You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

resnet_cifar10.py 9.7 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from mindspore import nn
  16. from mindspore.common.tensor import Tensor
  17. from mindspore.ops import operations as P
  18. def variance_scaling_raw(shape):
  19. value = np.random.normal(size=shape).astype(np.float32)
  20. return Tensor(value)
  21. def weight_variable(shape):
  22. value = np.random.normal(size=shape).astype(np.float32)
  23. return Tensor(value)
  24. def sweight_variable(shape):
  25. value = np.random.uniform(size=shape).astype(np.float32)
  26. return Tensor(value)
  27. def weight_variable_0(shape):
  28. zeros = np.zeros(shape).astype(np.float32)
  29. return Tensor(zeros)
  30. def weight_variable_1(shape):
  31. ones = np.ones(shape).astype(np.float32)
  32. return Tensor(ones)
  33. def conv3x3(in_channels, out_channels, stride=1, padding=0):
  34. """3x3 convolution """
  35. weight_shape = (out_channels, in_channels, 3, 3)
  36. weight = variance_scaling_raw(weight_shape)
  37. return nn.Conv2d(in_channels, out_channels,
  38. kernel_size=3, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
  39. def conv1x1(in_channels, out_channels, stride=1, padding=0):
  40. """1x1 convolution"""
  41. weight_shape = (out_channels, in_channels, 1, 1)
  42. weight = variance_scaling_raw(weight_shape)
  43. return nn.Conv2d(in_channels, out_channels,
  44. kernel_size=1, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
  45. def conv7x7(in_channels, out_channels, stride=1, padding=0):
  46. """1x1 convolution"""
  47. weight_shape = (out_channels, in_channels, 7, 7)
  48. weight = variance_scaling_raw(weight_shape)
  49. return nn.Conv2d(in_channels, out_channels,
  50. kernel_size=7, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
  51. def bn_with_initialize(out_channels):
  52. shape = (out_channels)
  53. mean = weight_variable_0(shape)
  54. var = weight_variable_1(shape)
  55. beta = weight_variable_0(shape)
  56. gamma = sweight_variable(shape)
  57. bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init=gamma,
  58. beta_init=beta, moving_mean_init=mean, moving_var_init=var)
  59. return bn
  60. def bn_with_initialize_last(out_channels):
  61. shape = (out_channels)
  62. mean = weight_variable_0(shape)
  63. var = weight_variable_1(shape)
  64. beta = weight_variable_0(shape)
  65. gamma = sweight_variable(shape)
  66. bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init=gamma,
  67. beta_init=beta, moving_mean_init=mean, moving_var_init=var)
  68. return bn
  69. def fc_with_initialize(input_channels, out_channels):
  70. weight_shape = (out_channels, input_channels)
  71. weight = np.random.normal(size=weight_shape).astype(np.float32)
  72. weight = Tensor(weight)
  73. bias_shape = (out_channels)
  74. bias_value = np.random.uniform(size=bias_shape).astype(np.float32)
  75. bias = Tensor(bias_value)
  76. return nn.Dense(input_channels, out_channels, weight, bias)
  77. class ResidualBlock(nn.Cell):
  78. expansion = 4
  79. def __init__(self,
  80. in_channels,
  81. out_channels,
  82. stride=1):
  83. super(ResidualBlock, self).__init__()
  84. out_chls = out_channels // self.expansion
  85. self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
  86. self.bn1 = bn_with_initialize(out_chls)
  87. self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=0)
  88. self.bn2 = bn_with_initialize(out_chls)
  89. self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
  90. self.bn3 = bn_with_initialize_last(out_channels)
  91. self.relu = P.ReLU()
  92. self.add = P.Add()
  93. def construct(self, x):
  94. identity = x
  95. out = self.conv1(x)
  96. out = self.bn1(out)
  97. out = self.relu(out)
  98. out = self.conv2(out)
  99. out = self.bn2(out)
  100. out = self.relu(out)
  101. out = self.conv3(out)
  102. out = self.bn3(out)
  103. out = self.add(out, identity)
  104. out = self.relu(out)
  105. return out
  106. class ResidualBlockWithDown(nn.Cell):
  107. expansion = 4
  108. def __init__(self,
  109. in_channels,
  110. out_channels,
  111. stride=1,
  112. down_sample=False):
  113. super(ResidualBlockWithDown, self).__init__()
  114. out_chls = out_channels // self.expansion
  115. self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
  116. self.bn1 = bn_with_initialize(out_chls)
  117. self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=0)
