|
- package com.acts.opencv.base;
-
- import java.util.ArrayList;
- import java.util.Date;
- import java.util.List;
- import java.util.TreeMap;
-
- import javax.servlet.http.HttpServletResponse;
-
- import org.apache.commons.lang3.StringUtils;
- import org.opencv.core.Core;
- import org.opencv.core.Core.MinMaxLocResult;
- import org.opencv.core.CvType;
- import org.opencv.core.Mat;
- import org.opencv.core.MatOfFloat;
- import org.opencv.core.MatOfInt;
- import org.opencv.core.Point;
- import org.opencv.core.Range;
- import org.opencv.core.Rect;
- import org.opencv.core.Scalar;
- import org.opencv.core.Size;
- import org.opencv.highgui.Highgui;
- import org.opencv.imgproc.Imgproc;
- import org.opencv.photo.Photo;
- import org.slf4j.Logger;
- import org.slf4j.LoggerFactory;
- import org.springframework.stereotype.Controller;
- import org.springframework.web.bind.annotation.RequestMapping;
-
- import com.acts.opencv.common.utils.Constants;
- import com.acts.opencv.common.utils.OpenCVUtil;
- import com.acts.opencv.common.web.BaseController;
-
-
-
- @Controller
- @RequestMapping(value = "cardPlus")
- public class CardPlusController extends BaseController {
- private static final Logger logger = LoggerFactory.getLogger(CardPlusController.class);
-
- /**
- * 答题卡识别优化
- * 创建者 Songer
- * 创建时间 2018年3月23日
- */
- @RequestMapping(value = "answerSheet")
- public void answerSheet(HttpServletResponse response, String imagefile, Integer binary_thresh,
- String blue_red_thresh) {
- System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
- logger.info("\n 完整答题卡识别");
-
- String sourcePath = Constants.PATH + imagefile;
- logger.info("url==============" + sourcePath);
- Mat sourceMat = Highgui.imread(sourcePath, Highgui.CV_LOAD_IMAGE_COLOR);
- long t1 = new Date().getTime();
- String destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk0.png";
- Highgui.imwrite(destPath, sourceMat);
- logger.info("原答题卡图片======" + destPath);
- // 初始图片灰度图
- Mat sourceMat1 = Highgui.imread(sourcePath, Highgui.CV_LOAD_IMAGE_GRAYSCALE);
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk1.png";
- Highgui.imwrite(destPath, sourceMat1);
- logger.info("生成灰度图======" + destPath);
- // 先膨胀 后腐蚀算法,开运算消除细小杂点
- Mat element = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(2 * 1 + 1, 2 * 1 + 1));
- Imgproc.morphologyEx(sourceMat1, sourceMat1, Imgproc.MORPH_OPEN, element);
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk2.png";
- Highgui.imwrite(destPath, sourceMat1);
- logger.info("生成膨胀腐蚀后的图======" + destPath);
-
- // 切割右侧和底部标记位图片
- Mat rightMark = new Mat(sourceMat1, new Rect(sourceMat1.cols() - 100, 0, 100, sourceMat1.rows()));
-
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk3.png";
- Highgui.imwrite(destPath, rightMark);
- logger.info("截取右侧定位点图======" + destPath);
- // 平滑处理消除噪点毛刺等等
- Imgproc.GaussianBlur(rightMark, rightMark, new Size(3, 3), 0);
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk4.png";
- Highgui.imwrite(destPath, rightMark);
- logger.info("平滑处理后的右侧定位点图======" + destPath);
-
- // 根据右侧定位获取水平投影,并获取纵向坐标
- Mat matright = horizontalProjection(rightMark);
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk5.png";
