|
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef GE_OP_NN_CALCULATION_OPS_H
- #define GE_OP_NN_CALCULATION_OPS_H
-
- #include "../graph/operator_reg.h"
-
- namespace ge {
- /**
- * @brief Computes the gradients of depthwise convolution with respect to the filter.
-
- * @par Inputs:
- * Three inputs include: \n
- * @li input: 4D origin shape of input tensor [N, C, H, W] or [N, H, W, C], support float16, float32, double
- * @li filter_size: A 4D tensor of type int32, with shape [H, W, C, K]
- * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C]. Must be one of the following types: float16, float32, double.
-
- * @par Attributes:
- * @li strides: The stride of the sliding window for height and width of input "x" of the convolution.
- * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height, stride_width, 1].
- * @li dilations: The dilation factor for each dimension of input "x". If set to k > 1, there will be k-1 skipped cells between each
- * filter element on that dimension. Must be with shape [1, 1, dilation_height, dilation_width] or [1, dilation_height, dilation_width, 1].
- * @li pads: Padding added to each dimension of the input.
- * @li data_format: Input data format, either "NHWC" or "NCHW".
-
- * @par Outputs:
- * filter_grad: Gradient of the deep convolution relative to the filter with shape [H, W, C, K]. Must be one of the following types: float16, float32, double.
-
- * @attention Constraints:\n
- * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
- * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
- * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape [C1, Hf, Wf, K, Co, C0],
- * where K is fixed at 1, and Co and C0 are 16.\n
- * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the data is 5D with shape [N, C1, Ho, Wo, C0],
- * where C is the same as that of the feature map and C0 is 16.\n
- * Limited by Tiling and L1 / L0 buffer memory: 512 * ceil(Wo, 16) + (480 * stride_h + 32 * filter_h) * ceil(Wi, 16) ≤ l1_size and Hf * Wf ≤ l0b_size/512.\n
- */
- REG_OP(DepthwiseConv2DBackpropFilter)
- .INPUT(input, TensorType({float16}))
- .INPUT(filter_size, TensorType({DT_INT32, DT_INT64}))
- .INPUT(out_backprop, TensorType({float16}))
- .OUTPUT(filter_grad, TensorType({float32}))
- .ATTR(strides, ListInt, {1, 1, 1, 1})
- .ATTR(dilations, ListInt, {1, 1, 1, 1})
- .ATTR(pads, ListInt, {0, 0, 0, 0})
- .ATTR(data_format, String, "NHWC")
- .OP_END_FACTORY_REG(DepthwiseConv2DBackpropFilter)
-
- /**
- * @brief Computes the gradients of depthwise convolution with respect to the filter.
-
- * @par Inputs:
- * Two inputs include: \n
- * @li input: 4D tensor with shape [N, C, H, W] or [N, H, W, C], of type float16
- * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C], of type float16
-
- * @par Attributes:
- * @li filter_size: Shape of filter.
- * @li strides: The stride of the sliding window for height and width of input "x" of the convolution.
- * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height, stride_width, 1].
- * @li dilations: The dilation factor for each dimension of input "x". If set to k > 1, there will be k-1 skipped cells between each
- * filter element on that dimension. Must be with shape [1, 1, dilation_height, dilation_width] or [1, dilation_height, dilation_width, 1].
- * @li pads: Padding added to each dimension of the input.
- * @li data_format: Input data format, either "NHWC" or "NCHW".
-
- * @par Outputs:
- * filter_grad: Gradient of the deep convolution relative to the filter with shape [H, W, C, K]. Must be of type float32.
