|
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef GE_OP_REDUCE_OPS_H
- #define GE_OP_REDUCE_OPS_H
-
- #include "../graph/operator_reg.h"
-
- namespace ge {
- REG_OP(BNTrainingReduce)
- .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
- .OUTPUT(sum, TensorType({DT_FLOAT}))
- .OUTPUT(square_sum, TensorType({DT_FLOAT}))
- .OP_END_FACTORY_REG(BNTrainingReduce)
-
- REG_OP(BNTrainingReduceGrad)
- .INPUT(grads, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(diff_scale, TensorType({DT_FLOAT}))
- .INPUT(diff_offset, TensorType({DT_FLOAT}))
- .INPUT(scale, TensorType({DT_FLOAT}))
- .INPUT(batch_mean, TensorType({DT_FLOAT}))
- .INPUT(batch_variance, TensorType({DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
- .ATTR(epsilon, Float, 0.0001)
- .OP_END_FACTORY_REG(BNTrainingReduceGrad)
-
- REG_OP(BNTrainingUpdate)
- .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(sum, TensorType({DT_FLOAT}))
- .INPUT(square_sum, TensorType({DT_FLOAT}))
- .INPUT(scale, TensorType({DT_FLOAT}))
- .INPUT(offset, TensorType({DT_FLOAT}))
- .INPUT(mean, TensorType({DT_FLOAT}))
- .INPUT(variance, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(factor, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
- .OUTPUT(mean, TensorType({DT_FLOAT}))
- .OUTPUT(variance, TensorType({DT_FLOAT}))
- .OUTPUT(batch_mean, TensorType({DT_FLOAT}))
- .OUTPUT(batch_variance, TensorType({DT_FLOAT}))
- .OP_END_FACTORY_REG(BNTrainingUpdate)
-
- REG_OP(BNInfer)
- .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(scale, TensorType({DT_FLOAT}))
- .INPUT(offset, TensorType({DT_FLOAT}))
- .INPUT(mean, TensorType({DT_FLOAT}))
- .INPUT(variance, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(epsilon, Float)
- .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
- .OP_END_FACTORY_REG(BNInfer)
-
- REG_OP(BNTrainingUpdateV2)
- .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(sum, TensorType({DT_FLOAT}))
- .INPUT(square_sum, TensorType({DT_FLOAT}))
- .INPUT(scale, TensorType({DT_FLOAT}))
- .INPUT(offset, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(epsilon, Float)
- .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
- .OUTPUT(batch_mean, TensorType({DT_FLOAT}))
- .OUTPUT(batch_variance, TensorType({DT_FLOAT}))
- .OP_END_FACTORY_REG(BNTrainingUpdateV2)
-
- REG_OP(BNTrainingUpdateGrad)
- .INPUT(grads, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(batch_mean, TensorType({DT_FLOAT}))
- .INPUT(batch_variance, TensorType({DT_FLOAT}))
- .ATTR(epsilon, Float, 0.0001)
- .OUTPUT(diff_scale, TensorType({DT_FLOAT}))
- .OUTPUT(diff_offset, TensorType({DT_FLOAT}))
- .OP_END_FACTORY_REG(BNTrainingUpdateGrad)
-
- REG_OP(BNInferGrad)
- .INPUT(grads, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(scale, TensorType({DT_FLOAT}))
- .INPUT(batch_variance, TensorType({DT_FLOAT}))
- .OUTPUT(x_backprop, TensorType({DT_FLOAT16,DT_FLOAT}))
- .ATTR(epsilon, Float, 0.0001)
- .OP_END_FACTORY_REG(BNInferGrad)
-
- REG_OP(ReduceSum)
- .INPUT(x, TensorType::NumberType())
- .INPUT(axis, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::NumberType())
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceSum)
-
- REG_OP(ReduceSumD)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8, DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8, DT_INT32}))
- .REQUIRED_ATTR(axis, ListInt)
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceSumD)
-
- /**
- *@brief Calculates the "logical sum" of elements of a tensor in a dimension.
-
- *@par Inputs:
- *One input:
- *x: A mutable Tensor. Must be one of the following types: float16,
- * float32, double. Should be a Variable Tensor.
-
- *@par Attributes:
- *@li keep_dims: A bool. If true, retains reduced dimensions with length 1.
- *@li axis: The dimensions to reduce. If None, reduces all dimensions.