- Highgui.imwrite(destPath, matright);
- logger.info("右侧水平投影图======" + destPath);
- // 获取y坐标点,返回的是横向条状图集合
- List<Rect> listy = getBlockRect(matright, 1, 0);
-
- Mat footMark = new Mat(sourceMat1, new Rect(0, sourceMat1.rows() - 150, sourceMat1.cols(), 50));
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk6.png";
- Highgui.imwrite(destPath, footMark);
- logger.info("截取底部定位点图======" + destPath);
-
- Imgproc.GaussianBlur(footMark, footMark, new Size(3, 3), 0);
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk7.png";
- Highgui.imwrite(destPath, footMark);
- logger.info("平滑处理后的底部定位点图======" + destPath);
-
- // 根据底部定位获取垂直投影,并获取横向坐标
- Mat matbootom = verticalProjection(footMark);
-
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk8.png";
- Highgui.imwrite(destPath, matbootom);
- logger.info("底部垂直投影图======" + destPath);
- // 获取x坐标点,返回的是竖向的柱状图集合
- List<Rect> listx = getBlockRect(matbootom, 0, 0);
-
-
-
- // 高阶处理:增加HSV颜色查找,查找红色像素点
- Mat matRed = findColorbyHSV(sourceMat, 156, 180);
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk9.png";
- Highgui.imwrite(destPath, matRed);
- logger.info("HSV找出红色像素点======" + destPath);
-
- Mat dstNoRed = new Mat(sourceMat1.rows(), sourceMat1.cols(), sourceMat1.type());
- dstNoRed = OpenCVUtil.dilation(sourceMat1);
- // Imgproc.threshold(sourceMat1, dstNoRed, 190, 255, Imgproc.THRESH_BINARY);
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk10.png";
- Highgui.imwrite(destPath, dstNoRed);
- logger.info("原灰度图的图片======" + destPath);
-
- Photo.inpaint(dstNoRed, matRed, dstNoRed, 1, Photo.INPAINT_NS);
- // findBlackColorbyHSV(sourceMat);
- // for (int i = 0;i<dstNoRed.rows();i++) {
- // for (int j = 0; j < dstNoRed.cols(); j++) {
- // if(matRed.get(i, j)[0]==255){//代表识别出的红色区域
- // dstNoRed.put(i,j,255);
- // }
- // }
- // }
-
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk11.png";
- Highgui.imwrite(destPath, dstNoRed);
- logger.info("去除红颜色后的图片======" + destPath);
-
- Mat grayHistogram1 = getGrayHistogram(dstNoRed);
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk12.png";
- Highgui.imwrite(destPath, grayHistogram1);
- logger.info("灰度直方图图片1======" + destPath);
-
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk13.png";
- Mat answerMat = dstNoRed.submat(new Rect(41, 895, 278, 133));
- Mat grayHistogram2 = getGrayHistogram(answerMat);
- Highgui.imwrite(destPath, grayHistogram2);
- logger.info("灰度直方图图片2======" + destPath);
-
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk14.png";
- Imgproc.threshold(dstNoRed, dstNoRed, binary_thresh, 255, Imgproc.THRESH_BINARY_INV);
- Highgui.imwrite(destPath, dstNoRed);
- logger.info("去除红色基础上进行二值化======" + destPath);
- String redvalue = StringUtils.split(blue_red_thresh, ",")[0];
- String bluevalue = StringUtils.split(blue_red_thresh, ",")[1];
- System.out.println(bluevalue + " " + redvalue);
- TreeMap<Integer, String> resultMap = new TreeMap<Integer, String>();
- StringBuffer resultValue = new StringBuffer();
- for (int no = 0; no < listx.size(); no++) {
- Rect rectx = listx.get(no);
- for (int an = 0; an < listy.size(); an++) {
- Rect recty = listy.get(an);
- Mat selectdst = new Mat(dstNoRed, new Range(recty.y, recty.y + recty.height), new Range(rectx.x,
