You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

mnist_defense_nad.py 5.1 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. """defense example using nad"""
  15. import sys
  16. import logging
  17. import numpy as np
  18. import pytest
  19. from mindspore import Tensor
  20. from mindspore import context
  21. from mindspore import nn
  22. from mindspore.nn import SoftmaxCrossEntropyWithLogits
  23. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  24. from mindarmour.attacks import FastGradientSignMethod
  25. from mindarmour.defenses import NaturalAdversarialDefense
  26. from mindarmour.utils.logger import LogUtil
  27. from lenet5_net import LeNet5
  28. sys.path.append("..")
  29. from data_processing import generate_mnist_dataset
  30. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  31. LOGGER = LogUtil.get_instance()
  32. TAG = 'Nad_Example'
  33. @pytest.mark.level1
  34. @pytest.mark.platform_arm_ascend_training
  35. @pytest.mark.platform_x86_ascend_training
  36. @pytest.mark.env_card
  37. @pytest.mark.component_mindarmour
  38. def test_nad_method():
  39. """
  40. NAD-Defense test.
  41. """
  42. # 1. load trained network
  43. ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
  44. net = LeNet5()
  45. load_dict = load_checkpoint(ckpt_name)
  46. load_param_into_net(net, load_dict)
  47. loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
  48. opt = nn.Momentum(net.trainable_params(), 0.01, 0.09)
  49. nad = NaturalAdversarialDefense(net, loss_fn=loss, optimizer=opt,
  50. bounds=(0.0, 1.0), eps=0.3)
  51. # 2. get test data
  52. data_list = "./MNIST_unzip/test"
  53. batch_size = 32
  54. ds_test = generate_mnist_dataset(data_list, batch_size=batch_size,
  55. sparse=False)
  56. inputs = []
  57. labels = []
  58. for data in ds_test.create_tuple_iterator():
  59. inputs.append(data[0].astype(np.float32))
  60. labels.append(data[1])
  61. inputs = np.concatenate(inputs)
  62. labels = np.concatenate(labels)
  63. # 3. get accuracy of test data on original model
  64. net.set_train(False)
  65. acc_list = []
  66. batchs = inputs.shape[0] // batch_size
  67. for i in range(batchs):
  68. batch_inputs = inputs[i*batch_size : (i + 1)*batch_size]
  69. batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1)
  70. logits = net(Tensor(batch_inputs)).asnumpy()
  71. label_pred = np.argmax(logits, axis=1)
  72. acc_list.append(np.mean(batch_labels == label_pred))
  73. LOGGER.debug(TAG, 'accuracy of TEST data on original model is : %s',
  74. np.mean(acc_list))
  75. # 4. get adv of test data
  76. attack = FastGradientSignMethod(net, eps=0.3)
  77. adv_data = attack.batch_generate(inputs, labels)
  78. LOGGER.debug(TAG, 'adv_data.shape is : %s', adv_data.shape)
  79. # 5. get accuracy of adv data on original model
  80. net.set_train(False)
  81. acc_list = []
  82. batchs = adv_data.shape[0] // batch_size
  83. for i in range(batchs):
  84. batch_inputs = adv_data[i*batch_size : (i + 1)*batch_size]
  85. batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1)
  86. logits = net(Tensor(batch_inputs)).asnumpy()
  87. label_pred = np.argmax(logits, axis=1)
  88. acc_list.append(np.mean(batch_labels == label_pred))
  89. LOGGER.debug(TAG, 'accuracy of adv data on original model is : %s',
  90. np.mean(acc_list))
  91. # 6. defense
  92. net.set_train()
  93. nad.batch_defense(inputs, labels, batch_size=32, epochs=10)
  94. # 7. get accuracy of test data on defensed model
  95. net.set_train(False)
  96. acc_list = []
  97. batchs = inputs.shape[0] // batch_size
  98. for i in range(batchs):
  99. batch_inputs = inputs[i*batch_size : (i + 1)*batch_size]
  100. batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1)
  101. logits = net(Tensor(batch_inputs)).asnumpy()
  102. label_pred = np.argmax(logits, axis=1)
  103. acc_list.append(np.mean(batch_labels == label_pred))
  104. LOGGER.debug(TAG, 'accuracy of TEST data on defensed model is : %s',
  105. np.mean(acc_list))
  106. # 8. get accuracy of adv data on defensed model
  107. acc_list = []
  108. batchs = adv_data.shape[0] // batch_size
  109. for i in range(batchs):
  110. batch_inputs = adv_data[i*batch_size : (i + 1)*batch_size]
  111. batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1)
  112. logits = net(Tensor(batch_inputs)).asnumpy()
  113. label_pred = np.argmax(logits, axis=1)
  114. acc_list.append(np.mean(batch_labels == label_pred))
  115. LOGGER.debug(TAG, 'accuracy of adv data on defensed model is : %s',
  116. np.mean(acc_list))
  117. if __name__ == '__main__':
  118. LOGGER.set_level(logging.DEBUG)
  119. test_nad_method()

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。