-
- * @attention Constraints:\n
- * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
- * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
- * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape [C1, Hf, Wf, K, Co, C0],
- * where K is fixed at 1, and Co and C0 are 16.\n
- * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the data is 5D with shape [N, C1, Ho, Wo, C0],
- * where C is the same as that of the feature map and C0 is 16.\n
- * Limited by Tiling and L1 / L0 buffer memory: 512 * ceil(Wo, 16) + (480 * stride_h + 32 * filter_h) * ceil(Wi, 16) ≤ l1_size and Hf * Wf ≤ l0b_size/512.\n
- */
- REG_OP(DepthwiseConv2DBackpropFilterD)
- .INPUT(input, TensorType({float16}))
- .INPUT(out_backprop, TensorType({float16}))
- .OUTPUT(filter_grad, TensorType({float32}))
- .ATTR(filter_size, ListInt, {1, 1, 1, 1})
- .ATTR(strides, ListInt, {1, 1, 1, 1})
- .ATTR(dilations, ListInt, {1, 1, 1, 1})
- .ATTR(pads, ListInt, {0, 0, 0, 0})
- .ATTR(data_format, String, "NHWC")
- .OP_END_FACTORY_REG(DepthwiseConv2DBackpropFilterD)
-
- /**
- * @brief Computes the gradients of depthwise convolution with respect to the input.
-
- * @par Inputs:
- * Three inputs include: \n
- * @li input_size: 4D shape of input tensor [N, C, H, W] or [N, H, W, C], support int32
- * @li filter: 4D filter tensor with shape of [H, W, C, K], support float16, float32, double
- * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C]. Must be one of the following types: float16, float32, double.
-
- * @par Attributes:
- * @li strides: The stride of the sliding window for height and width of input "x" of the convolution.
- * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height, stride_width, 1].
- * @li dilations: The dilation factor for each dimension of input "x". If set to k > 1, there will be k-1 skipped cells between each
- * filter element on that dimension. Must be with shape [1, 1, dilation_height, dilation_width] or [1, dilation_height, dilation_width, 1].
- * @li pads: Padding added to each dimension of the input.
- * @li data_format: Input data format, either "NHWC" or "NCHW".
-
- * @par Outputs:
- * input_grad: Gradient of the deep convolution relative to the input with shape [N, C, H, W] or [N, H, W, C] Must be one of the following types: float16, float32, double.
-
- * @attention Constraints:\n
- * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
- * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
- * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape [C1, Hf, Wf, K, Co, C0],
- * where K is fixed at 1, and Co and C0 are 16.\n
- * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the data is 5D with shape [N, C1, Ho, Wo, C0],
- * where C is the same as that of the feature map and C0 is 16.\n
- * Limited by Tiling: max_h_in_l1 ≥ C0, where max_h_in_l1 = (l1_size - Hf*Wf*C0*C0*2) / (2* Wo *C0).\n
- */
- REG_OP(DepthwiseConv2DBackpropInput)
- .INPUT(input_size, TensorType({DT_INT32, DT_INT64}))
- .INPUT(filter, TensorType({DT_FLOAT16}))
- .INPUT(out_backprop, TensorType({DT_FLOAT16}))
- .OUTPUT(input_grad, TensorType({DT_FLOAT16}))
- .ATTR(strides, ListInt, {1, 1, 1, 1})
- .ATTR(dilations, ListInt, {1, 1, 1, 1})
- .ATTR(pads, ListInt, {0, 0, 0, 0})
- .ATTR(data_format, String, "NHWC")
- .OP_END_FACTORY_REG(DepthwiseConv2DBackpropInput)
-
- /**
- * @brief Computes the gradients of depthwise convolution with respect to the input.
-
- * @par Inputs:
- * Two inputs include: \n
- * @li filter: A 4D tensor of type float16, with shape [H, W, C, K]
- * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C], of type float16
-
- * @par Attributes:
- * @li input_size: The origin shape of input.
- * @li strides: The stride of the sliding window for height and width of input "x" of the convolution.
- * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height, stride_width, 1].
- * @li dilations: The dilation factor for each dimension of input "x". If set to k > 1, there will be k-1 skipped cells between each
- * filter element on that dimension. Must be with shape [1, 1, dilation_height, dilation_width] or [1, dilation_height, dilation_width, 1].
- * @li pads: Padding added to each dimension of the input.
- * @li data_format: Input data format, either "NHWC" or "NCHW".