- rectx.x
- + rectx.width));
- // 本来是在每个区域内进行二值化,后来挪至了14步,整体进行二值化,因此注释掉此处2行
- // Mat selectdst = new Mat(select.rows(), select.cols(), select.type());
- // Imgproc.threshold(select, selectdst, 170, 255, Imgproc.THRESH_BINARY);
-
- // System.out.println("rectx.x, recty.y=="+rectx.x+","+recty.y+"rectx.width,recty.height=="+rectx.width+","+recty.height);
- double p100 = Core.countNonZero(selectdst) * 100 / (selectdst.size().area());
- String que_answer = getQA(no, an);
- Integer que = Integer.valueOf(que_answer.split("_")[0]);
- String answer = que_answer.split("_")[1];
- // System.out.println(Core.countNonZero(selectdst) + "/" + selectdst.size().area());
- System.out.println(que_answer + ": " + p100);
-
- if (p100 >= Integer.valueOf(bluevalue)) {// 蓝色
- Core.rectangle(sourceMat, new Point(rectx.x, recty.y), new Point(rectx.x + rectx.width, recty.y
- + recty.height), new Scalar(255, 0, 0), 2);
- // logger.info(que_answer + ":填涂");
- if (StringUtils.isNotEmpty(resultMap.get(que))) {
- resultMap.put(que, resultMap.get(que) + "," + answer);
- } else {
- resultMap.put(que, answer);
- }
- } else if (p100 > Integer.valueOf(redvalue) && p100 < Integer.valueOf(bluevalue)) {// 红色
- Core.rectangle(sourceMat, new Point(rectx.x, recty.y), new Point(rectx.x + rectx.width, recty.y
- + recty.height), new Scalar(0, 0, 255), 2);
- // logger.info(que_answer + ":临界");
- if (StringUtils.isNotEmpty(resultMap.get(que))) {
- resultMap.put(que, resultMap.get(que) + ",(" + answer + ")");
- } else {
- resultMap.put(que, "(" + answer + ")");
- }
- } else {// 绿色
- Core.rectangle(sourceMat, new Point(rectx.x, recty.y), new Point(rectx.x + rectx.width, recty.y
- + recty.height), new Scalar(0, 255, 0), 1);
- // logger.info(que_answer + ":未涂");
- }
- }
- }
-
- // for (Object result : resultMap.keySet()) {
- for (int i = 1; i <= 100; i++) {
- // logger.info("key=" + result + " value=" + resultMap.get(result));
- resultValue.append(" " + i + "=" + (StringUtils.isEmpty(resultMap.get(i)) ? "未填写" : resultMap.get(i)));
- if (i % 5 == 0) {
- resultValue.append("<br>");
- }
- }
- destPath = Constants.PATH + Constants.DEST_IMAGE_PATH + "dtk15.png";
- Highgui.imwrite(destPath, sourceMat);
- logger.info("框选填图区域,绿色为选项,蓝色为填图,红色为临界======" + destPath);
- long t2 = new Date().getTime();
- System.out.println(t2 - t1);
-
- // logger.info("输出最终结果:" + resultValue.toString());
-
- renderString(response, resultValue.toString());
- }
-
- /**
- * 绘制灰度直方图用于调整识别区域阈值判断
- * @Author 王嵩
- * @param 输入Mat对象img
- * @return Mat
- * @Date 2018年3月28日
- * 更新日志
- * 2018年3月28日 王嵩 首次创建
- *
- */
- public Mat getGrayHistogram(Mat img) {
- List<Mat> images = new ArrayList<Mat>();
- images.add(img);
- MatOfInt channels = new MatOfInt(0); // 图像通道数,0表示只有一个通道
- MatOfInt histSize = new MatOfInt(256); // CV_8U类型的图片范围是0~255,共有256个灰度级
- Mat histogramOfGray = new Mat(); // 输出直方图结果,共有256行,行数的相当于对应灰度值,每一行的值相当于该灰度值所占比例
- MatOfFloat histRange = new MatOfFloat(0, 255);
- Imgproc.calcHist(images, channels, new Mat(), histogramOfGray, histSize, histRange, false); // 计算直方图
- MinMaxLocResult minmaxLoc = Core.minMaxLoc(histogramOfGray);
- // 按行归一化
