudo_random, Bool, false) .ATTR(overlapping, Bool, false) .ATTR(deterministic, Bool, false) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(FractionalAvgPool) /** *@brief Performs fractional max pooling on the input. *@par Inputs: *Inputs include: \n *x: A Tensor. Must be one of the following types: float32, float64, int32, int64. \n 4-D with shape [batch, height, width, channels]. *@par Attributes: *@li pooling_ratio: A list of floats that has length >= 4. Pooling ratio for each dimension of value. *@li pseudo_random: An optional bool. Defaults to False. *@li overlapping: An optional bool. Defaults to False. *@li deterministic: An optional bool. Defaults to False. *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0. *@par Outputs: *@li y: A Tensor. Has the same type as x. *@li row_pooling_sequence: A Tensor of type int64. *@li col_pooling_sequence: A Tensor of type int64. *@attention Constraints:\n *-The implementation for FractionalMaxPool on Ascend uses AICPU, with bad performance.\n *@par Third-party framework compatibility *@li compatible with tensorflow FractionalMaxPool operator. */ REG_OP(FractionalMaxPool) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .OUTPUT(row_pooling_sequence, TensorType({DT_INT64})) .OUTPUT(col_pooling_sequence, TensorType({DT_INT64})) .ATTR(pooling_ratio, ListFloat, {}) .ATTR(pseudo_random, Bool, false) .ATTR(overlapping, Bool, false) .ATTR(deterministic, Bool, false) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(FractionalMaxPool) /** *@brief Finds values of the n-th order statistic for the last dimension. *@par Inputs: *Inputs include: \n * @li x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, \n int16, int8, int64, bfloat16, uint16, half, uint32, uint64. * @li n: A Tensor of type int32. 0-D. *@par Attributes: *reverse: An optional bool. Defaults to False. *@par Outputs: *y: A Tensor. Has the same type as x. *@attention Constraints:\n *-The implementation for NthElement on Ascend uses AICPU, with bad performance.\n *@par Third-party framework compatibility *@li compatible with tensorflow NthElement operator. */ REG_OP(NthElement) .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE})) .INPUT(n, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE})) .ATTR(reverse, Bool, false) .OP_END_FACTORY_REG(NthElement) /** *@brief Computes gradient of the FractionalAvgPool function. *@par Inputs: *Inputs include: \n * @li orig_input_tensor_shape: A Tensor of type int64. * @li out_backprop: A Tensor. Must be one of the following types: float32, float64, \n int32, int64. 4-D with shape [batch, height, width, channels]. * @li row_pooling_sequence: A Tensor of type int64. * @li col_pooling_sequence: A Tensor of type int64. *@par Attributes: *overlapping: An optional bool. Defaults to False. *@par Outputs: *y: A Tensor. Has the same type as out_backprop. *@attention Constraints:\n *-The implementation for FractionalAvgPoolGrad on Ascend uses AICPU, with bad performance.\n *@par Third-party framework compatibility *@li compatible with tensorflow FractionalAvgPoolGrad operator. */ REG_OP(FractionalAvgPoolGrad) .INPUT(orig_input_tensor_shape, TensorType({DT_INT64})) .INPUT(out_backprop, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .INPUT(row_pooling_sequence, TensorType({DT_INT64})) .INPUT(col_pooling_sequence, TensorType({DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .ATTR(overlapping, Bool, false) .OP_END_FACTORY_REG(FractionalAvgPoolGrad) /** *@brief Returns the permuted vector/tensor in the destination data format given the. *@par Inputs: *Inputs include: \n *x: A Tensor. Must be one of the following types: int32, int64. Vector of size 4 \n or Tensor of shape (4, 2) in source data format. *@par Attributes: *@li src_format: An optional string. Defaults to "NHWC". source data format. *@li dst_format: An optional string. Defaults to "NCHW". destination data format. *@par Outputs: *y: A Tensor. Has the same type as x. *@attention Constraints:\n *-The implementation for DataFormatVecPermute on Ascend uses AICPU, with bad performance.\n *@par Third-party framework compatibility *@li compatible with tensorflow DataFormatVecPermute operator. */ REG_OP(DataFormatVecPermute) .INPUT(x, TensorType({ DT_INT32, DT_INT64 })) .OUTPUT(y, TensorType({ DT_INT32, DT_INT64 })) .ATTR(src_format, String, "NHWC") .ATTR(dst_format, String, "NCHW") .OP_END_FACTORY_REG(DataFormatVecPermute) } // namespace ge #endif // GE_OP_NN_POOLING_OPS_H