|
123456789101112131415161718192021222324252627282930313233343536373839404142434445 |
- # Examples
-
- ## Introduction
-
- This package includes application demos for all developed tools of MindArmour. Through these demos, you will soon
- master those tools of MindArmour. Let's Start!
-
- ## Preparation
-
- Most of those demos are implemented based on LeNet5 and MNIST dataset. As a preparation, we should download MNIST and
- train a LeNet5 model first.
-
- ### 1. download dataset
-
- The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples
- . It is a subset of a larger set available from MNIST. The digits have been size-normalized and centered in a fixed-size image.
-
- ```sh
- cd examples/common/dataset
- mkdir MNIST
- cd MNIST
- mkdir train
- mkdir test
- cd train
- wget "http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz"
- wget "http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz"
- gzip train-images-idx3-ubyte.gz -d
- gzip train-labels-idx1-ubyte.gz -d
- cd ../test
- wget "http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz"
- wget "http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz"
- gzip t10k-images-idx3-ubyte.gz -d
- gzip t10k-labels-idx1-ubyte.gz -d
- ```
-
- ### 2. trian LeNet5 model
-
- After training the network, you will obtain a group of ckpt files. Those ckpt files save the trained model parameters
- of LeNet5, which can be used in 'examples/ai_fuzzer' and 'examples/model_security'.
-
- ```sh
- cd examples/common/networks/lenet5
- python mnist_train.py
-
- ```
|