You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

concept_drift_check_images_resnet.py 1.9 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from mindspore import Tensor
  16. from mindspore.train.model import Model
  17. from mindspore import Model, nn, context
  18. from examples.common.networks.resnet.resnet import resnet50
  19. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  20. from mindarmour.reliability.concept_drift.concept_drift_check_images import OodDetectorFeatureCluster
  21. """
  22. Examples for Resnet.
  23. """
  24. if __name__ == '__main__':
  25. # load model
  26. ckpt_path = '../../tests/ut/python/dataset/trained_ckpt_file/resnet_1-20_1875.ckpt'
  27. net = resnet50()
  28. load_dict = load_checkpoint(ckpt_path)
  29. load_param_into_net(net, load_dict)
  30. model = Model(net)
  31. # load data
  32. ds_train = np.load('train.npy')
  33. ds_eval = np.load('test1.npy')
  34. ds_test = np.load('test2.npy')
  35. # ood detector initialization
  36. detector = OodDetectorFeatureCluster(model, ds_train, n_cluster=10, layer='output[:Tensor]')
  37. # get optimal threshold with ds_eval
  38. num = int(len(ds_eval) / 2)
  39. label = np.concatenate((np.zeros(num), np.ones(num)), axis=0) # ID data = 0, OOD data = 1
  40. optimal_threshold = detector.get_optimal_threshold(label, ds_eval)
  41. # get result of ds_test2. We can also set threshold by ourselves.
  42. result = detector.ood_predict(optimal_threshold, ds_test)

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。