|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- JSMA-Attack test.
- """
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore.nn import Cell
- from mindspore import context
- from mindspore import Tensor
- from mindarmour.attacks.jsma import JSMAAttack
-
-
- # for user
- class Net(Cell):
- """
- Construct the network of target model.
-
- Examples:
- >>> net = Net()
- """
-
- def __init__(self):
- """
- Introduce the layers used for network construction.
- """
- super(Net, self).__init__()
- self._relu = nn.ReLU()
-
- def construct(self, inputs):
- """
- Construct network.
-
- Args:
- inputs (Tensor): Input data.
- """
- out = self._relu(inputs)
- return out
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_jsma_attack():
- """
- JSMA-Attack test
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = Net()
- input_shape = (1, 5)
- batch_size, classes = input_shape
- np.random.seed(5)
- input_np = np.random.random(input_shape).astype(np.float32)
- label_np = np.random.randint(classes, size=batch_size)
- ori_label = np.argmax(net(Tensor(input_np)).asnumpy(), axis=1)
- for i in range(batch_size):
- if label_np[i] == ori_label[i]:
- if label_np[i] < classes - 1:
- label_np[i] += 1
- else:
- label_np[i] -= 1
- attack = JSMAAttack(net, classes, max_iteration=5)
- adv_data = attack.generate(input_np, label_np)
- assert np.any(input_np != adv_data)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_jsma_attack_2():
- """
- JSMA-Attack test
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = Net()
- input_shape = (1, 5)
- batch_size, classes = input_shape
- np.random.seed(5)
- input_np = np.random.random(input_shape).astype(np.float32)
- label_np = np.random.randint(classes, size=batch_size)
- ori_label = np.argmax(net(Tensor(input_np)).asnumpy(), axis=1)
- for i in range(batch_size):
- if label_np[i] == ori_label[i]:
- if label_np[i] < classes - 1:
- label_np[i] += 1
- else:
- label_np[i] -= 1
- attack = JSMAAttack(net, classes, max_iteration=5, increase=False)
- adv_data = attack.generate(input_np, label_np)
- assert np.any(input_np != adv_data)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_inference
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_jsma_attack_gpu():
- """
- JSMA-Attack test
- """
- context.set_context(device_target="GPU")
- net = Net()
- input_shape = (1, 5)
- batch_size, classes = input_shape
- np.random.seed(5)
- input_np = np.random.random(input_shape).astype(np.float32)
- label_np = np.random.randint(classes, size=batch_size)
- ori_label = np.argmax(net(Tensor(input_np)).asnumpy(), axis=1)
- for i in range(batch_size):
- if label_np[i] == ori_label[i]:
- if label_np[i] < classes - 1:
- label_np[i] += 1
- else:
- label_np[i] -= 1
- attack = JSMAAttack(net, classes, max_iteration=5)
- adv_data = attack.generate(input_np, label_np)
- assert np.any(input_np != adv_data)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_jsma_attack_cpu():
- """
- JSMA-Attack test
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- net = Net()
- input_shape = (1, 5)
- batch_size, classes = input_shape
- np.random.seed(5)
- input_np = np.random.random(input_shape).astype(np.float32)
- label_np = np.random.randint(classes, size=batch_size)
- ori_label = np.argmax(net(Tensor(input_np)).asnumpy(), axis=1)
- for i in range(batch_size):
- if label_np[i] == ori_label[i]:
- if label_np[i] < classes - 1:
- label_np[i] += 1
- else:
- label_np[i] -= 1
- attack = JSMAAttack(net, classes, max_iteration=5)
- adv_data = attack.generate(input_np, label_np)
- assert np.any(input_np != adv_data)
|