  118. self.bn2 = bn_with_initialize(out_chls)
  119. self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
  120. self.bn3 = bn_with_initialize_last(out_channels)
  121. self.relu = P.ReLU()
  122. self.downsample = down_sample
  123. self.conv_down_sample = conv1x1(in_channels, out_channels, stride=stride, padding=0)
  124. self.bn_down_sample = bn_with_initialize(out_channels)
  125. self.add = P.Add()
  126. def construct(self, x):
  127. identity = x
  128. out = self.conv1(x)
  129. out = self.bn1(out)
  130. out = self.relu(out)
  131. out = self.conv2(out)
  132. out = self.bn2(out)
  133. out = self.relu(out)
  134. out = self.conv3(out)
  135. out = self.bn3(out)
  136. identity = self.conv_down_sample(identity)
  137. identity = self.bn_down_sample(identity)
  138. out = self.add(out, identity)
  139. out = self.relu(out)
  140. return out
  141. class MakeLayer0(nn.Cell):
  142. def __init__(self, block, layer_num, in_channels, out_channels, stride):
  143. super(MakeLayer0, self).__init__()
  144. self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True)
  145. self.b = block(out_channels, out_channels, stride=stride)
  146. self.c = block(out_channels, out_channels, stride=1)
  147. def construct(self, x):
  148. x = self.a(x)
  149. x = self.b(x)
  150. x = self.c(x)
  151. return x
  152. class MakeLayer1(nn.Cell):
  153. def __init__(self, block, layer_num, in_channels, out_channels, stride):
  154. super(MakeLayer1, self).__init__()
  155. self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
  156. self.b = block(out_channels, out_channels, stride=1)
  157. self.c = block(out_channels, out_channels, stride=1)
  158. self.d = block(out_channels, out_channels, stride=1)
  159. def construct(self, x):
  160. x = self.a(x)
  161. x = self.b(x)
  162. x = self.c(x)
  163. x = self.d(x)
  164. return x
  165. class MakeLayer2(nn.Cell):
  166. def __init__(self, block, layer_num, in_channels, out_channels, stride):
  167. super(MakeLayer2, self).__init__()
  168. self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
  169. self.b = block(out_channels, out_channels, stride=1)
  170. self.c = block(out_channels, out_channels, stride=1)
  171. self.d = block(out_channels, out_channels, stride=1)
  172. self.e = block(out_channels, out_channels, stride=1)
  173. self.f = block(out_channels, out_channels, stride=1)
  174. def construct(self, x):
  175. x = self.a(x)
  176. x = self.b(x)
  177. x = self.c(x)
  178. x = self.d(x)
  179. x = self.e(x)
  180. x = self.f(x)
  181. return x
  182. class MakeLayer3(nn.Cell):
  183. def __init__(self, block, layer_num, in_channels, out_channels, stride):
  184. super(MakeLayer3, self).__init__()
  185. self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
  186. self.b = block(out_channels, out_channels, stride=1)
  187. self.c = block(out_channels, out_channels, stride=1)
  188. def construct(self, x):
  189. x = self.a(x)
  190. x = self.b(x)
  191. x = self.c(x)
  192. return x
  193. class ResNet(nn.Cell):
  194. def __init__(self, block, layer_num, num_classes=100):
  195. super(ResNet, self).__init__()
  196. self.num_classes = num_classes
  197. self.conv1 = conv7x7(3, 64, stride=2, padding=0)
  198. self.bn1 = bn_with_initialize(64)
  199. self.relu = P.ReLU()
  200. self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
  201. self.layer1 = MakeLayer0(block, layer_num[0], in_channels=64, out_channels=256, stride=1)
  202. self.layer2 = MakeLayer1(block, layer_num[1], in_channels=256, out_channels=512, stride=2)
  203. self.layer3 = MakeLayer2(block, layer_num[2], in_channels=512, out_channels=1024, stride=2)
  204. self.layer4 = MakeLayer3(block, layer_num[3], in_channels=1024, out_channels=2048, stride=2)
  205. self.pool = P.ReduceMean(keep_dims=True)
  206. self.squeeze = P.Squeeze(axis=(2, 3))
  207. self.fc = fc_with_initialize(512*block.expansion, num_classes)
  208. def construct(self, x):
  209. x = self.conv1(x)
  210. x = self.bn1(x)
  211. x = self.relu(x)
  212. x = self.maxpool(x)
  213. x = self.layer1(x)
  214. x = self.layer2(x)
  215. x = self.layer3(x)
  216. x = self.layer4(x)
  217. x = self.pool(x, (2, 3))
  218. x = self.squeeze(x)
  219. x = self.fc(x)
  220. return x
  221. def resnet50_cifar10(num_classes):
  222. return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes)

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。