You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

RELEASE.md 8.2 kB

3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
4 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. # MindArmour Release Notes
  2. ## MindArmour 2.0.0 Release Notes
  3. ### API Change
  4. * Add version check with MindSpore.
  5. ### Contributors
  6. Thanks goes to these wonderful people:
  7. Liu Zhidan, Zhang Shukun, Liu Liu, Tang Cong.
  8. Contributions of any kind are welcome!
  9. ## MindArmour 1.9.0 Release Notes
  10. ### API Change
  11. * Add Chinese version api of natural robustness feature.
  12. ### Contributors
  13. Thanks goes to these wonderful people:
  14. Liu Zhidan, Zhang Shukun, Jin Xiulang, Liu Liu, Tang Cong, Yangyuan.
  15. Contributions of any kind are welcome!
  16. ## MindArmour 1.8.0 Release Notes
  17. ### API Change
  18. * Add Chinese version of all existed api.
  19. ### Contributors
  20. Thanks goes to these wonderful people:
  21. Zhang Shukun, Liu Zhidan, Jin Xiulang, Liu Liu, Tang Cong, Yangyuan.
  22. Contributions of any kind are welcome!
  23. ## MindArmour 1.7.0 Release Notes
  24. ### Major Features and Improvements
  25. #### Robustness
  26. * [STABLE] Real-World Robustness Evaluation Methods
  27. ### API Change
  28. * Change value of parameter `mutate_config` in `mindarmour.fuzz_testing.Fuzzer.fuzzing` interface. ([!333](https://gitee.com/mindspore/mindarmour/pulls/333))
  29. ### Bug fixes
  30. * Update version of third-party dependence pillow from more than or equal to 6.2.0 to more than or equal to 7.2.0. ([!329](https://gitee.com/mindspore/mindarmour/pulls/329))
  31. ### Contributors
  32. Thanks goes to these wonderful people:
  33. Liu Zhidan, Zhang Shukun, Jin Xiulang, Liu Liu.
  34. Contributions of any kind are welcome!
  35. # MindArmour 1.6.0
  36. ## MindArmour 1.6.0 Release Notes
  37. ### Major Features and Improvements
  38. #### Reliability
  39. * [BETA] Data Drift Detection for Image Data
  40. * [BETA] Model Fault Injection
  41. ### Bug fixes
  42. ### Contributors
  43. Thanks goes to these wonderful people:
  44. Wu Xiaoyu,Feng Zhenye, Liu Zhidan, Jin Xiulang, Liu Luobin, Liu Liu, Zhang Shukun
  45. # MindArmour 1.5.0
  46. ## MindArmour 1.5.0 Release Notes
  47. ### Major Features and Improvements
  48. #### Reliability
  49. * [BETA] Reconstruct AI Fuzz and Neuron Coverage Metrics
  50. ### Bug fixes
  51. ### Contributors
  52. Thanks goes to these wonderful people:
  53. Wu Xiaoyu,Liu Zhidan, Jin Xiulang, Liu Luobin, Liu Liu
  54. # MindArmour 1.3.0-rc1
  55. ## MindArmour 1.3.0 Release Notes
  56. ### Major Features and Improvements
  57. #### Privacy
  58. * [STABLE] Data Drift Detection for Time Series Data
  59. ### Bug fixes
  60. * [BUGFIX] Optimization of API description.
  61. ### Contributors
  62. Thanks goes to these wonderful people:
  63. Wu Xiaoyu,Liu Zhidan, Jin Xiulang, Liu Luobin, Liu Liu
  64. # MindArmour 1.2.0
  65. ## MindArmour 1.2.0 Release Notes
  66. ### Major Features and Improvements
  67. #### Privacy
  68. * [STABLE] Tailored-based privacy protection technology (Pynative)
  69. * [STABLE] Model Inversion. Reverse analysis technology of privacy information
  70. ### API Change
  71. #### Backwards Incompatible Change
  72. ##### C++ API
  73. [Modify] ...
  74. [Add] ...
  75. [Delete] ...
  76. ##### Java API
  77. [Add] ...
  78. #### Deprecations
  79. ##### C++ API
  80. ##### Java API
  81. ### Bug fixes
  82. [BUGFIX] ...
  83. ### Contributors
  84. Thanks goes to these wonderful people:
  85. han.yin
  86. # MindArmour 1.1.0 Release Notes
  87. ## MindArmour
  88. ### Major Features and Improvements
  89. * [STABLE] Attack capability of the Object Detection models.
  90. * Some white-box adversarial attacks, such as [iterative] gradient method and DeepFool now can be applied to Object Detection models.
  91. * Some black-box adversarial attacks, such as PSO and Genetic Attack now can be applied to Object Detection models.
  92. ### Backwards Incompatible Change
  93. #### Python API
  94. #### C++ API
  95. ### Deprecations
  96. #### Python API
  97. #### C++ API
  98. ### New Features
  99. #### Python API
  100. #### C++ API
  101. ### Improvements
  102. #### Python API
  103. #### C++ API
  104. ### Bug fixes
  105. #### Python API
  106. #### C++ API
  107. ## Contributors
  108. Thanks goes to these wonderful people:
  109. Xiulang Jin, Zhidan Liu, Luobin Liu and Liu Liu.
  110. Contributions of any kind are welcome!
  111. # Release 1.0.0
  112. ## Major Features and Improvements
  113. ### Differential privacy model training
  114. * Privacy leakage evaluation.
  115. * Parameter verification enhancement.
  116. * Support parallel computing.