-
- * @par Outputs:
- * input_grad: Gradient of the deep convolution relative to the input with shape [N, C, H, W] or [N, H, W, C]. Must be of type float16.
-
- * @attention Constraints:\n
- * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
- * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
- * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape [C1, Hf, Wf, K, Co, C0],
- * where K is fixed at 1, and Co and C0 are 16.\n
- * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the data is 5D with shape [N, C1, Ho, Wo, C0],
- * where C is the same as that of the feature map and C0 is 16.\n
- * Limited by Tiling: max_h_in_l1 ≥ C0, where max_h_in_l1 = (l1_size - Hf*Wf*C0*C0*2) / (2* Wo *C0).\n
- */
- REG_OP(DepthwiseConv2DBackpropInputD)
- .INPUT(filter, TensorType({DT_FLOAT16}))
- .INPUT(out_backprop, TensorType({DT_FLOAT16}))
- .OUTPUT(input_grad, TensorType({DT_FLOAT16}))
- .ATTR(input_size, ListInt, {1, 1, 1, 1})
- .ATTR(strides, ListInt, {1, 1, 1, 1})
- .ATTR(dilations, ListInt, {1, 1, 1, 1})
- .ATTR(pads, ListInt, {0, 0, 0, 0})
- .ATTR(data_format, String, "NHWC")
- .OP_END_FACTORY_REG(DepthwiseConv2DBackpropInputD)
-
- /**
- *@brief Computes a 2D deep convolution given a 4D input tensor and a filter tensor.
-
- *@par Inputs:
- *Two required inputs and two optional inputs, including: \n
- * @li x: A 4D tensor of type float16, with shape [N, C, H, W] or [N, H, W, C]
- * @li filter: A 4D tensor of type float16, with shape [H, W, C, K]
- * @li bias: An optional tensor of type int8
- * @li offset_w: An optional float16, used for quantized inference
-
- * @par Attributes:
- * @li strides: The stride of the sliding window for height and width of input "x" of the convolution.
- * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height, stride_width, 1].
- * @li dilations: The dilation factor for each dimension of input "x". If set to k > 1, there will be k-1 skipped cells between each
- * filter element on that dimension. Must be with shape [1, 1, dilation_height, dilation_width] or [1, dilation_height, dilation_width, 1].
- * @li pads: Padding added to each dimension of the input.
- * @li data_format: Input data format, either "NHWC" or "NCHW".
- * @li offset_a: Input offset, used for quantized inference.
-
- * @par Outputs:
- * y: 4D tensor of type float16, with shape [N, C, H, W] or [N, H, W, C]
-
- * @attention Constraints:\n
- * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
- * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
- * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape [C1, Hf, Wf, K, Co, C0],
- * where K is fixed at 1, and Co and C0 are 16.\n
- * Limited by the size of L1 buffer memory: \n
- * (l1_size - filter_h*filter_w*BLOCK_SIZE*BLOCK_SIZE*data_size) // (Wi*BLOCK_SIZE*data_size) >= (BLOCK_SIZE*strides_h + filter_h - strides_h).\n
- */
- REG_OP(DepthwiseConv2D)
- .INPUT(x, TensorType({DT_FLOAT16}))
- .INPUT(filter, TensorType({DT_FLOAT16}))
- .OPTIONAL_INPUT(bias, TensorType({DT_INT8}))
- .OPTIONAL_INPUT(offset_w, TensorType({DT_FLOAT16}))
- .OUTPUT(y, TensorType({DT_FLOAT16}))
- .ATTR(strides, ListInt, {})
- .ATTR(dilations, ListInt, {})
- .ATTR(pads, ListInt, {0, 0, 0, 0})
- .ATTR(data_format, String, "NHWC")
- .ATTR(offset_a, Int, 0)
- .OP_END_FACTORY_REG(DepthwiseConv2D)
-
- REG_OP(Conv2DCCE)
- .INPUT(x, TensorType{DT_FLOAT}) // The input tensor
- .INPUT(w, TensorType({DT_FLOAT, DT_INT8})) // The weight tensor ,If QuantType =1 ,shall use type""tensor(int8)
- .OPTIONAL_INPUT(b, TensorType{DT_FLOAT}) // Optional 1D bias to be added to the convolution, has size of M.
