You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

crossentropy.py 1.7 kB

123456789101112131415161718192021222324252627282930313233343536373839
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """define loss function for network"""
  16. from mindspore.nn.loss.loss import _Loss
  17. from mindspore.ops import operations as P
  18. from mindspore.ops import functional as F
  19. from mindspore import Tensor
  20. from mindspore.common import dtype as mstype
  21. import mindspore.nn as nn
  22. class CrossEntropy(_Loss):
  23. """the redefined loss function with SoftmaxCrossEntropyWithLogits"""
  24. def __init__(self, smooth_factor=0., num_classes=1001):
  25. super(CrossEntropy, self).__init__()
  26. self.onehot = P.OneHot()
  27. self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
  28. self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
  29. self.ce = nn.SoftmaxCrossEntropyWithLogits()
  30. self.mean = P.ReduceMean(False)
  31. def construct(self, logit, label):
  32. one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
  33. loss = self.ce(logit, one_hot_label)
  34. loss = self.mean(loss, 0)
  35. return loss

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。