|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- """
- Fuction:
- Test fgsm attack about resnet50 network
- Usage:
- py.test test_cifar10_attack_fgsm.py
- """
- import os
- import numpy as np
-
- import pytest
-
- from mindspore import Tensor
- from mindspore import context
- from mindspore.nn import Cell
- from mindspore.common import dtype as mstype
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
-
- from mindarmour.attacks.gradient_method import FastGradientSignMethod
-
- from resnet_cifar10 import resnet50_cifar10
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
-
- class CrossEntropyLoss(Cell):
- def __init__(self):
- super(CrossEntropyLoss, self).__init__()
- self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
- self.mean = P.ReduceMean()
- self.one_hot = P.OneHot()
- self.on_value = Tensor(1.0, mstype.float32)
- self.off_value = Tensor(0.0, mstype.float32)
-
- def construct(self, logits, label):
- label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value)
- loss = self.cross_entropy(logits, label)[0]
- loss = self.mean(loss, (-1,))
- return loss
-
-
- @pytest.mark.level0
- @pytest.mark.env_single
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_ascend_inference
- def test_fast_gradient_sign_method():
- """
- FGSM-Attack test
- """
- context.set_context(mode=context.GRAPH_MODE)
- # get network
- net = resnet50_cifar10(10)
-
- # create test data
- test_images = np.random.rand(64, 3, 224, 224).astype(np.float32)
- test_labels = np.random.randint(10, size=64).astype(np.int32)
- # attacking
- loss_fn = CrossEntropyLoss()
- attack = FastGradientSignMethod(net, eps=0.1, loss_fn=loss_fn)
- adv_data = attack.batch_generate(test_images, test_labels, batch_size=32)
- assert np.any(adv_data != test_images)
|