- .OUTPUT(y, TensorType{DT_FLOAT}) // The output tensor
- .ATTR(mode, Int, 1)
- .ATTR(group, Int, 1) // number of groups input channels and output channels are divided into
- .ATTR(num_output, Int, 0) // number of output tensor
- .ATTR(pad, ListInt, {0, 0, 0, 0}) // Padding for the beginning and ending along each axis
- .ATTR(kernel, ListInt, {0, 0})
- .ATTR(stride, ListInt, {1, 1}) // Stride along each axis.
- .ATTR(dilation, ListInt, {1, 1}) // dilation value along each axis of the filter.
- .ATTR(pad_mode, Int, 0) // pad mode, 0:NOTSET, 1:SAME_UPPER, SAME_LOWER or 2:VALID.defaul default value is 0:NOTSET
- .ATTR(algo, Int, 2)
- .OP_END_FACTORY_REG(Conv2DCCE)
-
- REG_OP(Conv2DBackpropFilterCCE)
- .INPUT(x, TensorType{DT_FLOAT})
- .INPUT(filter_sizes, TensorType{DT_INT8})
- .INPUT(out_backprop, TensorType{DT_FLOAT})
- .OUTPUT(y, TensorType{DT_FLOAT})
- .ATTR(conv_grad_filter_output_shape, ListInt, {0, 0, 0, 0})
- .ATTR(mode, Int, 1)
- .ATTR(group, Int, 1)
- .ATTR(pad, ListInt, {0, 0, 0, 0})
- .ATTR(stride, ListInt, {1, 1})
- .ATTR(dilation, ListInt, {1, 1})
- .ATTR(padding, Int, 0) //pad_mode:same valid
- .ATTR(algo, Int, 0)
- .OP_END_FACTORY_REG(Conv2DBackpropFilterCCE)
-
- REG_OP(Conv2DBackpropInputCCE)
- .INPUT(input_sizes, TensorType{DT_INT8})
- .INPUT(filter, TensorType{DT_FLOAT})
- .INPUT(out_backprop, TensorType{DT_FLOAT})
- .OUTPUT(output, TensorType{DT_FLOAT})
- .ATTR(conv_grad_input_output_shape, ListInt, {0, 0, 0, 0})
- .ATTR(mode, Int, 1)
- .ATTR(format, Int, 0)
- .ATTR(group, Int, 1)
- .ATTR(pad_mode, Int, 0)
- .ATTR(stride, ListInt, {1, 1})
- .ATTR(dilation, ListInt, {1, 1})
- .ATTR(pad, ListInt, {0, 0, 0, 0})
- .ATTR(algo, Int, 0)
- .OP_END_FACTORY_REG(Conv2DBackpropInputCCE)
-
- /**
- *@brief Performs the the backward operation for "BiasAdd" on the "bias" tensor.
- * It accumulates all the values from out_backprop into the feature
- * dimension. For NHWC data format, the feature dimension is the last.
- * For NCHW data format, the feature dimension is the third-to-last.
-
- *@par Inputs:
- *x: A Tensor of type TensorType::NumberType().
-
- *@par Attributes:
- *data_format: Data format. Defaults to "NHWC".
-
- *@par Outputs:
- *y: A Tensor.Has the same type as "x".
- */
- REG_OP(BiasAddGrad)
- .INPUT(x, TensorType::NumberType())
- .OUTPUT(y, TensorType::NumberType())
- .ATTR(data_format, String, "NHWC")
- .OP_END_FACTORY_REG(BiasAddGrad)
-
- /**
- *@brief Computes the gradients of convolution with respect to the input.
- *@par Inputs:
- * Three inputs:
- * @li input_sizes: A Tensor of type int32. An integer vector representing the shape of input,
- * where input is a 4-D tensor [batch, height, width, channels] or [batch, channels, height, width].
