|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Genetic-Attack test.
- """
- import numpy as np
- import pytest
-
- import mindspore.ops.operations as M
- from mindspore import Tensor
- from mindspore.nn import Cell
- from mindspore import context
-
- from mindarmour.attacks.black.genetic_attack import GeneticAttack
- from mindarmour.attacks.black.black_model import BlackModel
-
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- # for user
- class ModelToBeAttacked(BlackModel):
- """model to be attack"""
-
- def __init__(self, network):
- super(ModelToBeAttacked, self).__init__()
- self._network = network
-
- def predict(self, inputs):
- """predict"""
- result = self._network(Tensor(inputs.astype(np.float32)))
- return result.asnumpy()
-
-
- class SimpleNet(Cell):
- """
- Construct the network of target model.
-
- Examples:
- >>> net = SimpleNet()
- """
-
- def __init__(self):
- """
- Introduce the layers used for network construction.
- """
- super(SimpleNet, self).__init__()
- self._softmax = M.Softmax()
-
- def construct(self, inputs):
- """
- Construct network.
-
- Args:
- inputs (Tensor): Input data.
- """
- out = self._softmax(inputs)
- return out
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_genetic_attack():
- """
- Genetic_Attack test
- """
- batch_size = 6
-
- net = SimpleNet()
- inputs = np.random.rand(batch_size, 10)
-
- model = ModelToBeAttacked(net)
- labels = np.random.randint(low=0, high=10, size=batch_size)
- labels = np.eye(10)[labels]
- labels = labels.astype(np.float32)
-
- attack = GeneticAttack(model, pop_size=6, mutation_rate=0.05,
- per_bounds=0.1, step_size=0.25, temp=0.1,
- sparse=False)
- _, adv_data, _ = attack.generate(inputs, labels)
- assert np.any(inputs != adv_data)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_supplement():
- batch_size = 6
-
- net = SimpleNet()
- inputs = np.random.rand(batch_size, 10)
-
- model = ModelToBeAttacked(net)
- labels = np.random.randint(low=0, high=10, size=batch_size)
- labels = np.eye(10)[labels]
- labels = labels.astype(np.float32)
-
- attack = GeneticAttack(model, pop_size=6, mutation_rate=0.05,
- per_bounds=0.1, step_size=0.25, temp=0.1,
- adaptive=True,
- sparse=False)
- # raise error
- _, adv_data, _ = attack.generate(inputs, labels)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_value_error():
- """test that exception is raised for invalid labels"""
- batch_size = 6
-
- net = SimpleNet()
- inputs = np.random.rand(batch_size, 10)
-
- model = ModelToBeAttacked(net)
- labels = np.random.randint(low=0, high=10, size=batch_size)
- # labels = np.eye(10)[labels]
- labels = labels.astype(np.float32)
-
- attack = GeneticAttack(model, pop_size=6, mutation_rate=0.05,
- per_bounds=0.1, step_size=0.25, temp=0.1,
- adaptive=True,
- sparse=False)
- # raise error
- with pytest.raises(ValueError) as e:
- assert attack.generate(inputs, labels)
|