- // Core.normalize(histogramOfGray, histogramOfGray, 0, histogramOfGray.rows(), Core.NORM_MINMAX, -1, new Mat());
-
- // 创建画布
- int histImgRows = 600;
- int histImgCols = 1300;
- System.out.println("---------" + histSize.get(0, 0)[0]);
- int colStep = (int) Math.floor(histImgCols / histSize.get(0, 0)[0]);// 舍去小数,不能四舍五入,有可能列宽不够
- Mat histImg = new Mat(histImgRows, histImgCols, CvType.CV_8UC3, new Scalar(255, 255, 255)); // 重新建一张图片,绘制直方图
-
-
- int max = (int) minmaxLoc.maxVal;
- System.out.println("--------" + max);
- double bin_u = (double) (histImgRows - 20) / max; // max: 最高条的像素个数,则 bin_u 为单个像素的高度,因为画直方图的时候上移了20像素,要减去
- int kedu = 0;
- for (int i = 1; kedu <= minmaxLoc.maxVal; i++) {
- kedu = i * max / 10;
- // 在图像中显示文本字符串
- Core.putText(histImg, kedu + "", new Point(0, histImgRows - kedu * bin_u), 1, 1, new Scalar(0, 0, 0));
- }
-
-
- for (int i = 0; i < histSize.get(0, 0)[0]; i++) { // 画出每一个灰度级分量的比例,注意OpenCV将Mat最左上角的点作为坐标原点
- // System.out.println(i + ":=====" + histogramOfGray.get(i, 0)[0]);
- Core.rectangle(histImg, new Point(colStep * i, histImgRows - 20), new Point(colStep * (i + 1), histImgRows
- - bin_u * Math.round(histogramOfGray.get(i, 0)[0]) - 20),
- new Scalar(0, 0, 0), 1, 8, 0);
- kedu = i * 10;
- // 每隔10画一下刻度
- Core.rectangle(histImg, new Point(colStep * kedu, histImgRows - 20), new Point(colStep * (kedu + 1),
- histImgRows - 20), new Scalar(255, 0, 0), 2, 8, 0);
- Core.putText(histImg, kedu + "", new Point(colStep * kedu, histImgRows - 5), 1, 1, new Scalar(255, 0, 0)); // 附上x轴刻度
- }
-
- return histImg;
-
- }
-
- // 获取题号及选项填涂情况
- public String getQA(int no,int an){
- //返回1A、1B、1C...2A类似这样的返回值
- int first = no + 1 + an / 4 * 20;
- String second = "";
- if (an % 4 == 0) {
- second = "A";
- } else if (an % 4 == 1) {
- second = "B";
- } else if (an % 4 == 2) {
- second = "C";
- } else if (an % 4 == 3) {
- second = "D";
- }
- return first + "_" + second;
- }
-
- public static void main(String[] args) {
- System.out.println(5 / 3);
- }
- /**
- * 红色色系0-20,160-180
- * 蓝色色系100-120
- * 绿色色系60-80
- * 黄色色系23-38
- * 识别出的颜色会标记为白色,其他的为黑色
- * @param min
- * @param max
- */
- public static Mat findColorbyHSV(Mat source, int min, int max) {
- Mat hsv_image = new Mat();
- Imgproc.GaussianBlur(source, source, new Size(3, 3), 0, 0);
- Imgproc.cvtColor(source, hsv_image, Imgproc.COLOR_BGR2HSV);
- // String imagenameb = "D:\\test\\testImge\\ttbefore.jpg";
- // Highgui.imwrite(imagenameb, hsv_image);
- Mat thresholded = new Mat();
- Core.inRange(hsv_image, new Scalar(min, 90, 90), new Scalar(max, 255, 255), thresholded);
- return thresholded;
- }
-
- /**
- * 查找黑色
- * @param source
- * @param min
- * @param max
- * @return
- */
- public static Mat findBlackColorbyHSV(Mat source) {
- Mat hsv_image = new Mat();
- Imgproc.GaussianBlur(source, source, new Size(3, 3), 0, 0);
- Imgproc.cvtColor(source, hsv_image, Imgproc.COLOR_BGR2HSV);
- String imagenameb = "D:\\test\\testImge\\ttbefore.jpg";
- Highgui.imwrite(imagenameb, hsv_image);
- Mat thresholded = new Mat();
- Core.inRange(hsv_image, new Scalar(0, 0, 0), new Scalar(180, 255, 46), thresholded);
- String ttblack = "D:\\test\\testImge\\ttblack.jpg";
- Highgui.imwrite(ttblack, thresholded);