- * @li filters: A Tensor. Must be one of the following types: float16.
- * 4-D with shape [filter_height, filter_width, in_channels, out_channels]
- * or [out_channels, filter_height, filter_width, in_channels] or [out_channels, in_channel, filter_height, filter_width].
- * @li out_backprop: A Tensor. Must have the same type as filter. 4-D with shape [batch, out_height, out_width, out_channels]
- * or [batch, out_channels, out_height, out_width]. Gradients with respect to the output of the convolution.
- *@par Attributes:
- * Three attributes:
- * @li strides: A tuple/list of 2 integers. The stride of the sliding window for H/W dimension.
- * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads on feature map
- * @li dilations: A tuple/list of 4 integers, The dilation factor for each dimension of input, now only support [1,1,1,1]
- *@par Outputs:
- * y: A Tensor. Has the same type as filter,and has same format as input_size
- */
- REG_OP(Conv2DBackpropInput)
- .INPUT(input_sizes, TensorType({DT_INT32, DT_INT64}))
- .INPUT(filters, TensorType{DT_FLOAT16})
- .INPUT(out_backprop, TensorType{DT_FLOAT16})
- .OUTPUT(y, TensorType{DT_FLOAT16})
- .REQUIRED_ATTR(strides, ListInt)
- .ATTR(pads, ListInt, {1, 1, 1, 1})
- .ATTR(dilations, ListInt, {1, 1, 1, 1})
- .OP_END_FACTORY_REG(Conv2DBackpropInput)
-
- /**
- *@brief Computes the gradients of convolution with respect to the input.
- *@par Inputs:
- * Two inputs:
- * @li filters: A Tensor. Types is float16.
- * 4-D with shape [filter_height, filter_width, in_channels, out_channels] or [out_channels, filter_height, filter_width, in_channels]
- * or [out_channels, in_channel, filter_height, filter_width].
- * @li out_backprop: A Tensor. Must have the same type as filter. 4-D with shape [batch, out_height, out_width, out_channels]
- * or [batch, out_channels, out_height, out_width]. Gradients with respect to the output of the convolution.
- *@par Attributes:
- * Four attributes:
- * @li input_size A Tensor of type int32. An integer vector representing the shape of input,
- * where input is a 4-D tensor [batch, height, width, channels] or [batch, channels, height, width].
- * @li strides: A tuple/list of 2 integers. The stride of the sliding window for H/W dimension.
- * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads on feature map
- * @li dilations: A tuple/list of 4 integers, The dilation factor for each dimension of input, now only support [1,1,1,1]
- *@par Outputs:
- * y: A Tensor. Has the same type as filter,4-D tensor [batch, height, width, channels] or [batch, channels, height, width].
- */
- REG_OP(Conv2DBackpropInputD)
- .INPUT(filters, TensorType{DT_FLOAT16})
- .INPUT(out_backprop, TensorType{DT_FLOAT16})
- .OUTPUT(y, TensorType{DT_FLOAT16})
- .REQUIRED_ATTR(input_sizes, ListInt)
- .REQUIRED_ATTR(strides, ListInt)
- .ATTR(pads, ListInt, {1, 1, 1, 1})
- .ATTR(dilations, ListInt, {1, 1, 1, 1})
- .OP_END_FACTORY_REG(Conv2DBackpropInputD)
-
- REG_OP(Deconvolution)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
- .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
- .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE))
- .ATTR(strides, ListInt, {1, 1, 1, 1})
- .ATTR(pads, ListInt, {0, 0, 0, 0})
- .ATTR(dilations, ListInt, {1, 1, 1, 1})
- .OP_END_FACTORY_REG(Deconvolution)
- /**
- *@brief Computes the gradients of convolution with respect to the filter
- *@par Inputs:
- * Three inputs:
- * @li x: A Tensor. Must be one of the following types: float16.
- * 4-D with shape [batch, in_height, in_width, in_channels] or [batch, in_channels, in_height, in_width].