  117. ### Model robustness evaluation
  118. * Fuzzing based Adversarial Robustness testing.
  119. * Parameter verification enhancement.
  120. ### Other
  121. * Api & Directory Structure
  122. * Adjusted the directory structure based on different features.
  123. * Optimize the structure of examples.
  124. ## Bugfixes
  125. ## Contributors
  126. Thanks goes to these wonderful people:
  127. Liu Liu, Xiulang Jin, Zhidan Liu and Luobin Liu.
  128. Contributions of any kind are welcome!
  129. # Release 0.7.0-beta
  130. ## Major Features and Improvements
  131. ### Differential privacy model training
  132. * Privacy leakage evaluation.
  133. * Using Membership inference to evaluate the effectiveness of privacy-preserving techniques for AI.
  134. ### Model robustness evaluation
  135. * Fuzzing based Adversarial Robustness testing.
  136. * Coverage-guided test set generation.
  137. ## Bugfixes
  138. ## Contributors
  139. Thanks goes to these wonderful people:
  140. Liu Liu, Xiulang Jin, Zhidan Liu, Luobin Liu and Huanhuan Zheng.
  141. Contributions of any kind are welcome!
  142. # Release 0.6.0-beta
  143. ## Major Features and Improvements
  144. ### Differential privacy model training
  145. * Optimizers with differential privacy
  146. * Differential privacy model training now supports some new policies.
  147. * Adaptive Norm policy is supported.
  148. * Adaptive Noise policy with exponential decrease is supported.
  149. * Differential Privacy Training Monitor
  150. * A new monitor is supported using zCDP as its asymptotic budget estimator.
  151. ## Bugfixes
  152. ## Contributors
  153. Thanks goes to these wonderful people:
  154. Liu Liu, Huanhuan Zheng, XiuLang jin, Zhidan liu.
  155. Contributions of any kind are welcome.
  156. # Release 0.5.0-beta
  157. ## Major Features and Improvements
  158. ### Differential privacy model training
  159. * Optimizers with differential privacy
  160. * Differential privacy model training now supports both Pynative mode and graph mode.
  161. * Graph mode is recommended for its performance.
  162. ## Bugfixes
  163. ## Contributors
  164. Thanks goes to these wonderful people:
  165. Liu Liu, Huanhuan Zheng, Xiulang Jin, Zhidan Liu.
  166. Contributions of any kind are welcome!
  167. # Release 0.3.0-alpha
  168. ## Major Features and Improvements
  169. ### Differential Privacy Model Training
  170. Differential Privacy is coming! By using Differential-Privacy-Optimizers, one can still train a model as usual, while the trained model preserved the privacy of training dataset, satisfying the definition of
  171. differential privacy with proper budget.
  172. * Optimizers with Differential Privacy([PR23](https://gitee.com/mindspore/mindarmour/pulls/23), [PR24](https://gitee.com/mindspore/mindarmour/pulls/24))
  173. * Some common optimizers now have a differential privacy version (SGD/Adam). We are adding more.
  174. * Automatically and adaptively add Gaussian Noise during training to achieve Differential Privacy.
  175. * Automatically stop training when Differential Privacy Budget exceeds.
  176. * Differential Privacy Monitor([PR22](https://gitee.com/mindspore/mindarmour/pulls/22))
  177. * Calculate overall budget consumed during training, indicating the ultimate protect effect.
  178. ## Bug fixes
  179. ## Contributors
  180. Thanks goes to these wonderful people:
  181. Liu Liu, Huanhuan Zheng, Zhidan Liu, Xiulang Jin
  182. Contributions of any kind are welcome!
  183. # Release 0.2.0-alpha
  184. ## Major Features and Improvements
  185. * Add a white-box attack method: M-DI2-FGSM([PR14](https://gitee.com/mindspore/mindarmour/pulls/14)).
  186. * Add three neuron coverage metrics: KMNCov, NBCov, SNACov([PR12](https://gitee.com/mindspore/mindarmour/pulls/12)).
  187. * Add a coverage-guided fuzzing test framework for deep neural networks([PR13](https://gitee.com/mindspore/mindarmour/pulls/13)).
  188. * Update the MNIST Lenet5 examples.
  189. * Remove some duplicate code.
  190. ## Bug fixes
  191. ## Contributors
  192. Thanks goes to these wonderful people:
  193. Liu Liu, Huanhuan Zheng, Zhidan Liu, Xiulang Jin
  194. Contributions of any kind are welcome!
  195. # Release 0.1.0-alpha
  196. Initial release of MindArmour.
  197. ## Major Features
  198. * Support adversarial attack and defense on the platform of MindSpore.
  199. * Include 13 white-box and 7 black-box attack methods.
  200. * Provide 5 detection algorithms to detect attacking in multiple way.
  201. * Provide adversarial training to enhance model security.
  202. * Provide 6 evaluation metrics for attack methods and 9 evaluation metrics for defense methods.

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。