- return thresholded;
- }
-
- /**
- * 水平投影
- * @param source 传入灰度图片Mat
- * @return
- */
- public static Mat horizontalProjection(Mat source) {
- Mat dst = new Mat(source.rows(), source.cols(), source.type());
- // 先进行反转二值化
- Imgproc.threshold(source, dst, 150, 255, Imgproc.THRESH_BINARY_INV);
- // 水平积分投影
- // 每一行的白色像素的个数
- int[] rowswidth = new int[dst.rows()];
- for (int i = 0; i < dst.rows(); i++) {
- for (int j = 0; j < dst.cols(); j++) {
- if (dst.get(i, j)[0] == 255) {
- rowswidth[i]++;
- }
- }
- }
- // 定义一个白色跟原图一样大小的画布
- Mat matResult = new Mat(dst.rows(), dst.cols(), CvType.CV_8UC1, new Scalar(255, 255, 255));
- // 将每一行按照行像素值大小填充像素宽度
- for (int i = 0; i < matResult.rows(); i++) {
- for (int j = 0; j < rowswidth[i]; j++) {
- matResult.put(i, j, 0);
- }
- }
- return matResult;
- }
-
- /**
- * 垂直投影
- * @param source 传入灰度图片Mat
- * @return
- */
- public static Mat verticalProjection(Mat source) {
- // 先进行反转二值化
- Mat dst = new Mat(source.rows(), source.cols(), source.type());
- Imgproc.threshold(source, dst, 150, 255, Imgproc.THRESH_BINARY_INV);
- // 垂直积分投影
- // 每一列的白色像素的个数
- int[] colswidth = new int[dst.cols()];
- for (int j = 0; j < dst.cols(); j++) {
- for (int i = 0; i < dst.rows(); i++) {
- if (dst.get(i, j)[0] == 255) {
- colswidth[j]++;
- }
- }
- }
- Mat matResult = new Mat(dst.rows(), dst.cols(), CvType.CV_8UC1, new Scalar(255, 255, 255));
- // 将每一列按照列像素值大小填充像素宽度
- for (int j = 0; j < matResult.cols(); j++) {
- for (int i = 0; i < colswidth[j]; i++) {
- matResult.put(matResult.rows() - 1 - i, j, 0);
- }
- }
- return matResult;
- }
-
- /**
- * 图片切块
- * @param srcMat 传入水平或垂直投影的图片对象Mat
- * @param proType 传入投影Mat对象的 投影方式0:垂直投影图片,竖向切割;1:水平投影图片,横向切割
- * @param rowY 由于传来的是原始图片的部分切片,要计算切块的实际坐标位置需要给出切片时所在的坐标,所以需要传递横向切片的y坐标或者纵向切片的横坐标
- * 如当proType==0时,传入的是切片的垂直投影,那么切成块后能得出x坐标及块宽高度,但是实际y坐标需要加上原切片的y坐标值,所以rowXY为切片的y坐标点,
- * 同理当proType==1时,rowXY应该为x坐标
- * @return
- */
- public static List<Rect> getBlockRect(Mat srcImg, Integer proType, int rowXY) {
- Imgproc.threshold(srcImg, srcImg, 150, 255, Imgproc.THRESH_BINARY_INV);
- // 注意 countNonZero 方法是获取非0像素(白色像素)数量,所以一般要对图像进行二值化反转
- List<Rect> rectList = new ArrayList<Rect>();
- int size = proType == 0 ? srcImg.cols() : srcImg.rows();
- int[] pixNum = new int[size];
- if (proType == 0) {
- for (int i = 0; i < srcImg.cols(); i++) {
- Mat col = srcImg.col(i);
- pixNum[i] = Core.countNonZero(col) > 1 ? Core.countNonZero(col) : 0;
- }
- } else {// 水平投影只关注行
- for (int i = 0; i < srcImg.rows(); i++) {
- Mat row = srcImg.row(i);
- pixNum[i] = Core.countNonZero(row) > 1 ? Core.countNonZero(row) : 0;
- }
- }
- int startIndex = 0;// 记录进入字符区的索引
- int endIndex = 0;// 记录进入空白区域的索引
- boolean inBlock = false;// 是否遍历到了字符区内
- for (int i = 0; i < size; i++) {
- if (!inBlock && pixNum[i] != 0) {// 进入字符区,上升跳变沿
- inBlock = true;
- startIndex = i;
- } else if (pixNum[i] == 0 && inBlock) {// 进入空白区,下降跳变沿存储
- endIndex = i;
- inBlock = false;
- Rect rect = null;
- if (proType == 0) {
- rect = new Rect(startIndex, rowXY, (endIndex - startIndex), srcImg.rows());
- } else {
- rect = new Rect(rowXY, startIndex, srcImg.cols(), (endIndex - startIndex));
- }
- rectList.add(rect);
- }
- }
- return rectList;
- }
-
- }
|