|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Gradient-Attack test.
- """
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore.nn import Cell
- import mindspore.context as context
- from mindspore.nn import SoftmaxCrossEntropyWithLogits
-
- from mindarmour.attacks.gradient_method import FastGradientMethod
- from mindarmour.attacks.gradient_method import FastGradientSignMethod
- from mindarmour.attacks.gradient_method import LeastLikelyClassMethod
- from mindarmour.attacks.gradient_method import RandomFastGradientMethod
- from mindarmour.attacks.gradient_method import RandomFastGradientSignMethod
- from mindarmour.attacks.gradient_method import RandomLeastLikelyClassMethod
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- # for user
- class Net(Cell):
- """
- Construct the network of target model.
-
- Examples:
- >>> net = Net()
- """
-
- def __init__(self):
- """
- Introduce the layers used for network construction.
- """
- super(Net, self).__init__()
- self._relu = nn.ReLU()
-
- def construct(self, inputs):
- """
- Construct network.
-
- Args:
- inputs (Tensor): Input data.
- """
- out = self._relu(inputs)
- return out
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_fast_gradient_method():
- """
- Fast gradient method unit test.
- """
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(3)[label].astype(np.float32)
-
- attack = FastGradientMethod(Net())
- ms_adv_x = attack.generate(input_np, label)
-
- assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \
- ' must not be equal to original value.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_inference
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_fast_gradient_method_gpu():
- """
- Fast gradient method unit test.
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(3)[label].astype(np.float32)
-
- attack = FastGradientMethod(Net())
- ms_adv_x = attack.generate(input_np, label)
-
- assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \
- ' must not be equal to original value.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_fast_gradient_method_cpu():
- """
- Fast gradient method unit test.
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
-
- loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- attack = FastGradientMethod(Net(), loss_fn=loss)
- ms_adv_x = attack.generate(input_np, label)
-
- assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \
- ' must not be equal to original value.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_random_fast_gradient_method():
- """
- Random fast gradient method unit test.
- """
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(3)[label].astype(np.float32)
-
- attack = RandomFastGradientMethod(Net())
- ms_adv_x = attack.generate(input_np, label)
-
- assert np.any(ms_adv_x != input_np), 'Random fast gradient method: ' \
- 'generate value must not be equal to' \
- ' original value.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_fast_gradient_sign_method():
- """
- Fast gradient sign method unit test.
- """
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(3)[label].astype(np.float32)
-
- attack = FastGradientSignMethod(Net())
- ms_adv_x = attack.generate(input_np, label)
-
- assert np.any(ms_adv_x != input_np), 'Fast gradient sign method: generate' \
- ' value must not be equal to' \
- ' original value.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_random_fast_gradient_sign_method():
- """
- Random fast gradient sign method unit test.
- """
- input_np = np.random.random((1, 28)).astype(np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(28)[label].astype(np.float32)
-
- attack = RandomFastGradientSignMethod(Net())
- ms_adv_x = attack.generate(input_np, label)
-
- assert np.any(ms_adv_x != input_np), 'Random fast gradient sign method: ' \
- 'generate value must not be equal to' \
- ' original value.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_least_likely_class_method():
- """
- Least likely class method unit test.
- """
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(3)[label].astype(np.float32)
-
- attack = LeastLikelyClassMethod(Net())
- ms_adv_x = attack.generate(input_np, label)
-
- assert np.any(ms_adv_x != input_np), 'Least likely class method: generate' \
- ' value must not be equal to' \
- ' original value.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_random_least_likely_class_method():
- """
- Random least likely class method unit test.
- """
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(3)[label].astype(np.float32)
-
- attack = RandomLeastLikelyClassMethod(Net(), eps=0.1, alpha=0.01)
- ms_adv_x = attack.generate(input_np, label)
-
- assert np.any(ms_adv_x != input_np), 'Random least likely class method: ' \
- 'generate value must not be equal to' \
- ' original value.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_assert_error():
- """
- Random least likely class method unit test.
- """
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(3)[label].astype(np.float32)
-
- with pytest.raises(ValueError) as e:
- assert RandomLeastLikelyClassMethod(Net(), eps=0.05, alpha=0.21)
- assert str(e.value) == 'eps must be larger than alpha!'
|