- *Must be in the range [- rank (input_sensor), rank (input_sensor)).
-
- *@par Outputs:
- *y: The reduced tensor.
- */
- REG_OP(ReduceAllD)
- .INPUT(x, TensorType({DT_BOOL}))
- .OUTPUT(y, TensorType({DT_BOOL}))
- .REQUIRED_ATTR(axis, ListInt)
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceAllD)
-
- /**
- *@brief Calculates the "logical sum" of elements of a tensor in a dimension.
-
- *@par Inputs:
- *Two inputs, including:
- *@li x: A mutable Tensor. Must be one of the following types: float16, float32, double. Should be a Variable Tensor.
- *@li axis: A mutable Tensor. The dimensions to reduce. If None, reduces all dimensions. Must be in the range [- rank (input_sensor), rank (input_sensor)).
-
- *@par Attributes:
- *keep_dims: A bool. If true, retains reduced dimensions with length 1.
-
- *@par Outputs:
- *y: The reduced tensor.
- */
- REG_OP(ReduceAll)
- .INPUT(x, TensorType({DT_BOOL}))
- .INPUT(axis, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType({DT_BOOL}))
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceAll)
-
- /**
- *@brief Reduce a tensor on a certain axis based on product..
-
- *@par Inputs:
- *Two inputs, including:
- *@li x: A mutable Tensor. Must be the type of NumberType.
- *@li axis: A mutable Tensor. The dimensions to reduce.
-
- *@par Attributes:
- *@li keep_dims: A bool. If true, retains reduced dimensions with length 1. Defaults to "False".
-
- *@par Outputs:
- *y: A Tensor. Has the same type and format as input "x".
- */
- REG_OP(ReduceProd)
- .INPUT(x,TensorType::NumberType())
- .INPUT(axis, TensorType::IndexNumberType())
- .OUTPUT(y,TensorType::NumberType())
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceProd)
-
- /**
- *@brief Computes the product of elements across dimensions of a tensor.
-
- *@par Inputs:
- * One input: \n
- *x: A Tensor. Must be one of the following types: float16, float, int8, uint8.
-
- *@par Attributes:
- *@li axis: A required int8, int16, int32, or int64. Specifies the dimensions to reduce. No default value.
- *@li keep_dims: An optional bool. If "True", retains reduced dimensions with length 1. Defaults to "False".
-
- *@par Outputs:
- *y: A Tensor. Has the same type and format as input "x".
-
- *@attention Constraints:
- * "keep_dims" is in the range [-rank(input_tensor), rank(input_tensor)].
- */
- REG_OP(ReduceProdD)
- .INPUT(x,TensorType({DT_FLOAT, DT_UINT8, DT_INT8, DT_INT32, DT_FLOAT16}))
- .OUTPUT(y,TensorType({DT_FLOAT, DT_UINT8, DT_INT8, DT_INT32, DT_FLOAT16}))
- .REQUIRED_ATTR(axis, ListInt)
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceProdD)
-
- /**
- *@brief Reduces "x" along the dimensions according to "axis".
-
- *@par Inputs:
- *Two inputs, including:
- * @li x: A Tensor. Must be one of the following types: float16, float32, int8, uint8.
- * @li axis: The dimensions to reduce. Must be one of the following types: int, list, tuple, NoneType.\n
- * - If None (the default), reduces all dimensions.\n
- * - Must be in the range [-rank(x), rank(x)).
-
- *@par Attributes:
- *keep_dims: A bool or NoneType. \n
- * - If true, retains reduced dimensions with length 1. \n
- * - If false, the rank of the tensor is reduced by 1 for each entry in axis.
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- */
- REG_OP(ReduceMean)
- .INPUT(x, TensorType::NumberType())
- .INPUT(axis, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::NumberType())
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceMean)
-
- /**
- *@brief Reduces "x" along the dimensions according to "axis".
-
- *@par Inputs:
- *One input:
- * @li x: A Tensor. Must be one of the following types: float16, float32, int8, uint8.
-
- *@par Attributes:
- *@li axis: The dimensions to reduce. Must be one of the following types: int, list, tuple, NoneType. \n
- * If None (the default), reduces all dimensions. \n
- * Must be in the range [-rank(x), rank(x)). \n
- *@li keep_dims: A bool or NoneType. \n
- * - If true, retains reduced dimensions with length 1. \n
- * - If false, the rank of the tensor is reduced by 1 for each entry in axis.