- * @li filter_sizes: A Tensor of type int32. An integer vector representing the tensor shape of filter,
- * where filter is a 4-D tensor [filter_height, filter_width, in_channels, out_channels]
- * or [out_channels, filter_height, filter_width, in_channels] or [out_channels, in_channel, filter_height, filter_width].
- * @li out_backprop: A Tensor. Must have the same type as x. 4-D with shape [batch, out_height, out_width, out_channels]
- * or [batch, out_channels, out_height, out_width]. Gradients with respect to the output of the convolution.
- *@par Attributes:
- * Three attributes:
- * @li strides: A tuple/list of 2 integers. The stride of the sliding window for H/W dimension.
- * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads on feature map.
- * @li dilations: A tuple/list of 4 integers, The dilation factor for each dimension of input, now only support [1,1,1,1].
- *@par Outputs:
- * y: A Tensor. Has the same type as x
- */
- REG_OP(Conv2DBackpropFilter)
- .INPUT(x, TensorType{DT_FLOAT16})
- .INPUT(filter_sizes, TensorType({DT_INT32, DT_INT64}))
- .INPUT(out_backprop, TensorType{DT_FLOAT16})
- .OUTPUT(y, TensorType{DT_FLOAT})
- .REQUIRED_ATTR(strides, ListInt)
- .ATTR(pads, ListInt, {1, 1, 1, 1})
- .ATTR(dilations, ListInt, {1, 1, 1, 1})
- .OP_END_FACTORY_REG(Conv2DBackpropFilter)
-
- /**
- *@brief Computes the gradients of convolution with respect to the filter.
- *@par Inputs:
- * Two inputs:
- * @li x: A Tensor. Type is float16.
- * 4-D with shape [batch, in_height, in_width, in_channels] or [batch, in_channels, in_height, in_width].
- * @li out_backprop: A Tensor. Must have the same type as x. 4-D with shape [batch, out_height, out_width, out_channels]
- * or [batch, out_channels, out_height, out_width]. Gradients with respect to the output of the convolution.
- *@par Attributes:
- * Four attributes:
- * @li filter_sizes: A Tensor of type integers. An integer vector representing the tensor shape of filter,
- * where filter is a 4-D tensor [filter_height, filter_width, in_channels, out_channels]
- * or [out_channels, filter_height, filter_width, in_channels] or [out_channels, in_channel, filter_height, filter_width].
- * @li strides: A tuple/list of 2 integers. The stride of the sliding window for H/W dimension.
- * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads on feature map
- * @li dilations: A tuple/list of 4 integers, The dilation factor for each dimension of input, now only support [1,1,1,1].
- *@par Outputs:
- * y: A Tensor. Has the same type as x
- */
- REG_OP(Conv2DBackpropFilterD)
- .INPUT(x, TensorType{DT_FLOAT16})
- .INPUT(out_backprop, TensorType{DT_FLOAT16})
- .OUTPUT(y, TensorType{DT_FLOAT})
- .REQUIRED_ATTR(filter_sizes, ListInt)
- .REQUIRED_ATTR(strides, ListInt)
- .ATTR(pads, ListInt, {1, 1, 1, 1})
- .ATTR(dilations, ListInt, {1, 1, 1, 1})
- .OP_END_FACTORY_REG(Conv2DBackpropFilterD)
-
- REG_OP(Conv2D)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8})) // the featrue map tensor
- .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8})) // the filter tensor
- .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32})) // optional 1D bias to be added to the conv2d
- .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32})) // the output tensor
- .ATTR(strides, ListInt, {1, 1, 1, 1}) // stride on H\W, format sensitive
- .ATTR(pads, ListInt, {0, 0, 0, 0}) // top, bottom, left and right pads on feature map
- .ATTR(dilations, ListInt, {1, 1, 1, 1}) // dilation on H\W, format sensitive
- .ATTR(offset_a, Int, 0)
- .OP_END_FACTORY_REG(Conv2D)
-
- } // namespace ge
- #endif // GE_OP_NN_CALCULATION_OPS_H
|