You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_membership_inference.py 4.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. """
  15. membership inference test
  16. """
  17. import pytest
  18. import numpy as np
  19. import mindspore.dataset as ds
  20. from mindspore import nn
  21. from mindspore.train import Model
  22. import mindspore.context as context
  23. from mindarmour.privacy.evaluation import MembershipInference
  24. from ut.python.utils.mock_net import Net
  25. context.set_context(mode=context.GRAPH_MODE)
  26. def dataset_generator(batch_size, batches):
  27. """mock training data."""
  28. data = np.random.randn(batches*batch_size, 1, 32, 32).astype(
  29. np.float32)
  30. label = np.random.randint(0, 10, batches*batch_size).astype(np.int32)
  31. for i in range(batches):
  32. yield data[i*batch_size:(i + 1)*batch_size],\
  33. label[i*batch_size:(i + 1)*batch_size]
  34. @pytest.mark.level0
  35. @pytest.mark.platform_x86_ascend_training
  36. @pytest.mark.platform_arm_ascend_training
  37. @pytest.mark.env_onecard
  38. @pytest.mark.component_mindarmour
  39. def test_get_membership_inference_object():
  40. net = Net()
  41. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
  42. opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
  43. model = Model(network=net, loss_fn=loss, optimizer=opt)
  44. inference_model = MembershipInference(model, -1)
  45. assert isinstance(inference_model, MembershipInference)
  46. @pytest.mark.level0
  47. @pytest.mark.platform_x86_ascend_training
  48. @pytest.mark.platform_arm_ascend_training
  49. @pytest.mark.env_onecard
  50. @pytest.mark.component_mindarmour
  51. def test_membership_inference_object_train():
  52. net = Net()
  53. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
  54. opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
  55. model = Model(network=net, loss_fn=loss, optimizer=opt)
  56. inference_model = MembershipInference(model, -1)
  57. assert isinstance(inference_model, MembershipInference)
  58. config = [{
  59. "method": "KNN",
  60. "params": {
  61. "n_neighbors": [3, 5, 7],
  62. }
  63. }]
  64. batch_size = 16
  65. batches = 1
  66. ds_train = ds.GeneratorDataset(dataset_generator(batch_size, batches),
  67. ["image", "label"])
  68. ds_test = ds.GeneratorDataset(dataset_generator(batch_size, batches),
  69. ["image", "label"])
  70. ds_train.set_dataset_size(batch_size*batches)
  71. ds_test.set_dataset_size((batch_size*batches))
  72. inference_model.train(ds_train, ds_test, config)
  73. @pytest.mark.level0
  74. @pytest.mark.platform_x86_ascend_training
  75. @pytest.mark.platform_arm_ascend_training
  76. @pytest.mark.env_onecard
  77. @pytest.mark.component_mindarmour
  78. def test_membership_inference_eval():
  79. net = Net()
  80. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
  81. opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
  82. model = Model(network=net, loss_fn=loss, optimizer=opt)
  83. inference_model = MembershipInference(model, -1)
  84. assert isinstance(inference_model, MembershipInference)
  85. batch_size = 16
  86. batches = 1
  87. eval_train = ds.GeneratorDataset(dataset_generator(batch_size, batches),
  88. ["image", "label"])
  89. eval_test = ds.GeneratorDataset(dataset_generator(batch_size, batches),
  90. ["image", "label"])
  91. eval_train.set_dataset_size(batch_size * batches)
  92. eval_test.set_dataset_size((batch_size * batches))
  93. metrics = ["precision", "accuracy", "recall"]
  94. inference_model.eval(eval_train, eval_test, metrics)

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。