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- */
- REG_OP(ReduceMeanD)
- .INPUT(x, TensorType({DT_FLOAT16, DT_INT32, DT_FLOAT, DT_INT8, DT_UINT8}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32, DT_FLOAT, DT_INT8, DT_UINT8}))
- .REQUIRED_ATTR(axis, ListInt)
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceMeanD)
-
- REG_OP(ReduceMax)
- .INPUT(x, TensorType::NumberType())
- .INPUT(axis, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::NumberType())
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceMax)
-
- /**
- *@brief Returns the maximum of elements across dimensions of a Tensor.
-
- *@par Inputs:
- *x: A multi-dimensional Tensor of type float16, float32, or int16.
-
- *@par Attributes:
- * Two attributes, including: \n
- *@li axis: A required listint, specifying the axis information of the index with the maximum value.
- *@li keep_dims: A bool, specifying whether to keep dimensions for the output Tensor. Defaults to "false".
-
- *@par Outputs:
- *y: A multi-dimensional Tensor, specifying the maximum value of the corresponding axis in the tensor. Has the same type as "x". (If "keep_dims" is set to "false", the output dimensions are reduced by "dimension" compared with that of "x". Otherwise, the output has one fewer dimension than "x".)
-
- *@attention Constraints:
- * The value range of "axis" is [-dims, dims - 1]. "dims" indicates the dimension length of "x".
- */
- REG_OP(ReduceMaxD)
- .INPUT(x, TensorType({DT_FLOAT, DT_UINT8, DT_INT8,
- DT_FLOAT16, DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_UINT8, DT_INT8,
- DT_FLOAT16, DT_INT32}))
- .REQUIRED_ATTR(axis, ListInt)
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceMaxD)
-
- REG_OP(ReduceMin)
- .INPUT(x, TensorType::NumberType())
- .INPUT(axis, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::NumberType())
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceMin)
-
- REG_OP(ReduceMinD)
- .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8}))
- .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8}))
- .REQUIRED_ATTR(axis, ListInt)
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceMinD)
- /**
- *@brief Computes the "logical or" of elements across dimensions of a tensor.\n
- * Reduces `x` along the dimensions given in `axis`.
- * Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
- * entry in `axis`. If `keep_dims` is true, the reduced dimensions
- * are retained with length 1.
- *
- * If `axis` is None, all dimensions are reduced, and a
- * tensor with a single element is returned.
- *
- *@attention Constraints:\n
- * Only support bool
- *
- *@par Inputs:
- *@li x : The boolean tensor to reduce.
- *@li axis : The dimensions to reduce. If `None` (the default), reduces all
- * dimensions. Must be in the range `[-rank(x), rank(x))`.
- *
- *@par Attributes:
- * keep_dims : If true, retains reduced dimensions with length 1.
- *
- *@par Outputs:
- * y : The reduced tensor
- *
- */
- REG_OP(ReduceAny)
- .INPUT(x, TensorType({DT_BOOL}))
- .INPUT(axis, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType({DT_BOOL}))
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceAny)
- /**
- *@brief Computes the "logical or" of elements across dimensions of a tensor.\n
- * Reduces `x` along the dimensions given in `axis`.
- * Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
- * entry in `axis`. If `keep_dims` is true, the reduced dimensions
- * are retained with length 1.
- *
- * If `axis` is None, all dimensions are reduced, and a
- * tensor with a single element is returned.
- *
- *@attention Constraints:\n
- * Only support bool
- *
- *@par Inputs:
- * x : The boolean tensor to reduce.
- *
- *@par Attributes:
- *@li axis : The dimensions to reduce. If `None` (the default), reduces all
- * dimensions. Must be in the range `[-rank(x), rank(x))`.
- *@li keep_dims : If true, retains reduced dimensions with length 1.
- *
- *@par Outputs:
- * y : The reduced tensor
- *
- */
- REG_OP(ReduceAnyD)
- .INPUT(x, TensorType({DT_BOOL}))
- .OUTPUT(y, TensorType({DT_BOOL}))
- .REQUIRED_ATTR(axis, ListInt)
- .ATTR(keep_dims, Bool, false)
- .OP_END_FACTORY_REG(ReduceAnyD)
-
- } //namespace ge
-
-
- #endif /* GE_OP_REDUCE_OPS_H */
|