You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_optimizer.py 2.9 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import pytest
  15. from mindspore import nn
  16. from mindspore import context
  17. from mindspore.train.model import Model
  18. from mindarmour.privacy.diff_privacy import DPOptimizerClassFactory
  19. from tests.ut.python.utils.mock_net import Net
  20. @pytest.mark.level0
  21. @pytest.mark.platform_arm_ascend_training
  22. @pytest.mark.platform_x86_ascend_training
  23. @pytest.mark.env_card
  24. @pytest.mark.component_mindarmour
  25. def test_optimizer():
  26. context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
  27. network = Net()
  28. lr = 0.01
  29. momentum = 0.9
  30. micro_batches = 2
  31. loss = nn.SoftmaxCrossEntropyWithLogits()
  32. factory = DPOptimizerClassFactory(micro_batches)
  33. factory.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
  34. net_opt = factory.create('SGD')(params=network.trainable_params(), learning_rate=lr,
  35. momentum=momentum)
  36. _ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None)
  37. @pytest.mark.level0
  38. @pytest.mark.platform_x86_gpu_training
  39. @pytest.mark.env_card
  40. @pytest.mark.component_mindarmour
  41. def test_optimizer_gpu():
  42. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  43. network = Net()
  44. lr = 0.01
  45. momentum = 0.9
  46. micro_batches = 2
  47. loss = nn.SoftmaxCrossEntropyWithLogits()
  48. factory = DPOptimizerClassFactory(micro_batches)
  49. factory.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
  50. net_opt = factory.create('SGD')(params=network.trainable_params(), learning_rate=lr,
  51. momentum=momentum)
  52. _ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None)
  53. @pytest.mark.level0
  54. @pytest.mark.platform_x86_cpu
  55. @pytest.mark.env_card
  56. @pytest.mark.component_mindarmour
  57. def test_optimizer_cpu():
  58. context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
  59. network = Net()
  60. lr = 0.01
  61. momentum = 0.9
  62. micro_batches = 2
  63. loss = nn.SoftmaxCrossEntropyWithLogits()
  64. factory = DPOptimizerClassFactory(micro_batches)
  65. factory.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
  66. net_opt = factory.create('SGD')(params=network.trainable_params(), learning_rate=lr,
  67. momentum=momentum)
  68. _ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None)

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。