|
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef GE_OP_MATH_OPS_H_
- #define GE_OP_MATH_OPS_H_
-
- #include "graph/operator_reg.h"
- #include "graph/operator.h"
-
- namespace ge {
-
- REG_OP(Igamma)
- .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OP_END_FACTORY_REG(Igamma)
-
- REG_OP(Igammac)
- .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OP_END_FACTORY_REG(Igammac)
-
- REG_OP(CompareAndBitpack)
- .INPUT(x, TensorType({ DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_INT8, \
- DT_INT16, DT_INT32, DT_INT64, DT_BOOL }))
- .INPUT(threshold, TensorType({ DT_FLOAT, DT_FLOAT16, DT_DOUBLE, \
- DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_BOOL }))
- .OUTPUT(y, TensorType(DT_UINT8))
- .OP_END_FACTORY_REG(CompareAndBitpack)
-
- REG_OP(Bincount)
- .INPUT(array, TensorType(DT_INT32))
- .INPUT(size, TensorType(DT_INT32))
- .INPUT(weights, TensorType({ DT_FLOAT, DT_INT32, DT_INT64, DT_DOUBLE }))
- .OUTPUT(bins, TensorType({ DT_FLOAT, DT_INT32, DT_INT64, DT_DOUBLE }))
- .OP_END_FACTORY_REG(Bincount)
-
- REG_OP(Betainc)
- .INPUT(a, TensorType({DT_DOUBLE, DT_FLOAT}))
- .INPUT(b, TensorType({DT_DOUBLE, DT_FLOAT}))
- .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT}))
- .OUTPUT(z, TensorType({DT_DOUBLE, DT_FLOAT}))
- .OP_END_FACTORY_REG(Betainc)
-
- REG_OP(Zeta)
- .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT}))
- .INPUT(q, TensorType({DT_DOUBLE, DT_FLOAT}))
- .OUTPUT(z, TensorType({DT_DOUBLE, DT_FLOAT}))
- .OP_END_FACTORY_REG(Zeta)
-
- REG_OP(Bucketize)
- .INPUT(x, TensorType({DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_INT32}))
- .REQUIRED_ATTR(boundaries, ListFloat)
- .OP_END_FACTORY_REG(Bucketize)
-
- REG_OP(SparseSegmentSum)
- .INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
- DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(segment_ids, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
- DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .OP_END_FACTORY_REG(SparseSegmentSum)
-
- REG_OP(SparseSegmentMean)
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(segment_ids, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OP_END_FACTORY_REG(SparseSegmentMean)
-
- REG_OP(SparseSegmentMeanGrad)
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(segment_ids, TensorType({DT_INT32}))
- .INPUT(output_dim0, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OP_END_FACTORY_REG(SparseSegmentMeanGrad)
-
- REG_OP(IgammaGradA)
- .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OP_END_FACTORY_REG(IgammaGradA)
-
- REG_OP(InitData)
- .ATTR(channel_name, String, "")
- .OP_END_FACTORY_REG(InitData)
-
- REG_OP(GetNext)
- .DYNAMIC_OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64,
- DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_BOOL}))
- .ATTR(output_types, ListInt, {})
- .ATTR(output_shapes, ListListInt, {})
- .ATTR(output_num, Int, 1)
- .ATTR(channel_name, String, "")
- .OP_END_FACTORY_REG(GetNext)
- /**
- *@brief: Computes the Gauss error function of `x` element-wise.
-
- *@par Inputs:\n
- *x: A Tensor of type float16 or float32.
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- */
- REG_OP(Erf)
- .INPUT(x, TensorType::FloatingDataType())
- .OUTPUT(y, TensorType::FloatingDataType())
- .OP_END_FACTORY_REG(Erf)
-
- /**
- *@brief: Computes the Gauss complementary error function of "x" element-wise.
-
- *@par Inputs:\n
- *x: A Tensor of type float16 or float32.
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- */
- REG_OP(Erfc)
- .INPUT(x, TensorType::FloatingDataType())
- .OUTPUT(y, TensorType::FloatingDataType())
- .OP_END_FACTORY_REG(Erfc)
-
- /**
- *@brief This operation returns a rank 1 histogram counting the number of entries in `values` \n
- * that fell into every bin.The bins are equal width and determined by the arguments \n
- * 'value_range' and 'nbins'. \n
-
- *@par Inputs:
- *Three inputs, including: \n
- *@li x: A Tensor of type float32,float16,int32.
- *@li range: A Tensor of type float32,float16,int32.
- *@li nbins: A Tensor of type int32.
-
- *@par Attributes:
- * dtype: An optional attribute. Defaults to "int32".
-
- *@par Outputs:
- *y: A Tensor. A Tensor of type int32.
- */
- REG_OP(HistogramFixedWidth)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .INPUT(nbins, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_INT32}))
- .ATTR(dtype, String, "int32")
- .OP_END_FACTORY_REG(HistogramFixedWidth)
-
- /**
- *@brief This operation returns a rank 1 histogram counting the number of entries in `values` \n
- * that fell into every bin.The bins are equal width and determined by the arguments \n
- * 'value_range' and 'nbins'. \n
-
- *@par Inputs:
- *Two inputs, including: \n
- *@li x: A Tensor of type float32,float16,int32.
- *@li range: A Tensor of type float32,float16,int32.
-
- *@par Attributes:
- *@li dtype: An optional attribute. Defaults to "int32".
- *@li nbins: A required attribute,the type is int32.
-
- *@par Outputs:
- *y: A Tensor. A Tensor of type int32.
- */
- REG_OP(HistogramFixedWidthD)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .OUTPUT(y, TensorType({DT_INT32}))
- .REQUIRED_ATTR(nbins, Int)
- .ATTR(dtype, String, "int32")
- .OP_END_FACTORY_REG(HistogramFixedWidthD)
- } // namespace ge
-
- #endif // GE_OP_MATH_OPS_H_
|